
P A R T

1FOUNDATIONS

In this part we introduce the fundamental components of
an interactive system: the human user, the computer system
itself and the nature of the interactive process. We then
present a view of the history of interactive systems by look-
ing at key interaction paradigms that have been significant.

Chapter 1 discusses the psychological and physiological
attributes of the user, providing us with a basic overview of
the capabilities and limitations that affect our ability to use
computer systems. It is only when we have an understand-
ing of the user at this level that we can understand what
makes for successful designs. Chapter 2 considers the
computer in a similar way. Input and output devices are
described and explained and the effect that their individual
characteristics have on the interaction highlighted. The
computational power and memory of the computer is
another important component in determining what can be
achieved in the interaction, whilst due attention is also paid
to paper output since this forms one of the major uses
of computers and users’ tasks today. Having approached
interaction from both the human and the computer side,
we then turn our attention to the dialog between them
in Chapter 3, where we look at models of interaction. In
Chapter 4 we take a historical perspective on the evolution
of interactive systems and how they have increased the
usability of computers in general.Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

THE HUMAN 1

OV E RV I E W

n Humans are limited in their capacity to process
information. This has important implications for design.

n Information is received and responses given via a
number of input and output channels:
– visual channel
– auditory channel
– haptic channel
– movement.

n Information is stored in memory:
– sensory memory
– short-term (working) memory
– long-term memory.

n Information is processed and applied:
– reasoning
– problem solving
– skill acquisition
– error.

n Emotion influences human capabilities.

n Users share common capabilities but are individuals
with differences, which should not be ignored.Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

12 Chapter 1 n The human

INTRODUCTION

This chapter is the first of four in which we introduce some of the ‘foundations’ of
HCI. We start with the human, the central character in any discussion of interactive
systems. The human, the user, is, after all, the one whom computer systems are de-
signed to assist. The requirements of the user should therefore be our first priority.

In this chapter we will look at areas of human psychology coming under the general
banner of cognitive psychology. This may seem a far cry from designing and building
interactive computer systems, but it is not. In order to design something for some-
one, we need to understand their capabilities and limitations. We need to know if
there are things that they will find difficult or, even, impossible. It will also help us to
know what people find easy and how we can help them by encouraging these things.
We will look at aspects of cognitive psychology which have a bearing on the use of com-
puter systems: how humans perceive the world around them, how they store and
process information and solve problems, and how they physically manipulate objects.

We have already said that we will restrict our study to those things that are relev-
ant to HCI. One way to structure this discussion is to think of the user in a way that
highlights these aspects. In other words, to think of a simplified model of what is
actually going on. Many models have been proposed and it useful to consider one of
the most influential in passing, to understand the context of the discussion that is to
follow. In 1983, Card, Moran and Newell [56] described the Model Human Processor,
which is a simplified view of the human processing involved in interacting with
computer systems. The model comprises three subsystems: the perceptual system,
handling sensory stimulus from the outside world, the motor system, which controls
actions, and the cognitive system, which provides the processing needed to connect
the two. Each of these subsystems has its own processor and memory, although
obviously the complexity of these varies depending on the complexity of the tasks
the subsystem has to perform. The model also includes a number of principles of
operation which dictate the behavior of the systems under certain conditions.

We will use the analogy of the user as an information processing system, but in
our model make the analogy closer to that of a conventional computer system.
Information comes in, is stored and processed, and information is passed out. We
will therefore discuss three components of this system: input–output, memory and
processing. In the human, we are dealing with an intelligent information-processing
system, and processing therefore includes problem solving, learning, and, con-
sequently, making mistakes. This model is obviously a simplification of the real
situation, since memory and processing are required at all levels, as we have seen in
the Model Human Processor. However, it is convenient as a way of grasping how
information is handled by the human system. The human, unlike the computer, is
also influenced by external factors such as the social and organizational environ-
ment, and we need to be aware of these influences as well. We will ignore such
factors for now and concentrate on the human’s information processing capabilities
only. We will return to social and organizational influences in Chapter 3 and, in
more detail, in Chapter 13.

1.1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.2 Input–output channels 13

In this chapter, we will first look at the human’s input–output channels, the senses
and responders or effectors. This will involve some low-level processing. Secondly,
we will consider human memory and how it works. We will then think about how
humans perform complex problem solving, how they learn and acquire skills, and
why they make mistakes. Finally, we will discuss how these things can help us in the
design of computer systems.

INPUT–OUTPUT CHANNELS

A person’s interaction with the outside world occurs through information being
received and sent: input and output. In an interaction with a computer the user
receives information that is output by the computer, and responds by providing
input to the computer – the user’s output becomes the computer’s input and vice
versa. Consequently the use of the terms input and output may lead to confusion so
we shall blur the distinction somewhat and concentrate on the channels involved.
This blurring is appropriate since, although a particular channel may have a primary
role as input or output in the interaction, it is more than likely that it is also used in
the other role. For example, sight may be used primarily in receiving information
from the computer, but it can also be used to provide information to the computer,
for example by fixating on a particular screen point when using an eyegaze system.

Input in the human occurs mainly through the senses and output through the
motor control of the effectors. There are five major senses: sight, hearing, touch, taste
and smell. Of these, the first three are the most important to HCI. Taste and smell
do not currently play a significant role in HCI, and it is not clear whether they could
be exploited at all in general computer systems, although they could have a role to
play in more specialized systems (smells to give warning of malfunction, for example)
or in augmented reality systems. However, vision, hearing and touch are central.

Similarly there are a number of effectors, including the limbs, fingers, eyes, head
and vocal system. In the interaction with the computer, the fingers play the primary
role, through typing or mouse control, with some use of voice, and eye, head and
body position.

Imagine using a personal computer (PC) with a mouse and a keyboard. The appli-
cation you are using has a graphical interface, with menus, icons and windows. In
your interaction with this system you receive information primarily by sight, from
what appears on the screen. However, you may also receive information by ear: for
example, the computer may ‘beep’ at you if you make a mistake or to draw attention
to something, or there may be a voice commentary in a multimedia presentation.
Touch plays a part too in that you will feel the keys moving (also hearing the ‘click’)
or the orientation of the mouse, which provides vital feedback about what you have
done. You yourself send information to the computer using your hands, either
by hitting keys or moving the mouse. Sight and hearing do not play a direct role
in sending information in this example, although they may be used to receive

1.2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

14 Chapter 1 n The human

information from a third source (for example, a book, or the words of another per-
son) which is then transmitted to the computer.

In this section we will look at the main elements of such an interaction, first con-
sidering the role and limitations of the three primary senses and going on to consider
motor control.

1.2.1 Vision

Human vision is a highly complex activity with a range of physical and perceptual
limitations, yet it is the primary source of information for the average person.
We can roughly divide visual perception into two stages: the physical reception of
the stimulus from the outside world, and the processing and interpretation of that
stimulus. On the one hand the physical properties of the eye and the visual system
mean that there are certain things that cannot be seen by the human; on the other
the interpretative capabilities of visual processing allow images to be constructed
from incomplete information. We need to understand both stages as both influence
what can and cannot be perceived visually by a human being, which in turn directly
affects the way that we design computer systems. We will begin by looking at the
eye as a physical receptor, and then go on to consider the processing involved in
basic vision.

The human eye

Vision begins with light. The eye is a mechanism for receiving light and transform-
ing it into electrical energy. Light is reflected from objects in the world and their
image is focussed upside down on the back of the eye. The receptors in the eye
transform it into electrical signals which are passed to the brain.

The eye has a number of important components (see Figure 1.1) which we will
look at in more detail. The cornea and lens at the front of the eye focus the light into
a sharp image on the back of the eye, the retina. The retina is light sensitive and con-
tains two types of photoreceptor: rods and cones.

Rods are highly sensitive to light and therefore allow us to see under a low level of
illumination. However, they are unable to resolve fine detail and are subject to light
saturation. This is the reason for the temporary blindness we get when moving from
a darkened room into sunlight: the rods have been active and are saturated by the
sudden light. The cones do not operate either as they are suppressed by the rods. We
are therefore temporarily unable to see at all. There are approximately 120 million
rods per eye which are mainly situated towards the edges of the retina. Rods there-
fore dominate peripheral vision.

Cones are the second type of receptor in the eye. They are less sensitive to light
than the rods and can therefore tolerate more light. There are three types of cone,
each sensitive to a different wavelength of light. This allows color vision. The eye has
approximately 6 million cones, mainly concentrated on the fovea, a small area of the
retina on which images are fixated.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.2 Input–output channels 15

Although the retina is mainly covered with photoreceptors there is one blind spot
where the optic nerve enters the eye. The blind spot has no rods or cones, yet our visual
system compensates for this so that in normal circumstances we are unaware of it.

The retina also has specialized nerve cells called ganglion cells. There are two types:
X-cells, which are concentrated in the fovea and are responsible for the early detec-
tion of pattern; and Y-cells which are more widely distributed in the retina and are
responsible for the early detection of movement. The distribution of these cells
means that, while we may not be able to detect changes in pattern in peripheral
vision, we can perceive movement.

Visual perception

Understanding the basic construction of the eye goes some way to explaining the
physical mechanisms of vision but visual perception is more than this. The informa-
tion received by the visual apparatus must be filtered and passed to processing ele-
ments which allow us to recognize coherent scenes, disambiguate relative distances
and differentiate color. We will consider some of the capabilities and limitations of
visual processing later, but first we will look a little more closely at how we perceive
size and depth, brightness and color, each of which is crucial to the design of effective
visual interfaces.

Figure 1.1 The human eye

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

16 Chapter 1 n The human

Perceiving size and depth Imagine you are standing on a hilltop. Beside you on the
summit you can see rocks, sheep and a small tree. On the hillside is a farmhouse with
outbuildings and farm vehicles. Someone is on the track, walking toward the
summit. Below in the valley is a small market town.

Even in describing such a scene the notions of size and distance predominate. Our
visual system is easily able to interpret the images which it receives to take account
of these things. We can identify similar objects regardless of the fact that they appear
to us to be of vastly different sizes. In fact, we can use this information to judge
distances.

So how does the eye perceive size, depth and relative distances? To understand this
we must consider how the image appears on the retina. As we noted in the previous
section, reflected light from the object forms an upside-down image on the retina.
The size of that image is specified as a visual angle. Figure 1.2 illustrates how the
visual angle is calculated.

If we were to draw a line from the top of the object to a central point on the front
of the eye and a second line from the bottom of the object to the same point, the
visual angle of the object is the angle between these two lines. Visual angle is affected
by both the size of the object and its distance from the eye. Therefore if two objects
are at the same distance, the larger one will have the larger visual angle. Similarly,
if two objects of the same size are placed at different distances from the eye, the

DESIGN FOCUS

Getting noticed

The extensive knowledge about the human visual system can be brought to bear in practical design. For
example, our ability to read or distinguish falls off inversely as the distance from our point of focus
increases. This is due to the fact that the cones are packed more densely towards the center of our
visual field. You can see this in the following image. Fixate on the dot in the center. The letters on the
left should all be equally readable, those on the right all equally harder.

This loss of discrimination sets limits on the amount that can be seen or read without moving one’s
eyes. A user concentrating on the middle of the screen cannot be expected to read help text on the
bottom line.

However, although our ability to discriminate static text diminishes, the rods, which are concentrated
more in the outer parts of our visual field, are very sensitive to changes; hence we see movement well
at the edge of our vision. So if you want a user to see an error message at the bottom of the screen it
had better be flashing! On the other hand clever moving icons, however impressive they are, will be
distracting even when the user is not looking directly at them.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.2 Input–output channels 17

furthest one will have the smaller visual angle. The visual angle indicates how much
of the field of view is taken by the object. The visual angle measurement is given in
either degrees or minutes of arc, where 1 degree is equivalent to 60 minutes of arc,
and 1 minute of arc to 60 seconds of arc.

So how does an object’s visual angle affect our perception of its size? First, if
the visual angle of an object is too small we will be unable to perceive it at all. Visual
acuity is the ability of a person to perceive fine detail. A number of measurements
have been established to test visual acuity, most of which are included in standard
eye tests. For example, a person with normal vision can detect a single line if it has a
visual angle of 0.5 seconds of arc. Spaces between lines can be detected at 30 seconds
to 1 minute of visual arc. These represent the limits of human visual acuity.

Assuming that we can perceive the object, does its visual angle affect our per-
ception of its size? Given that the visual angle of an object is reduced as it gets
further away, we might expect that we would perceive the object as smaller. In fact,
our perception of an object’s size remains constant even if its visual angle changes.
So a person’s height is perceived as constant even if they move further from you.
This is the law of size constancy, and it indicates that our perception of size relies on
factors other than the visual angle.

One of these factors is our perception of depth. If we return to the hilltop scene
there are a number of cues which we can use to determine the relative positions and
distances of the objects which we see. If objects overlap, the object which is partially
covered is perceived to be in the background, and therefore further away. Similarly,
the size and height of the object in our field of view provides a cue to its distance.

Figure 1.2 Visual angle

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

18 Chapter 1 n The human

A third cue is familiarity: if we expect an object to be of a certain size then we can
judge its distance accordingly. This has been exploited for humour in advertising:
one advertisement for beer shows a man walking away from a bottle in the fore-
ground. As he walks, he bumps into the bottle, which is in fact a giant one in the
background!

Perceiving brightness A second aspect of visual perception is the perception of
brightness. Brightness is in fact a subjective reaction to levels of light. It is affected by
luminance which is the amount of light emitted by an object. The luminance of an
object is dependent on the amount of light falling on the object’s surface and its
reflective properties. Luminance is a physical characteristic and can be measured
using a photometer. Contrast is related to luminance: it is a function of the luminance
of an object and the luminance of its background.

Although brightness is a subjective response, it can be described in terms of the
amount of luminance that gives a just noticeable difference in brightness. However,
the visual system itself also compensates for changes in brightness. In dim lighting,
the rods predominate vision. Since there are fewer rods on the fovea, objects in low
lighting can be seen less easily when fixated upon, and are more visible in peripheral
vision. In normal lighting, the cones take over.

Visual acuity increases with increased luminance. This may be an argument
for using high display luminance. However, as luminance increases, flicker also
increases. The eye will perceive a light switched on and off rapidly as constantly
on. But if the speed of switching is less than 50 Hz then the light is perceived to
flicker. In high luminance flicker can be perceived at over 50 Hz. Flicker is also
more noticeable in peripheral vision. This means that the larger the display (and
consequently the more peripheral vision that it occupies), the more it will appear
to flicker.

Perceiving color A third factor that we need to consider is perception of color.
Color is usually regarded as being made up of three components: hue, intensity and
saturation. Hue is determined by the spectral wavelength of the light. Blues have short
wavelengths, greens medium and reds long. Approximately 150 different hues can be
discriminated by the average person. Intensity is the brightness of the color, and
saturation is the amount of whiteness in the color. By varying these two, we can
perceive in the region of 7 million different colors. However, the number of colors
that can be identified by an individual without training is far fewer (in the region
of 10).

The eye perceives color because the cones are sensitive to light of different wave-
lengths. There are three different types of cone, each sensitive to a different color
(blue, green and red). Color vision is best in the fovea, and worst at the periphery
where rods predominate. It should also be noted that only 3–4% of the fovea is
occupied by cones which are sensitive to blue light, making blue acuity lower.

Finally, we should remember that around 8% of males and 1% of females suffer
from color blindness, most commonly being unable to discriminate between red and
green.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.2 Input–output channels 19

The capabilities and limitations of visual processing

In considering the way in which we perceive images we have already encountered
some of the capabilities and limitations of the human visual processing system.
However, we have concentrated largely on low-level perception. Visual processing
involves the transformation and interpretation of a complete image, from the light
that is thrown onto the retina. As we have already noted, our expectations affect the
way an image is perceived. For example, if we know that an object is a particular size,
we will perceive it as that size no matter how far it is from us.

Visual processing compensates for the movement of the image on the retina
which occurs as we move around and as the object which we see moves. Although
the retinal image is moving, the image that we perceive is stable. Similarly, color and
brightness of objects are perceived as constant, in spite of changes in luminance.

This ability to interpret and exploit our expectations can be used to resolve ambi-
guity. For example, consider the image shown in Figure 1.3. What do you perceive?
Now consider Figure 1.4 and Figure 1.5. The context in which the object appears

Figure 1.3 An ambiguous shape?

Figure 1.4 ABC

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

20 Chapter 1 n The human

allows our expectations to clearly disambiguate the interpretation of the object, as
either a B or a 13.

However, it can also create optical illusions. For example, consider Figure 1.6.
Which line is longer? Most people when presented with this will say that the top
line is longer than the bottom. In fact, the two lines are the same length. This may be
due to a false application of the law of size constancy: the top line appears like a con-
cave edge, the bottom like a convex edge. The former therefore seems further away
than the latter and is therefore scaled to appear larger. A similar illusion is the Ponzo
illusion (Figure 1.7). Here the top line appears longer, owing to the distance effect,
although both lines are the same length. These illusions demonstrate that our per-
ception of size is not completely reliable.

Another illusion created by our expectations compensating an image is the proof-
reading illusion. Read the text in Figure 1.8 quickly. What does it say? Most people
reading this rapidly will read it correctly, although closer inspection shows that the
word ‘the’ is repeated in the second and third line.

These are just a few examples of how the visual system compensates, and some-
times overcompensates, to allow us to perceive the world around us.

Figure 1.5 12 13 14

Figure 1.6 The Muller–Lyer illusion – which line is longer?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.2 Input–output channels 21

Figure 1.7 The Ponzo illusion – are these the same size?

Figure 1.8 Is this text correct?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

22 Chapter 1 n The human

Reading

So far we have concentrated on the perception of images in general. However,
the perception and processing of text is a special case that is important to interface
design, which invariably requires some textual display. We will therefore end
this section by looking at reading. There are several stages in the reading process.
First, the visual pattern of the word on the page is perceived. It is then decoded
with reference to an internal representation of language. The final stages of lan-
guage processing include syntactic and semantic analysis and operate on phrases or
sentences.

