
1

ARUNAI ENGINEERING COLLEGE
 (Affiliated to Anna University)

Velu Nagar, Thiruvannamalai-606 603

www.arunai.org

DEPARTMENT OF

COMPUTER SCIENCE & ENGINEERING

BACHELOR OF ENGINEERING

2021 - 2022

FOURTH SEMESTER

CS8461 – OPERATING SYSTEMS LAB

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.arunai.org/

2

 CS8461 OPERATING SYSTEMS LABORATORY L T P C 0 0 4 2

OBJECTIVES

• To learn Unix commands and shell programming

• To implement various CPU Scheduling Algorithms

• To implement Process Creation and Inter Process Communication.

• To implement Deadlock Avoidance and Deadlock Detection Algorithms

• To implement Page Replacement Algorithms

• To implement File Organization and File Allocation Strategies

LIST OF EXPERIMENTS

1. Basics of UNIX commands

2. Write programs using the following system calls of UNIX operating system

3. fork, exec, getpid, exit, wait, close, stat, opendir, readdir

4. Write C programs to simulate UNIX commands like cp, ls, grep, etc.

5. Shell Programming

6. Write C programs to implement the various CPU Scheduling Algorithms

7. Implementation of Semaphores

8. Implementation of Shared memory and IPC

9. Bankers Algorithm for Deadlock Avoidance

10. Implementation of Deadlock Detection Algorithm

11. Write C program to implement Threading & Synchronization Applications

12. Implementation of the following Memory Allocation Methods for fixed partition

a) First Fit b) Worst Fit c) Best Fit

13. Implementation of Paging Technique of Memory Management

14. Implementation of the following Page Replacement Algorithms

a) FIFO b) LRU c) LFU

15. Implementation of the various File Organization Techniques

16. Implementation of the following File Allocation Strategies

a) Sequential b) Indexed c) Linked

 TOTAL: 60 PERIODS

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3

PROGRAMME OUTCOMES (POs)

 After going through the four years of study, computer science & engineering

graduates will exhibit:
 Graduate Attribute Programme Outcome

1 Engineering knowledge

Apply the knowledge of mathematics, science, engineering

fundamentals, and an engineering specialization for the

solution of complex engineering problems.

2 Problem analysis

Identify, formulate, research literature, and analyze

complex engineering problems reaching substantiated

conclusions using first principles of mathematics, natural

sciences, and engineering sciences.

3

Design/development of

solutions

Design solutions for complex engineering problems and

design system components or processes that meet the

specified needs with appropriate consideration for public

health and safety, and cultural, societal, and environmental

considerations.

4
Conduct investigations of

complex problems

Use research-based knowledge and research methods

including design of experiments, analysis and

interpretation of data, and synthesis of the information to

provide valid conclusions

5 Modern tool usage

Create, select, and apply appropriate techniques, resources,

and modern engineering and IT tools, including prediction

and modeling to complex engineering activities, with an

understanding of the limitations.

6 The engineer and society

Apply reasoning informed by the contextual knowledge to

assess societal, health, safety, legal, and cultural issues and

the consequent responsibilities relevant to the professional

engineering practice

7
Environment and

sustainability

Understand the impact of the professional engineering

solutions in societal and environmental contexts, and

demonstrate the knowledge of, and need for sustainable

development.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4

8 Ethics

Apply ethical principles and commit to professional ethics

and responsibilities and norms of the engineering practice

9 Individual and team work

Function effectively as an individual, and as a member

or leader in diverse teams, and in multidisciplinary settings

10 Communication

Communicate effectively on complex engineering

activities with the engineering community and with the

society at large, such as, being able to comprehend and

write effective reports and design documentation, make

effective presentations, and give and receive clear

instructions

11

Project management and

finance

Demonstrate knowledge and understanding of the

engineering and management principles and apply these to

one’s own work, as a member and leader in a team, to

manage projects and in multidisciplinary environments

12

Life-long learning

Recognize the need for, and have the preparation and

ability to engage in independent and life-long learning in

the broadest context of technological change

PROGRAM SPECIFIC OUTCOMES (PSOs)

 By the completion of Information Technology program the student will

have following Program specific outcomes

1. Design secured database applications involving planning, development and

maintenance using state of the art methodologies based on ethical values.

2. Design and develop solutions for modern business environments

coherent with the advanced technologies and tools.

3. Design, plan and setting up the network that is helpful for

contemporary business environments using latest hardware components.

4. Planning and defining test activities by preparing test cases that can predict

and correct errors ensuring a socially transformed product catering all technological

needs

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:

SOFTWARE:

➢ C / C++ / Unix OS

HARDWARE:

 Standalone desktops - 30 Nos. (or) Server supporting 30 terminals or more.

OUTCOMES:

 At the end of the course, the students will be able to:

Course

Outcomes
Description

Level in

Bloom’s

Taxonomy

C217.1 Illustrate the various CPU scheduling algorithms. K3

C217.2 Implement deadlock avoidance and detection algorithms. K3

C217.3 Implement semaphore concepts. K3

C217.4 Create processes and implement IPC. K3

C217.5
Analyze the performance of the various page replacement

algorithms.
K3

C217.6 Implement file organization and file allocation strategies. K3

C217.7 Exhibit ethical principles in engineering practices A3

C217.8
Perform task as an individual and / or team member to manage the task

in time
A3

C217.9
Express the Engineering activities with effective presentation and

report.
A3

C217.10 Interpret the findings with appropriate technological / research citation. A2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6

CO - PO MATRIX

Course

Outcomes

Programme Outcome (POs)

K3 K4 K4 K5 K3,K4,K5 A3 A2 A3 A3 A3 A3 A2

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12

CO1 3 2 2 - - - - - - - - -

CO2 3 2 2 - - - - - - - - -

CO3 3 2 2 - - - - - - - - -

CO4 3 2 2 - - - - - - - - -

CO5 3 2 2 - - - - - - - - -

CO6 3 2 2 - - - - - - - - -

CO7 - - - - - - - 3 - - - -

CO8 - - - - - - - - 3 - 3 -

CO9 - - - - - - - - - 3 - -

CO10 - - - - - - - - - - - 3

 3 2 2 - - - - 3 3 3 3 3

CO - PSO MATRIX

 PSO1 PSO2 PSO3

CO1 3 2 1

CO2 3 2 1

CO3 3 2 1

CO4 3 2 1

CO5 3 2 1

CO6 3 2 1

CO7 - - -

CO8 - - -

CO9 - - -

CO10 - -

 3 2 1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7

MODE OF ASSESSMENT

EVALUATION PROCEDURE FOR EACH EXPERIMENT

S.No Description Mark

1. Aim & Pre-Lab discussion 20

2. Observation 20

3. Conduction and Execution 30

4. Output & Result 10

5. Viva 20

Total 100

INTERNAL ASSESSMENT FOR LABORATORY

S.No Description Mark

1. Observation 05

2. Performance
05

3. Viva voce
05

4. Record 05

Total
20

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

8

ABOUT THE SOFTWARE

UNIX OS

UNIX is an operating system which was first developed in the 1960s, and has been

under constant development ever since. By operating system, we mean the suite of

programs which make the computer work. It is a stable, multi-user, multi-tasking

system for servers, desktops and laptops.

UNIX systems also have a graphical user interface (GUI) similar to Microsoft

Windows which provides an easy to use environment. However, knowledge of UNIX is

required for operations which aren't covered by a graphical program, or for when there

is no windows interface available, for example, in a telnet session.

There are many different versions of UNIX, although they share common similarities.

The most popular varieties of UNIX are Sun Solaris, GNU/Linux, and MacOS X.

Here in the School, we use Solaris on our servers and workstations, and Fedora Linux

on the servers and desktop PCs.

The UNIX operating system is made up of three parts; the kernel, the shell and the

programs.

The kernel

The kernel of UNIX is the hub of the operating system: it allocates time and memory to

programs and handles the filestore and communications in response to system calls.

As an illustration of the way that the shell and the kernel work together, suppose a user

types rm myfile (which has the effect of removing the file myfile). The shell searches

the filestore for the file containing the program rm, and then requests the kernel,

through system calls, to execute the program rm on myfile. When the process rm

myfile has finished running, the shell then returns the UNIX prompt % to the user,

indicating that it is waiting for further commands.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

9

The shell

The shell acts as an interface between the user and the kernel. When a user logs in,

the login program checks the username and password, and then starts another program

called the shell. The shell is a command line interpreter (CLI). It interprets the

commands the user types in and arranges for them to be carried out. The commands are

themselves programs: when they terminate, the shell gives the user another prompt (%

on our systems).

The adept user can customise his/her own shell, and users can use different shells

on the same machine. Staff and students in the school have the tcsh shell by default.

The tcsh shell has certain features to help the user inputting commands.

Filename Completion - By typing part of the name of a command, filename or directory

and pressing the [Tab] key, the tcsh shell will complete the rest of the name

automatically. If the shell finds more than one name beginning with those letters you

have typed, it will beep, prompting you to type a few more letters before pressing the

tab key again.

History - The shell keeps a list of the commands you have typed in. If you need to

repeat a command, use the cursor keys to scroll up and down the list or type history for

a list of previous commands.

Everything in UNIX is either a file or a process.

A process is an executing program identified by a unique PID (process identifier).

A file is a collection of data. They are created by users using text editors, running

compilers etc.

Examples of files:

• a document (report, essay etc.)

• the text of a program written in some high-level programming language

• instructions comprehensible directly to the machine and incomprehensible to a

casual user, for example, a collection of binary digits (an executable or binary file);

• a directory, containing information about its contents, which may be a mixture of

other directories (subdirectories) and ordinary files.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

10

C / C++

 C is a structural or procedural oriented programming language which is machine-

independent and extensively used in various applications. C is the basic programming

language that can be used to develop from the operating systems (like Windows) to complex

programs like Oracle database, Git, Python interpreter, and many more. C programming

language can be called a god's programming language as it forms the base for other

programming languages. If we know the C language, then we can easily learn other

programming languages. C language was developed by the great computer scientist Dennis

Ritchie at the Bell Laboratories. It contains some additional features that make it unique from

other programming languages.

C++ is a special-purpose programming language developed by Bjarne Stroustrup at

Bell Labs circa 1980. C++ language is very similar to C language, and it is so

compatible with C that it can run 99% of C programs without changing any source of code

though C++ is an object-oriented programming language, so it is safer and well-structured

programming language than C.

Differences between C and C++:

o Definition

C is a structural programming language, and it does not support classes and objects,

while C++ is an object-oriented programming language that supports the concept of

classes and objects.

o Subset

C++ is a superset of C programming language. C++ can run 99% of C code but C

language cannot run C++ code.

o Type of approach

C follows the top-down approach, while C++ follows the bottom-up approach. The

top-down approach breaks the main modules into tasks; these tasks are broken into

sub-tasks, and so on. The bottom-down approach develops the lower level modules

first and then the next level modules.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

11

o Security

In C, the data can be easily manipulated by the outsiders as it does not support the

encapsulation and information hiding while C++ is a very secure language, i.e., no

outsiders can manipulate its data as it supports both encapsulation and data hiding. In

C language, functions and data are the free entities, and in C++ language, all the

functions and data are encapsulated in the form of objects.

o Function Overloading

Function overloading is a feature that allows you to have more than one function

with the same name but varies in the parameters. C does not support the function

overloading, while C++ supports the function overloading.

o Function Overriding

Function overriding is a feature that provides the specific implementation to the

function, which is already defined in the base class. C does not support the function

overriding, while C++ supports the function overriding.

o Keywords

C contains 32 keywords, and C++ supports 52 keywords.

o Namespace feature

A namespace is a feature that groups the entities like classes, objects, and functions

under some specific name. C does not contain the namespace feature, while C++

supports the namespace feature that avoids the name collisions.

o Exception handling

C does not provide direct support to the exception handling; it needs to use

functions that support exception handling. C++ provides direct support to exception

handling by using a try-catch block.

o Input/Output functions

In C, scanf and printf functions are used for input and output operations,

respectively, while in C++, cin and cout are used for input and output operations,

respectively.

o Memory allocation and de-allocation

C supports calloc() and malloc() functions for the memory allocation, and free()

function for the memory de-allocation. C++ supports a new operator for the

memory allocation and delete operator for the memory de-allocation.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

12

LIST OF EXPERIMENTS

Ex. No List of Experiments Page No

Ex. No List of Experiments Page No

1.a Study of UNIX OS 13

1.b Unix Commands 15

2.a Study of vi Editor 21

2.b Shell Programming 23

3.a FCFS Scheduling 29

3.b SJF Scheduling 33

3.c Priority Scheduling 37

3.d Round Robin Scheduling 41

4.a Contiguous Allocation 46

4.b Linked Allocation 51

5 Producer Consumer Synchronization 55

6.a Single Level Directory 59

6.b Two Level Directory 62

6.c Hierarchical Directory Structure 66

7 Banker’s Algorithm 71

8 Deadlock Detection 75

9.a FIFO page replacement 79

9.b LRU Page Replacement 82

9.c Optimal Page Replacement 86

10.a Pipes 90

10.b Shared Memory 95

10.c Message Queues 100

11.a Paging 104

11.b First Fit Allocation 107

11.c Best Fit Allocation 112

12 Multi Threading 116

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

13

Exp. No. 1a Study of UNIX OS

Date:

Aim

To introduce the concepts of UNIX Operating System

Operating System

➢ An Operating System is a set of programs that:

o Functions as an virtual machine by presenting an interface that is
easier to program than the underlying hardware

o Acts as resource management through orderly and controlled allocation
of the processors, memories, and I/O devices among the programs
competing for it.