We are most concerned with the first two stages of this process and how they
influence interface design. During reading, the eye makes jerky movements called
saccades followed by fixations. Perception occurs during the fixation periods, which
account for approximately 94% of the time elapsed. The eye moves backwards over
the text as well as forwards, in what are known as regressions. If the text is complex
there will be more regressions.

Adults read approximately 250 words a minute. It is unlikely that words are
scanned serially, character by character, since experiments have shown that words can
be recognized as quickly as single characters. Instead, familiar words are recognized
using word shape. This means that removing the word shape clues (for example, by
capitalizing words) is detrimental to reading speed and accuracy.

The speed at which text can be read is a measure of its legibility. Experiments have
shown that standard font sizes of 9 to 12 points are equally legible, given pro-
portional spacing between lines [346]. Similarly line lengths of between 2.3 and 5.2
inches (58 and 132 mm) are equally legible. However, there is evidence that reading
from a computer screen is slower than from a book [244]. This is thought to be
due to a number of factors including a longer line length, fewer words to a page,

DESIGN FOCUS

Where’s the middle?

Optical illusions highlight the differences between the way things are and the way we perceive them –
and in interface design we need to be aware that we will not always perceive things exactly as they are.
The way that objects are composed together will affect the way we perceive them, and we do not per-
ceive geometric shapes exactly as they are drawn. For example, we tend to magnify horizontal lines and
reduce vertical. So a square needs to be slightly increased in height to appear square and lines will
appear thicker if horizontal rather than vertical.

Optical illusions also affect page symmetry. We tend to see the center of a page as being a little above
the actual center – so if a page is arranged symmetrically around the actual center, we will see it as too
low down. In graphic design this is known as the optical center – and bottom page margins tend to be
increased by 50% to compensate.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.2 Input–output channels 23

orientation and the familiarity of the medium of the page. These factors can of
course be reduced by careful design of textual interfaces.

A final word about the use of contrast in visual display: a negative contrast (dark
characters on a light screen) provides higher luminance and, therefore, increased
acuity, than a positive contrast. This will in turn increase legibility. However, it will
also be more prone to flicker. Experimental evidence suggests that in practice negat-
ive contrast displays are preferred and result in more accurate performance [30].

1.2.2 Hearing

The sense of hearing is often considered secondary to sight, but we tend to under-
estimate the amount of information that we receive through our ears. Close your eyes
for a moment and listen. What sounds can you hear? Where are they coming from?
What is making them? As I sit at my desk I can hear cars passing on the road outside,
machinery working on a site nearby, the drone of a plane overhead and bird song.
But I can also tell where the sounds are coming from, and estimate how far away they
are. So from the sounds I hear I can tell that a car is passing on a particular road near
my house, and which direction it is traveling in. I know that building work is in
progress in a particular location, and that a certain type of bird is perched in the tree
in my garden.

The auditory system can convey a lot of information about our environment. But
how does it work?

The human ear

Just as vision begins with light, hearing begins with vibrations in the air or sound
waves. The ear receives these vibrations and transmits them, through various stages,
to the auditory nerves. The ear comprises three sections, commonly known as the
outer ear, middle ear and inner ear.

The outer ear is the visible part of the ear. It has two parts: the pinna, which is
the structure that is attached to the sides of the head, and the auditory canal, along
which sound waves are passed to the middle ear. The outer ear serves two purposes.
First, it protects the sensitive middle ear from damage. The auditory canal contains
wax which prevents dust, dirt and over-inquisitive insects reaching the middle ear.
It also maintains the middle ear at a constant temperature. Secondly, the pinna and
auditory canal serve to amplify some sounds.

The middle ear is a small cavity connected to the outer ear by the tympanic
membrane, or ear drum, and to the inner ear by the cochlea. Within the cavity are the
ossicles, the smallest bones in the body. Sound waves pass along the auditory canal
and vibrate the ear drum which in turn vibrates the ossicles, which transmit the
vibrations to the cochlea, and so into the inner ear. This ‘relay’ is required because,
unlike the air-filled outer and middle ears, the inner ear is filled with a denser
cochlean liquid. If passed directly from the air to the liquid, the transmission of the
sound waves would be poor. By transmitting them via the ossicles the sound waves
are concentrated and amplified.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

24 Chapter 1 n The human

The waves are passed into the liquid-filled cochlea in the inner ear. Within
the cochlea are delicate hair cells or cilia that bend because of the vibrations in the
cochlean liquid and release a chemical transmitter which causes impulses in the
auditory nerve.

Processing sound

As we have seen, sound is changes or vibrations in air pressure. It has a number of
characteristics which we can differentiate. Pitch is the frequency of the sound. A low
frequency produces a low pitch, a high frequency, a high pitch. Loudness is propor-
tional to the amplitude of the sound; the frequency remains constant. Timbre relates
to the type of the sound: sounds may have the same pitch and loudness but be made
by different instruments and so vary in timbre. We can also identify a sound’s loca-
tion, since the two ears receive slightly different sounds, owing to the time difference
between the sound reaching the two ears and the reduction in intensity caused by the
sound waves reflecting from the head.

The human ear can hear frequencies from about 20 Hz to 15 kHz. It can distin-
guish frequency changes of less than 1.5 Hz at low frequencies but is less accurate at
high frequencies. Different frequencies trigger activity in neurons in different parts
of the auditory system, and cause different rates of firing of nerve impulses.

The auditory system performs some filtering of the sounds received, allowing us
to ignore background noise and concentrate on important information. We are
selective in our hearing, as illustrated by the cocktail party effect, where we can pick
out our name spoken across a crowded noisy room. However, if sounds are too loud,
or frequencies too similar, we are unable to differentiate sound.

As we have seen, sound can convey a remarkable amount of information. It is
rarely used to its potential in interface design, usually being confined to warning
sounds and notifications. The exception is multimedia, which may include music,
voice commentary and sound effects. However, the ear can differentiate quite subtle
sound changes and can recognize familiar sounds without concentrating attention
on the sound source. This suggests that sound could be used more extensively in
interface design, to convey information about the system state, for example. This is
discussed in more detail in Chapter 10.

Worked exercise Suggest ideas for an interface which uses the properties of sound effectively.

Answer You might approach this exercise by considering how sound could be added to an appli-
cation with which you are familiar. Use your imagination. This is also a good subject for
a literature survey (starting with the references in Chapter 10).

Speech sounds can obviously be used to convey information. This is useful not only for
the visually impaired but also for any application where the user’s attention has to be
divided (for example, power plant control, flight control, etc.). Uses of non-speech
sounds include the following:

n Attention – to attract the user’s attention to a critical situation or to the end of a
process, for example.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.2 Input–output channels 25

n Status information – continuous background sounds can be used to convey status
information. For example, monitoring the progress of a process (without the need
for visual attention).

n Confirmation – a sound associated with an action to confirm that the action has
been carried out. For example, associating a sound with deleting a file.

n Navigation – using changing sound to indicate where the user is in a system. For
example, what about sound to support navigation in hypertext?

1.2.3 Touch

The third and last of the senses that we will consider is touch or haptic perception.
Although this sense is often viewed as less important than sight or hearing, imagine
life without it. Touch provides us with vital information about our environment.
It tells us when we touch something hot or cold, and can therefore act as a warning. It
also provides us with feedback when we attempt to lift an object, for example. Con-
sider the act of picking up a glass of water. If we could only see the glass and not
feel when our hand made contact with it or feel its shape, the speed and accuracy of
the action would be reduced. This is the experience of users of certain virtual reality
games: they can see the computer-generated objects which they need to manipulate
but they have no physical sensation of touching them. Watching such users can be
an informative and amusing experience! Touch is therefore an important means of
feedback, and this is no less so in using computer systems. Feeling buttons depress is
an important part of the task of pressing the button. Also, we should be aware that,
although for the average person, haptic perception is a secondary source of informa-
tion, for those whose other senses are impaired, it may be vitally important. For such
users, interfaces such as braille may be the primary source of information in the
interaction. We should not therefore underestimate the importance of touch.

The apparatus of touch differs from that of sight and hearing in that it is not local-
ized. We receive stimuli through the skin. The skin contains three types of sensory
receptor: thermoreceptors respond to heat and cold, nociceptors respond to intense
pressure, heat and pain, and mechanoreceptors respond to pressure. It is the last of
these that we are concerned with in relation to human–computer interaction.

There are two kinds of mechanoreceptor, which respond to different types of
pressure. Rapidly adapting mechanoreceptors respond to immediate pressure as the
skin is indented. These receptors also react more quickly with increased pressure.
However, they stop responding if continuous pressure is applied. Slowly adapting
mechanoreceptors respond to continuously applied pressure.

Although the whole of the body contains such receptors, some areas have greater
sensitivity or acuity than others. It is possible to measure the acuity of different areas
of the body using the two-point threshold test. Take two pencils, held so their tips are
about 12 mm apart. Touch the points to your thumb and see if you can feel two
points. If you cannot, move the points a little further apart. When you can feel two
points, measure the distance between them. The greater the distance, the lower the
sensitivity. You can repeat this test on different parts of your body. You should find

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

26 Chapter 1 n The human

that the measure on the forearm is around 10 times that of the finger or thumb. The
fingers and thumbs have the highest acuity.

A second aspect of haptic perception is kinesthesis: awareness of the position of
the body and limbs. This is due to receptors in the joints. Again there are three
types: rapidly adapting, which respond when a limb is moved in a particular direc-
tion; slowly adapting, which respond to both movement and static position; and
positional receptors, which only respond when a limb is in a static position. This
perception affects both comfort and performance. For example, for a touch typist,
awareness of the relative positions of the fingers and feedback from the keyboard are
very important.

1.2.4 Movement

Before leaving this section on the human’s input–output channels, we need to
consider motor control and how the way we move affects our interaction with com-
puters. A simple action such as hitting a button in response to a question involves
a number of processing stages. The stimulus (of the question) is received through
the sensory receptors and transmitted to the brain. The question is processed and a
valid response generated. The brain then tells the appropriate muscles to respond.
Each of these stages takes time, which can be roughly divided into reaction time and
movement time.

Movement time is dependent largely on the physical characteristics of the subjects:
their age and fitness, for example. Reaction time varies according to the sensory
channel through which the stimulus is received. A person can react to an auditory

Handling the goods

E-commerce has become very successful in some areas of sales, such as travel services,
books and CDs, and food. However, in some retail areas, such as clothes shopping, e-commerce
has been less successful. Why?

When buying train and airline tickets and, to some extent, books and food, the experience of shop-
ping is less important than the convenience. So, as long as we know what we want, we are happy
to shop online. With clothes, the experience of shopping is far more important. We need to be
able to handle the goods, feel the texture of the material, check the weight to test quality. Even if
we know that something will fit us we still want to be able to handle it before buying.

Research into haptic interaction (see Chapter 2 and Chapter 10) is looking at ways of solving this
problem. By using special force feedback and tactile hardware, users are able to feel surfaces
and shape. For example, a demonstration environment called TouchCity allows people to walk
around a virtual shopping mall, pick up products and feel their texture and weight. A key problem
with the commercial use of such an application, however, is that the haptic experience requires
expensive hardware not yet available to the average e-shopper. However, in future, such immer-
sive e-commerce experiences are likely to be the norm. (See www.novint.com/)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.3 Human memory 27

signal in approximately 150 ms, to a visual signal in 200 ms and to pain in 700 ms.
However, a combined signal will result in the quickest response. Factors such as skill
or practice can reduce reaction time, and fatigue can increase it.

A second measure of motor skill is accuracy. One question that we should ask is
whether speed of reaction results in reduced accuracy. This is dependent on the task
and the user. In some cases, requiring increased reaction time reduces accuracy. This
is the premise behind many arcade and video games where less skilled users fail at
levels of play that require faster responses. However, for skilled operators this is not
necessarily the case. Studies of keyboard operators have shown that, although the
faster operators were up to twice as fast as the others, the slower ones made 10 times
the errors.

Speed and accuracy of movement are important considerations in the design
of interactive systems, primarily in terms of the time taken to move to a particular
target on a screen. The target may be a button, a menu item or an icon, for example.
The time taken to hit a target is a function of the size of the target and the distance
that has to be moved. This is formalized in Fitts’ law [135]. There are many vari-
ations of this formula, which have varying constants, but they are all very similar.
One common form is

Movement time = a + b log2(distance/size + 1)

where a and b are empirically determined constants.
This affects the type of target we design. Since users will find it more difficult

to manipulate small objects, targets should generally be as large as possible and
the distance to be moved as small as possible. This has led to suggestions that pie-
chart-shaped menus are preferable to lists since all options are equidistant. However,
the trade-off is increased use of screen estate, so the choice may not be so simple.
If lists are used, the most frequently used options can be placed closest to the user’s
start point (for example, at the top of the menu). The implications of Fitts’ law in
design are discussed in more detail in Chapter 12.

HUMAN MEMORY

Have you ever played the memory game? The idea is that each player has to recount
a list of objects and add one more to the end. There are many variations but the
objects are all loosely related: ‘I went to the market and bought a lemon, some
oranges, bacon . . .’ or ‘I went to the zoo and saw monkeys, and lions, and tigers . . .’
and so on. As the list grows objects are missed out or recalled in the wrong order and
so people are eliminated from the game. The winner is the person remaining at the
end. Such games rely on our ability to store and retrieve information, even seemingly
arbitrary items. This is the job of our memory system.

Indeed, much of our everyday activity relies on memory. As well as storing all our
factual knowledge, our memory contains our knowledge of actions or procedures.

1.3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

28 Chapter 1 n The human

It allows us to repeat actions, to use language, and to use new information received
via our senses. It also gives us our sense of identity, by preserving information from
our past experiences.

But how does our memory work? How do we remember arbitrary lists such as
those generated in the memory game? Why do some people remember more easily
than others? And what happens when we forget?

In order to answer questions such as these, we need to understand some of the
capabilities and limitations of human memory. Memory is the second part of our
model of the human as an information-processing system. However, as we noted
earlier, such a division is simplistic since, as we shall see, memory is associated with
each level of processing. Bearing this in mind, we will consider the way in which
memory is structured and the activities that take place within the system.

It is generally agreed that there are three types of memory or memory function:
sensory buffers, short-term memory or working memory, and long-term memory. There
is some disagreement as to whether these are three separate systems or different
functions of the same system. We will not concern ourselves here with the details
of this debate, which is discussed in detail by Baddeley [21], but will indicate the
evidence used by both sides as we go along. For our purposes, it is sufficient to note
three separate types of memory. These memories interact, with information being
processed and passed between memory stores, as shown in Figure 1.9.

1.3.1 Sensory memory

The sensory memories act as buffers for stimuli received through the senses. A
sensory memory exists for each sensory channel: iconic memory for visual stimuli,
echoic memory for aural stimuli and haptic memory for touch. These memories are
constantly overwritten by new information coming in on these channels.

We can demonstrate the existence of iconic memory by moving a finger in front
of the eye. Can you see it in more than one place at once? This indicates a persistence
of the image after the stimulus has been removed. A similar effect is noticed most
vividly at firework displays where moving sparklers leave a persistent image.
Information remains in iconic memory very briefly, in the order of 0.5 seconds.

Similarly, the existence of echoic memory is evidenced by our ability to ascertain
the direction from which a sound originates. This is due to information being
received by both ears. However, since this information is received at different times,
we must store the stimulus in the meantime. Echoic memory allows brief ‘play-back’

Figure 1.9 A model of the structure of memory

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.3 Human memory 29

of information. Have you ever had someone ask you a question when you are
reading? You ask them to repeat the question, only to realize that you know what was
asked after all. This experience, too, is evidence of the existence of echoic memory.

Information is passed from sensory memory into short-term memory by atten-
tion, thereby filtering the stimuli to only those which are of interest at a given time.
Attention is the concentration of the mind on one out of a number of competing
stimuli or thoughts. It is clear that we are able to focus our attention selectively,
choosing to attend to one thing rather than another. This is due to the limited capa-
city of our sensory and mental processes. If we did not selectively attend to the
stimuli coming into our senses, we would be overloaded. We can choose which stimuli
to attend to, and this choice is governed to an extent by our arousal, our level of
interest or need. This explains the cocktail party phenomenon mentioned earlier:
we can attend to one conversation over the background noise, but we may choose
to switch our attention to a conversation across the room if we hear our name
mentioned. Information received by sensory memories is quickly passed into a more
permanent memory store, or overwritten and lost.

1.3.2 Short-term memory

Short-term memory or working memory acts as a ‘scratch-pad’ for temporary recall
of information. It is used to store information which is only required fleetingly. For
example, calculate the multiplication 35 × 6 in your head. The chances are that you
will have done this calculation in stages, perhaps 5 × 6 and then 30 × 6 and added
the results; or you may have used the fact that 6 = 2 × 3 and calculated 2 × 35 = 70
followed by 3 × 70. To perform calculations such as this we need to store the inter-
mediate stages for use later. Or consider reading. In order to comprehend this
sentence you need to hold in your mind the beginning of the sentence as you read
the rest. Both of these tasks use short-term memory.

Short-term memory can be accessed rapidly, in the order of 70 ms. However, it
also decays rapidly, meaning that information can only be held there temporarily, in
the order of 200 ms.

Short-term memory also has a limited capacity. There are two basic methods for
measuring memory capacity. The first involves determining the length of a sequence
which can be remembered in order. The second allows items to be freely recalled in
any order. Using the first measure, the average person can remember 7 ± 2 digits.
This was established in experiments by Miller [234]. Try it. Look at the following
number sequence:

265397620853

Now write down as much of the sequence as you can remember. Did you get it all
right? If not, how many digits could you remember? If you remembered between five
and nine digits your digit span is average.

Now try the following sequence:

44 113 245 8920

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

30 Chapter 1 n The human

Did you recall that more easily? Here the digits are grouped or chunked. A general-
ization of the 7 ± 2 rule is that we can remember 7 ± 2 chunks of information.
Therefore chunking information can increase the short-term memory capacity. The
limited capacity of short-term memory produces a subconscious desire to create
chunks, and so optimize the use of the memory. The successful formation of a chunk
is known as closure. This process can be generalized to account for the desire to com-
plete or close tasks held in short-term memory. If a subject fails to do this or is pre-
vented from doing so by interference, the subject is liable to lose track of what she is
doing and make consequent errors.