UNIX Features

1. Multi-user system—Multi-user capability of UNIX allows several users to use

the same computer to perform their tasks. Several terminals [Keyboards and

Monitors] are connected to a single powerful server.

2. Multi-tasking system—Multitasking is the capability of the operating system

to perform various task simultaneously, i.e. a user can run multiple tasks

concurrently.

3. Programming Facility—the UNIX shell has all the necessary ingredients like

conditional and control structures, etc.

4. Security—Every user must have a single login name and password. So,

accessing another user’s data is impossible without his permission.

Apart from these features, UNIX has an extensive Tool kit, exhaustive system calls

and Libraries and enhanced GUI (X Window).

Organization of UNIX

1. The kernel is the heart of the system, a collection of programs written in C that

directly communicate with the hardware. It manages the system resources,

allocates time between user and processes, decides process priorities, and

performs all other tasks. The kernel, in traditional parlance, is often called the

Operating system.

2. The shell, on the other hand, is the "sleeping beauty" of UNIX. It is actually

the interface between the user and the kernel. The shell is the agency which

takes care of the features of redirection and has a programming capability of its

own.

3. The Tools and Applications consist of Application Software, Compilers,

Database Package, Internet tools, UNIX commands, etc.

File System

All files in UNIX are related to one another. The file system of UNIX

resembles a tree that grows from top to bottom as shown in the figure. The file system

begins with a directory called root (at the top). The root directory is denoted by a slash

(\). Branching from root there are several directories such as bin, lib, etc, tmp, dev.

Each of these directories contains several sub-directories and files.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

14

Organizatio

n

File System

Result

Thus the study of UNIX Operating System has been completed successfully.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

15

Exp. No. 1b Unix Commands

Date :

Aim

To study and execute Unix commands.

Login

Type telnet server_ipaddress in run window.

User has to authenticate himself by providing username and password. Once verified,

a greeting and $ prompt appears. The shell is now ready to receive commands from

the user. Options suffixed with a hyphen (–) and arguments are separated by space.

General commands

Command Function

Date Used to display the current system date and time.

date +%D Displays date only

date +%T Displays time only

date +% Y Displays the year part of date

date +% H Displays the hour part of time

Cal Calendar of the current month

cal year Displays calendar for all months of the specified year

cal month year Displays calendar for the specified month of the year

Who Login details of all users such as their IP, Terminal No, User name,

who am i Used to display the login details of the user

Uname Displays the Operating System

uname –r Shows version number of the OS (kernel).

uname –n Displays domain name of the server

echo $HOME Displays the user's home directory

Bc Basic calculator. Press Ctrl+d to quit

lp file Allows the user to spool a job along with others in a print queue.

man cmdname Manual for the given command. Press q to exit

history To display the commands used by the user since log on.

exit Exit from a process. If shell is the only process then logs out

Directory commands

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

16

Command Function

Pwd Path of the present working directory

mkdir dir A directory is created in the given name under the current
directory

mkdir dir1 dir2 A number of sub-directories can be created under one stroke

cd subdir Change Directory. If the subdir starts with / then path starts

from root (absolute) otherwise from current working directory.
cd To switch to the home directory.

cd / To switch to the root directory.

cd .. To move back to the parent directory

rmdir subdir Removes an empty sub-directory.

File commands

Command Function

cat > filename To create a file with some contents. To end typing press

Ctrl+d. The > symbol means redirecting output to a file.
cat filename Displays the file contents.
cat >> filename Used to append contents to a file
cp src des Copy files to given location. If already exists, it will be

overwritten
cp –i src des Warns the user prior to overwriting the destination file

cp –r src des Copies the entire directory, all its sub-directories and files.
mv old new To rename an existing file or directory. –i option can also be

used
mv f1 f2 f3 dir To move a group of files to a directory.
mv –v old new Display name of each file as it is moved.

rm file Used to delete a file or group of files. –i option can also be used
rm * To delete all the files in the directory.
rm –r * Deletes all files and sub-directories
rm –f * To forcibly remove even write-protected files
Ls Lists all files and subdirectories (blue colored) in sorted

manner.
ls name To check whether a file or directory exists.
ls name* Short-hand notation to list out filenames of a specific pattern.
ls –a Lists all files including hidden files (files beginning with .)

ls –x dirname To have specific listing of a directory.

ls –R Recursive listing of all files in the subdirectories

ls –l Long listing showing file access rights (read/write/execute-

rwx for user/group/others-ugo).
cmp file1 file2 Used to compare two files. Displays nothing if files are

identical.
wc file It produces a statistics of lines (l), words(w), and characters(c).

chmod perm file Changes permission for the specified file. (r=4, w=2, x=1)

chmod 740 file sets all rights for user, read only for groups
and no rights for others

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

17

The commands can be combined using the pipeline (|) operator. For example, number

of users logged in can be obtained as.

who | wc -l

Finally to terminate the unix session execute the command exit or logout.

Output

$ date

Sat Apr 9 13:03:47 IST 2011

$ date +%D

04/09/11

$ date +%T

13:05:33

$ date +%Y

2011

$ date +%H

13

$ cal 08 1998

August 1998
Su M

o
Tu W

e
Th Fr Sa

 1

2 3 4 5 6 7 8
9 10 11 12 13 14 15

16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

$ who

root :0 Apr 9 08:41

vijai pts/0 Apr 9 13:00 (scl-64)

cse4001 pts/3 Apr 9 13:18 (scl-41.smkfomra.com)

$ uname

Linux

$ uname -r

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

18

2.4.20-8smp

$ uname -n

localhost.localdomain

$ echo $HOME

/home/vijai

$ echo $USER

vijai

$ bc

3+5

8

pwd

/home/vijai/shellscripts/loops

$ mkdir filter

$ ls

filter list.sh regexpr shellscripts

$ cd shellscripts/loops/

$

$ cd

$

$ cd / [vijai@localhost /]$

[vijai@localhost /]$ cd /home/vijai/shellscripts/loops/

$ cd ..

[vijai@localhost shellscripts]$

$ rmdir filter

$ ls

list.sh regexpr shellscripts

$ cat > greet

hi cse

wishing u the best

$ cat greet

hi ece-a

wishing u the best

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

19

$ cat >> greet

bye

$ cat greet

hi cse

wishing u the best bye

$ ls

greet list.sh regexpr shellscripts

$ ls -a

. .bash_logout .canna .gtkrc regexpr .viminfo.tmp

.. .bash_profile .emacs .kde shellscripts .xemacs

.bash_history .bashrc greet list.sh .viminfo
ls -l

-rw-rw-r-- 1 vijai vijai 32 Apr 11 14:52 greet

-rw-rw-r-- 1 vijai vijai 30 Apr 4 13:58 list.sh
drwxrwxr-x 2 vijai vijai 4096 Apr 9 14:30 regexpr

$ cp greet ./regexpr/

$ ls

greet list.sh regexpr shellscripts

$ ls ./regexpr

demo greet

$ cp -i greet ./regexpr/

cp: overwrite 'greet'? n

$ mv greet greet.txt

$ ls

greet.txt list.sh regexpr shellscripts

$ mv greet.txt ./regexpr/

$ ls

list.sh regexpr shellscripts

$ rm -i *.sh

rm: remove regular file 'fact.sh'? y rm:

remove regular file 'prime.sh'? y

$ ls

list.sh regexpr shellscripts

$ wc list.sh

4 9 30 list.sh

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

20

$ wc -l list.sh

4 list.sh

$ cmp list.sh fact.sh

list.sh fact.sh differ: byte 1, line 1

$ ls -l list.sh

-rw-rw-r-- 1 vijai vijai 30 Apr 4 13:58 list.sh

$ chmod ug+x list.sh

$ ls -l list.sh

-rwxrwxr-- 1 vijai vijai 30 Apr 4 13:58 list.sh

$ chmod 740 list.sh

$ ls -l list.sh

-rwxr----- 1 vijai vijai 30 Apr 4 13:58 list.sh

Result

Thus the study and execution of Unix commands has been completed

successfully.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

21

Exp. No. 2a Study of vi Editor

Date :

Aim

To introduce the concept of text editing using vi editor.

vi Editor

Unix provides a versatile editor vi, a full-screen editor. "vi" stands for visual

editor. A vi session begins by invoking vi with or without a filename

$vi filename

An empty screen, each line beginning with a ~ is displayed. vi functions in three

modes.

Input Mode

vi starts with command mode. To insert text press I or i. In Input mode the editor

displays INSERT in the last line. To quit input mode press Esc key.

Edit Commands

Command Function
x Deletes the character in the current cursor position

?text Locates the text in the file. Use n to repeat the search.
u Reverses the last change made to the buffer.

dd (or) dw Cuts the entire line / word
yy (or) yw Copies the entire line / word

p Pastes the text

Navigation commands

Command Function

b (or) w Moves back to beginning / end of a word
| (or) $ Moves to start of the line
lG To move to the specific line

ex Mode

Press : (colon) in command mode to switch to ex mode. The : is displayed in

the last line. Type the command and press Enter key to execute the same.

Command Function
w Saves file,

q! Quits vi session without saving any changes made since the last
save

wq Save and exit

%s/Sstr/Rstr/g It is Find and Replace. % represents all lines, g makes it global.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

22

Result
Thus the study of text manipulation using vi editor has been completed
successfully.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

23

Exp. No. 2b Shell Programming

Date:

Aim

To create shell scripts using shell programming constructs.

The activities of a shell are not restricted to command interpretation alone. The

shell also has rudimentary programming features. Shell programs are stored in a file

(with extension .sh). Shell programs run in interpretive mode. Bourne shell (sh), C

shell (csh) and Korn shell (ksh) are also widely used. Linux offers Bash shell (bash)

.

Preliminaries

1. Comments in shell script start with #.

2. Shell variables are loosely typed i.e. not declared. Variables in an expression or

output must be prefixed by $.

3. The read statement is shell's internal tool for making scripts interactive.

4. Output is displayed using echo statement.

5. Expressions are computed using the expr command. Arithmetic operators are +

-

* / %. Meta characters * () should be escaped with a \.

6. The shell scripts are executed

$ sh filename

Decision-making

Shell supports decision-making using if statement. The else statement is optional.

if [condition]

then

statements

else
statements

fi

The else-if ladder has the following syntax.

if [condition]

then

statements

elif [condition] then

statements

.. .

else
statements

fi

The set of relational operators are –eq –ne –gt –ge –lt –le and logical

operators used in conditional expression are –a –o !

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

24

Multi-way branching

The case statement is used to compare a variables value against a set of constants.

If it matches a constant, then the set of statements followed after) is executed till a ;; is

encountered. The optional default block is indicated by *. Multiple constants can be

specified in a single pattern separated by |.

case variable in

constant1)

statements ;;

constant2)

statements ;;

. . .

*)
statements

esac

Loops

Shell supports a set of loops such as for, while and until to execute a set of

statements

repeatedly. The body of the loop is contained between do and done

statement. The for loop doesn't test a condition, but uses a list instead.

for variable in list

do

statements

done

The while loop executes the statements as long as the condition remains true.

while [condition]

do

statements
done

The until loop complements the while construct in the sense that the statements are

executed as long as the condition remains false.

until [condition] do

statements

done Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

25

A) Swapping values of two variables

Swapping values – swap.sh echo -n

"Enter value for A : " read a

echo -n "Enter value for B : " read b

t=$a

a=$b

b=$t

echo "Values after Swapping"

echo "A Value is $a and B Value is $b"

Output

$ sh swap.sh

Enter value for A : 12

Enter value for B : 23 Values

after Swapping

A Value is 23 and B Value is 12

B) Farenheit to Centigrade Conversion

Degree conversion – degconv.sh echo -n

"Enter Fahrenheit : " read f

c=`expr \($f - 32 \) * 5 / 9` echo

"Centigrade is : $c"

Output

$ sh degconv.sh

Enter Fahrenheit : 213

Centigrade is : 100

C) Biggest of 3 numbers

Biggest – big3.sh

echo -n "Give value for A B and C: " read a b c

if [$a -gt $b -a $a -gt $c] then

echo "A is the Biggest number" elif [$b -

gt $c]
then

echo "B is the Biggest number" else
echo "C is the Biggest number"

fi

Output

$ sh big3.sh

Give value for A B and C: 4 3 4

C is the Biggest number

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

26

D) Grade Determination

Grade – grade.sh

echo -n "Enter the mark : " read mark

if [$mark -gt 90] then

echo "S Grade" elif [

$mark -gt 80] then

echo "A Grade" elif [

$mark -gt 70] then

echo "B Grade" elif [

$mark -gt 60] then

echo "C Grade" elif [

$mark -gt 55] then

echo "D Grade" elif [

$mark -ge 50] then

echo "E Grade"

else

echo "U Grade"

fi

Output

$ sh grade.sh

Enter the mark : 65 C

Grade

E) Vowel or Consonant

Vowel - vowel.sh

echo -n "Key in a lower case character : " read choice

case $choice in

a|e|i|o|u) echo "It's a Vowel";;

*) echo "It's a Consonant"

esac

Output

$ sh vowel.sh

Key in a lower case character : e It's a Vowel

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

27

F) Simple Calculator

Arithmetic operations — calc.sh echo -n

"Enter the two numbers : " read a b

echo " 1. Addition" echo " 2.

Subtraction"

echo " 3. Multiplication" echo " 4.

Division"

echo -n "Enter the option : " read option

case $option in

1) c=`expr $a + $b` echo "$a

+ $b = $c";;

2) c=`expr $a - $b` echo "$a -

$b = $c";;

3) c=`expr $a * $b` echo "$a *

$b = $c";;

4) c=`expr $a / $b` echo "$a /

$b = $c";;

*) echo "Invalid Option" esac

Output

$ sh calc.sh

Enter the two numbers : 2 4

1. Addition

2. Subtraction

3. Multiplication

4. Division

Enter the option : 1 2 + 4 = 6

G) Multiplication Table

Multiplication table – multable.sh clear

echo -n "Which multiplication table? : " read n

for x in 1 2 3 4 5 6 7 8 9 10 do
p=`expr $x * $n`

echo -n "$n X $x = $p" sleep 1
done

Output

$ sh multable.sh

Which multiplication table? : 6 6 X 1 = 6
6 X 2 = 12

.....

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

28

H) Number Reverse

To reverse a number – reverse.sh echo -n

"Enter a number : "

read n

rd=0

while [$n -gt 0] do

rem=`expr $n % 10` rd=`expr $rd

* 10 + $rem` n=`expr $n / 10`
done

echo "Reversed number is $rd"

Output

$ sh reverse.sh Enter a

number : 234

Reversed number is 432

I) Prime Number

Prime number – prime.sh echo -n

"Enter the number : " read n

i=2

m=`expr $n / 2` until [$i

-gt $m] do

q=`expr $n % $i` if [

$q -eq 0] then

echo "Not a Prime number" exit

fi

i=`expr $i + 1` done

echo "Prime number"

Output

$ sh prime.sh

Enter the number : 17 Prime

number

Result

Thus shell scripts were executed using different programming constructs

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

29

Exp. No. 3a FCFS Scheduling

Date:

Aim

To schedule snapshot of processes queued according to FCFS scheduling.

Process Scheduling

➢ CPU scheduling is used in multiprogrammed operating systems.

➢ By switching CPU among processes, efficiency of the system can be improved.

➢ Some scheduling algorithms are FCFS, SJF, Priority, Round-Robin, etc.

➢ Gantt chart provides a way of visualizing CPU scheduling and enables to

understand better.

First Come First Serve (FCFS)

➢ Process that comes first is processed first

➢ FCFS scheduling is non-preemptive

➢ Not efficient as it results in long average waiting time.

➢ Can result in starvation, if processes at beginning of the queue have long bursts.

Algorithm

1. Define an array of structure process with members pid, btime, wtime & ttime.

2. Get length of the ready queue, i.e., number of process (say n)

3. Obtain btime for each process.

4. The wtime for first process is 0.

5. Compute wtime and ttime for each process as:

a. wtimei+1 = wtimei + btimei

b. ttimei = wtimei + btimei

6. Compute average waiting time awat and average turnaround time atur

7. Display the btime, ttime and wtime for each process.

8. Display awat time and atur

9. Display GANTT chart for the above scheduling

10. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

30

Program

/* FCFS Scheduling - fcfs.c */

 #include <stdio.h>

struct process

{

int pid; int

btime; int

wtime; int

ttime;

} p[10];

main()

{

int i,j,k,n,ttur,twat; float awat,atur;

printf("Enter no. of process : "); scanf("%d",

&n);
for(i=0; i<n; i++)

{

printf("Burst time for process P%d (in ms) : ",(i+1)); scanf("%d",

&p[i].btime);

p[i].pid = i+1;

}

p[0].wtime = 0; for(i=0;

i<n; i++)

{

p[i+1].wtime = p[i].wtime + p[i].btime; p[i].ttime =

p[i].wtime + p[i].btime;

}

ttur = twat = 0; for(i=0;

i<n; i++)

{

ttur += p[i].ttime; twat +=

p[i].wtime;

}

awat = (float)twat / n; atur =

(float)ttur / n;

printf("\n FCFS Scheduling\n\n");

for(i=0; i<28; i++)

printf("-");

printf("\nProcess B-Time T-Time W-Time\n"); for(i=0; i<28; i++)
printf("-");

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

31

for(i=0; i<n; i++)

printf("\n P%d\t%4d\t%3d\t%2d", p[i].pid,p[i].btime,p[i].ttime,p[i].wtime);

printf("\n"); for(i=0;

i<28; i++)
printf("-");

printf("\n\nAverage waiting time : %5.2fms", awat);

printf("\nAverage turn around time : %5.2fms\n", atur);

printf("\n\nGANTT Chart\n");

printf("-");

for(i=0; i<(p[n-1].ttime + 2*n); i++) printf("-");

printf("\n");

printf("|"); for(i=0; i<n;

i++)

{

k = p[i].btime/2; for(j=0;

j<k; j++)

printf(" "); printf("P%d",p[i].pid);

for(j=k+1; j<p[i].btime; j++)

printf(" ");

printf("|");

}

printf("\n");

printf("-");

for(i=0; i<(p[n-1].ttime + 2*n); i++) printf("-");
printf("\n");

printf("0"); for(i=0; i<n;

i++)
{

for(j=0; j<p[i].btime; j++) printf(" ");

printf("%2d",p[i].ttime);

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

32

Output

Enter no. of process : 4

Burst time for process P1 (in ms) : 10 Burst time for

process P2 (in ms) : 4 Burst time for process P3 (in

ms) : 11 Burst time for process P4 (in ms) : 6

FCFS Scheduling

Process B-Time T-Time W-Time

P1 10 10 0
P2 4 14 10
P3 11 25 14

P4 6 31 25

Average waiting time : 12.25ms

Average turn around time : 20.00ms

GANTT Chart

| P1 | P2 | P3 | P4 |

0 10 14 25 31

Result

Thus waiting time & turnaround time for processes based on FCFS scheduling

was computed and the average waiting time was determined.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

33

Exp. No. 3b SJF Scheduling

Date:

Aim

To schedule snapshot of processes queued according to SJF scheduling.

Shortest Job First (SJF)

➢ Process that requires smallest burst time is processed first.

➢ SJF can be preemptive or non–preemptive

➢ When two processes require same amount of CPU utilization, FCFS is used

to break the tie.

➢ Generally efficient as it results in minimal average waiting time.

➢ Can result in starvation, since long critical processes may not be processed.

Algorithm

1. Define an array of structure process with members pid, btime, wtime & ttime.

2. Get length of the ready queue, i.e., number of process (say n)

3. Obtain btime for each process.

4. Sort the processes according to their btime in ascending order.

a. If two process have same btime, then FCFS is used to resolve the tie.

5. The wtime for first process is 0.

6. Compute wtime and ttime for each process as:

a. wtimei+1 = wtimei + btimei

b. ttimei = wtimei + btimei

7. Compute average waiting time awat and average turn around time atur.

8. Display btime, ttime and wtime for each process.

9. Display awat and atur

10. Display GANTT chart for the above scheduling

11. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

34

Program

/* SJF Scheduling – sjf.c */ #include

<stdio.h>

struct process

{

int pid; int

btime; int

wtime; int

ttime;

} p[10], temp;

main()

{

int i,j,k,n,ttur,twat; float awat,atur;

printf("Enter no. of process : "); scanf("%d",

&n);
for(i=0; i<n; i++)

{

printf("Burst time for process P%d (in ms) : ",(i+1)); scanf("%d",

&p[i].btime);

p[i].pid = i+1;

}

for(i=0; i<n-1; i++)

{

for(j=i+1; j<n; j++)

{

if((p[i].btime > p[j].btime) ||

(p[i].btime == p[j].btime && p[i].pid > p[j].pid))

{

temp = p[i]; p[i]

= p[j]; p[j] =

temp;
}

}

}

p[0].wtime = 0; for(i=0;

i<n; i++)

{

p[i+1].wtime = p[i].wtime + p[i].btime; p[i].ttime =

p[i].wtime + p[i].btime;

}

ttur = twat = 0;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

35

for(i=0; i<n; i++)

{

ttur += p[i].ttime; twat +=

p[i].wtime;

}

awat = (float)twat / n; atur =

(float)ttur / n;

printf("\n SJF Scheduling\n\n");

for(i=0; i<28; i++)
printf("-");

printf("\nProcess B-Time T-Time W-Time\n"); for(i=0; i<28; i++)

printf("-"); for(i=0;

i<n; i++)

printf("\n P%-4d\t%4d\t%3d\t%2d", p[i].pid,p[i].btime,p[i].ttime,p[i].wtime);

printf("\n"); for(i=0;

i<28; i++)

printf("-");

printf("\n\nAverage waiting time : %5.2fms", awat);

printf("\nAverage turn around time : %5.2fms\n", atur);

printf("\n\nGANTT Chart\n");

printf("-");

for(i=0; i<(p[n-1].ttime + 2*n); i++) printf("-");

printf("\n|"); for(i=0;

i<n; i++)

{

k = p[i].btime/2; for(j=0;

j<k; j++)

printf(" "); printf("P%d",p[i].pid);

for(j=k+1; j<p[i].btime; j++)

printf(" ");

printf("|");
}

printf("\n-");

for(i=0; i<(p[n-1].ttime + 2*n); i++) printf("-");

printf("\n0"); for(i=0;

i<n; i++)
{

for(j=0; j<p[i].btime; j++) printf(" ");
printf("%2d",p[i].ttime);

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

36

Output

Enter no. of process : 5

Burst time for process P1 (in ms) : 10 Burst time for

process P2 (in ms) : 6 Burst time for process P3 (in

ms) : 5 Burst time for process P4 (in ms) : 6 Burst

time for process P5 (in ms) : 9

SJF Scheduling

Process B-Time T-Time W-Time

P3 5 5 0

P2 6 11 5
P4 6 17 11
P5 9 26 17

P1 10 36 26

Average

waiting

time

:

11.80ms

Average turn around time : 19.00ms

GANTT Chart

| P3 | P2 | P4 | P5 | P1 |

0 5 11 17 26 36

Result

Thus waiting time & turnaround time for processes based on SJF scheduling

was computed and the average waiting time was determined.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

37

Exp. No. 3c Priority Scheduling

Date:

Aim

To schedule snapshot of processes queued according to Priority scheduling.

Priority

➢ Process that has higher priority is processed first.

➢ Prioirty can be preemptive or non–preemptive

➢ When two processes have same priority, FCFS is used to break the tie.

➢ Can result in starvation, since low priority processes may not be processed.

Algorithm

1. Define an array of structure process with members pid, btime, pri, wtime &

ttime.

2. Get length of the ready queue, i.e., number of process (say n)

3. Obtain btime and pri for each process.

4. Sort the processes according to their pri in ascending order.

a. If two process have same pri, then FCFS is used to resolve the tie.