DESIGN FOCUS

Cashing in

Closure gives you a nice ‘done it’ when we complete some part of a task. At this point our minds have
a tendency to flush short-term memory in order to get on with the next job. Early automatic teller
machines (ATMs) gave the customer money before returning their bank card. On receiving the money
the customer would reach closure and hence often forget to take the card. Modern ATMs return the
card first!

The sequence of chunks given above also makes use of pattern abstraction: it is
written in the form of a UK telephone number which makes it easier to remember.
We may even recognize the first sets of digits as the international code for the UK
and the dialing code for Leeds – chunks of information. Patterns can be useful as aids

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.3 Human memory 31

to memory. For example, most people would have difficulty remembering the fol-
lowing sequence of chunks:

HEC ATR ANU PTH ETR EET

However, if you notice that by moving the last character to the first position, you get
the statement ‘the cat ran up the tree’, the sequence is easy to recall.

In experiments where subjects were able to recall words freely, evidence shows that
recall of the last words presented is better than recall of those in the middle [296].
This is known as the recency effect. However, if the subject is asked to perform
another task between presentation and recall (for example, counting backwards) the
recency effect is eliminated. The recall of the other words is unaffected. This suggests
that short-term memory recall is damaged by interference of other information.
However, the fact that this interference does not affect recall of earlier items provides
some evidence for the existence of separate long-term and short-term memories. The
early items are held in a long-term store which is unaffected by the recency effect.

Interference does not necessarily impair recall in short-term memory. Baddeley asked
subjects to remember six-digit numbers and attend to sentence processing at the same
time [21]. They were asked to answer questions on sentences, such as ‘A precedes B:
AB is true or false?’. Surprisingly, this did not result in interference, suggesting that
in fact short-term memory is not a unitary system but is made up of a number of
components, including a visual channel and an articulatory channel. The task of sen-
tence processing used the visual channel, while the task of remembering digits used
the articulatory channel, so interference only occurs if tasks utilize the same channel.

These findings led Baddeley to propose a model of working memory that incorp-
orated a number of elements together with a central processing executive. This is
illustrated in Figure 1.10.

Figure 1.10 A more detailed model of short-term memory

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

32 Chapter 1 n The human

1.3.3 Long-term memory

If short-term memory is our working memory or ‘scratch-pad’, long-term memory
is our main resource. Here we store factual information, experiential knowledge,
procedural rules of behavior – in fact, everything that we ‘know’. It differs from
short-term memory in a number of significant ways. First, it has a huge, if not unlim-
ited, capacity. Secondly, it has a relatively slow access time of approximately a tenth
of a second. Thirdly, forgetting occurs more slowly in long-term memory, if at all.
These distinctions provide further evidence of a memory structure with several parts.

Long-term memory is intended for the long-term storage of information.
Information is placed there from working memory through rehearsal. Unlike work-
ing memory there is little decay: long-term recall after minutes is the same as that
after hours or days.

Long-term memory structure

There are two types of long-term memory: episodic memory and semantic memory.
Episodic memory represents our memory of events and experiences in a serial form.
It is from this memory that we can reconstruct the actual events that took place at a
given point in our lives. Semantic memory, on the other hand, is a structured record
of facts, concepts and skills that we have acquired. The information in semantic
memory is derived from that in our episodic memory, such that we can learn new
facts or concepts from our experiences.

Semantic memory is structured in some way to allow access to information,
representation of relationships between pieces of information, and inference. One
model for the way in which semantic memory is structured is as a network. Items are

DESIGN FOCUS

7 ± 2 revisited

When we looked at short-term memory, we noted the general rule that people can hold 7 ± 2 items
or chunks of information in short-term memory. It is a principle that people tend to remember but it
can be misapplied. For example, it is often suggested that this means that lists, menus and other groups
of items should be designed to be no more than 7 items long. But use of menus and lists of course has
little to do with short-term memory – they are available in the environment as cues and so do not need
to be remembered.

On the other hand the 7 ± 2 rule would apply in command line interfaces. Imagine a scenario where a
UNIX user looks up a command in the manual. Perhaps the command has a number of parameters of
options, to be applied in a particular order, and it is going to be applied to several files that have long
path names. The user then has to hold the command, its parameters and the file path names in short-
term memory while he types them in. Here we could say that the task may cause problems if the num-
ber of items or chunks in the command line string is more than 7.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.3 Human memory 33

associated to each other in classes, and may inherit attributes from parent classes.
This model is known as a semantic network. As an example, our knowledge about
dogs may be stored in a network such as that shown in Figure 1.11.

Specific breed attributes may be stored with each given breed, yet general dog
information is stored at a higher level. This allows us to generalize about specific
cases. For instance, we may not have been told that the sheepdog Shadow has four
legs and a tail, but we can infer this information from our general knowledge about
sheepdogs and dogs in general. Note also that there are connections within the net-
work which link into other domains of knowledge, for example cartoon characters.
This illustrates how our knowledge is organized by association.

The viability of semantic networks as a model of memory organization has been
demonstrated by Collins and Quillian [74]. Subjects were asked questions about
different properties of related objects and their reaction times were measured. The
types of question asked (taking examples from our own network) were ‘Can a collie
breathe?’, ‘Is a beagle a hound?’ and ‘Does a hound track?’ In spite of the fact that the
answers to such questions may seem obvious, subjects took longer to answer ques-
tions such as ‘Can a collie breathe?’ than ones such as ‘Does a hound track?’ The
reason for this, it is suggested, is that in the former case subjects had to search fur-
ther through the memory hierarchy to find the answer, since information is stored
at its most abstract level.

A number of other memory structures have been proposed to explain how we
represent and store different types of knowledge. Each of these represents a different

Figure 1.11 Long-term memory may store information in a semantic network

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

34 Chapter 1 n The human

aspect of knowledge and, as such, the models can be viewed as complementary rather
than mutually exclusive. Semantic networks represent the associations and relation-
ships between single items in memory. However, they do not allow us to model the
representation of more complex objects or events, which are perhaps composed of
a number of items or activities. Structured representations such as frames and scripts
organize information into data structures. Slots in these structures allow attribute
values to be added. Frame slots may contain default, fixed or variable information.
A frame is instantiated when the slots are filled with appropriate values. Frames
and scripts can be linked together in networks to represent hierarchical structured
knowledge.

Returning to the ‘dog’ domain, a frame-based representation of the knowledge
may look something like Figure 1.12. The fixed slots are those for which the attribute
value is set, default slots represent the usual attribute value, although this may be
overridden in particular instantiations (for example, the Basenji does not bark), and
variable slots can be filled with particular values in a given instance. Slots can also
contain procedural knowledge. Actions or operations can be associated with a slot
and performed, for example, whenever the value of the slot is changed.

Frames extend semantic nets to include structured, hierarchical information. They
represent knowledge items in a way which makes explicit the relative importance of
each piece of information.

Scripts attempt to model the representation of stereotypical knowledge about situ-
ations. Consider the following sentence:

John took his dog to the surgery. After seeing the vet, he left.

From our knowledge of the activities of dog owners and vets, we may fill in a
substantial amount of detail. The animal was ill. The vet examined and treated the
animal. John paid for the treatment before leaving. We are less likely to assume the
alternative reading of the sentence, that John took an instant dislike to the vet on
sight and did not stay long enough to talk to him!

Figure 1.12 A frame-based representation of knowledge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.3 Human memory 35

A script represents this default or stereotypical information, allowing us to inter-
pret partial descriptions or cues fully. A script comprises a number of elements,
which, like slots, can be filled with appropriate information:

Entry conditions Conditions that must be satisfied for the script to be activated.

Result Conditions that will be true after the script is terminated.

Props Objects involved in the events described in the script.

Roles Actions performed by particular participants.

Scenes The sequences of events that occur.

Tracks A variation on the general pattern representing an alternative scenario.

An example script for going to the vet is shown in Figure 1.13.
A final type of knowledge representation which we hold in memory is the repre-

sentation of procedural knowledge, our knowledge of how to do something. A com-
mon model for this is the production system. Condition–action rules are stored
in long-term memory. Information coming into short-term memory can match a
condition in one of these rules and result in the action being executed. For example,
a pair of production rules might be

IF dog is wagging tail
THEN pat dog

IF dog is growling
THEN run away

If we then meet a growling dog, the condition in the second rule is matched, and we
respond by turning tail and running. (Not to be recommended by the way!)

Figure 1.13 A script for visiting the vet

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

36 Chapter 1 n The human

Long-term memory processes

So much for the structure of memory, but what about the processes which it uses?
There are three main activities related to long-term memory: storage or remember-
ing of information, forgetting and information retrieval. We shall consider each of
these in turn.

First, how does information get into long-term memory and how can we improve
this process? Information from short-term memory is stored in long-term memory by
rehearsal. The repeated exposure to a stimulus or the rehearsal of a piece of informa-
tion transfers it into long-term memory.

This process can be optimized in a number of ways. Ebbinghaus performed
numerous experiments on memory, using himself as a subject [117]. In these experi-
ments he tested his ability to learn and repeat nonsense syllables, comparing his
recall minutes, hours and days after the learning process. He discovered that the
amount learned was directly proportional to the amount of time spent learning.
This is known as the total time hypothesis. However, experiments by Baddeley and
others suggest that learning time is most effective if it is distributed over time [22].
For example, in an experiment in which Post Office workers were taught to type,
those whose training period was divided into weekly sessions of one hour performed
better than those who spent two or four hours a week learning (although the former
obviously took more weeks to complete their training). This is known as the distribu-
tion of practice effect.

However, repetition is not enough to learn information well. If information is
not meaningful it is more difficult to remember. This is illustrated by the fact that
it is more difficult to remember a set of words representing concepts than a set of
words representing objects. Try it. First try to remember the words in list A and test
yourself.

List A: Faith Age Cold Tenet Quiet Logic Idea Value Past Large

Now try list B.

List B: Boat Tree Cat Child Rug Plate Church Gun Flame Head

The second list was probably easier to remember than the first since you could
visualize the objects in the second list.

Sentences are easier still to memorize. Bartlett performed experiments on remem-
bering meaningful information (as opposed to meaningless such as Ebbinghaus
used) [28]. In one such experiment he got subjects to learn a story about an un-
familiar culture and then retell it. He found that subjects would retell the story
replacing unfamiliar words and concepts with words which were meaningful to
them. Stories were effectively translated into the subject’s own culture. This is related
to the semantic structuring of long-term memory: if information is meaningful and
familiar, it can be related to existing structures and more easily incorporated into
memory.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.3 Human memory 37

So if structure, familiarity and concreteness help us in learning information, what
causes us to lose this information, to forget? There are two main theories of forget-
ting: decay and interference. The first theory suggests that the information held in
long-term memory may eventually be forgotten. Ebbinghaus concluded from his
experiments with nonsense syllables that information in memory decayed logarith-
mically, that is that it was lost rapidly to begin with, and then more slowly. Jost’s law,
which follows from this, states that if two memory traces are equally strong at a given
time the older one will be more durable.

The second theory is that information is lost from memory through interference.
If we acquire new information it causes the loss of old information. This is termed
retroactive interference. A common example of this is the fact that if you change tele-
phone numbers, learning your new number makes it more difficult to remember
your old number. This is because the new association masks the old. However, some-
times the old memory trace breaks through and interferes with new information.
This is called proactive inhibition. An example of this is when you find yourself driv-
ing to your old house rather than your new one.

Forgetting is also affected by emotional factors. In experiments, subjects given
emotive words and non-emotive words found the former harder to remember in
the short term but easier in the long term. Indeed, this observation tallies with our
experience of selective memory. We tend to remember positive information rather
than negative (hence nostalgia for the ‘good old days’), and highly emotive events
rather than mundane.

Memorable or secure?

As online activities become more widespread, people are having to remember more and
more access information, such as passwords and security checks. The average active internet user
may have separate passwords and user names for several email accounts, mailing lists, e-shopping
sites, e-banking, online auctions and more! Remembering these passwords is not easy.

From a security perspective it is important that passwords are random. Words and names are very
easy to crack, hence the recommendation that passwords are frequently changed and constructed
from random strings of letters and numbers. But in reality these are the hardest things for people to
commit to memory. Hence many people will use the same password for all their online activities
(rarely if ever changing it) and will choose a word or a name that is easy for them to remember,
in spite of the obviously increased security risks. Security here is in conflict with memorability!

A solution to this is to construct a nonsense password out of letters or numbers that will have
meaning to you but will not make up a word in a dictionary (e.g. initials of names, numbers from
significant dates or postcodes, and so on). Then what is remembered is the meaningful rule for
constructing the password, and not a meaningless string of alphanumeric characters.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

38 Chapter 1 n The human

It is debatable whether we ever actually forget anything or whether it just becomes
increasingly difficult to access certain items from memory. This question is in some
ways moot since it is impossible to prove that we do forget: appearing to have for-
gotten something may just be caused by not being able to retrieve it! However, there
is evidence to suggest that we may not lose information completely from long-term
memory. First, proactive inhibition demonstrates the recovery of old information
even after it has been ‘lost’ by interference. Secondly, there is the ‘tip of the tongue’
experience, which indicates that some information is present but cannot be satisfac-
torily accessed. Thirdly, information may not be recalled but may be recognized, or
may be recalled only with prompting.

This leads us to the third process of memory: information retrieval. Here we need
to distinguish between two types of information retrieval, recall and recognition. In
recall the information is reproduced from memory. In recognition, the presentation
of the information provides the knowledge that the information has been seen
before. Recognition is the less complex cognitive activity since the information is
provided as a cue.

However, recall can be assisted by the provision of retrieval cues, which enable
the subject quickly to access the information in memory. One such cue is the use of
categories. In an experiment subjects were asked to recall lists of words, some of
which were organized into categories and some of which were randomly organized.
The words that were related to a category were easier to recall than the others [38].
Recall is even more successful if subjects are allowed to categorize their own lists of
words during learning. For example, consider the following list of words:

child red plane dog friend blood cold tree big angry

Now make up a story that links the words using as vivid imagery as possible. Now try
to recall as many of the words as you can. Did you find this easier than the previous
experiment where the words were unrelated?

The use of vivid imagery is a common cue to help people remember information.
It is known that people often visualize a scene that is described to them. They can
then answer questions based on their visualization. Indeed, subjects given a descrip-
tion of a scene often embellish it with additional information. Consider the follow-
ing description and imagine the scene:

The engines roared above the noise of the crowd. Even in the blistering heat people
rose to their feet and waved their hands in excitement. The flag fell and they were off.
Within seconds the car had pulled away from the pack and was careering round the
bend at a desperate pace. Its wheels momentarily left the ground as it cornered.
Coming down the straight the sun glinted on its shimmering paint. The driver gripped
the wheel with fierce concentration. Sweat lay in fine drops on his brow.

Without looking back to the passage, what color is the car?
If you could answer that question you have visualized the scene, including the

car’s color. In fact, the color of the car is not mentioned in the description
at all.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.4 Thinking: reasoning and problem solving 39

THINKING: REASONING AND PROBLEM SOLVING

We have considered how information finds its way into and out of the human
system and how it is stored. Finally, we come to look at how it is processed and
manipulated. This is perhaps the area which is most complex and which separates

1.4

Improve your memory

Many people can perform astonishing feats of memory: recalling the sequence of cards in a
pack (or multiple packs – up to six have been reported), or recounting π to 1000 decimal places,
for example. There are also adverts to ‘Improve Your Memory’ (usually leading to success, or
wealth, or other such inducement), and so the question arises: can you improve your memory
abilities? The answer is yes; this exercise shows you one technique.

Look at the list below of numbers and associated words:

1 bun 6 sticks
2 shoe 7 heaven
3 tree 8 gate
4 door 9 wine
5 hive 10 hen

Notice that the words sound similar to the numbers. Now think about the words one at a time
and visualize them, in as much detail as possible. For example, for ‘1’, think of a large, sticky iced
bun, the base spiralling round and round, with raisins in it, covered in sweet, white, gooey icing.
Now do the rest, using as much visualization as you can muster: imagine how things would look,
smell, taste, sound, and so on.

This is your reference list, and you need to know it off by heart.

Having learnt it, look at a pile of at least a dozen odd items collected together by a colleague. The
task is to look at the collection of objects for only 30 seconds, and then list as many as possible
without making a mistake or viewing the collection again. Most people can manage between five
and eight items, if they do not know any memory-enhancing techniques like the following.

Mentally pick one (say, for example, a paper clip), and call it number one. Now visualize it inter-
acting with the bun. It can get stuck into the icing on the top of the bun, and make your fingers all
gooey and sticky when you try to remove it. If you ate the bun without noticing, you’d get a
crunched tooth when you bit into it – imagine how that would feel. When you’ve really got a
graphic scenario developed, move on to the next item, call it number two, and again visualize it
interacting with the reference item, shoe. Continue down your list, until you have done 10 things.

This should take you about the 30 seconds allowed. Then hide the collection and try and recall the
numbers in order, the associated reference word, and then the image associated with that word.
You should find that you can recall the 10 associated items practically every time. The technique
can be easily extended by extending your reference list.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

40 Chapter 1 n The human

humans from other information-processing systems, both artificial and natural.
Although it is clear that animals receive and store information, there is little evid-
ence to suggest that they can use it in quite the same way as humans. Similarly,
artificial intelligence has produced machines which can see (albeit in a limited way)
and store information. But their ability to use that information is limited to small
domains.

Humans, on the other hand, are able to use information to reason and solve
problems, and indeed do these activities when the information is partial or unavail-
able. Human thought is conscious and self-aware: while we may not always be
able to identify the processes we use, we can identify the products of these processes,
our thoughts. In addition, we are able to think about things of which we have
no experience, and solve problems which we have never seen before. How is this
done?

Thinking can require different amounts of knowledge. Some thinking activities
are very directed and the knowledge required is constrained. Others require vast
amounts of knowledge from different domains. For example, performing a subtrac-
tion calculation requires a relatively small amount of knowledge, from a constrained
domain, whereas understanding newspaper headlines demands knowledge of pol-
itics, social structures, public figures and world events.