5. The wtime for first process is 0.

6. Compute wtime and ttime for each process as:

a. wtimei+1 = wtimei + btimei

b. ttimei = wtimei + btimei

7. Compute average waiting time awat and average turn around time atur

8. Display the btime, pri, ttime and wtime for each process.

9. Display awat and atur

10. Display GANTT chart for the above scheduling

11. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

38

Program

/* Priority Scheduling - pri.c */

#include <stdio.h>

struct process

{

int pid; int

btime; int pri;

int wtime; int

ttime;

} p[10], temp;

main()

{

int i,j,k,n,ttur,twat; float awat,atur;

printf("Enter no. of process : "); scanf("%d",

&n);

for(i=0; i<n; i++)

{

printf("Burst time for process P%d (in ms) : ", (i+1)); scanf("%d",

&p[i].btime);

printf("Priority for process P%d : ", (i+1)); scanf("%d",

&p[i].pri);

p[i].pid = i+1;

}

for(i=0; i<n-1; i++)

{

for(j=i+1; j<n; j++)

{

if((p[i].pri > p[j].pri) ||

(p[i].pri == p[j].pri && p[i].pid > p[j].pid))

{

temp = p[i]; p[i]

= p[j]; p[j] =

temp;
}

}

}

p[0].wtime = 0; for(i=0;

i<n; i++)

{

p[i+1].wtime = p[i].wtime + p[i].btime; p[i].ttime =

p[i].wtime + p[i].btime;

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

39

ttur = twat = 0; for(i=0;

i<n; i++)

{

ttur += p[i].ttime; twat +=

p[i].wtime;
}

awat = (float)twat / n; atur =

(float)ttur / n;

printf("\n\t Priority Scheduling\n\n"); for(i=0; i<38;

i++)

printf("-");

printf("\nProcess B-Time Priority T-Time W-Time\n");

for(i=0; i<38; i++)

printf("-");

for (i=0; i<n; i++)

printf("\n P%-4d\t%4d\t%3d\t%4d\t%4d",

p[i].pid,p[i].btime,p[i].pri,p[i].ttime,p[i].wtime);

printf("\n");

for(i=0; <38; i++)

printf("-");

printf("\n\nAverage waiting time : %5.2fms", awat);

printf("\nAverage turn around time : %5.2fms\n", atur);

printf("\n\nGANTT Chart\n");

printf("-");

for(i=0; i<(p[n-1].ttime + 2*n); i++) printf("-");

printf("\n|"); for(i=0;

i<n; i++)

{

k = p[i].btime/2; for(j=0;

j<k; j++)

printf(" "); printf("P%d",p[i].pid);

for(j=k+1; j<p[i].btime; j++)

printf(" ");

printf("|");

}

printf("\n-");

for(i=0; i<(p[n-1].ttime + 2*n); i++) printf("-");

printf("\n0"); for(i=0;

i<n; i++)
{

for(j=0; j<p[i].btime; j++) printf(" ");
printf("%2d",p[i].ttime);

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

40

Output

Enter no. of process : 5
Burst time for process P1 (in ms) : 10
Priority for process P1 : 3
Burst time for process P2 (in ms) : 7
Priority for process P2 : 1
Burst time for process P3 (in ms) : 6
Priority for process P3 : 3
Burst time for process P4 (in ms) : 13
Priority for process P4 : 4
Burst time for process P5 (in ms) : 5
Priority for process P5 : 2

Priority Scheduling

Process B-Time Priority T-Time W-

Time

P2 7 1 7 0
P5 5 2 12 7
P1 10 3 22 12
P3 6 3 28 22

P4 13 4 41 28

Average waiting time : 13.80ms

Average turn around time : 22.00ms

GANTT Chart

| P2 | P5 | P1 | P3 | P4 |

0 7 12 22 28 41

Result

Thus waiting time & turnaround time for processes based on Priority scheduling

was computed and the average waiting time was determined.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

41

Exp. No. 3d Round Robin Scheduling

Date:

Aim

To schedule snapshot of processes queued according to Round robin scheduling.

Round Robin

➢ All processes are processed one by one as they have arrived, but in rounds.

➢ Each process cannot take more than the time slice per round.

➢ Round robin is a fair preemptive scheduling algorithm.

➢ A process that is yet to complete in a round is preempted after the time slice

and put at the end of the queue.
➢ When a process is completely processed, it is removed from the queue.

Algorithm

1. Get length of the ready queue, i.e., number of process (say n)

2. Obtain Burst time Bi for each processes Pi.

3. Get the time slice per round, say TS

4. Determine the number of rounds for each process.

5. The wait time for first process is 0.

6. If Bi > TS then process takes more than one round. Therefore turnaround and

waiting time should include the time spent for other remaining processes in

the same round.

7. Calculate average waiting time and turn around time

8. Display the GANTT chart that includes

a. order in which the processes were processed in progression of rounds

b. Turnaround time Ti for each process in progression of rounds.

9. Display the burst time, turnaround time and wait time for each process (in

order of rounds they were processed).

10. Display average wait time and turnaround time

11. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

42

Program

/* Round robin scheduling - rr.c */

#include <stdio.h>

main()

{

int i,x=-1,k[10],m=0,n,t,s=0;

int a[50],temp,b[50],p[10],bur[10],bur1[10]; int

wat[10],tur[10],ttur=0,twat=0,j=0;

float awat,atur;

printf("Enter no. of process : "); scanf("%d",

&n);
for(i=0; i<n; i++)

{

printf("Burst time for process P%d : ", (i+1)); scanf("%d",

&bur[i]);

bur1[i] = bur[i];
}

printf("Enter the time slice (in ms) : "); scanf("%d", &t);

for(i=0; i<n; i++)

{

b[i] = bur[i] / t;

if((bur[i]%t) != 0)

b[i] += 1;

m += b[i];

}

printf("\n\t\tRound Robin Scheduling\n");

printf("\nGANTT Chart\n"); for(i=0; i<m;

i++)

printf(" ----------------- ");

printf("\n");

a[0] = 0;

while(j < m)

{

if(x == n-1) x =

0;

else

x++;

if(bur[x] >= t)

{

bur[x] -= t;

a[j+1] = a[j] + t;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

43

if(b[x] == 1)

{

p[s] = x;

k[s] = a[j+1]; s++;
}

j++;

b[x] -= 1;

printf(" P%d |", x+1);

}

else if(bur[x] != 0)

{

a[j+1] = a[j] + bur[x]; bur[x] =

0;

if(b[x] == 1)
{

p[s] = x;

k[s] = a[j+1]; s++;

}

j++;

b[x] -= 1;

printf(" P%d |",x+1);

}

}

printf("\n");

for(i=0;i<m;i++)

printf(" ----------------- ");

printf("\n");

for(j=0; j<=m; j++) printf("%d\t", a[j]);

for(i=0; i<n; i++)

{

for(j=i+1; j<n; j++)
{

if(p[i] > p[j])

{

temp = p[i]; p[i]

= p[j]; p[j] =

temp;

temp = k[i]; k[i]

= k[j]; k[j] =

temp;

}

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

44

for(i=0; i<n; i++)

{

wat[i] = k[i] - bur1[i]; tur[i] =

k[i];

}

for(i=0; i<n; i++)

{

ttur += tur[i]; twat +=

wat[i];

}

printf("\n\n"); for(i=0;

i<30; i++)

printf("-"); printf("\nProcess\tBurst\tTrnd\tWait\n");

for(i=0; i<30; i++)
printf("-");

for (i=0; i<n; i++)

printf("\nP%-4d\t%4d\t%4d\t%4d", p[i]+1, bur1[i], tur[i],wat[i]);

printf("\n"); for(i=0;

i<30; i++)

printf("-");

awat = (float)twat / n; atur =

(float)ttur / n;

printf("\n\nAverage waiting time : %.2f ms", awat);

printf("\nAverage turn around time : %.2f ms\n", atur);

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

45

Output

Enter no. of process : 5 Burst time for

process P1 : 10 Burst time for process P2

: 29 Burst time for process P3 : 3 Burst

time for process P4 : 7 Burst time for

process P5 : 12

Enter the time slice (in ms) : 10

Round Robin Scheduling

GANTT Chart

P1 | P2 | P3 | P4 | P5 | P2 | P5 | P2 |

0 10 20 23 30 40 50 52 61

Process Burst Trnd Wait

P1 10 10 0
P2 29 61 32
P3 3 23 20
P4 7 30 23

P5 12 52 40

Average waiting time : 23.00 ms

Average turn around time : 35.20 ms

Result
Thus waiting time and turnaround time for processes based on Round
robin scheduling was computed and the average waiting time was determined.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

46

Exp. No. 4a Contiguous Allocation

Date:

Aim

To implement file allocation on free disk space in a contiguous manner.

File Allocation

➢ The three methods of allocating disk space are:

1. Contiguous allocation

2. Linked allocation

3. Indexed allocation

Contiguous

➢ Each file occupies a set of contiguous block on the disk.

➢ The number of disk seeks required is minimal.

➢ The directory contains address of starting block and number of

contiguous block (length) occupied.
➢ Supports both sequential and direct access.

➢ First / best fit is commonly used for selecting a hole.

Algorithm

1. Assume no. of blocks in the disk as 20 and all are free.

2. Display the status of disk blocks before allocation.

3. For each file to be allocated:

a. Get the filename, start address and file length

b. If start + length > 20, then goto step 2.

c. Check to see whether any block in the range (start, start +

length-1) is allocated. If so, then go to step 2.

d. Allocate blocks to the file contiguously from start block to start + length –

1.

4. Display directory entries.

5. Display status of disk blocks after allocation

6. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

47

Program

/* Contiguous Allocation - cntalloc.c */

#include <stdio.h>

#include <string.h>
int num=0, length[10], start[10]; char

fid[20][4], a[20][4];

void directory()

{

int i;

printf("\nFile Start Length\n"); for(i=0;

i<num; i++)
printf("%-4s %3d %6d\n",fid[i],start[i],length[i]);

}

void display()

{

int i;

for(i=0; i<20; i++)

printf("%4d",i);

printf("\n"); for(i=0;

i<20; i++)

printf("%4s", a[i]);

}

main()

{

int i,n,k,temp,st,nb,ch,flag; char id[4];

for(i=0; i<20; i++) strcpy(a[i], "");

printf("Disk space before allocation:\n"); display();

do

{

printf("\nEnter File name (max 3 char) : "); scanf("%s",id);

printf("Enter start block : "); scanf("%d",

&st);

printf("Enter no. of blocks : "); scanf("%d",

&nb); strcpy(fid[num], id);

length[num] = nb;

flag = 0;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

48

if((st+nb) > 20)

{

printf("Requirement exceeds range\n"); continue;

}

for(i=st; i<(st+nb); i++)

if(strcmp(a[i], "") != 0)

flag = 1;

if(flag == 1)

{

printf("Contiguous allocation not possible.\n"); continue;
}

start[num] = st; for(i=st;

i<(st+nb); i++)

strcpy(a[i], id);; printf("Allocation

done\n"); num++;

printf("\nAny more allocation (1. yes / 2. no)? : ");

scanf("%d", &ch);
} while (ch == 1);

printf("\n\t\t\tContiguous Allocation\n"); printf("Directory:");

directory();

printf("\nDisk space after allocation:\n"); display();
printf("\n");

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

49

Output

Disk space before allocation:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Enter File name (max 3 char) : ls

Enter start block : 3

Enter no. of blocks : 4

Allocation done

Any more allocation (1. yes / 2. no)? : 1 Enter

File name (max 3 char) : cp
Enter start block : 14
Enter no. of blocks : 3
Allocation done

Any more allocation (1. yes / 2. no)? : 1 Enter

File name (max 3 char) : tr

Enter start block : 18

Enter no. of blocks : 3

Requirement exceeds

range

Enter File name (max 3 char) : tr

Enter start block : 10

Enter no. of blocks : 3

Allocation done

Any more allocation (1. yes / 2. no)? : 1 Enter

File name (max 3 char) : mv

Enter start block : 0

Enter no. of blocks : 2

Allocation done

Any more allocation (1. yes / 2. no)? : 1 Enter

File name (max 3 char) : ps
Enter start block : 12
Enter no. of blocks : 3
Contiguous allocation not possible.

Any more allocation (1. yes / 2. no)? : 2

Contiguous Allocation

Directory:

File Start Length
ls 3 4
cp 14 3
tr 10 3
mv 0 2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

50

Disk space after allocation:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

mv
mv

ls ls ls ls tr tr tr cp cp cp

Result

Thus contiguous allocation is done for files with the available free blocks.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

51

Exp. No. 4b. Linked Allocation

Date:

Aim

To implement file allocation on free disk space as a linked list of disk blocks.

Linked

➢ Each file is a linked list of disk blocks.

➢ The directory contains a pointer to first and last blocks of the file.

➢ The first block contains a pointer to the second one, second to third and so on.

➢ File size need not be known in advance, as in contiguous allocation.

➢ No external fragmentation.

➢ Supports sequential access only.

Indexed

➢ In indexed allocation, all pointers are put in a single block known as index

block.

➢ The directory contains address of the index block.

➢ The ith entry in the index block points to ith block of the file.

➢ Indexed allocation supports direct access.

➢ It suffers from pointer overhead, i.e wastage of space in storing pointers.

Algorithm

1. Define file table as a linked list structure

2. Get number of files to be stored.

3. For each file:

a. Obtain number of disk blocks

b. Obtain randomly allocated disk blocks

c. Create a single linked list of nodes for the specified blocks.

4. Get the filename to be searched.

5. List disk blocks of that file as a linked list

6. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

52

Program

/* Linked list file allocation */

#include <stdio.h>

struct filetable

{

char name[20]; int

nob;

struct block *sb;

} ft[30];

struct block

{

int bno;

struct block *next;

};

main()

{

int i, j, n; char

str[20];
struct block *temp;

printf("Enter no. of files: "); scanf("%d",

&n);

for(i=0; i<n; i++)

{

printf("\nEnter file name %d : ",i+1); scanf("%s",

ft[i].name);

printf("Enter no of blocks in file %d : ", i+1); scanf("%d",

&ft[i].nob);

ft[i].sb = (struct block*)malloc(sizeof(struct block)); temp = ft[i].sb;

printf("Enter the disk blocks : "); scanf("%d",

&temp->bno);

temp->next = NULL; for(j=1;

j<ft[i].nob; j++)
{

block));

}

temp->next = (struct block*)malloc(sizeof(struct

temp = temp->next; scanf("%d",

&temp->bno);

temp->next = NULL;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

53

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

54

printf("\nEnter file name to be searched : "); scanf("%s", str);

for(i=0; i<n; i++) if(strcmp(str,

ft[i].name)==0)

break; if(i

== n)

printf("\nFile Not Found"); else

{

printf("\nFilename No. of Blocks Blocks Occupied");

printf("\n %s\t\t%d\t", ft[i].name, ft[i].nob); temp = ft[i].sb;

for(j=0; j<ft[i].nob; j++)

{

printf("%d -> ", temp->bno); temp =

temp->next;
}

printf("NULL");

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

55

Output

Enter no. of files: 3 Enter file name

1 : hello.c

Enter no. of blocks in file 1 : 3 Enter the disk

blocks : 12 23 34

Enter file name 2 : first.cpp Enter no. of

blocks in file 2 : 3 Enter the disk blocks : 22

33 44

Enter file name 3 : profile.doc Enter no. of

blocks in file 3 : 3 Enter the disk blocks : 87

76 65

Enter file name to be searched : first.cpp

Filename No. of Blocks Blocks Occupied first.cpp 3

 22 -> 33 -> 44 -> NULL

Result

Thus linked list allocation is done for files with the available free blocks.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

56

Exp. No. 5 Producer-Consumer Synchronization

Date:

Aim

To synchronize producer and consumer processes using semaphore.

Semaphore

➢ A semaphore is a counter used to synchronize access to a shared data

amongst multiple processes.

➢ To obtain a shared resource, the process should:
o Test the semaphore that controls the resource.
o If value is positive, it gains access and decrements value of semaphore.
o If value is zero, the process goes to sleep and awakes when value is > 0.

➢ When a process relinquishes resource, it increments the value of semaphore by 1.

Producer-Consumer problem

➢ A producer process produces information to be consumed by a consumer process

➢ A producer can produce one item while the consumer is consuming another one.

➢ With bounded-buffer size, consumer must wait if buffer is empty, whereas

producer must wait if buffer is full.

➢ The buffer can be implemented using any IPC facility.

Algorithm

1. Define semaphore variables full, empty and mutex

2. Define wait and signal operation

3. Display menu-driven and accept user choice.

4. If choice = 1 then

i. Call wait (empty)

ii. Call wait (mutex)

iii. If buffer is not full then append item to buffer

iv. Call signal (full)

v. Call signal (mutex)

5. If choice = 2 then

i. Call wait (full)

ii. Call wait (mutex)

iii. If buffer is not empty then remove first item from the buffer

iv. Call signal (mutex)

v. Call signal (empty)

6. If choice = 3 then display buffer contents

7. Stop
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

57

Program

/* Producer-Consumer problem using semaphore – pcsem.c */

#include <stdio.h>

#include <string.h>

#define size 5 struct

process
{

char item[10];

}p[10];

int flag=0, full=0, empty=size, mutex=1;

int wait(int s)
{

if(s==0)

flag=1; else
s--;

return s;

}

int signal(int s)

{

s++;

return s;

}

main()

{

int c, i;

printf("\nProducer-Consumer Problem\n");

while(1)
{

printf("\n1.Produce 2.Consume 3.Display 4.Exit\n"); printf("Enter

your choice : ");
scanf("%d", &c);

switch(c)

{

case 1:

empty = wait(empty);

mutex = wait(mutex);

if(flag == 0)

{

printf("Enter the item to produce : "); scanf("%s",

p[full].item);

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

58

full = signal(full);

}

else

{

printf("\nBuffer is FULL\n"); flag = 0;

}

mutex = signal(mutex); break;

case 2:

full = wait(full); mutex =

wait(mutex); if(flag == 0)

{

printf("Item %s is consumed\n",p[0].item); for(i=0; i<size; i++)

strcpy(p[i].item, p[i+1].item); flag=0;

}

else

{

printf("\nBuffer is EMPTY\n"); flag = 0;

}

mutex = signal(mutex); empty

= signal(empty); break;

case 3:

if(full != 0)

{

printf("\nItems in the buffer : "); for(i=0; i<full;

i++)

printf("\n%s", p[i].item);

}

else
{

printf("\nBuffer is EMPTY\n"); flag = 0;
}

break;

case 4:

exit(0);

break;
}

}

}
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

59

Output

Producer-Consumer Problem

1.Produce 2.Consume 3.Display 4.Exit Enter

your choice : 1

Enter the item to produce : bread

1.Produce 2.Consume 3.Display 4.Exit Enter

your choice : 1

Enter the item to produce : butter

1.Produce 2.Consume 3.Display 4.Exit Enter

your choice : 1

Enter the item to produce : bun

1.Produce 2.Consume 3.Display 4.Exit Enter

your choice : 1
Enter the item to produce : jam

1.Produce 2.Consume 3.Display 4.Exit Enter

your choice : 2

Item bread is consumed

1.Produce 2.Consume 3.Display 4.Exit Enter

your choice : 2

Item butter is consumed

1.Produce 2.Consume 3.Display 4.Exit Enter

your choice : 3

Items in the buffer :

bun

jam

1. Produce 2.Consume 3.Display 4.Exit Enter

your choice : 4

Result

Thus synchronization between producer and consumer process for access to a

shared memory segment is implemented.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

60

Exp. No. 6a Single-Level Directory

Date:

Aim

To create directory structure as a single level directory structure.

Single-Level Directory

➢ All files are contained in the same directory,

➢ Easy to implement

➢ Filenames must be unique within a directory

➢ Difficult to remember all filenames

➢ Leads to anamoly in a multi-user system

Algorithm

1. Read number of directories

2. For each directory

a. Read directory name

b. Read number of files in that directory

c. Read filenames for that directory

3. Display directory name and their corresponding files

4. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

61

Program

/* Single Level Directory - singlev.c */

 #include <stdio.h>

int nod, nof[20]; char

file[20][20][20];

char dir[20][20]; int i,j;

main()

{

printf("No. of Directories : "); scanf("%d",

&nod);

printf("\nEnter the directory details\n"); for(i=0; i<nod; i++)
{

printf("\nDirectory Name : ");

scanf("%s", &dir[i]);

printf("No. of Files in the directory : "); scanf("%d",

&nof[i]);

printf("Enter the filenames :\n"); for(j=0;

j<nof[i]; j++)
scanf("%s", &file[i][j]);

}

printf("\nDirectory Filenames\n"); for(i=0;

i<nod; i++)

{

printf("%s\t", dir[i]); for(j=0; j<nof[i];

j++)

printf("%s ", file[i][j]); printf("\n");

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

62

Output

No. of Directories : 3 Enter the

directory details

Directory Name : pds2

No. of Files in the directory : 3 Enter the

filenames :

inherit.cpp

poly.cpp

ovld.cpp

Directory Name : os

No. of Files in the directory : 4 Enter the

filenames :

fcfs.c pcsem.c

deadlock.c lru.c

Directory Name : java

No. of Files in the directory : 2 Enter the

filenames :

hello.java swing.java

Directory Filenames

pds2 inherit.cpp poly.cpp ovld.cpp os

 fcfs.c pcsem.c deadlock.c lru.c java

 hello.java swing.java

Result

Thus single-level directory structure has been demonstrated.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

63

Exp. No. 6b Two-Level Directory

Date:

Aim

To create directory structure as a two-level directory structure.

Two-Level Directory

➢ Each user has a user file directory (UFD) that lists folders and files of that user

➢ When a user refers to a particular file, only his own UFD is searched.

➢ The two-level directory structure solves the name-collision problem

➢ It isolates one user from another.

Algorithm

1. Read number of users

2. For each user

i. Read directory name

ii. Read number of folders

iii. Read filenames for that folder

3. Display files and folders for that user

4. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

64

Program

/* Two-level directory */

#include <stdio.h> #include

<conio.h>

struct st

{

char uname[10]; char

dname[10][10];

char fname[10][10][15]; int

ds,sds[10];

}dir[10];

int main()

{

int i,j,k,n;

printf("No. of Users : ");

scanf("%d", &n);

for(i=0; i<n; i++)

{

printf("\nUser-%d Name : ", i+1);

scanf("%s", &dir[i].uname);

printf("No. of folders : "); scanf("%d",

&dir[i].ds);

for(j=0; j<dir[i].ds; j++)

{

printf("\nEnter folder name : "); scanf("%s",

&dir[i].dname[j]); printf("No. of files : ");

scanf("%d", &dir[i].sds[j]); printf("Enter

filenames:\n"); for(k=0; k<dir[i].sds[j]; k++)

scanf("%s", &dir[i].fname[j][k]);

}

} Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

65

printf("\n\tTwo-Level Directory Structure\n");

printf("\nUser\tFolders\tFiles\n\n");

for(i=0; i<n; i++)

{

printf("%s", dir[i].uname); for(j=0;

j<dir[i].ds; j++)

{

printf("\t%s\t", dir[i].dname[j]);

for(k=0; k<dir[i].sds[j]; k++) printf("%-15s ",

dir[i].fname[j][k]);
printf("\n");

}

printf("\n");

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

66

Output

No. of Users : 2

User-1 Name : vijai No. of

folders : 2

Enter folder name : network No. of

files : 2

Enter filenames:

udpdns.java tcpchat.java

Enter folder name : pds2 No. of

files : 2
Enter filenames:

inherit.cpp virtual.cpp

User-2 Name : anand No.

of folders : 2

Enter folder name : os No. of

files : 3 Enter filenames:

sjf.c pcsem.c

bankeralgo.c

Enter folder name : network No. of

files : 2
Enter filenames:

tcpchat.java sniffdata.c

Two-Level Directory Structure User

 Folders Files

vijai network udpdns.java tcpchat.java pds2

 inherit.cpp virtual.cpp

anand os sjf.c pcsem.c bankeralgo.c

network tcpchat.java sniffdata.c

Result

Thus two-level directory structure has been demonstrated.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

67

Exp. No. 6c Hirearchical Directory Structure

Date:

Aim

To demonstrate tree-like hierarchical directory structure graphically.

Tree-Structured Directories

➢ A tree is the most common directory structure.

➢ Extends two-level directory structure to a tree of arbitrary height.

➢ It allows users to create their own subdirectories and organize their files.

➢ The tree has a root directory, and every file in the system has a unique path

name.

➢ A directory (or subdirectory) contains a set of files or subdirectories.

➢ Current directory contains files that are required for that process.

➢ Path names can be of two types: absolute and relative.

Algorithm

1. Define tree structure

2. Initialize graphics

3. Recursively obtain user files and folders under root in hierarchy

4. Display the directory structure graphically

5. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

68

Program

/* Hierarchical directory structure - treedir.c */

#include <stdio.h>

#include <conio.h>

#include <graphics.h>

struct tree_element

{

char name[20];

int x, y, ftype, lx, rx, nc, level; struct

tree_element *link[5];

};

typedef struct tree_element node;

main()

{

int gd=DETECT, gm;

node *root;

root = NULL;

clrscr();

create(&root, 0, "root", 0, 639, 320); clrscr();

initgraph(&gd,&gm,"C:\\TurboC3\\BGI");

display(root);

getch(); closegraph();

}

create(node **root,int lev,char *dname,int lx,int rx,int x)

{

int i, gap; if(*root ==

NULL)
{

(*root) = (node *)malloc(sizeof(node));

printf("Enter name of dir/file(under %s) : ", dname); fflush(stdin);
gets((*root)->name);

printf("enter 1 for Dir / 2 for file : "); scanf("%d",

&(*root)->ftype);

(*root)->level = lev; (*root)->y =

50 + lev * 50; (*root)->x = x;

(*root)->lx = lx;

(*root)->rx = rx;

for(i=0;i<5;i++)

(*root)->link[i] = NULL;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

69

if((*root)->ftype == 1)

{

printf("No of sub directories/files(for %s): ", (*root)->name);

scanf("%d", &(*root)->nc);

if((*root)->nc == 0)

gap = rx - lx; else

gap = (rx - lx) / (*root)->nc; for(i=0;

i<(*root)->nc; i++)

create(&((*root)->link[i]), lev+1, (*root)->name, lx+gap* i,

lx+gap*i+gap, lx+gap*i+gap/2);

}

else

(*root)->nc = 0;

}

}

display(node *root)

{

int i;

settextstyle(2, 0, 4);

settextjustify(1, 1); setfillstyle(1, BLUE);

setcolor(14);

if(root != NULL)

{

for(i=0; i<root->nc; i++)

line(root->x, root->y, root->link[i]->x, root-

>link[i]->y);

if(root->ftype == 1)

bar3d(root->x-20, root->y-10, root->x+20, root->y+10,

0, 0);

else

fillellipse(root->x, root->y, 20, 20);

outtextxy(root->x, root->y, root->name); for(i=0; i<root-

>nc; i++)

display(root->link[i]);

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

70

Output

Enter Name of dir/file(under root): ROOT Enter 1

for Dir / 2 for File: 1

No of subdirectories/files(for ROOT): 2 Enter

Name of dir/file(under ROOT): USER1 Enter 1 for

Dir / 2 for File: 1

No of subdirectories/files(for USER1): 1 Enter Name

of dir/file(under USER1): SUBDIR1 Enter 1 for Dir / 2

for File: 1

No of subdirectories/files(for SUBDIR1): 2 Enter

Name of dir/file(under USER1): JAVA Enter 1 for

Dir / 2 for File: 1

No of subdirectories/files(for JAVA): 0 Enter

Name of dir/file(under SUBDIR1): VB Enter 1 for

Dir / 2 for File: 1

No of subdirectories/files(for VB): 0 Enter Name

of dir/file(under ROOT): USER2 Enter 1 for Dir / 2

for File: 1

No of subdirectories/files(for USER2): 2 Enter

Name of dir/file(under ROOT): A Enter 1 for Dir

/ 2 for File: 2

Enter Name of dir/file(under USER2): SUBDIR2 Enter

1 for Dir / 2 for File: 1

No of subdirectories/files(for SUBDIR2): 2 Enter

Name of dir/file(under SUBDIR2): PPL Enter 1 for

Dir / 2 for File: 1

No of subdirectories/files(for PPL): 2 Enter

Name of dir/file(under PPL): B Enter 1 for Dir

/ 2 for File: 2

Enter Name of dir/file(under PPL): C Enter 1

for Dir / 2 for File: 2

Enter Name of dir/file(under SUBDIR): AI Enter

1 for Dir / 2 for File: 1

No of subdirectories/files(for AI): 2 Enter

Name of dir/file(under AI): D Enter 1 for Dir

/ 2 for File: 2 Enter Name of dir/file(under

AI): E Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

71

Result

Thus a hierarchical directory structure has been created and shown graphically

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

72

Exp. No. 7 Bankers Algorithm

Date:

Aim

To avoid deadlocks to a resource allocation system with multiple instances using

bankers algorithm.