In this section we will consider two categories of thinking: reasoning and problem
solving. In practice these are not distinct since the activity of solving a problem may
well involve reasoning and vice versa. However, the distinction is a common one and
is helpful in clarifying the processes involved.

1.4.1 Reasoning

Reasoning is the process by which we use the knowledge we have to draw conclusions
or infer something new about the domain of interest. There are a number of differ-
ent types of reasoning: deductive, inductive and abductive. We use each of these types
of reasoning in everyday life, but they differ in significant ways.

Deductive reasoning

Deductive reasoning derives the logically necessary conclusion from the given pre-
mises. For example,

If it is Friday then she will go to work
It is Friday
Therefore she will go to work.

It is important to note that this is the logical conclusion from the premises; it does
not necessarily have to correspond to our notion of truth. So, for example,

If it is raining then the ground is dry
It is raining
Therefore the ground is dry.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.4 Thinking: reasoning and problem solving 41

is a perfectly valid deduction, even though it conflicts with our knowledge of what is
true in the world.

Deductive reasoning is therefore often misapplied. Given the premises

Some people are babies
Some babies cry

many people will infer that ‘Some people cry’. This is in fact an invalid deduction
since we are not told that all babies are people. It is therefore logically possible that
the babies who cry are those who are not people.

It is at this point, where truth and validity clash, that human deduction is poorest.
One explanation for this is that people bring their world knowledge into the reason-
ing process. There is good reason for this. It allows us to take short cuts which make
dialog and interaction between people informative but efficient. We assume a certain
amount of shared knowledge in our dealings with each other, which in turn allows
us to interpret the inferences and deductions implied by others. If validity rather
than truth was preferred, all premises would have to be made explicit.

Inductive reasoning

Induction is generalizing from cases we have seen to infer information about cases
we have not seen. For example, if every elephant we have ever seen has a trunk, we
infer that all elephants have trunks. Of course, this inference is unreliable and cannot
be proved to be true; it can only be proved to be false. We can disprove the inference
simply by producing an elephant without a trunk. However, we can never prove it
true because, no matter how many elephants with trunks we have seen or are known
to exist, the next one we see may be trunkless. The best that we can do is gather evid-
ence to support our inductive inference.

In spite of its unreliability, induction is a useful process, which we use constantly
in learning about our environment. We can never see all the elephants that have ever
lived or will ever live, but we have certain knowledge about elephants which we are
prepared to trust for all practical purposes, which has largely been inferred by induc-
tion. Even if we saw an elephant without a trunk, we would be unlikely to move from
our position that ‘All elephants have trunks’, since we are better at using positive
than negative evidence. This is illustrated in an experiment first devised by Wason
[365]. You are presented with four cards as in Figure 1.14. Each card has a number
on one side and a letter on the other. Which cards would you need to pick up to test
the truth of the statement ‘If a card has a vowel on one side it has an even number
on the other’?

A common response to this (was it yours?) is to check the E and the 4. However,
this uses only positive evidence. In fact, to test the truth of the statement we need to
check negative evidence: if we can find a card which has an odd number on one side
and a vowel on the other we have disproved the statement. We must therefore check
E and 7. (It does not matter what is on the other side of the other cards: the state-
ment does not say that all even numbers have vowels, just that all vowels have even
numbers.)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

42 Chapter 1 n The human

Abductive reasoning

The third type of reasoning is abduction. Abduction reasons from a fact to the action
or state that caused it. This is the method we use to derive explanations for the events
we observe. For example, suppose we know that Sam always drives too fast when she
has been drinking. If we see Sam driving too fast we may infer that she has been
drinking. Of course, this too is unreliable since there may be another reason why she
is driving fast: she may have been called to an emergency, for example.

In spite of its unreliability, it is clear that people do infer explanations in this way,
and hold onto them until they have evidence to support an alternative theory or
explanation. This can lead to problems in using interactive systems. If an event
always follows an action, the user will infer that the event is caused by the action
unless evidence to the contrary is made available. If, in fact, the event and the action
are unrelated, confusion and even error often result.

Figure 1.14 Wason’s cards

Filling the gaps

Look again at Wason’s cards in Figure 1.14. In the text we say that you only need to check
the E and the 7. This is correct, but only because we very carefully stated in the text that ‘each
card has a number on one side and a letter on the other’. If the problem were stated without that
condition then the K would also need to be examined in case it has a vowel on the other side. In
fact, when the problem is so stated, even the most careful subjects ignore this possibility. Why?
Because the nature of the problem implicitly suggests that each card has a number on one side and
a letter on the other.

This is similar to the embellishment of the story at the end of Section 1.3.3. In fact, we constantly
fill in gaps in the evidence that reaches us through our senses. Although this can lead to errors in
our reasoning it is also essential for us to function. In the real world we rarely have all the evid-
ence necessary for logical deductions and at all levels of perception and reasoning we fill in details
in order to allow higher levels of reasoning to work.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.4 Thinking: reasoning and problem solving 43

1.4.2 Problem solving

If reasoning is a means of inferring new information from what is already known,
problem solving is the process of finding a solution to an unfamiliar task, using the
knowledge we have. Human problem solving is characterized by the ability to adapt
the information we have to deal with new situations. However, often solutions seem
to be original and creative. There are a number of different views of how people
solve problems. The earliest, dating back to the first half of the twentieth century, is
the Gestalt view that problem solving involves both reuse of knowledge and insight.
This has been largely superseded but the questions it was trying to address remain
and its influence can be seen in later research. A second major theory, proposed in
the 1970s by Newell and Simon, was the problem space theory, which takes the view
that the mind is a limited information processor. Later variations on this drew on the
earlier theory and attempted to reinterpret Gestalt theory in terms of information-
processing theories. We will look briefly at each of these views.

Gestalt theory

Gestalt psychologists were answering the claim, made by behaviorists, that prob-
lem solving is a matter of reproducing known responses or trial and error. This
explanation was considered by the Gestalt school to be insufficient to account for
human problem-solving behavior. Instead, they claimed, problem solving is both pro-
ductive and reproductive. Reproductive problem solving draws on previous experi-
ence as the behaviorists claimed, but productive problem solving involves insight and
restructuring of the problem. Indeed, reproductive problem solving could be a hind-
rance to finding a solution, since a person may ‘fixate’ on the known aspects of the
problem and so be unable to see novel interpretations that might lead to a solution.

Gestalt psychologists backed up their claims with experimental evidence. Kohler
provided evidence of apparent insight being demonstrated by apes, which he
observed joining sticks together in order to reach food outside their cages [202].
However, this was difficult to verify since the apes had once been wild and so could
have been using previous knowledge.

Other experiments observed human problem-solving behavior. One well-known
example of this is Maier’s pendulum problem [224]. The problem was this: the
subjects were in a room with two pieces of string hanging from the ceiling. Also in
the room were other objects including pliers, poles and extensions. The task set was
to tie the pieces of string together. However, they were too far apart to catch hold
of both at once. Although various solutions were proposed by subjects, few chose
to use the weight of the pliers as a pendulum to ‘swing’ the strings together. How-
ever, when the experimenter brushed against the string, setting it in motion, this
solution presented itself to subjects. Maier interpreted this as an example of produc-
tive restructuring. The movement of the string had given insight and allowed the
subjects to see the problem in a new way. The experiment also illustrates fixation:
subjects were initially unable to see beyond their view of the role or use of a pair
of pliers.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

44 Chapter 1 n The human

Although Gestalt theory is attractive in terms of its description of human problem
solving, it does not provide sufficient evidence or structure to support its theories.
It does not explain when restructuring occurs or what insight is, for example. How-
ever, the move away from behaviorist theories was helpful in paving the way for the
information-processing theory that was to follow.

Problem space theory

Newell and Simon proposed that problem solving centers on the problem space. The
problem space comprises problem states, and problem solving involves generating
these states using legal state transition operators. The problem has an initial state
and a goal state and people use the operators to move from the former to the latter.
Such problem spaces may be huge, and so heuristics are employed to select appro-
priate operators to reach the goal. One such heuristic is means–ends analysis. In
means–ends analysis the initial state is compared with the goal state and an oper-
ator chosen to reduce the difference between the two. For example, imagine you are
reorganizing your office and you want to move your desk from the north wall of the
room to the window. Your initial state is that the desk is at the north wall. The goal
state is that the desk is by the window. The main difference between these two is the
location of your desk. You have a number of operators which you can apply to mov-
ing things: you can carry them or push them or drag them, etc. However, you know
that to carry something it must be light and that your desk is heavy. You therefore
have a new subgoal: to make the desk light. Your operators for this may involve
removing drawers, and so on.

An important feature of Newell and Simon’s model is that it operates within the
constraints of the human processing system, and so searching the problem space is
limited by the capacity of short-term memory, and the speed at which information
can be retrieved. Within the problem space framework, experience allows us to solve
problems more easily since we can structure the problem space appropriately and
choose operators efficiently.

Newell and Simon’s theory, and their General Problem Solver model which is based
on it, have largely been applied to problem solving in well-defined domains, for
example solving puzzles. These problems may be unfamiliar but the knowledge that
is required to solve them is present in the statement of the problem and the expected
solution is clear. In real-world problems finding the knowledge required to solve
the problem may be part of the problem, or specifying the goal may be difficult.
Problems such as these require significant domain knowledge: for example, to solve
a programming problem you need knowledge of the language and the domain in
which the program operates. In this instance specifying the goal clearly may be a
significant part of solving the problem.

However, the problem space framework provides a clear theory of problem
solving, which can be extended, as we shall see when we look at skill acquisition in
the next section, to deal with knowledge-intensive problem solving. First we will look
briefly at the use of analogy in problem solving.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.4 Thinking: reasoning and problem solving 45

Worked exercise Identify the goals and operators involved in the problem ‘delete the second paragraph of the
document’ on a word processor. Now use a word processor to delete a paragraph and note
your actions, goals and subgoals. How well did they match your earlier description?

Answer Assume you have a document open and you are at some arbitrary position within it.
You also need to decide which operators are available and what their preconditions and
results are. Based on an imaginary word processor we assume the following operators
(you may wish to use your own WP package):

Operator Precondition Result

delete_paragraph Cursor at start of paragraph Paragraph deleted
move_to_paragraph Cursor anywhere in document Cursor moves to start of

next paragraph (except
where there is no next
paragraph when no effect)

move_to_start Cursor anywhere in document Cursor at start of document

Goal: delete second paragraph in document
Looking at the operators an obvious one to resolve this goal is delete_paragraph which
has the precondition ‘cursor at start of paragraph’. We therefore have a new subgoal:
move_to_paragraph. The precondition is ‘cursor anywhere in document’ (which we can
meet) but we want the second paragraph so we must initially be in the first.

We set up a new subgoal, move_to_start, with precondition ‘cursor anywhere in docu-
ment’ and result ‘cursor at start of document’. We can then apply move_to_paragraph
and finally delete_paragraph.

We assume some knowledge here (that the second paragraph is the paragraph after the
first one).

Analogy in problem solving

A third element of problem solving is the use of analogy. Here we are interested in
how people solve novel problems. One suggestion is that this is done by mapping
knowledge relating to a similar known domain to the new problem – called analo-
gical mapping. Similarities between the known domain and the new one are noted
and operators from the known domain are transferred to the new one.

This process has been investigated using analogous stories. Gick and Holyoak
[149] gave subjects the following problem:

A doctor is treating a malignant tumor. In order to destroy it he needs to blast
it with high-intensity rays. However, these will also destroy the healthy tissue sur-
rounding the tumor. If he lessens the rays’ intensity the tumor will remain. How does
he destroy the tumor?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

46 Chapter 1 n The human

The solution to this problem is to fire low-intensity rays from different directions
converging on the tumor. That way, the healthy tissue receives harmless low-
intensity rays while the tumor receives the rays combined, making a high-intensity
dose. The investigators found that only 10% of subjects reached this solution with-
out help. However, this rose to 80% when they were given this analogous story and
told that it may help them:

A general is attacking a fortress. He can’t send all his men in together as the roads are
mined to explode if large numbers of men cross them. He therefore splits his men into
small groups and sends them in on separate roads.

In spite of this, it seems that people often miss analogous information, unless it is
semantically close to the problem domain. When subjects were not told to use the
story, many failed to see the analogy. However, the number spotting the analogy rose
when the story was made semantically close to the problem, for example a general
using rays to destroy a castle.

The use of analogy is reminiscent of the Gestalt view of productive restructuring
and insight. Old knowledge is used to solve a new problem.

1.4.3 Skill acquisition

All of the problem solving that we have considered so far has concentrated on
handling unfamiliar problems. However, for much of the time, the problems that
we face are not completely new. Instead, we gradually acquire skill in a particular
domain area. But how is such skill acquired and what difference does it make to our
problem-solving performance? We can gain insight into how skilled behavior works,
and how skills are acquired, by considering the difference between novice and expert
behavior in given domains.

Chess: of human and artificial intelligence

A few years ago, Deep Blue, a chess-playing computer, beat Gary Kasparov, the world’s top
Grand Master, in a full tournament. This was the long-awaited breakthrough for the artificial
intelligence (AI) community, who have traditionally seen chess as the ultimate test of their art.
However, despite the fact that computer chess programs can play at Grand Master level against
human players, this does not mean they play in the same way. For each move played, Deep Blue
investigated many millions of alternative moves and counter-moves. In contrast, a human chess
player will only consider a few dozen. But, if the human player is good, these will usually be the
right few dozen. The ability to spot patterns allows a human to address a problem with far less
effort than a brute force approach. In chess, the number of moves is such that finally brute force,
applied fast enough, has overcome human pattern-matching skill. In Go, which has far more pos-
sible moves, computer programs do not even reach a good club level of play. Many models of the
mental processes have been heavily influenced by computation. It is worth remembering that
although there are similarities, computer ‘intelligence’ is very different from that of humans.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.4 Thinking: reasoning and problem solving 47

A commonly studied domain is chess playing. It is particularly suitable since it
lends itself easily to representation in terms of problem space theory. The initial state
is the opening board position; the goal state is one player checkmating the other;
operators to move states are legal moves of chess. It is therefore possible to examine
skilled behavior within the context of the problem space theory of problem solving.

Studies of chess players by DeGroot, Chase and Simon, among others, produced
some interesting observations [64, 65, 88, 89]. In all the experiments the behavior of
chess masters was compared with less experienced chess players. The first observa-
tion was that players did not consider large numbers of moves in choosing their
move, nor did they look ahead more than six moves (often far fewer). Masters con-
sidered no more alternatives than the less experienced, but they took less time to
make a decision and produced better moves.

So what makes the difference between skilled and less skilled behavior in chess?
It appears that chess masters remember board configurations and good moves
associated with them. When given actual board positions to remember, masters
are much better at reconstructing the board than the less experienced. However,
when given random configurations (which were unfamiliar), the groups of players
were equally bad at reconstructing the positions. It seems therefore that expert
players ‘chunk’ the board configuration in order to hold it in short-term memory.
Expert players use larger chunks than the less experienced and can therefore re-
member more detail.

This behavior is also seen among skilled computer programmers. They can also
reconstruct programs more effectively than novices since they have the structures
available to build appropriate chunks. They acquire plans representing code to solve
particular problems. When that problem is encountered in a new domain or new
program they will recall that particular plan and reuse it.

Another observed difference between skilled and less skilled problem solving is
in the way that different problems are grouped. Novices tend to group problems
according to superficial characteristics such as the objects or features common to
both. Experts, on the other hand, demonstrate a deeper understanding of the prob-
lems and group them according to underlying conceptual similarities which may not
be at all obvious from the problem descriptions.

Each of these differences stems from a better encoding of knowledge in the expert:
information structures are fine tuned at a deep level to enable efficient and accurate
retrieval. But how does this happen? How is skill such as this acquired? One model
of skill acquisition is Anderson’s ACT* model [14]. ACT* identifies three basic
levels of skill:

1. The learner uses general-purpose rules which interpret facts about a problem.
This is slow and demanding on memory access.

2. The learner develops rules specific to the task.
3. The rules are tuned to speed up performance.

General mechanisms are provided to account for the transitions between these
levels. For example, proceduralization is a mechanism to move from the first to the
second. It removes the parts of the rule which demand memory access and replaces

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

48 Chapter 1 n The human

variables with specific values. Generalization, on the other hand, is a mechanism
which moves from the second level to the third. It generalizes from the specific cases
to general properties of those cases. Commonalities between rules are condensed to
produce a general-purpose rule.

These are best illustrated by example. Imagine you are learning to cook. Initially
you may have a general rule to tell you how long a dish needs to be in the oven, and
a number of explicit representations of dishes in memory. You can instantiate the
rule by retrieving information from memory.

IF cook[type, ingredients, time]
THEN

cook for: time
cook[casserole, [chicken,carrots,potatoes], 2 hours]
cook[casserole, [beef,dumplings,carrots], 2 hours]
cook[cake, [flour,sugar,butter,eggs], 45 mins]

Gradually your knowledge becomes proceduralized and you have specific rules for
each case:

IF type is casserole
AND ingredients are [chicken,carrots,potatoes]
THEN

cook for: 2 hours
IF type is casserole
AND ingredients are [beef,dumplings,carrots]
THEN

cook for: 2 hours
IF type is cake
AND ingredients are [flour,sugar,butter,eggs]
THEN

cook for: 45 mins

Finally, you may generalize from these rules to produce general-purpose rules, which
exploit their commonalities:

IF type is casserole
AND ingredients are ANYTHING
THEN

cook for: 2 hours

The first stage uses knowledge extensively. The second stage relies upon known
procedures. The third stage represents skilled behavior. Such behavior may in fact
become automatic and as such be difficult to make explicit. For example, think of
an activity at which you are skilled, perhaps driving a car or riding a bike. Try to
describe to someone the exact procedure which you go through to do this. You will
find this quite difficult. In fact experts tend to have to rehearse their actions mentally
in order to identify exactly what they do. Such skilled behavior is efficient but may
cause errors when the context of the activity changes.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.4 Thinking: reasoning and problem solving 49

1.4.4 Errors and mental models

Human capability for interpreting and manipulating information is quite impres-
sive. However, we do make mistakes. Some are trivial, resulting in no more than
temporary inconvenience or annoyance. Others may be more serious, requiring
substantial effort to correct. Occasionally an error may have catastrophic effects, as
we see when ‘human error’ results in a plane crash or nuclear plant leak.

Why do we make mistakes and can we avoid them? In order to answer the latter
part of the question we must first look at what is going on when we make an error.
There are several different types of error. As we saw in the last section some errors
result from changes in the context of skilled behavior. If a pattern of behavior has
become automatic and we change some aspect of it, the more familiar pattern may
break through and cause an error. A familiar example of this is where we intend to
stop at the shop on the way home from work but in fact drive past. Here, the activ-
ity of driving home is the more familiar and overrides the less familiar intention.

Other errors result from an incorrect understanding, or model, of a situation or
system. People build their own theories to understand the causal behavior of sys-
tems. These have been termed mental models. They have a number of characteristics.
Mental models are often partial: the person does not have a full understanding of the
working of the whole system. They are unstable and are subject to change. They can
be internally inconsistent, since the person may not have worked through the logical
consequences of their beliefs. They are often unscientific and may be based on super-
stition rather than evidence. Often they are based on an incorrect interpretation of
the evidence.

DESIGN FOCUS

Human error and false memories

In the second edition of this book, one of the authors added the following story:

During the Second World War a new cockpit design was introduced for Spitfires. The pilots were trained
and flew successfully during training, but would unaccountably bail out when engaged in dog fights. The new
design had exchanged the positions of the gun trigger and ejector controls. In the heat of battle the old
responses resurfaced and the pilots ejected. Human error, yes, but the designer’s error, not the pilot’s.

It is a good story, but after the book was published we got several emails saying ‘Spitfires didn’t have
ejector seats’. It was Kai-Mikael Jää-Aro who was able to find what may have been the original to the
story (and incidentally inform us what model of Spitfire was in our photo and who the pilot was!). He
pointed us to and translated the story of Sierra 44, an S35E Draken reconnaissance aircraft.1 The full
story involves just about every perceptual and cognitive error imaginable, but the point that links to

1. Pej Kristoffersson, 1984. Sigurd 44 – Historien om hur man gör bort sig så att det märks by, Flygrevyn 2/1984, pp. 44–6.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Assuming a person builds a mental model of the system being dealt with, errors
may occur if the actual operation differs from the mental model. For example, on
one occasion we were staying in a hotel in Germany, attending a conference. In the
lobby of the hotel was a lift. Beside the lift door was a button. Our model of the sys-
tem, based on previous experience of lifts, was that the button would call the lift. We
pressed the button and the lobby light went out! In fact the button was a light switch
and the lift button was on the inside rim of the lift, hidden from view.

the (false) Spitfire story is that in the Draken the red buttons for releasing the fuel ‘drop’ tanks and for
the canopy release differed only in very small writing. In an emergency (burning fuel tanks) the pilot
accidentally released the canopy and so ended up flying home cabriolet style.

There is a second story of human error here – the author’s memory. When the book was written he
could not recall where he had come across the story but was convinced it was to do with a Spitfire. It
may be that he had been told the story by someone else who had got it mixed up, but it is as likely that
he simply remembered the rough outline of the story and then ‘reconstructed’ the rest. In fact that is
exactly how our memories work. Our brains do not bother to lay down every little detail, but when
we ‘remember’ we rebuild what the incident ‘must have been’ using our world knowledge. This pro-
cess is completely unconscious and can lead to what are known as false memories. This is particularly
problematic in witness statements in criminal trials as early questioning by police or lawyers can unin-
tentionally lead to witnesses being sure they have seen things that they have not. Numerous controlled
psychological experiments have demonstrated this effect which furthermore is strongly influenced by
biasing factors such as the race of supposed criminals.

To save his blushes we have not said here which author’s failing memory was responsible for the Spitfire
story, but you can read more on this story and also find who it was on the book website at:
/e3/online/spitfire/

50 Chapter 1 n The human

Courtesy of popperfoto.com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.5 Emotion 51

Although both the light switch and the lift button were inconsistent with our men-
tal models of these controls, we would probably have managed if they had been
encountered separately. If there had been no button beside the lift we would have
looked more closely and found the one on the inner rim. But since the light switch
reflected our model of a lift button we looked no further. During our stay we
observed many more new guests making the same error.

This illustrates the importance of a correct mental model and the dangers of
ignoring conventions. There are certain conventions that we use to interpret the
world and ideally designs should support these. If these are to be violated, explicit
support must be given to enable us to form a correct mental model. A label on the
button saying ‘light switch’ would have been sufficient.

EMOTION

So far in this chapter we have concentrated on human perceptual and cognitive abil-
ities. But human experience is far more complex than this. Our emotional response
to situations affects how we perform. For example, positive emotions enable us to
think more creatively, to solve complex problems, whereas negative emotion pushes
us into narrow, focussed thinking. A problem that may be easy to solve when we are
relaxed, will become difficult if we are frustrated or afraid.

Psychologists have studied emotional response for decades and there are many
theories as to what is happening when we feel an emotion and why such a response
occurs. More than a century ago, William James proposed what has become known
as the James–Lange theory (Lange was a contemporary of James whose theories
were similar): that emotion was the interpretation of a physiological response, rather
than the other way around. So while we may feel that we respond to an emotion,
James contended that we respond physiologically to a stimulus and interpret that as
emotion:

Common sense says, we lose our fortune, are sorry and weep; we meet a bear, are
frightened and run; we are insulted by a rival, are angry and strike. The hypothesis
here . . . is that we feel sorry because we cry, angry because we strike, afraid because we
tremble.

(W. James, Principles of Psychology, page 449. Henry Holt, New York, 1890.)

Others, however, disagree. Cannon [54a], for example, argued that our physio-
logical processes are in fact too slow to account for our emotional reactions, and that
the physiological responses for some emotional states are too similar (e.g. anger
and fear), yet they can be easily distinguished. Experience in studies with the use of
drugs that stimulate broadly the same physiological responses as anger or fear seems
to support this: participants reported physical symptoms but not the emotion,
which suggests that emotional response is more than a recognition of physiological
changes.

1.5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

52 Chapter 1 n The human

Schachter and Singer [312a] proposed a third interpretation: that emotion results
from a person evaluating physical responses in the light of the whole situation. So
whereas the same physiological response can result from a range of different situ-
ations, the emotion that is felt is based on a cognitive evaluation of the circumstance
and will depend on what the person attributes this to. So the same physiological
response of a pounding heart will be interpreted as excitement if we are in a com-
petition and fear if we find ourselves under attack.

Whatever the exact process, what is clear is that emotion involves both physical
and cognitive events. Our body responds biologically to an external stimulus and we
interpret that in some way as a particular emotion. That biological response – known
as affect – changes the way we deal with different situations, and this has an impact
on the way we interact with computer systems. As Donald Norman says:

Negative affect can make it harder to do even easy tasks; positive affect can make it
easier to do difficult tasks.

(D. A. Norman, Emotion and design: attractive things work better.
Interactions Magazine, ix(4): 36–42, 2002.)

So what are the implications of this for design? It suggests that in situations of
stress, people will be less able to cope with complex problem solving or managing
difficult interfaces, whereas if people are relaxed they will be more forgiving of
limitations in the design. This does not give us an excuse to design bad interfaces
but does suggest that if we build interfaces that promote positive responses – for
example by using aesthetics or reward – then they are likely be more successful.

INDIVIDUAL DIFFERENCES

In this chapter we have been discussing humans in general. We have made the
assumption that everyone has similar capabilities and limitations and that we
can therefore make generalizations. To an extent this is true: the psychological
principles and properties that we have discussed apply to the majority of people.
Notwithstanding this, we should remember that, although we share processes in
common, humans, and therefore users, are not all the same. We should be aware of
individual differences so that we can account for them as far as possible within our
designs. These differences may be long term, such as sex, physical capabilities and
intellectual capabilities. Others are shorter term and include the effect of stress
or fatigue on the user. Still others change through time, such as age.

These differences should be taken into account in our designs. It is useful to
consider, for any design decision, if there are likely to be users within the target
group who will be adversely affected by our decision. At the extremes a decision may
exclude a section of the user population. For example, the current emphasis on visual
interfaces excludes those who are visually impaired, unless the design also makes use
of the other sensory channels. On a more mundane level, designs should allow for

1.6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.7 Psychology and the design of interactive systems 53

users who are under pressure, feeling ill or distracted by other concerns: they should
not push users to their perceptual or cognitive limits.

We will consider the issues of universal accessibility in more detail in Chapter 10.

PSYCHOLOGY AND THE DESIGN OF
INTERACTIVE SYSTEMS

So far we have looked briefly at the way in which humans receive, process and
store information, solve problems and acquire skill. But how can we apply what we
have learned to designing interactive systems? Sometimes, straightforward conclu-
sions can be drawn. For example, we can deduce that recognition is easier than recall
and allow users to select commands from a set (such as a menu) rather than input
them directly. However, in the majority of cases, application is not so obvious
or simple. In fact, it may be dangerous, leading us to make generalizations which are
not valid. In order to apply a psychological principle or result properly in design,
we need to understand its context, both in terms of where it fits in the wider field
of psychology and in terms of the details of the actual experiments, the measures
used and the subjects involved, for example. This may appear daunting, particularly
to the novice designer who wants to acknowledge the relevance of cognitive psy-
chology but does not have the background to derive appropriate conclusions.
Fortunately, principles and results from research in psychology have been distilled
into guidelines for design, models to support design and techniques for evaluating
design. Parts 2 and 3 of this book include discussion of a range of guidelines,
models and techniques, based on cognitive psychology, which can be used to support
the design process.

1.7.1 Guidelines

Throughout this chapter we have discussed the strengths and weaknesses of human
cognitive and perceptual processes but, for the most part, we have avoided attempt-
ing to apply these directly to design. This is because such an attempt could only
be partial and simplistic, and may give the impression that this is all psychology
has to offer.

However, general design principles and guidelines can be and have been derived
from the theories we have discussed. Some of these are relatively straightforward:
for instance, recall is assisted by the provision of retrieval cues so interfaces should
incorporate recognizable cues wherever possible. Others are more complex and con-
text dependent. In Chapter 7 we discuss principles and guidelines further, many of
which are derived from psychological theory. The interested reader is also referred to
Gardiner and Christie [140] which illustrates how guidelines can be derived from
psychological theory.

1.7

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

54 Chapter 1 n The human

1.7.2 Models to support design

As well as guidelines and principles, psychological theory has led to the development
of analytic and predictive models of user behavior. Some of these include a specific
model of human problem solving, others of physical activity, and others attempt
a more comprehensive view of cognition. Some predict how a typical computer
user would behave in a given situation, others analyze why particular user behavior
occurred. All are based on cognitive theory. We discuss these models in detail in
Chapter 12.

1.7.3 Techniques for evaluation

In addition to providing us with a wealth of theoretical understanding of the human
user, psychology also provides a range of empirical techniques which we can employ
to evaluate our designs and our systems. In order to use these effectively we need to
understand the scope and benefits of each method. Chapter 9 provides an overview
of these techniques and an indication of the circumstances under which each should
be used.

Worked exercise Produce a semantic network of the main information in this chapter.

Answer This network is potentially huge so it is probably unnecessary to devise the whole thing!
Be selective. One helpful way to tackle the exercise is to approach it in both a top-down
and a bottom-up manner. Top-down will give you a general overview of topics and how
they relate; bottom-up can fill in the details of a particular field. These can then be

Top-down view

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1.8 Summary 55

‘glued’ together to build up the whole picture. You may be able to tackle this problem
in a group, each taking one part of it. We will not provide the full network here but will
give examples of the level of detail anticipated for the overview and the detailed ver-
sions. In the overview we have not included labels on the arcs for clarity.

SUMMARY

In this chapter we have considered the human as an information processor, re-
ceiving inputs from the world, storing, manipulating and using information, and
reacting to the information received. Information is received through the senses,
particularly, in the case of computer use, through sight, hearing and touch. It is
stored in memory, either temporarily in sensory or working memory, or perman-
ently in long-term memory. It can then be used in reasoning and problem solving.
Recurrent familiar situations allow people to acquire skills in a particular domain, as
their information structures become better defined. However, this can also lead to
error, if the context changes.

Human perception and cognition are complex and sophisticated but they are not
without their limitations. We have considered some of these limitations in this chap-
ter. An understanding of the capabilities and limitations of the human as informa-
tion processor can help us to design interactive systems which support the former
and compensate for the latter. The principles, guidelines and models which can be
derived from cognitive psychology and the techniques which it provides are invalu-
able tools for the designer of interactive systems.

1.8

Bottom-up view

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

56 Chapter 1 n The human

EXERCISES

1.1 Devise experiments to test the properties of (i) short-term memory, (ii) long-term
memory, using the experiments described in this chapter to help you. Try out your experiments
on your friends. Are your results consistent with the properties described in this chapter?

1.2 Observe skilled and novice operators in a familiar domain, for example touch and ‘hunt-and-peck’
typists, expert and novice game players, or expert and novice users of a computer application.
What differences can you discern between their behaviors?

1.3 From what you have learned about cognitive psychology devise appropriate guidelines for use by
interface designers. You may find it helpful to group these under key headings, for example visual
perception, memory, problem solving, etc., although some may overlap such groupings.

1.4 What are mental models, and why are they important in interface design?

1.5 What can a system designer do to minimize the memory load of the user?

1.6 Human short-term memory has a limited span. This is a series of experiments to determine what
that span is. (You will need some other people to take part in these experiments with you – they
do not need to be studying the course – try it with a group of friends.)

(a) Kim’s game
Divide into groups. Each group gathers together an assortment of objects – pens, pencils, paper-
clips, books, sticky notes, etc. The stranger the object, the better! You need a large number of
them – at least 12 to 15. Place them in some compact arrangement on a table, so that all items
are visible. Then, swap with another group for 30 seconds only and look at their pile. Return to
your table, and on your own try to write down all the items in the other group’s pile.

Compare your list with what they actually have in their pile. Compare the number of things you
remembered with how the rest of your group did. Now think introspectively: what helped you
remember certain things? Did you recognize things in their pile that you had in yours? Did that
help? Do not pack the things away just yet.

Calculate the average score for your group. Compare that with the averages from the other
group(s).

Questions: What conclusions can you draw from this experiment? What does this indicate
about the capacity of short-term memory? What does it indicate that helps improve the capa-
city of short-term memory?

(b) ‘I went to market . . .’
In your group, one person starts off with ‘I went to market and I bought a fish’ (or some other
produce, or whatever!). The next person continues ‘I went to market and I bought a fish and
I bought a bread roll as well’. The process continues, with each person adding some item to
the list each time. Keep going around the group until you cannot remember the list accurately.
Make a note of the first time someone gets it wrong, and then record the number of items
that you can successfully remember. Some of you will find it hard to remember more than a few,
others will fare much better. Do this a few more times with different lists, and then calculate your
average score, and your group’s average score.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

RECOMMENDED READING

E. B. Goldstein, Sensation and Perception, 6th edition, Wadsworth, 2001.
A textbook covering human senses and perception in detail. Easy to read with
many home experiments to illustrate the points made.

A. Baddeley, Human Memory: Theory and Practice, revised edition, Allyn & Bacon,
1997.
The latest and most complete of Baddeley’s texts on memory. Provides up-to-date
discussion on the different views of memory structure as well as a detailed survey
of experimental work on memory.

M. W. Eysenck and M. T. Keane, Cognitive Psychology: A Student’s Handbook, 4th
edition, Psychology Press, 2000.
A comprehensive and readable textbook giving more detail on cognitive psycho-
logy, including memory, problem solving and skill acquisition.

S. K. Card, T. P. Moran and A. Newell, The Psychology of Human–Computer
Interaction, Lawrence Erlbaum Associates, 1983.
A classic text looking at the human as an information processor in interaction
with the computer. Develops and describes the Model Human Processor in detail.

A. Newell and H. Simon, Human Problem Solving, Prentice Hall, 1972.
Describes the problem space view of problem solving in more detail.

M. M. Gardiner and B. Christie, editors, Applying Cognitive Psychology to User-
Interface Design, John Wiley, 1987.
A collection of essays on the implications of different aspects of cognitive psycho-
logy to interface design. Includes memory, thinking, language and skill acquisition.
Provides detailed guidelines for applying psychological principles in design practice.

Questions: What does this tell you about short-term memory? What do you do that helps you
remember? What do you estimate is the typical capacity of human short-term memory? Is this a
good test for short-term memory?

(c) Improving your memory
Try experiment 1.6(a) again, using the techniques on page 39.

Has your recall ability improved? Has your group’s average improved? What does this show you
about memory?

1.7 Locate one source (through the library or the web) that reports on empirical evidence on human
limitations. Provide a full reference to the source. In one paragraph, summarize what the result of
the research states in terms of a physical human limitation.

In a separate paragraph, write your thoughts on how you think this evidence on human capabil-
ities impacts interactive system design.

Recommended reading 57

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

58 Chapter 1 n The human

A. Monk, editor, Fundamentals of Human Computer Interaction, Academic Press,
1985.
A good collection of articles giving brief coverage of aspects of human psychology
including perception, memory, thinking and reading. Also contains articles on
experimental design which provide useful introductions.

ACT-R site. Website of resources and examples of the use of the cognitive archi-
tecture ACT-R, which is the latest development of Anderson’s ACT model,
http://act-r.psy.cmu.edu/

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

THE COMPUTER

OV E RV I E W

A computer system comprises various elements, each of which affects the
user of the system.

n Input devices for interactive use, allowing text entry, drawing and
selection from the screen:
– text entry: traditional keyboard, phone text entry, speech and

handwriting
– pointing: principally the mouse, but also touchpad, stylus and others
– 3D interaction devices.

n Output display devices for interactive use:
– different types of screen mostly using some form of bitmap display
– large displays and situated displays for shared and public use
– digital paper may be usable in the near future.

n Virtual reality systems and 3D visualization which have special interaction
and display devices.

n Various devices in the physical world:
– physical controls and dedicated displays
– sound, smell and haptic feedback
– sensors for nearly everything including movement, temperature,

bio-signs.

n Paper output and input: the paperless office and the less-paper office:
– different types of printers and their characteristics, character styles

and fonts
– scanners and optical character recognition.

n Memory:
– short-term memory: RAM
– long-term memory: magnetic and optical disks
– capacity limitations related to document and video storage
– access methods as they limit or help the user.

n Processing:
– the effects when systems run too slow or too fast, the myth of the

infinitely fast machine
– limitations on processing speed
– networks and their impact on system performance.