Banker’s Algorithm

➢ Data structures maintained are:
o Available—vector of available resources
o Max—matrix contains demand of each process
o Allocation—matrix contains resources allocated to each process
o Need—matrix contains remaining resource need of each process

➢ Safety algorithm is used to determine whether system is in a safe state

➢ Resource request algorithm determines whether requests can be safetly granted

Algorithm

1. Read number of resources

2. Read max. instances of each resource type

3. Read number of process

4. Read allocation matrix for each process

5. Read max matrix for each process

6. Display available resources

7. Display need matrix using formula Need = Max - Allocation

8. Determine the order of process to be executed for a safe state

9. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

73

Program

/* Banker algorithm for deadlock avoidance - bankersalgo.c */

 #include <stdio.h>

#include <conio.h>

main()

{

int output[10], ins[5], avail[5], allocated[10][5]; int need[10][5],

max[10][5], p[10];

int k=0, d=0, t=0, i, pno, j, nor, count=0;

printf("Enter number of resources : "); scanf("%d",

&nor);

printf("\nEnter max instances of each resources\n"); for (i=0; i<nor;

i++)

{

avail[i]=0;

printf("%c = ",(i+65));

scanf("%d", &ins[i]);

}

printf("\nEnter the No. of processes : ");

scanf("%d", &pno);

printf("\nEnter Allocation matrix \n ");

for(i=0; i<nor; i++)

printf("\t%c", (i+65)); printf("\n");

for(i=0; i<pno; i++)

{

p[i]=i; printf("P%d\t", p[i]);

for (j=0; j<nor; j++)

{

scanf("%d", &allocated[i][j]); avail[j] +=

allocated[i][j];

}

}

printf("\nEnter Max matrix \n "); for(i=0;

i<nor; i++)

{

printf("\t%c", (i+65));

avail[i] = ins[i] - avail[i];

}

printf("\n");

for (i=0; i<pno; i++)

{

printf("P%d\t",i); for (j=0;

j<nor; j++)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

74

scanf("%d", &max[i][j]);

}

printf("\n");

printf("Available resources are : \n");

for(i=0; i<nor; i++)

printf("%c = %d \n", (i+65), avail[i]);

printf("\nNeed matrix is :\n"); for(i=0;

i<nor; i++)

printf("\t%c", (i+65)); printf("\n");

for (i=0; i<pno; i++)

{

printf("P%d\t",i); for (j=0;

j<nor; j++)

printf("%d\t", max[i][j]-allocated[i][j]); printf("\n");

}

A:

d = -1;

for (i=0;i <pno; i++)

{

count = 0; t =

p[i];

for (j=0; j<nor; j++)

{

need[t][j] = max[t][j] - allocated[t][j]; if(need[t][j] <=

avail[j])

count++;

}

if(count == nor)

{

output[k++] = p[i]; for (j=0;

j<nor; j++)

avail[j] += allocated[t][j];

}

else

p[++d] = p[i];

}

if(d != -1)

{

pno = d + 1;

goto A;

}

printf("\n Process Execution Order : "); printf("<");

for (i=0; i<k; i++)

printf(" P%d ", output[i]); printf(">");

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

75

Output

Enter number of resources : 3

Enter max instances of each resources A = 10

B = 5

C = 7

Enter the No. of processes : 5 Enter

Allocation matrix

Available resources are :

A = 3

B = 3

C = 2

Need matrix is :

A B C
P0 7 4 3
P1 1 2 2
P2 6 0 0
P3 0 1 1
P4 4 3 1

Process Execution Order : < P1 P3 P4 P0 P2 >

Result

Thus deadlock is avoided for multiple instances of resources using bankers
algorithm.

 A B C

P0 0 1 0

P1 2 0 0

P2 3 0 2

P3 2 1 1

P4 0 0 2

Enter Max

A

matrix
B

C

P0 7 5 3

P1 3 2 2

P2 9 0 2

P3 2 2 2

P4 4 3 3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

76

Exp. No. 8 Deadlock Detection

Date:

Aim

To detect whether the given system is in a deadlocked state or not.

Deadlock Detection

➢ Data structures used are Available, Allocation and Request

➢ Detection algorithm checks every possible allocation sequence for all processes

➢ Resources allocated to deadlocked processes will be idle until deadlock is

broken

➢ Deadlocks occur only when process request cannot be granted immediately.

➢ Deadlock eventually cripples system throughput and causes CPU utilization to

drop

Algorithm

1. See if any Processes Requests can be satisfied.

2. If so satisfy the needs and remove that Process and all the Resources it holds

3. Repeat step1 for all processes

4. If all Processes are finally removed then there is no Deadlock

5. List the deadlocked process

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

77

Program

/* Deadlock detection - deaddeduct.c */

#include <stdio.h>

main()

{

int found, flag, l, i, j, k=1, sum=0, tp, tr; int p[8][8], c[8][8],

m[8], r[8], a[8], temp[8];

printf("Enter No. of Processes : "); scanf("%d",

&tp);

printf("Enter No. of Resources : "); scanf("%d",

&tr);

printf("\nEnter Claim / Request matrix :\n"); for(i=1; i<=tp;

i++)

for(j=1; j<=tr; j++) scanf("%d",

&c[i][j]);

printf("\nEnter Allocation matrix : \n"); for(i=1; i<=tp;

i++)

for(j=1; j<=tr; j++) scanf("%d",

&p[i][j]);

printf("\nEnter Total resources :\n"); for(i=1; i<=tr;

i++)

scanf("%d", &r[i]);

printf("\nEnter Availability vector :\n"); for(i=1; i<=tr; i++)

{

scanf("%d", &a[i]); temp[i] = a[i];

}

for(i=1; i<=tp; i++)

{

sum = 0;

for(j=1; j<=tr; j++) sum +=

p[i][j];

if(sum == 0)

{

m[k] = i;

k++;

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

78

for(i=1; i<=tp; i++)

{

for(l=1; l<k; l++) if(i !=

m[l])

{

flag = 1;

for(j=1; j<=tr; j++)

{

if(c[i][j] < temp[j])

{

flag = 0;

break;

}

}

}

if(flag == 1)

{

m[k] = i;

k++;

for(j=1; j<=tr; j++) temp[j]

+= p[i][j];
}

}

printf("Deadlock causing processes are : "); for(j=1; j<=tp;

j++)
{

found = 0; for(i=1; i<k;

i++)

{

if(j == m[i])

found = 1;
}

if(found == 0) printf("P%d

", j);
}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

79

Output

Enter No. of Processes : 4 Enter No.

of Resources : 5

Enter Claim / Request matrix :

0 1 0 0 1

0 0 1 0 1

0 0 0 0 1

1 0 1 0 1

Enter Allocation matrix :

1 0 1 1 0

1 1 0 0 0

0 0 0 1 0

0 0 0 0 0

Enter Total resources :

2 1 1 2 1

Enter Availability vector :

0 0 0 0 1

Deadlock causing processes are : P2 P3

Result

Thus given system is checked for deadlock and deadlocked processes are listed out.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

80

Exp. No. 9a FIFO Page Replacement

Date:

Aim

To implement demand paging for a reference string using FIFO method.

FIFO

➢ Page replacement is based on when the page was brought into memory.

➢ When a page should be replaced, the oldest one is chosen.

➢ Generally, implemented using a FIFO queue.

➢ Simple to implement, but not efficient.

➢ Results in more page faults.

➢ The page-fault may increase, even if frame size is increased (Belady's anomaly)

Algorithm

1. Get length of the reference string, say l.

2. Get reference string and store it in an array, say rs.

3. Get number of frames, say nf.

4. Initalize frame array upto length nf to -1.

5. Initialize position of the oldest page, say j to 0.

6. Initialize no. of page faults, say count to 0.

7. For each page in reference string in the given order, examine:

a. Check whether page exist in the frame array

b. If it does not exist then

i. Replace page in position j.

ii. Compute page replacement position as (j+1) modulus nf.

iii. Increment count by 1.

iv. Display pages in frame array.

8. Print count.

9. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

81

Program

/* FIFO page replacement - fifopr.c */

#include <stdio.h>

main()

{

int i,j,l,rs[50],frame[10],nf,k,avail,count=0;

printf("Enter length of ref. string : "); scanf("%d", &l);

printf("Enter reference string :\n"); for(i=1; i<=l; i++)

scanf("%d", &rs[i]); printf("Enter number of

frames : "); scanf("%d", &nf);

for(i=0; i<nf; i++)

frame[i] = -1;

j = 0;

printf("\nRef. str Page frames"); for(i=1; i<=l;

i++)

{

printf("\n%4d\t", rs[i]); avail = 0;

for(k=0; k<nf; k++) if(frame[k]

== rs[i])

avail = 1;

if(avail == 0)

{

frame[j] = rs[i]; j =

(j+1) % nf; count++;

for(k=0; k<nf; k++) printf("%4d",

frame[k]);

}

}

printf("\n\nTotal no. of page faults : %d\n",count);

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

82

Output

Enter length of ref. string : 20 Enter

reference string :

1 2 3 4 2 1 5 6 2 1 2 3 7 6 3 2 1 2 3 6

Enter number of frames : 5 Ref. str

Page frames

Total no. of page faults : 10

Result

Thus page replacement was implemented using FIFO algorithm.

1 1 -1 -1 -1 -1

2 1 2 -1 -1 -1

3 1 2 3 -1 -1

4 1 2 3 4 -1

2

1

5 1 2 3 4 5

6 6 2 3 4 5

2

1 6 1 3 4 5

2 6 1 2 4 5

3 6 1 2 3 5

7 6 1 2 3 7

6
3

2

1

2

3

6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

83

Exp. No. 9b LRU Page Replacement

Date:

Aim

To implement demand paging for a reference string using LRU method.

LRU

➢ Pages used in the recent past are used as an approximation of future usage.

➢ The page that has not been used for a longer period of time is replaced.

➢ LRU is efficient but not optimal.

➢ Implementation of LRU requires hardware support, such as counters/stack.

Algorithm

1. Get length of the reference string, say len.

2. Get reference string and store it in an array, say rs.

3. Get number of frames, say nf.

4. Create access array to store counter that indicates a measure of recent usage.

5. Create a function arrmin that returns position of minimum of the given array.

6. Initalize frame array upto length nf to -1.

7. Initialize position of the page replacement, say j to 0.

8. Initialize freq to 0 to track page frequency

9. Initialize no. of page faults, say count to 0.

10. For each page in reference string in the given order, examine:

a. Check whether page exist in the frame array.

b. If page exist in memory then

i. Store incremented freq for that page position in access array.

c. If page does not exist in memory then

i. Check for any empty frames.

ii. If there is an empty frame,

➢ Assign that frame to the page

➢ Store incremented freq for that page position in access array.

➢ Increment count.

iii. If there is no free frame then

➢ Determine page to be replaced using arrmin function.

➢ Store incremented freq for that page position in access array.

➢ Increment count.

iv. Display pages in frame array.

11. Print count.

12. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

84

Program

/* LRU page replacement - lrupr.c */

 #include <stdio.h>

int arrmin(int[], int);

main()

{

int i,j,len,rs[50],frame[10],nf,k,avail,count=0; int access[10],

freq=0, dm;

printf("Length of Reference string : "); scanf("%d",

&len);

printf("Enter reference string :\n"); for(i=1; i<=len;

i++)

scanf("%d", &rs[i]); printf("Enter no. of

frames : "); scanf("%d", &nf);

for(i=0; i<nf; i++)

frame[i] = -1;
j = 0;

printf("\nRef. str Page frames"); for(i=1;

i<=len; i++)

{

printf("\n%4d\t", rs[i]); avail = 0;

for(k=0; k<nf; k++)

{

if(frame[k] == rs[i])

{

avail = 1; access[k] =

++freq; break;

}

}

if(avail == 0)

{

dm = 0;

for(k=0; k<nf; k++)

{

if(frame[k] == -1)

dm = 1;

break;

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

85

if(dm == 1)

{

frame[k] = rs[i];

access[k] = ++freq;

count++;
}

else

{

j = arrmin(access, nf); frame[j]

= rs[i]; access[j] = ++freq;

count++;
}

for(k=0; k<nf; k++) printf("%4d",

frame[k]);

}

}

printf("\n\nTotal no. of page faults : %d\n", count);

}

int arrmin(int a[], int n)

{

int i, min = a[0]; for(i=1;

i<n; i++) if (min > a[i])

min = a[i];

for(i=0; i<n; i++)

if (min == a[i]) return

i;

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

86

Output

Length of Reference string : 20 Enter

reference string :

1 2 3 4 2 1 5 6 2 1 2 3 7 6 3 2 1 2 3 6

Enter no. of frames : 5

Ref.
1

str Page frames
1 -1 -1

-1

-1

2 1 2 -1 -1 -1
3 1 2 3 -1 -1
4 1 2 3 4 -1
2
1
5 1 2 3 4 5
6 1 2 6 4 5
2
1
2
3 1 2 6 3 5
7 1 2 6 3 7
6
3
2
1
2
3
6

Total no. of page faults : 8

Result

Thus page replacement was implemented using LRU algorithm.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

87

Exp. No. 9c Optimal Page Replacement

Date:

Aim

To implement demand paging for a reference string using Optimal method.