2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

60 Chapter 2 n The computer

INTRODUCTION

In order to understand how humans interact with computers, we need to have an
understanding of both parties in the interaction. The previous chapter explored
aspects of human capabilities and behavior of which we need to be aware in the
context of human–computer interaction; this chapter considers the computer and
associated input–output devices and investigates how the technology influences the
nature of the interaction and style of the interface.

We will concentrate principally on the traditional computer but we will also look
at devices that take us beyond the closed world of keyboard, mouse and screen. As
well as giving us lessons about more traditional systems, these are increasingly
becoming important application areas in HCI.

2.1

Exercise: how many computers?

In a group or class do a quick survey:

n How many computers do you have in your home?
n How many computers do you normally carry with you in your pockets or bags?

Collate the answers and see who the techno-freaks are!

Discuss your answers.

After doing this look at /e3/online/how-many-computers/

When we interact with computers, what are we trying to achieve? Consider what
happens when we interact with each other – we are either passing information to
other people, or receiving information from them. Often, the information we receive
is in response to the information that we have recently imparted to them, and we
may then respond to that. Interaction is therefore a process of information transfer.
Relating this to the electronic computer, the same principles hold: interaction is a
process of information transfer, from the user to the computer and from the com-
puter to the user.

The first part of this chapter concentrates on the transference of information from
the user to the computer and back. We begin by considering a current typical com-
puter interface and the devices it employs, largely variants of keyboard for text entry
(Section 2.2), mouse for positioning (Section 2.3) and screen for displaying output
(Section 2.4).

Then we move on to consider devices that go beyond the keyboard, mouse and
screen: entering deeper into the electronic world with virtual reality and 3D interaction

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.1 Introduction 61

(Section 2.5) and outside the electronic world looking at more physical interactions
(Section 2.6).

In addition to direct input and output, information is passed to and fro via
paper documents. This is dealt with in Section 2.7, which describes printers and
scanners. Although not requiring the same degree of user interaction as a mouse
or keyboard, these are an important means of input and output for many current
applications.

We then consider the computer itself, its processor and memory devices and
the networks that link them together. We note how the technology drives and
empowers the interface. The details of computer processing should largely be irrelev-
ant to the end-user, but the interface designer needs to be aware of the limitations
of storage capacity and computational power; it is no good designing on paper a
marvellous new interface, only to find it needs a Cray to run. Software designers
often have high-end machines on which to develop applications, and it is easy to
forget what a more typical configuration feels like.

Before looking at these devices and technology in detail we’ll take a quick
bird’s-eye view of the way computer systems are changing.

2.1.1 A typical computer system

Consider a typical computer setup as shown in Figure 2.1. There is the computer
‘box’ itself, a keyboard, a mouse and a color screen. The screen layout is shown
alongside it. If we examine the interface, we can see how its various characteristics
are related to the devices used. The details of the interface itself, its underlying prin-
ciples and design, are discussed in more depth in Chapter 3. As we shall see there are
variants on these basic devices. Some of this variation is driven by different hardware
configurations: desktop use, laptop computers, PDAs (personal digital assistants).
Partly the diversity of devices reflects the fact that there are many different types of

Window

Window

Figure 2.1 A typical computer system

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

62 Chapter 2 n The computer

data that may have to be entered into and obtained from a system, and there are also
many different types of user, each with their own unique requirements.

2.1.2 Levels of interaction – batch processing

In the early days of computing, information was entered into the computer in a
large mass – batch data entry. There was minimal interaction with the machine: the
user would simply dump a pile of punched cards onto a reader, press the start
button, and then return a few hours later. This still continues today although now
with pre-prepared electronic files or possibly machine-read forms. It is clearly the
most appropriate mode for certain kinds of application, for example printing pay
checks or entering the results from a questionnaire.

With batch processing the interactions take place over hours or days. In contrast
the typical desktop computer system has interactions taking seconds or fractions of
a second (or with slow web pages sometimes minutes!). The field of Human–
Computer Interaction largely grew due to this change in interactive pace. It is easy to
assume that faster means better, but some of the paper-based technology discussed
in Section 2.7 suggests that sometimes slower paced interaction may be better.

2.1.3 Richer interaction – everywhere, everywhen

Computers are coming out of the box! Information appliances are putting internet
access or dedicated systems onto the fridge, microwave and washing machine: to
automate shopping, give you email in your kitchen or simply call for maintenance
when needed. We carry with us WAP phones and smartcards, have security systems
that monitor us and web cams that show our homes to the world. Is Figure 2.1 really
the typical computer system or is it really more like Figure 2.2?

Figure 2.2 A typical computer system? Photo courtesy Electrolux

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.2 Text entry devices 63

TEXT ENTRY DEVICES

Whether writing a book like this, producing an office memo, sending a thank you
letter after your birthday, or simply sending an email to a friend, entering text is
one of our main activities when using the computer. The most obvious means of
text entry is the plain keyboard, but there are several variations on this: different
keyboard layouts, ‘chord’ keyboards that use combinations of fingers to enter let-
ters, and phone key pads. Handwriting and speech recognition offer more radical
alternatives.

2.2.1 The alphanumeric keyboard

The keyboard is still one of the most common input devices in use today. It is used
for entering textual data and commands. The vast majority of keyboards have a stand-
ardized layout, and are known by the first six letters of the top row of alphabetical
keys, QWERTY. There are alternative designs which have some advantages over the
QWERTY layout, but these have not been able to overcome the vast technological
inertia of the QWERTY keyboard. These alternatives are of two forms: 26 key layouts
and chord keyboards. A 26 key layout rearranges the order of the alphabetic keys,
putting the most commonly used letters under the strongest fingers, or adopting
simpler practices. In addition to QWERTY, we will discuss two 26 key layouts,
alphabetic and DVORAK, and chord keyboards.

The QWERTY keyboard

The layout of the digits and letters on a QWERTY keyboard is fixed (see Figure 2.3),
but non-alphanumeric keys vary between keyboards. For example, there is a differ-
ence between key assignments on British and American keyboards (in particular,
above the 3 on the UK keyboard is the pound sign £, whilst on the US keyboard
there is a dollar sign $). The standard layout is also subject to variation in the place-
ment of brackets, backslashes and suchlike. In addition different national keyboards
include accented letters and the traditional French layout places the main letters in
different locations – the top line starts AZERTY.

2.2

Figure 2.3 The standard QWERTY keyboard

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

64 Chapter 2 n The computer

The QWERTY arrangement of keys is not optimal for typing, however. The
reason for the layout of the keyboard in this fashion can be traced back to the days
of mechanical typewriters. Hitting a key caused an arm to shoot towards the carriage,
imprinting the letter on the head on the ribbon and hence onto the paper. If two
arms flew towards the paper in quick succession from nearly the same angle,
they would often jam – the solution to this was to set out the keys so that common
combinations of consecutive letters were placed at different ends of the keyboard,
which meant that the arms would usually move from alternate sides. One appealing
story relating to the key layout is that it was also important for a salesman to be able
to type the word ‘typewriter’ quickly in order to impress potential customers: the
letters are all on the top row!

The electric typewriter and now the computer keyboard are not subject to the
original mechanical constraints, but the QWERTY keyboard remains the dominant
layout. The reason for this is social – the vast base of trained typists would be reluct-
ant to relearn their craft, whilst the management is not prepared to accept an initial
lowering of performance whilst the new skills are gained. There is also a large invest-
ment in current keyboards, which would all have to be either replaced at great cost,
or phased out, with the subsequent requirement for people to be proficient on both
keyboards. As whole populations have become keyboard users this technological
inertia has probably become impossible to change.

How keyboards work

Current keyboards work by a keypress closing a connection, causing a character code to
be sent to the computer. The connection is usually via a lead, but wireless systems also exist. One
aspect of keyboards that is important to users is the ‘feel’ of the keys. Some keyboards require a
very hard press to operate the key, much like a manual typewriter, whilst others are featherlight.
The distance that the keys travel also affects the tactile nature of the keyboard. The keyboards that
are currently used on most notebook computers are ‘half-travel’ keyboards, where the keys travel
only a small distance before activating their connection; such a keyboard can feel dead to begin
with, but such qualitative judgments often change as people become more used to using it. By mak-
ing the actual keys thinner, and allowing them a much reduced travel, a lot of vertical space can be
saved on the keyboard, thereby making the machine slimmer than would otherwise be possible.

Some keyboards are even made of touch-sensitive buttons, which require a light touch and
practically no travel; they often appear as a sheet of plastic with the buttons printed on them.
Such keyboards are often found on shop tills, though the keys are not QWERTY, but specific to
the task. Being fully sealed, they have the advantage of being easily cleaned and resistant to dirty
environments, but have little feel, and are not popular with trained touch-typists. Feedback is
important even at this level of human–computer interaction! With the recent increase of repetit-
ive strain injury (RSI) to users’ fingers, and the increased responsibilities of employers in these
circumstances, it may be that such designs will enjoy a resurgence in the near future. RSI in fingers
is caused by the tendons that control the movement of the fingers becoming inflamed owing to
overuse and making repeated unnatural movements.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.2 Text entry devices 65

Ease of learning – alphabetic keyboard

One of the most obvious layouts to be produced is the alphabetic keyboard, in which
the letters are arranged alphabetically across the keyboard. It might be expected that
such a layout would make it quicker for untrained typists to use, but this is not the
case. Studies have shown that this keyboard is not faster for properly trained typists,
as we may expect, since there is no inherent advantage to this layout. And even for
novice or occasional users, the alphabetic layout appears to make very little differ-
ence to the speed of typing. These keyboards are used in some pocket electronic per-
sonal organizers, perhaps because the layout looks simpler to use than the QWERTY
one. Also, it dissuades people from attempting to use their touch-typing skills on a
very small keyboard and hence avoids criticisms of difficulty of use!

Ergonomics of use – DVORAK keyboard and split designs

The DVORAK keyboard uses a similar layout of keys to the QWERTY system, but
assigns the letters to different keys. Based upon an analysis of typing, the keyboard is
designed to help people reach faster typing speeds. It is biased towards right-handed
people, in that 56% of keystrokes are made with the right hand. The layout of the
keys also attempts to ensure that the majority of keystrokes alternate between hands,
thereby increasing the potential speed. By keeping the most commonly used keys on
the home, or middle, row, 70% of keystrokes are made without the typist having
to stretch far, thereby reducing fatigue and increasing keying speed. The layout also

There are a variety of specially shaped keyboards to relieve the strain of typing or to allow
people to type with some injury (e.g. RSI) or disability. These may slope the keys towards the
hands to improve the ergonomic position, be designed for single-handed use, or for no hands at
all. Some use bespoke key layouts to reduce strain of finger movements. The keyboard illustrated
is produced by PCD Maltron Ltd. for left-handed use. See www.maltron.com/

Source: www.maltron.com, reproduced courtesy of PCD Maltron Ltd.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

66 Chapter 2 n The computer

aims to minimize the number of keystrokes made with the weak fingers. Many
of these requirements are in conflict, and the DVORAK keyboard represents one
possible solution. Experiments have shown that there is a speed improvement of
between 10 and 15%, coupled with a reduction in user fatigue due to the increased
ergonomic layout of the keyboard [230].

Other aspects of keyboard design have been altered apart from the layout of the
keys. A number of more ergonomic designs have appeared, in which the basic tilted
planar base of the keyboard is altered. Moderate designs curve the plane of the key-
board, making it concave, whilst more extreme ones split the keys into those for the
left and right hand and curve both halves separately. Often in these the keys are also
moved to bring them all within easy reach, to minimize movement between keys.
Such designs are supposed to aid comfort and reduce RSI by minimizing effort, but
have had practically no impact on the majority of systems sold.

2.2.2 Chord keyboards

Chord keyboards are significantly different from normal alphanumeric keyboards.
Only a few keys, four or five, are used (see Figure 2.4) and letters are produced by
pressing one or more of the keys at once. For example, in the Microwriter, the pat-
tern of multiple keypresses is chosen to reflect the actual letter shape.

Such keyboards have a number of advantages. They are extremely compact:
simply reducing the size of a conventional keyboard makes the keys too small and
close together, with a correspondingly large increase in the difficulty of using it. The

Figure 2.4 A very early chord keyboard (left) and its lettercodes (right)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.2 Text entry devices 67

learning time for the keyboard is supposed to be fairly short – of the order of a few
hours – but social resistance is still high. Moreover, they are capable of fast typing
speeds in the hands (or rather hand!) of a competent user. Chord keyboards can
also be used where only one-handed operation is possible, in cramped and confined
conditions.

Lack of familiarity means that these are unlikely ever to be a mainstream form of
text entry, but they do have applications in niche areas. In particular, courtroom
stenographers use a special form of two-handed chord keyboard and associated
shorthand to enter text at full spoken speed. Also it may be that the compact size and
one-handed operation will find a place in the growing wearables market.

DESIGN FOCUS

Numeric keypads

Alphanumeric keyboards (as the name suggests) include numbers as well as letters. In the QWERTY
layout these are in a line across the top of the keyboard, but in most larger keyboards there is also a
separate number pad to allow faster entry of digits. Number keypads occur in other contexts too,
including calculators, telephones and ATM cash dispensers. Many people are unaware that there are
two different layouts for numeric keypads: the calculator style that has ‘123’ on the bottom and the
telephone style that has ‘123’ at the top.

It is a demonstration of the amazing adaptability of humans that we move between these two styles
with such ease. However, if you need to include a numeric keypad in a device you must consider which
is most appropriate for your potential users. For example, computer keyboards use calculator-style
layout, as they are primarily used for entering numbers for calculations.

One of the authors was caught out by this once when he forgot the PIN number of his cash card. He
half remembered the digits, but also his fingers knew where to type, so he ‘practiced’ on his calculator.
Unfortunately ATMs use telephone-style layout!

calculator ATM phone

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

68 Chapter 2 n The computer

2.2.3 Phone pad and T9 entry

With mobile phones being used for SMS text messaging (see Chapter 19) and WAP
(see Chapter 21), the phone keypad has become an important form of text input.
Unfortunately a phone only has digits 0–9, not a full alphanumeric keyboard.

To overcome this for text input the numeric keys are usually pressed several times
– Figure 2.5 shows a typical mapping of digits to letters. For example, the 3 key has
‘def ’ on it. If you press the key once you get a ‘d’, if you press 3 twice you get an ‘e’,
if you press it three times you get an ‘f ’. The main number-to-letter mapping is stand-
ard, but punctuation and accented letters differ between phones. Also there needs to
be a way for the phone to distinguish, say, the ‘dd’ from ‘e’. On some phones you
need to pause for a short period between successive letters using the same key, for
others you press an additional key (e.g. ‘#’).

Most phones have at least two modes for the numeric buttons: one where the keys
mean the digits (for example when entering a phone number) and one where they
mean letters (for example when typing an SMS message). Some have additional
modes to make entering accented characters easier. Also a special mode or setting is
needed for capital letters although many phones use rules to reduce this, for ex-
ample automatically capitalizing the initial letter in a message and letters following
full stops, question marks and exclamation marks.

This is all very laborious and, as we will see in Chapter 19, experienced mobile
phone users make use of a highly developed shorthand to reduce the number of
keystrokes. If you watch a teenager or other experienced txt-er, you will see they

Figure 2.5 Mobile phone keypad. Source: Photograph by Alan Dix (Ericsson phone)

Typical key mapping:
1 – space, comma, etc. (varies)
2 – a b c
3 – d e f
4 – g h i
5 – j k l
6 – m n o
7 – p q r s
8 – t u v
9 – w x y z
0 – +, &, etc.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.2 Text entry devices 69

often develop great typing speed holding the phone in one hand and using only
their thumb. As these skills spread through society it may be that future devices
use this as a means of small format text input. For those who never develop this
physical dexterity some phones have tiny plug-in keyboards, or come with fold-out
keyboards.

Another technical solution to the problem is the T9 algorithm. This uses a large
dictionary to disambiguate words by simply typing the relevant letters once. For
example, ‘3926753’ becomes ‘example’ as there is only one word with letters that
match (alternatives like ‘ewbosld’ that also match are not real words). Where there
are ambiguities such as ‘26’, which could be an ‘am’ or an ‘an’, the phone gives a
series of options to choose from.

2.2.4 Handwriting recognition

Handwriting is a common and familiar activity, and is therefore attractive as a
method of text entry. If we were able to write as we would when we use paper, but
with the computer taking this form of input and converting it to text, we can see that
it is an intuitive and simple way of interacting with the computer. However, there are
a number of disadvantages with handwriting recognition. Current technology is
still fairly inaccurate and so makes a significant number of mistakes in recognizing
letters, though it has improved rapidly. Moreover, individual differences in hand-
writing are enormous, and make the recognition process even more difficult. The
most significant information in handwriting is not in the letter shape itself but in the
stroke information – the way in which the letter is drawn. This means that devices
which support handwriting recognition must capture the stroke information, not
just the final character shape. Because of this, online recognition is far easier than
reading handwritten text on paper. Further complications arise because letters
within words are shaped and often drawn very differently depending on the actual
word; the context can help determine the letter’s identity, but is often unable to pro-
vide enough information. Handwriting recognition is covered in more detail later in
the book, in Chapter 10. More serious in many ways is the limitation on speed; it is
difficult to write at more than 25 words a minute, which is no more than half the
speed of a decent typist.

The different nature of handwriting means that we may find it more useful in
situations where a keyboard-based approach would have its own problems. Such
situations will invariably result in completely new systems being designed around
the handwriting recognizer as the predominant mode of textual input, and these
may bear very little resemblance to the typical system. Pen-based systems that use
handwriting recognition are actively marketed in the mobile computing market,
especially for smaller pocket organizers. Such machines are typically used for taking
notes and jotting down and sketching ideas, as well as acting as a diary, address book
and organizer. Using handwriting recognition has many advantages over using a
keyboard. A pen-based system can be small and yet still accurate and easy to use,
whereas small keys become very tiring, or even impossible, to use accurately. Also the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

70 Chapter 2 n The computer

pen-based approach does not have to be altered when we move from jotting down
text to sketching diagrams; pen-based input is highly appropriate for this also.

Some organizer designs have dispensed with a keyboard completely. With such
systems one must consider all sorts of other ways to interact with the system that are
not character based. For example, we may decide to use gesture recognition, rather
than commands, to tell the system what to do, for example drawing a line through a
word in order to delete it. The important point is that a different input device that
was initially considered simply as an alternative to the keyboard opens up a whole
host of alternative interface designs and different possibilities for interaction.

Signature authentication

Handwriting recognition is difficult principally because of the great differences between dif-
ferent people’s handwriting. These differences can be used to advantage in signature authentication
where the purpose is to identify the user rather than read the signature. Again this is far easier
when we have stroke information as people tend to produce signatures which look slightly differ-
ent from one another in detail, but are formed in a similar fashion. Furthermore, a forger who has
a copy of a person’s signature may be able to copy the appearance of the signature, but will not
be able to reproduce the pattern of strokes.

2.2.5 Speech recognition

Speech recognition is a promising area of text entry, but it has been promising for a
number of years and is still only used in very limited situations. There is a natural
enthusiasm for being able to talk to the machine and have it respond to commands,
since this form of interaction is one with which we are very familiar. Successful
recognition rates of over 97% have been reported, but since this represents one let-
ter in error in approximately every 30, or one spelling mistake every six or so words,
this is stoll unacceptible (sic)! Note also that this performance is usually quoted only
for a restricted vocabulary of command words. Trying to extend such systems to the
level of understanding natural language, with its inherent vagueness, imprecision
and pauses, opens up many more problems that have not been satisfactorily solved
even for keyboard-entered natural language. Moreover, since every person speaks
differently, the system has to be trained and tuned to each new speaker, or its per-
formance decreases. Strong accents, a cold or emotion can also cause recognition
problems, as can background noise. This leads us on to the question of practicality
within an office environment: not only may the background level of noise cause
errors, but if everyone in an open-plan office were to talk to their machine, the level
of noise would dramatically increase, with associated difficulties. Confidentiality
would also be harder to maintain.

Despite its problems, speech technology has found niche markets: telephone
information systems, access for the disabled, in hands-occupied situations (especially

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.3 Positioning, pointing and drawing 71

military) and for those suffering RSI. This is discussed in greater detail in Chapter 10,
but we can see that it offers three possibilities. The first is as an alternative text entry
device to replace the keyboard within an environment and using software originally
designed for keyboard use. The second is to redesign a system, taking full advantage
of the benefits of the technique whilst minimizing the potential problems. Finally, it
can be used in areas where keyboard-based input is impractical or impossible. It is in
the latter, more radical areas that speech technology is currently achieving success.

POSITIONING, POINTING AND DRAWING

Central to most modern computing systems is the ability to point at something on
the screen and thereby manipulate it, or perform some function. There has been a
long history of such devices, in particular in computer-aided design (CAD), where
positioning and drawing are the major activities. Pointing devices allow the user to
point, position and select items, either directly or by manipulating a pointer on the
screen. Many pointing devices can also be used for free-hand drawing although the
skill of drawing with a mouse is very different from using a pencil. The mouse is still
most common for desktop computers, but is facing challenges as laptop and hand-
held computing increase their market share. Indeed, these words are being typed on
a laptop with a touchpad and no mouse.

2.3.1 The mouse

The mouse has become a major component of the majority of desktop computer sys-
tems sold today, and is the little box with the tail connecting it to the machine in our
basic computer system picture (Figure 2.1). It is a small, palm-sized box housing a
weighted ball – as the box is moved over the tabletop, the ball is rolled by the table
and so rotates inside the housing. This rotation is detected by small rollers that are
in contact with the ball, and these adjust the values of potentiometers. If you remove
the ball occasionally to clear dust you may be able to see these rollers. The changing
values of these potentiometers can be directly related to changes in position of the
ball. The potentiometers are aligned in different directions so that they can detect
both horizontal and vertical motion. The relative motion information is passed
to the computer via a wire attached to the box, or in some cases using wireless or
infrared, and moves a pointer on the screen, called the cursor. The whole arrange-
ment tends to look rodent-like, with the box acting as the body and the wire as the
tail; hence the term ‘mouse’. In addition to detecting motion, the mouse has typically
one, two or three buttons on top. These are used to indicate selection or to initiate
action. Single-button mice tend to have similar functionality to multi-button mice,
and achieve this by instituting different operations for a single and a double button
click. A ‘double-click’ is when the button is pressed twice in rapid succession. Multi-
button mice tend to allocate one operation to each particular button.

2.3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

72 Chapter 2 n The computer

The mouse operates in a planar fashion, moving around the desktop, and is an
indirect input device, since a transformation is required to map from the horizontal
nature of the desktop to the vertical alignment of the screen. Left–right motion is
directly mapped, whilst up–down on the screen is achieved by moving the mouse
away–towards the user. The mouse only provides information on the relative move-
ment of the ball within the housing: it can be physically lifted up from the desktop
and replaced in a different position without moving the cursor. This offers the
advantage that less physical space is required for the mouse, but suffers from being
less intuitive for novice users. Since the mouse sits on the desk, moving it about is
easy and users suffer little arm fatigue, although the indirect nature of the medium
can lead to problems with hand–eye coordination. However, a major advantage of
the mouse is that the cursor itself is small, and it can be easily manipulated without
obscuring the display.

The mouse was developed around 1964 by Douglas C. Engelbart, and a photo-
graph of the first prototype is shown in Figure 2.6. This used two wheels that
slid across the desktop and transmitted x–y coordinates to the computer. The hous-
ing was carved in wood, and has been damaged, exposing one of the wheels. The
original design actually offers a few advantages over today’s more sleek versions:
by tilting it so that only one wheel is in contact with the desk, pure vertical or hori-
zontal motion can be obtained. Also, the problem of getting the cursor across the
large screens that are often used today can be solved by flicking your wrist to get
the horizontal wheel spinning. The mouse pointer then races across the screen with
no further effort on your behalf, until you stop it at its destination by dropping the
mouse down onto the desktop.

Figure 2.6 The first mouse. Photograph courtesy of Douglas Engelbart and
Bootstrap Institute

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.3 Positioning, pointing and drawing 73

Although most mice are hand operated, not all are – there have been experiments
with a device called the footmouse. As the name implies, it is a foot-operated device,
although more akin to an isometric joystick than a mouse. The cursor is moved by
foot pressure on one side or the other of a pad. This allows one to dedicate hands to
the keyboard. A rare device, the footmouse has not found common acceptance!

Interestingly foot pedals are used heavily in musical instruments including pianos,
electric guitars, organs and drums and also in mechanical equipment including cars,
cranes, sewing machines and industrial controls. So it is clear that in principle this is
a good idea. Two things seem to have limited their use in computer equipment
(except simulators and games). One is the practicality of having foot controls in the
work environment: pedals under a desk may be operated accidentally, laptops with
foot pedals would be plain awkward. The second issue is the kind of control being
exercised. Pedals in physical interfaces are used predominantly to control one or
more single-dimensional analog controls. It may be that in more specialized interfaces
appropriate foot-operated controls could be more commonly and effectively used.

2.3.2 Touchpad

Touchpads are touch-sensitive tablets usually around 2–3 inches (50–75 mm)
square. They were first used extensively in Apple Powerbook portable computers but
are now used in many other notebook computers and can be obtained separately to
replace the mouse on the desktop. They are operated by stroking a finger over their
surface, rather like using a simulated trackball. The feel is very different from other
input devices, but as with all devices users quickly get used to the action and become
proficient.

Because they are small it may require several strokes to move the cursor across the
screen. This can be improved by using acceleration settings in the software linking
the trackpad movement to the screen movement. Rather than having a fixed ratio of
pad distance to screen distance, this varies with the speed of movement. If the finger

Optical mice

Optical mice work differently from mechanical mice. A light-emitting diode emits a weak
red light from the base of the mouse. This is reflected off a special pad with a metallic grid-like pat-
tern upon which the mouse has to sit, and the fluctuations in reflected intensity as the mouse is
moved over the gridlines are recorded by a sensor in the base of the mouse and translated into
relative x, y motion. Some optical mice do not require special mats, just an appropriate surface,
and use the natural texture of the surface to detect movement. The optical mouse is less suscept-
ible to dust and dirt than the mechanical one in that its mechanism is less likely to become blocked
up. However, for those that rely on a special mat, if the mat is not properly aligned, movement of
the mouse may become erratic – especially difficult if you are working with someone and pass the
mouse back and forth between you.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

74 Chapter 2 n The computer

moves slowly over the pad then the pad movements map to small distances on the
screen. If the finger is moving quickly the same distance on the touchpad moves the
cursor a long distance. For example, on the trackpad being used when writing this
section a very slow movement of the finger from one side of the trackpad to the other
moves the cursor less than 10% of the width of the screen. However, if the finger is
moved very rapidly from side to side, the cursor moves the whole width of the screen.

In fact, this form of acceleration setting is also used in other indirect positioning
devices including the mouse. Fine settings of this sort of parameter makes a great dif-
ference to the ‘feel’ of the device.

2.3.3 Trackball and thumbwheel

The trackball is really just an upside-down mouse! A weighted ball faces upwards and
is rotated inside a static housing, the motion being detected in the same way as for
a mechanical mouse, and the relative motion of the ball moves the cursor. Because
of this, the trackball requires no additional space in which to operate, and is there-
fore a very compact device. It is an indirect device, and requires separate buttons
for selection. It is fairly accurate, but is hard to draw with, as long movements are
difficult. Trackballs now appear in a wide variety of sizes, the most usual being about
the same as a golf ball, with a number of larger and smaller devices available. The size
and ‘feel’ of the trackball itself affords significant differences in the usability of the
device: its weight, rolling resistance and texture all contribute to the overall effect.

Some of the smaller devices have been used in notebook and portable computers,
but more commonly trackpads or nipples are used. They are often sold as altern-
atives to mice on desktop computers, especially for RSI sufferers. They are also
heavily used in video games where their highly responsive behavior, including being
able to spin the ball, is ideally suited to the demands of play.

Thumbwheels are different in that they have two orthogonal dials to control the
cursor position. Such a device is very cheap, but slow, and it is difficult to manipu-
late the cursor in any way other than horizontally or vertically. This limitation can
sometimes be a useful constraint in the right application. For instance, in CAD the
designer is almost always concerned with exact verticals and horizontals, and a
device that provides such constraints is very useful, which accounts for the appear-
ance of thumbwheels in CAD systems. Another successful application for such a
device has been in a drawing game such as Etch-a-Sketch in which straight lines can
be created on a simple screen, since the predominance of straight lines in simple
drawings means that the motion restrictions are an advantage rather than a handi-
cap. However, if you were to try to write your signature using a thumbwheel, the
limitations would be all too apparent. The appropriateness of the device depends on
the task to be performed.

Although two-axis thumbwheels are not heavily used in mainstream applications,
single thumbwheels are often included on a standard mouse in order to offer an
alternative means to scroll documents. Normally scrolling requires you to grab the
scroll bar with the mouse cursor and drag it down. For large documents it is hard to

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.3 Positioning, pointing and drawing 75

be accurate and in addition the mouse dragging is done holding a finger down which
adds to hand strain. In contrast the small scroll wheel allows comparatively intuitive
and fast scrolling, simply rotating the wheel to move the page.

2.3.4 Joystick and keyboard nipple

The joystick is an indirect input device, taking up very little space. Consisting of a
small palm-sized box with a stick or shaped grip sticking up from it, the joystick is a
simple device with which movements of the stick cause a corresponding movement
of the screen cursor. There are two types of joystick: the absolute and the isometric.
In the absolute joystick, movement is the important characteristic, since the position
of the joystick in the base corresponds to the position of the cursor on the screen.
In the isometric joystick, the pressure on the stick corresponds to the velocity of
the cursor, and when released, the stick returns to its usual upright centered position.
This type of joystick is also called the velocity-controlled joystick, for obvious
reasons. The buttons are usually placed on the top of the stick, or on the front like a
trigger. Joysticks are inexpensive and fairly robust, and for this reason they are often
found in computer games. Another reason for their dominance of the games market
is their relative familiarity to users, and their likeness to aircraft joysticks: aircraft are
a favorite basis for games, leading to familiarity with the joystick that can be used
for more obscure entertainment ideas.

A smaller device but with the same basic characteristics is used on many laptop
computers to control the cursor. Some older systems had a variant of this called the
keymouse, which was a single key. More commonly a small rubber nipple projects in
the center of the keyboard and acts as a tiny isometric joystick. It is usually difficult
for novices to use, but this seems to be related to fine adjustment of the speed set-
tings. Like the joystick the nipple controls the rate of movement across the screen
and is thus less direct than a mouse or stylus.

2.3.5 Touch-sensitive screens (touchscreens)

Touchscreens are another method of allowing the user to point and select objects
on the screen, but they are much more direct than the mouse, as they detect the
presence of the user’s finger, or a stylus, on the screen itself. They work in one of
a number of different ways: by the finger (or stylus) interrupting a matrix of light
beams, or by capacitance changes on a grid overlaying the screen, or by ultrasonic
reflections. Because the user indicates exactly which item is required by pointing to
it, no mapping is required and therefore this is a direct device.

The touchscreen is very fast, and requires no specialized pointing device. It is
especially good for selecting items from menus displayed on the screen. Because
the screen acts as an input device as well as an output device, there is no separate
hardware to become damaged or destroyed by dirt; this makes touchscreens suitable
for use in hostile environments. They are also relatively intuitive to use and have
been used successfully as an interface to information systems for the general public.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

76 Chapter 2 n The computer

They suffer from a number of disadvantages, however. Using the finger to point is
not always suitable, as it can leave greasy marks on the screen, and, being a fairly
blunt instrument, it is quite inaccurate. This means that the selection of small
regions is very difficult, as is accurate drawing. Moreover, lifting the arm to point to
a vertical screen is very tiring, and also means that the screen has to be within about
a meter of the user to enable it to be reached, which can make it too close for com-
fort. Research has shown that the optimal angle for a touchscreen is about 15 degrees
up from the horizontal.

2.3.6 Stylus and light pen

For more accurate positioning (and to avoid greasy screens), systems with touch-
sensitive surfaces often emply a stylus. Instead of pointing at the screen directly a
small pen-like plastic stick is used to point and draw on the screen. This is particu-
larly popular in PDAs, but they are also being used in some laptop computers.

An older technology that is used in the same way is the light pen. The pen is con-
nected to the screen by a cable and, in operation, is held to the screen and detects
a burst of light from the screen phosphor during the display scan. The light pen
can therefore address individual pixels and so is much more accurate than the
touchscreen.

Both stylus and light pen can be used for fine selection and drawing, but both
can be tiring to use on upright displays and are harder to take up and put down
when used together with a keyboard. Interestingly some users of PDAs with fold-out
keyboards learn to hold the stylus held outwards between their fingers so that they
can type whilst holding it. As it is unattached the stylus can easily get lost, but a
closed pen can be used in emergencies.

Stylus, light pen and touchscreen are all very direct in that the relationship
between the device and the thing selected is immediate. In contrast, mouse, touch-
pad, joystick and trackball all have to map movements on the desk to cursor move-
ment on the screen.

However, the direct devices suffer from the problem that, in use, the act of point-
ing actually obscures the display, making it harder to use, especially if complex
detailed selections or movements are required in rapid succession. This means that
screen designs have to take into account where the user’s hand will be. For example,
you may want to place menus at the bottom of the screen rather than the top. Also
you may want to offer alternative layouts for right-handed and left-handed users.

2.3.7 Digitizing tablet

The digitizing tablet is a more specialized device typically used for freehand drawing,
but may also be used as a mouse substitute. Some highly accurate tablets, usually
using a puck (a mouse-like device), are used in special applications such as digitizing
information for maps.

The tablet provides positional information by measuring the position of some
device on a special pad, or tablet, and can work in a number of ways. The resistive

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.3 Positioning, pointing and drawing 77

tablet detects point contact between two separated conducting sheets. It has advant-
ages in that it can be operated without a specialized stylus – a pen or the user’s finger
is sufficient. The magnetic tablet detects current pulses in a magnetic field using a
small loop coil housed in a special pen. There are also capacitative and electrostatic
tablets that work in a similar way. The sonic tablet is similar to the above but requires
no special surface. An ultrasonic pulse is emitted by a special pen which is detected
by two or more microphones which then triangulate the pen position. This device
can be adapted to provide 3D input, if required.

Digitizing tablets are capable of high resolution, and are available in a range of
sizes. Sampling rates vary, affecting the resolution of cursor movement, which gets
progressively finer as the sampling rate increases. The digitizing tablet can be used to
detect relative motion or absolute motion, but is an indirect device since there is a
mapping from the plane of operation of the tablet to the screen. It can also be used
for text input; if supported by character recognition software, handwriting can be
interpreted. Problems with digitizing tablets are that they require a large amount of
desk space, and may be awkward to use if displaced to one side by the keyboard.

2.3.8 Eyegaze

Eyegaze systems allow you to control the computer by simply looking at it! Some sys-
tems require you to wear special glasses or a small head-mounted box, others are
built into the screen or sit as a small box below the screen. A low-power laser is shone
into the eye and is reflected off the retina. The reflection changes as the angle of the
eye alters, and by tracking the reflected beam the eyegaze system can determine the
direction in which the eye is looking. The system needs to be calibrated, typically by
staring at a series of dots on the screen, but thereafter can be used to move the screen
cursor or for other more specialized uses. Eyegaze is a very fast and accurate device,
but the more accurate versions can be expensive. It is fine for selection but not for
drawing since the eye does not move in smooth lines. Also in real applications it
can be difficult to distinguish deliberately gazing at something and accidentally
glancing at it.