Optimal

➢ Optimal page replacement has the lowest page fault rate of all algorithms.

➢ It does not suffer from Belady's anomaly.

➢ The page replaced is the one that will not be used for the longest period of time.

➢ It is difficult to implement, because it requires future knowledge of reference

string.

Algorithm

1. Get number of pages.

2. Get number of frames

3. Get the reference string

4. Initialize the frame array

5. Display header

6. Create access array to store counter that indicates a measure of usage.

7. Initialize no. of page faults, say count to 0.

8. For each page in reference string in the given order, examine:

a. Check whether page exist in the frame array.

b. If page exist in memory then

i. Store incremented freq for that page position in access array.

c. If page does not exist in memory then

i. Check for any empty frames.

ii. If there is an empty frame,

➢ Assign that frame to the page

➢ Store incremented freq for that page position in access array.

➢ Increment count.

iii. If there is no free frame then

➢ Replace page using optimal algorithm.

➢ Store incremented freq for that page position in access array.

➢ Increment count.

iv. Display pages in frame array.

9. Print count.

10. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

88

Program

/* Optimal Page Replacement - optimalpr.c */

 #include <stdio.h>

int n, page[20], f, fr[20], i, pf=0, flag=0;

void display(int k, int flg)

{

printf("\nPage %d\t\t",k); for(i=0; i<f; i++)

if(flg == 1)

printf("%d\t", fr[i]);

}

void optimal()

{

int j, max, lp[10], index, m; for(j=0; j<f;

j++)

{

fr[j] = page[j]; flag =

1;

pf++;

display(page[j], flag);

}

for(j=f; j<n; j++)

{

flag = 1; for(i=0; i<f;

i++)

if(fr[i] == page[j]) flag = 0;

if(flag == 1)

{

for(i=0; i<f; i++) lp[i] =

0;

for(i=0; i<f; i++)

{

for(m=j+1; m<n; m++)

{

if(fr[i] == page[m])

{

lp[i] = m - j; break;

}

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

89

max = lp[0]; index = 0;

for(i=0; i<f; i++)

{

if(lp[i] == 0)

{

index = i;

break;

}

else

{

if(max < lp[i])

{

max = lp[i];

index = i;

}

}

}

fr[index] = page[j]; pf++;

display(page[j], flag);

}

else

}

display(page[j], flag);

printf("\n\nTotal No. of Page Faults : %d", pf);

}

main()

{

printf("Enter No. of Pages: "); scanf("%d",

&n);

printf("\nEnter No. of Frames: "); scanf("%d",

&f);

printf("\nEnter Reference String : \n"); for(i=0; i<n;

i++)

scanf("%d", &page[i]);

printf("\n\n\tOptimal Page Replacement \n");

printf("\n======================================\n");

printf("Reference\t"); for(i=0; i<f; i++)

printf("F%d\t", i);

printf("\n======================================");

for(i=0; i<f; i++) fr[i] = -

1;

optimal();

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

90

Output

Enter No. of Pages: 20 Enter

No. of Frames: 3

Enter Reference String :

7 0 1 2 0 3 0 4 2 3 0 3 2 1 2 0 1 7 0 1

Optimal Page Replacement

=====================================

Reference F0 F1 F2

=====================================
Page 7 7 -1 -1
Page 0 7 0 -1
Page 1 7 0 1
Page 2 2 0 1
Page 0
Page 3 2 0 3
Page 0
Page 4 2 4 3
Page 2
Page 3
Page 0 2 0 3
Page 3
Page 2
Page 1 2 0 1
Page 2
Page 0
Page 1
Page 7 7 0 1
Page 0
Page 1

Total No. of Page Faults : 9

Result

Thus page replacement was implemented using Optimal algorithm.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

91

Exp. No. 10a Pipes

Date:

Aim

To generate 25 fibonacci numbers and determine prime amongst them using pipe.

Interprocess Communication

➢ Inter-Process communication (IPC), is the mechanism whereby one

process can communicate with another process, i.e exchange data.

➢ IPC in linux can be implemented using pipe, shared memory, message

queue, semaphore, signal or sockets.

fork()

➢ The fork system call is used to create a new process called child process.
o The return value is 0 for a child process.
o The return value is negative if process creation is unsuccessful.
o For the parent process, return value is positive

➢ The child process is an exact copy of the parent process.

➢ Both the child and parent continue to execute the instructions following fork call.

➢ The child can start execution before the parent or vice-versa.

wait()

➢ The wait system call causes the parent process to be blocked until a child

terminates.

➢ When a process terminates, the kernel notifies the parent by sending a signal.

➢ Without wait, the parent may finish first leaving a zombie child

Pipe

➢ Pipes are unidirectional byte streams which connect the standard output

from one process into the standard input of another process.

➢ A pipe is created using the system call pipe that returns a pair of file descriptors.

➢ The descriptor pfd[0] is used for reading and pfd[1] is used for writing.

➢ Can be used only between parent and child processes.

Algorithm

1. Declare a array to store fibonacci numbers

2. Decalre a array pfd with two elements for pipe descriptors.

3. Create pipe on pfd using pipe function call.

a. If return value is -1 then stop

4. Using fork system call, create a child process.

5. Let the child process generate 25 fibonacci numbers and store them in a array.

6. Write the array onto pipe using write system call.

7. Block the parent till child completes using wait system call.

8. Store fibonacci nos. written by child from the pipe in an array using read system

call

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

92

9. Inspect each element of the fibonacci array and check whether they are prime

a. If prime then print the fibonacci term.

10. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

93

Program

/* Fibonacci and Prime using pipe - fibprime.c */

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h> #include

<sys/types.h>

main()

{

pid_t pid; int

pfd[2];
int i,j,flg,f1,f2,f3;

static unsigned int ar[25],br[25];

if(pipe(pfd) == -1)
{

printf("Error in pipe"); exit(-1);

}

pid=fork(); if

(pid == 0)

{

printf("Child process generates Fibonacci series\n"); f1 = -1;

f2 = 1;

for(i = 0;i < 25; i++)

{

f3 = f1 + f2;

printf("%d\t",f3); f1 = f2;

f2 = f3; ar[i] =

f3;
}

write(pfd[1],ar,25*sizeof(int));
}

else if (pid > 0)

{

wait(NULL);

read(pfd[0], br, 25*sizeof(int));

printf("\nParent prints Fibonacci that are Prime\n"); Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

94

for(i = 0;i < 25; i++)

{

flg = 0;

if (br[i] <= 1) flg = 1;

for(j=2; j<=br[i]/2; j++)

{

if (br[i]%j == 0)

{

flg=1;

break;

}

}

if (flg == 0) printf("%d\t", br[i]);
}

printf("\n");

}

else
{

printf("Process creation failed"); exit(-1);
}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

95

Output

$ gcc fibprime.c

$./a.out

Child process generates Fibonacci series
0 1 1 2 3 5 8 13
21 34 55 89 144 233 377 610
987 1597 2584 4181 6765 10946 17711 28657
46368
Parent prints Fibonacci that are Prime
2 3 5 13 89 233 1597 28657

Result

Thus fibonacci numbers that are prime is determined using IPC pipe.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

96

Exp. No. 10b Shared Memory

Date:

Aim

To demonstrate communication between process using shared memory.

Shared memory

➢ Two or more processes share a single chunk of memory to communicate

randomly.

➢ Semaphores are generally used to avoid race condition amongst processes.

➢ Fastest amongst all IPCs as it does not require any system call.

➢ It avoids copying data unnecessarily.

Algorithm

Server

1. Initialize size of shared memory shmsize to 27.

2. Initialize key to 2013 (some random value).

3. Create a shared memory segment using shmget with key & IPC_CREAT as

parameter.

a. If shared memory identifier shmid is -1, then stop.

4. Display shmid.

5. Attach server process to the shared memory using shmmat with shmid as

parameter.

a. If pointer to the shared memory is not obtained, then stop.

6. Clear contents of the shared region using memset function.

7. Write a–z onto the shared memory.

8. Wait till client reads the shared memory contents

9. Detatch process from the shared memory using shmdt system call.

10. Remove shared memory from the system using shmctl with IPC_RMID

argument

11. Stop

Client

1. Initialize size of shared memory shmsize to 27.

2. Initialize key to 2013 (same value as in server).

3. Obtain access to the same shared memory segment using same key.

a. If obtained then display the shmid else print "Server not started"

4. Attach client process to the shared memory using shmmat with shmid as

parameter.

a. If pointer to the shared memory is not obtained, then stop.

5. Read contents of shared memory and print it.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

97

6. After reading, modify the first character of shared memory to '*'

7. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

98

Program

Server

/* Shared memory server - shms.c */

#include <stdio.h>

#include <stdlib.h>

#include <sys/un.h>

#include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define shmsize 27

main()
{

char c; int

shmid;

key_t key = 2013; char

*shm, *s;

if ((shmid = shmget(key, shmsize, IPC_CREAT|0666)) < 0)

{

perror("shmget"); exit(1);

}

printf("Shared memory id : %d\n", shmid);

if ((shm = shmat(shmid, NULL, 0)) == (char *) -1)

{

perror("shmat"); exit(1);

}

memset(shm, 0, shmsize); s =

shm;

printf("Writing (a-z) onto shared memory\n"); for (c = 'a'; c <=

'z'; c++)

*s++ = c;

*s = '\0';

while (*shm != '*');

printf("Client finished reading\n");

if(shmdt(shm) != 0)

fprintf(stderr, "Could not close memory segment.\n");

shmctl(shmid, IPC_RMID, 0);

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

99

Client

/* Shared memory client - shmc.c */

#include <stdio.h>

#include <stdlib.h>

 #include <sys/types.h>

#include <sys/ipc.h>

#include <sys/shm.h>

#define shmsize 27

main()
{

int shmid;

key_t key = 2013; char

*shm, *s;

if ((shmid = shmget(key, shmsize, 0666)) < 0)

{

printf("Server not started\n"); exit(1);

}

else

printf("Accessing shared memory id : %d\n",shmid);

if ((shm = shmat(shmid, NULL, 0)) == (char *) -1)

{

perror("shmat"); exit(1);

}

printf("Shared memory contents:\n"); for (s = shm; *s

!= '\0'; s++)

putchar(*s);

putchar('\n');

shm = '';

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

100

Output

Server

$ gcc shms.c -o shms

$./shms

Shared memory id : 196611 Writing (a-z)

onto shared memory Client finished reading

Client

$ gcc shmc.c -o shmc

$./shmc

Accessing shared memory id : 196611 Shared

memory contents:

abcdefghijklmnopqrstuvwxyz

Result

Thus contents written onto shared memory by the server process is read by the

client process.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

101

Exp. No. 10c Message Queues

Date:

Aim

To exchange message between server and client using message queue.

Message Queue

➢ A message queue is a linked list of messages stored within the kernel

➢ A message queue is identified by a unique identifier

➢ Every message has a positive long integer type field, a non-negative length,

and the actual data bytes.
➢ The messages need not be fetched on FCFS basis. It could be based on type field.

Algorithm

Server

1. Decalre a structure mesgq with type and text fields.

2. Initialize key to 2013 (some random value).

3. Create a message queue using msgget with key & IPC_CREAT as parameter.

a. If message queue cannot be created then stop.

4. Initialize the message type member of mesgq to 1.

5. Do the following until user types Ctrl+D

a. Get message from the user and store it in text member.

b. Delete the newline character in text member.

c. Place message on the queue using msgsend for the client to read.

d. Retrieve the response message from the client using msgrcv function

e. Display the text contents.

6. Remove message queue from the system using msgctl with IPC_RMID as

parameter.

7. Stop

Client

1. Decalre a structure mesgq with type and text fields.

2. Initialize key to 2013 (same value as in server).

3. Open the message queue using msgget with key as parameter.

a. If message queue cannot be opened then stop.

4. Do while the message queue exists

a. Retrieve the response message from the server using msgrcv function

b. Display the text contents.

c. Get message from the user and store it in text member.

d. Delete the newline character in text member.

e. Place message on the queue using msgsend for the server to read.

5. Print "Server Disconnected".

6. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

102

Program

Server

/* Server chat process - srvmsg.c */

#include <stdio.h> #include

<stdlib.h> #include

<string.h> #include

<sys/types.h> #include

<sys/ipc.h> #include

<sys/msg.h>

struct mesgq

{

long type;

char text[200];

} mq;

main()

{

int msqid, len; key_t

key = 2013;

if((msqid = msgget(key, 0644|IPC_CREAT)) == -1)

{

perror("msgget"); exit(1);
}

printf("Enter text, ̂ D to quit:\n"); mq.type = 1;

while(fgets(mq.text, sizeof(mq.text), stdin) != NULL)

{

len = strlen(mq.text);

if (mq.text[len-1] == '\n')

mq.text[len-1] = '\0';

msgsnd(msqid, &mq, len+1, 0);

msgrcv(msqid, &mq, sizeof(mq.text), 0, 0); printf("From

Client: \"%s\"\n", mq.text);
}

msgctl(msqid, IPC_RMID, NULL);

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

103

Client

/* Client chat process - climsg.c */

#include <stdio.h> #include

<stdlib.h> #include

<string.h> #include

<sys/types.h> #include

<sys/ipc.h> #include

<sys/msg.h>

struct mesgq
{

long type;

char text[200];

} mq;

main()

{

int msqid, len; key_t

key = 2013;

if ((msqid = msgget(key, 0644)) == -1)

{

printf("Server not active\n"); exit(1);
}

printf("Client ready :\n");

while (msgrcv(msqid, &mq, sizeof(mq.text), 0, 0) != -1)

{

printf("From Server: \"%s\"\n", mq.text);

fgets(mq.text, sizeof(mq.text), stdin); len =

strlen(mq.text);
if (mq.text[len-1] == '\n')

mq.text[len-1] = '\0';

msgsnd(msqid, &mq, len+1, 0);
}

printf("Server Disconnected\n");

} Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

104

Output

Server

$ gcc srvmsg.c -o srvmsg

$./srvmsg

Enter text, ̂ D to quit: hi

From Client: "hello" Where

r u?

From Client: "I'm where i am" bye
From Client: "ok"

^D

Client

$ gcc climsg.c -o climsg

$./climsg Client

ready:

From Server: "hi" hello

From Server: "Where r u?" I'm

where i am

From Server: "bye" ok

Server Disconnected

Result

Thus chat session between client and server was done using message queue.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

105

Exp. No. 11a Paging

Date:

Aim

To implement paging technique for memory management.

Paging

➢ Paging permits physical address space of a process to be noncontiguous.

➢ It avoids external fragmentation and the need for compaction.

➢ Physical memory is broken into frames.

➢ Logical memory is broken into pages , where page size = frame size

➢ Address consist of two parts: page number and page offset

➢ Page number is used as an index into page table to obtain base address

➢ Base address is added with offset to obtain physical memory address

Algorithm

1. Read physical memory size

2. Read page size

3. Read number of processes

4. Read page table entry for each process

5. Read page number and offset for a procese

6. Compute base address from page table

7. Add offset to base address

8. Display the physical memory address

9. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

106

Program

#include <stdio.h>

main()

{

int ms, ps, nop, np, rempages, i, j, x, y, pa, offset; int s[10], fno[10][20];

printf("Enter Physical memory size : ");

scanf("%d", &ms);

printf("\nEnter Page size : ");

scanf("%d", &ps);

nop = ms / ps;

printf("\nNo. of Frames available are : %d \n",nop);

printf("\nEnter no. of processes : ");

scanf("%d",&np);

rempages = nop;

for(i=1; i<=np; i++)
{

printf("\nEnter no. of pages for process P%d : ",i);

scanf("%d", &s[i]);

if(s[i] > rempages)

{

printf("\nMemory is Full"); break;

}

rempages = rempages - s[i];

printf("Enter Page table for process P%d : ", i);

for(j=1; j<=s[i]; j++)

scanf("%d", &fno[i][j]);

}

printf("\nEnter Process No. Page No. and Offset : "); scanf("%d%d%d",

&x, &y, &offset);

if(x>np || y>=s[i] || offset>=ps)
printf("\nInvalid Process or Page No. or offset");

else

{

}

}

pa = fno[x][y]* ps + offset; printf("Physical

Address is : %d",pa);

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

107

Output

Enter Physical memory size : 4096 Enter

Page size : 512

No. of Frames available are : 8

Enter no. of processes : 3

Enter no. of pages for process P1 : 3

Enter Page table for process P1 : 1 3 5

Enter no. of pages for process P2 : 3

Enter Page table for process P2 : 2 4 6

Enter no. of pages for process P3 : 2

Enter Page table for process P3 : 7 8

Enter Process No. Page No. and Offset : 2 1 120 Physical

Address is : 2168

Result

Thus the program has been successfully executed.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

108

Exp. No. 11b First Fit Allocation

Date:

Aim

To allocate memory requirements for processes using first fit allocation.

First fit

➢ The first-fit, best-fit, or worst-fit strategy is used to select a free hole from

the set of available holes.

➢ Allocate the first hole that is big enough.

➢ Searching starts from the beginning of set of holes.

Algorithm

1. Declare structures hole and process to hold information about set of

holes and processes respectively.

2. Get number of holes, say nh.

3. Get the size of each hole

4. Get number of processes, say np.

5. Get the memory requirements for each process.

6. Allocate processes to holes, by examining each hole as follows:

a. If hole size > process size then

i. Mark process as allocated to that hole.

ii. Decrement hole size by process size.

b. Otherwise check the next from the set of hole

7. Print the list of process and their allocated holes or unallocated status.

8. Print the list of holes, their actual and current availability.

9. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

109

Program

/* First fit allocation - ffit.c */

#include <stdio.h>

struct process

{

int size; int

flag; int

holeid;
} p[10];

struct hole

{

int size; int

actual;

} h[10];

main()

{

int i, np, nh, j;

printf("Enter the number of Holes : "); scanf("%d",

&nh);

for(i=0; i<nh; i++)

{

printf("Enter size for hole H%d : ",i); scanf("%d",

&h[i].size);

h[i].actual = h[i].size;

}

printf("\nEnter number of process : ");

scanf("%d",&np);

for(i=0;i<np;i++)

{

printf("enter the size of process P%d : ",i); scanf("%d",

&p[i].size);

p[i].flag = 0;

} Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

110

for(i=0; i<np; i++)

{

for(j=0; j<nh; j++)

{

if(p[i].flag != 1)

{

if(p[i].size <= h[j].size)

{

p[i].flag = 1; p[i].holeid = j;

h[j].size -= p[i].size;
}

}

}

}

printf("\n\tFirst fit\n");

printf("\nProcess\tPSize\tHole"); for(i=0;

i<np; i++)
{

if(p[i].flag != 1)

printf("\nP%d\t%d\tNot allocated", i, p[i].size); else
printf("\nP%d\t%d\tH%d", i, p[i].size, p[i].holeid);

}

printf("\n\nHole\tActual\tAvailable"); for(i=0; i<nh

;i++)

printf("\nH%d\t%d\t%d", i, h[i].actual, h[i].size); printf("\n");
}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

111

Output

Enter

Enter

Enter

Enter

Enter

Enter

the number of Holes : 5 size for

hole H0 : 100 size for hole H1

: 500 size for hole H2 : 200 size

for hole H3 : 300 size for hole

H4 : 600

Enter number of process : 4

enter the size of process P0 : 212
enter the size of process P1 : 417
enter the size of process P2 : 112

enter the size of process P3 : 426

 First fit

Process

PSize

Hole

P0 212 H1
P1 417 H4
P2 112 H1

P3 426 Not allocated

Hole Actual Available
H0 100 100
H1 500 176
H2 200 200
H3 300 300
H4 600 183

Result

Thus processes were allocated memory using first fit method.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

112

Exp. No. 11c Best Fit Allocation

Date:

Aim

To allocate memory requirements for processes using best fit allocation.

Best fit

➢ Allocate the smallest hole that is big enough.

➢ The list of free holes is kept sorted according to size in ascending order.

➢ This strategy produces smallest leftover holes

Worst fit

➢ Allocate the largest hole.

➢ The list of free holes is kept sorted according to size in descending order.

➢ This strategy produces the largest leftover hole.

Algorithm

1. Declare structures hole and process to hold information about set of

holes and processes respectively.

2. 8Get number of holes, say nh.

3. Get the size of each hole

4. Get number of processes, say np.

5. Get the memory requirements for each process.

6. Allocate processes to holes, by examining each hole as follows:

a. Sort the holes according to their sizes in ascending order

b. If hole size > process size then

i. Mark process as allocated to that hole.

ii. Decrement hole size by process size.

c. Otherwise check the next from the set of sorted hole

7. Print the list of process and their allocated holes or unallocated status.

8. Print the list of holes, their actual and current availability.

9. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

113

Program

/* Best fit allocation - bfit.c */

#include <stdio.h>

struct process

{

int size; int

flag; int

holeid;
} p[10];

struct hole

{

int hid; int

size; int actual;

} h[10];

main()
{

int i, np, nh, j;

void bsort(struct hole[], int);

printf("Enter the number of Holes : "); scanf("%d",

&nh);
for(i=0; i<nh; i++)

{

printf("Enter size for hole H%d : ",i); scanf("%d",

&h[i].size);

h[i].actual = h[i].size; h[i].hid = i;

}

printf("\nEnter number of process : ");

scanf("%d",&np);

for(i=0;i<np;i++)
{

printf("enter the size of process P%d : ",i); scanf("%d",

&p[i].size);
p[i].flag = 0;

}

for(i=0; i<np; i++)

{

bsort(h, nh);

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

114

for(j=0; j<nh; j++)

{

if(p[i].flag != 1)

{

if(p[i].size <= h[j].size)

{

p[i].flag = 1; p[i].holeid =

h[j].hid;

h[j].size -= p[i].size;

}

}

}

}

printf("\n\tBest fit\n");

printf("\nProcess\tPSize\tHole"); for(i=0;

i<np; i++)

{

if(p[i].flag != 1)

printf("\nP%d\t%d\tNot allocated", i, p[i].size); else
printf("\nP%d\t%d\tH%d", i, p[i].size, p[i].holeid);

}

printf("\n\nHole\tActual\tAvailable"); for(i=0; i<nh

;i++)

printf("\nH%d\t%d\t%d", h[i].hid, h[i].actual, h[i].size);

printf("\n");

}

void bsort(struct hole bh[], int n)
{

struct hole temp; int i,j;
for(i=0; i<n-1; i++)

{

for(j=i+1; j<n; j++)

{

if(bh[i].size > bh[j].size)
{

temp = bh[i]; bh[i]

= bh[j]; bh[j] =

temp;
}

}

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

115

Output

Enter

Enter

Enter

Enter

Enter

Enter

the number of Holes : 5 size for

hole H0 : 100 size for hole H1

: 500 size for hole H2 : 200 size

for hole H3 : 300 size for hole

H4 : 600

Enter number of process : 4
enter the size of process P0 : 212
enter the size of process P1 : 417
enter the size of process P2 : 112
enter the size of process P3 : 426

Best fit

Process PSize Hole
P0 212 H3
P1 417 H1
P2 112 H2

P3 426 H4

Hole Actual Available
H1 500 83
H3 300 88
H2 200 88
H0 100 100
H4 600 174

Result

Thus processes were allocated memory using best fit method.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

116

Exp. No. 12 Multi-Threading

Date:

Aim

To understand multithreading concepts.

Multi-Threading

➢ An application task can be split into many "threads" that all execute

concurrently.

➢ Each thread acts as an individual program, but work in shared memory space.

➢ Communication between threads is simple.

➢ Switching between threads is cheaper than switching between processes.

➢ Multithreaded applications often require synchronization objects.

➢ For POSIX systems, header file pthread.h must be included

➢ The function pthread_create is used to create a thread.

➢ A thread stop and wait for another thread to finish using pthread_join

Algorithm

1. Create thread using pthread_create function

2. Let the threads consume time using usleep function

3. Wait for child threads to terminate first using pthread_join function

4. Stop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

117

Program

/* Multi-threading demo - multithread.c */

#include <stdio.h>

#include <string.h> #include

<pthread.h> #include

<stdlib.h> #include

<unistd.h>

pthread_t tid[2]; int

counter;

void* doThings(void *arg)

{

unsigned long i = 0; counter

+= 1;

printf("\n Job %d started\n", counter);

for(i=0; i<(0xFFFFFFFF);i++);

printf("\n Job %d finished\n", counter); return NULL;

}

main()

{

int i = 0; int

err;

while(i < 2)

{

err = pthread_create(&(tid[i]), NULL, &doThings, NULL); if (err != 0)

printf("\nCan't create thread : %s", strerror(err)); i++;

}

pthread_join(tid[0], NULL);

pthread_join(tid[1], NULL);

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

118

Output

$ gcc multithread.c –lpthread

$./a.out

Job 1 started

Job 2 started

Job 2 finished

Job 2 finished

Result

Thus multiple threads were created and thread functions were demonstrated.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

	LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS:
	SOFTWARE:
	HARDWARE:
	MODE OF ASSESSMENT
	INTERNAL ASSESSMENT FOR LABORATORY
	The kernel
	The shell