Such systems have been used in military applications, notably for guiding air-to-
air missiles to their targets, but are starting to find more peaceable uses, for disabled
users and for workers in environments where it is impossible for them to use their
hands. The rarity of the eyegaze is due partly to its novelty and partly to its expense,
and it is usually found only in certain domain-specific applications. Within HCI it is
particularly useful as part of evaluation as one is able to trace exactly where the user
is looking [81]. As prices drop and the technology becomes less intrusive we may see
more applications using eyegaze, especially in virtual reality and augmented reality
areas (see Chapter 20).

2.3.9 Cursor keys and discrete positioning

All of the devices we have discussed are capable of giving near continuous 2D
positioning, with varying degrees of accuracy. For many applications we are only

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

78 Chapter 2 n The computer

interested in positioning within a sequential list such as a menu or amongst 2D cells
as in a spreadsheet. Even for moving within text discrete up/down left/right keys can
sometimes be preferable to using a mouse.

Cursor keys are available on most keyboards. Four keys on the keyboard are used
to control the cursor, one each for up, down, left and right. There is no standardized
layout for the keys. Some layouts are shown in Figure 2.7, but the most common now
is the inverted ‘T’.

Cursor keys used to be more heavily used in character-based systems before
windows and mice were the norm. However, when logging into remote machines
such as web servers, the interface is often a virtual character-based terminal within a
telnet window. In such applications it is common to find yourself in a 1970s world
of text editors controlled sometimes using cursor keys and sometimes by more
arcane combinations of control keys!

Small devices such as mobile phones, personal entertainment and television
remote controls often require discrete control, either dedicated to a particular func-
tion such as volume, or for use as general menu selection. Figure 2.8 shows examples
of these. The satellite TV remote control has dedicated ‘+/–’ buttons for controlling
volume and stepping between channels. It also has a central cursor pad that is used
for on-screen menus. The mobile phone has a single central joystick-like device.
This can be pushed left/right, up/down to navigate within the small 3 × 3 array of
graphical icons as well as select from text menus.

DISPLAY DEVICES

The vast majority of interactive computer systems would be unthinkable with-
out some sort of display screen, but many such systems do exist, though usually
in specialized applications only. Thinking beyond the traditional, systems such as
cars, hi-fis and security alarms all have different outputs from those expressible on a
screen, but in the personal computer and workstation market, screens are pervasive.

2.4

Figure 2.7 Various cursor key layouts

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.4 Display devices 79

In this section, we discuss the standard computer display in detail, looking at the
properties of bitmap screens, at different screen technologies, at large and situated
displays, and at a new technology, ‘digital paper’.

2.4.1 Bitmap displays – resolution and color

Virtually all computer displays are based on some sort of bitmap. That is the display
is made of vast numbers of colored dots or pixels in a rectangular grid. These pixels
may be limited to black and white (for example, the small display on many TV
remote controls), in grayscale, or full color.

Figure 2.8 Satellite TV remote control and mobile phone. Source: Photograph left by Alan Dix with
permission from British Sky Broadcasting Limited, photograph right by Alan Dix (Ericsson phone)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

80 Chapter 2 n The computer

The color or, for monochrome screens, the intensity at each pixel is held by the
computer’s video card. One bit per pixel can store on/off information, and hence only
black and white (the term ‘bitmap’ dates from such displays). More bits per pixel
give rise to more color or intensity possibilities. For example, 8 bits/pixel give rise to
28 = 256 possible colors at any one time. The set of colors make up what is called the
colormap, and the colormap can be altered at any time to produce a different set of
colors. The system is therefore capable of actually displaying many more than the
number of colors in the colormap, but not simultaneously. Most desktop computers
now use 24 or 32 bits per pixel which allows virtually unlimited colors, but devices such
as mobile phones and PDAs are often still monochrome or have limited color range.

As well as the number of colors that can be displayed at each pixel, the other measure
that is important is the resolution of the screen. Actually the word ‘resolution’ is used
in a confused (and confusing!) way for screens. There are two numbers to consider:

n the total number of pixels: in standard computer displays this is always in a 4:3
ratio, perhaps 1024 pixels across by 768 down, or 1600 × 1200; for PDAs this will
be more in the order of a few hundred pixels in each direction.

n the density of pixels: this is measured in pixels per inch. Unlike printers (see
Section 2.7 below) this density varies little between 72 and 96 pixels per inch.

To add to the confusion, a monitor, liquid crystal display (LCD) screen or other
display device will quote its maximum resolution, but the computer may actually
give it less than this. For example, the screen may be a 1200 × 900 resolution with 96
pixels per inch, but the computer only sends it 800 × 600. In the case of a cathode ray
tube (CRT) this typically will mean that the image is stretched over the screen sur-
face giving a lower density of 64 pixels per inch. An LCD screen cannot change its
pixel size so it would keep 96 pixels per inch and simply not use all its screen space,
adding a black border instead. Some LCD projectors will try to stretch or reduce
what they are given, but this may mean that one pixel gets stretched to two, or two
pixels get ‘squashed’ into one, giving rise to display ‘artifacts’ such as thin lines dis-
appearing, or uniform lines becoming alternately thick or thin.

Although horizontal and vertical lines can be drawn perfectly on bitmap screens,
and lines at 45 degrees reproduce reasonably well, lines at any other angle and curves
have ‘jaggies’, rough edges caused by the attempt to approximate the line with pixels.

When using a single color jaggies are inevitable. Similar effects are seen in bitmap
fonts. The problem of jaggies can be reduced by using high-resolution screens, or by
a technique known as anti-aliasing. Anti-aliasing softens the edges of line segments,
blurring the discontinuity and making the jaggies less obvious.

Look at the two images in Figure 2.9 with your eyes slightly screwed up. See how
the second anti-aliased line looks better. Of course, screen resolution is much higher,
but the same principle holds true. The reason this works is because our brains are
constantly ‘improving’ what we see in the world: processing and manipulating the
raw sensations of the rods and cones in our eyes and turning them into something
meaningful. Often our vision is blurred because of poor light, things being out of
focus, or defects in our vision. Our brain compensates and tidies up blurred images.
By deliberately blurring the image, anti-aliasing triggers this processing in our brain
and we appear to see a smooth line at an angle.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.4 Display devices 81

2.4.2 Technologies

Cathode ray tube

The cathode ray tube is the television-like computer screen still most common as
we write this, but rapidly being displaced by flat LCD screens. It works in a similar
way to a standard television screen. A stream of electrons is emitted from an electron
gun, which is then focussed and directed by magnetic fields. As the beam hits the
phosphor-coated screen, the phosphor is excited by the electrons and glows (see
Figure 2.10). The electron beam is scanned from left to right, and then flicked back
to rescan the next line, from top to bottom. This is repeated, at about 30 Hz (that is,
30 times a second), per frame, although higher scan rates are sometimes used to
reduce the flicker on the screen. Another way of reducing flicker is to use interlacing,
in which the odd lines on the screen are all scanned first, followed by the even lines.
Using a high-persistence phosphor, which glows for a longer time when excited, also
reduces flicker, but causes image smearing especially if there is significant animation.

Black and white screens are able to display grayscale by varying the intensity of the
electron beam; color is achieved using more complex means. Three electron guns
are used, one each to hit red, green and blue phosphors. Combining these colors can

Figure 2.9 Magnified anti-aliased lines

Figure 2.10 CRT screen

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

82 Chapter 2 n The computer

produce many others, including white, when they are all fully on. These three phosphor
dots are focussed to make a single point using a shadow mask, which is imprecise and
gives color screens a lower resolution than equivalent monochrome screens.

An alternative approach to producing color on the screen is to use beam penetra-
tion. A special phosphor glows a different color depending on the intensity of the
beam hitting it.

The CRT is a cheap display device and has fast enough response times for rapid
animation coupled with a high color capability. Note that animation does not neces-
sarily mean little creatures and figures running about on the screen, but refers in
a more general sense to the use of motion in displays: moving the cursor, opening
windows, indicating processor-intensive calculations, or whatever. As screen resolu-
tion increases, however, the price rises. Because of the electron gun and focussing
components behind the screen, CRTs are fairly bulky, though recent innovations
have led to flatter displays in which the electron gun is not placed so that it fires
directly at the screen, but fires parallel to the screen plane with the resulting beam
bent through 90 degrees to hit the screen.

Health hazards of CRT displays

Most people who habitually use computers are aware that screens can often cause eyestrain
and fatigue; this is usually due to flicker, poor legibility or low contrast. There have also been many
concerns relating to the emission of radiation from screens. These can be categorized as follows:

n X-rays which are largely absorbed by the screen (but not at the rear!)
n ultraviolet and infrared radiation from phosphors in insignificant levels
n radio frequency emissions, plus ultrasound (approximately 16 kHz)
n electrostatic field which leaks out through the tube to the user. The intensity is dependent on

distance and humidity. This can cause rashes in the user
n electromagnetic fields (50 Hz to 0.5 MHz) which create induction currents in conductive

materials, including the human body. Two types of effects are attributed to this: in the visual
system, a high incidence of cataracts in visual display unit (VDU) operators, and concern over
reproductive disorders (miscarriages and birth defects).

Research into the potentially harmful effect of these emissions is generally inconclusive, in that it
is difficult to determine precisely what the causes of illness are, and many health scares have been
the result of misinformed media opinion rather than scientific fact. However, users who are preg-
nant ought to take especial care and observe simple precautions. Generally, there are a number of
common-sense things that can be done to relieve strain and minimize any risk. These include

n not sitting too close to the screen
n not using very small fonts
n not looking at the screen for a long time without a break
n working in well-lit surroundings
n not placing the screen directly in front of a bright window.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.4 Display devices 83

Liquid crystal display

If you have used a personal organizer or notebook computer, you will have seen
the light, flat plastic screens. These displays utilize liquid crystal technology and are
smaller, lighter and consume far less power than traditional CRTs. These are also
commonly referred to as flat-panel displays. They have no radiation problems asso-
ciated with them, and are matrix addressable, which means that individual pixels can
be accessed without the need for scanning.

Similar in principle to the digital watch, a thin layer of liquid crystal is sandwiched
between two glass plates. The top plate is transparent and polarized, whilst the bot-
tom plate is reflective. External light passes through the top plate and is polarized,
which means that it only oscillates in one direction. This then passes through the
crystal, reflects off the bottom plate and back to the eye, and so that cell looks white.
When a voltage is applied to the crystal, via the conducting glass plates, the crystal
twists. This causes it to turn the plane of polarization of the incoming light, rotating
it so that it cannot return through the top plate, making the activated cell look black.
The LCD requires refreshing at the usual rates, but the relatively slow response of the
crystal means that flicker is not usually noticeable. The low intensity of the light
emitted from the screen, coupled with the reduced flicker, means that the LCD is less
tiring to use than standard CRT ones, with reduced eyestrain.

This different technology can be used to replace the standard screen on a desktop
computer, and this is now common. However, the particular characteristics of com-
pactness, light weight and low power consumption have meant that these screens
have created a large niche in the computer market by monopolizing the notebook
and portable computer systems side. The advent of these screens allowed small, light
computers to be built, and created a large market that did not previously exist. Such
computers, riding on the back of the technological wave, have opened up a different
way of working for many people, who now have access to computers when away
from the office, whether out on business or at home. Working in a different location
on a smaller machine with different software obviously represents a different style
of interaction and so once again we can see that differences in devices may alter
the human–computer interaction considerably. The growing notebook computer
market fed back into an investment in developing LCD screen technology, with
supertwisted crystals increasing the viewing angle dramatically. Response times have
also improved so that LCD screens are now used in personal DVD players and even
in home television.

When the second edition of this book was being written the majority of LCD
screens were black and white or grayscale, We wrote then ‘it will be interesting to see
whether color LCD screens supersede grayscale by the time the third edition of this
book is prepared’. Of course, this is precisely the case. Our expectation is that by the
time we produce the next edition LCD monitors will have taken over from CRT
monitors completely.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

84 Chapter 2 n The computer

Special displays

There are a number of other display technologies used in niche markets. The one
you are most likely to see is the gas plasma display, which is used in large screens
(see Section 2.4.3 below).

The random scan display, also known as the directed beam refresh, or vector display,
works differently from the bitmap display, also known as raster scan, that we dis-
cussed in Section 2.4.1. Instead of scanning the whole screen sequentially and hori-
zontally, the random scan draws the lines to be displayed directly. By updating the
screen at at least 30 Hz to reduce flicker, the direct drawing of lines at any angle
means that jaggies are not created, and higher resolutions are possible, up to 4096 ×
4096 pixels. Color on such displays is achieved using beam penetration technology,
and is generally of a poorer quality. Eyestrain and fatigue are still a problem, and
these displays are more expensive than raster scan ones, so they are now only used in
niche applications.

The direct view storage tube is used extensively as the display for an analog
storage oscilloscope, which is probably the only place that these displays are used in
any great numbers. They are similar in operation to the random scan CRT but the
image is maintained by flood guns which have the advantage of producing a stable
display with no flicker. The screen image can be incrementally updated but not
selectively erased; removing items has to be done by redrawing the new image on
a completely erased screen. The screens have a high resolution, typically about
4096 × 3120 pixels, but suffer from low contrast, low brightness and a difficulty in
displaying color.

2.4.3 Large displays and situated displays

Displays are no longer just things you have on your desktop or laptop. In Chapter 19
we will discuss meeting room environments that often depend on large shared
screens. You may have attended lectures where the slides are projected from a com-
puter onto a large screen. In shops and garages large screen adverts assault us from
all sides.

There are several types of large screen display. Some use gas plasma technology
to create large flat bitmap displays. These behave just like a normal screen except
they are big and usually have the HDTV (high definition television) wide screen
format which has an aspect ratio of 16:9 instead of the 4:3 on traditional TV and
monitors.

Where very large screen areas are required, several smaller screens, either LCD or
CRT, can be placed together in a video wall. These can display separate images, or a
single TV or computer image can be split up by software or hardware so that each
screen displays a portion of the whole and the result is an enormous image. This
is the technique often used in large concerts to display the artists or video images
during the performance.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.4 Display devices 85

Possibly the large display you are most likely to have encountered is some sort of
projector. There are two variants of these. In very large lecture theatres, especially
older ones, you see projectors with large red, green and blue lenses. These each scan
light across the screen to build a full color image. In smaller lecture theatres and in
small meetings you are likely to see LCD projectors. Usually the size of a large book,
these are like ordinary slide projectors except that where the slide would be there is
a small LCD screen instead. The light from the projector passes through the tiny
screen and is then focussed by the lens onto the screen.

The disadvantage of projected displays is that the presenter’s shadow can often fall
across the screen. Sometimes this is avoided in fixed lecture halls by using back pro-
jection. In a small room behind the screen of the lecture theatre there is a projector
producing a right/left reversed image. The screen itself is a semi-frosted glass so that
the image projected on the back can be seen in the lecture theatre. Because there are
limits on how wide an angle the projector can manage without distortion, the size of
the image is limited by the depth of the projection room behind, so these are less
heavily used than front projection.

As well as for lectures and meetings, display screens can be used in various public
places to offer information, link spaces or act as message areas. These are often called
situated displays as they take their meaning from the location in which they are
situated. These may be large screens where several people are expected to view or
interact simultaneously, or they may be very small. Figure 2.11 shows an example
of a small experimental situated display mounted by an office door to act as an
electronic sticky note [70].

Figure 2.11 Situated door display. Source: Courtesy of Keith Cheverst

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

86 Chapter 2 n The computer

2.4.4 Digital paper

A new form of ‘display’ that is still in its infancy is the various forms of digital paper.
These are thin flexible materials that can be written to electronically, just like a com-
puter screen, but which keep their contents even when removed from any electrical
supply.

There are various technologies being investigated for this. One involves the whole
surface being covered with tiny spheres, black one side, white the other. Electronics
embedded into the material allow each tiny sphere to be rotated to make it black
or white. When the electronic signal is removed the ball stays in its last orientation.
A different technique has tiny tubes laid side by side. In each tube is light-absorbing
liquid and a small reflective sphere. The sphere can be made to move to the top sur-
face or away from it making the pixel white or black. Again the sphere stays in its last
position once the electronic signal is removed.

Probably the first uses of these will be for large banners that can be reprogrammed
or slowly animated. This is an ideal application, as it does not require very rapid
updates and does not require the pixels to be small. As the technology matures, the
aim is to have programmable sheets of paper that you attach to your computer to get
a ‘soft’ printout that can later be changed. Perhaps one day you may be able to have
a ‘soft’ book that appears just like a current book with soft pages that can be turned
and skimmed, but where the contents and cover can be changed when you decide to
download a new book from the net!

DESIGN FOCUS

Hermes: a situated display

Office doors are often used as a noticeboard with messages from the occupant such as ‘just gone
out’ or ‘timetable for the week’ and from visitors ‘missed you, call when you get back’. The Hermes
system is an electronic door display that offers some of the functions of sticky notes on a door [70].
Figure 2.11(i) shows an installed Hermes device fixed just beside the door, including the socket to
use a Java iButton to authenticate the occupant. The occupant can leave messages that others can read
(Figure 2.11(ii)) and people coming to the door can leave messages for the occupant. Electronic notes
are smaller than paper ones, but because they are electronic they can be read remotely using a web
interface (Figure 2.11(iii)), or added by SMS (see Chapter 19, Section 19.3.2).

The fact that it is situated – by a person’s door – is very important. It establishes a context, ‘Alan’s
door’, and influences the way the system is used. For example, the idea of anonymous messages left on
the door, where the visitor has had to be physically present, feels different from, say, anonymous emails.

See the book website for the full case study: /e3/casestudy/hermes/

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.5 Devices for virtual reality and 3D interaction 87

DEVICES FOR VIRTUAL REALITY AND 3D INTERACTION

Virtual reality (VR) systems and various forms of 3D visualization are discussed in
detail in Chapter 20. These require you to navigate and interact in a three-dimensional
space. Sometimes these use the ordinary controls and displays of a desktop computer
system, but there are also special devices used both to move and interact with 3D
objects and to enable you to see a 3D environment.

2.5.1 Positioning in 3D space

Virtual reality systems present a 3D virtual world. Users need to navigate through
these spaces and manipulate the virtual objects they find there. Navigation is not
simply a matter of moving to a particular location, but also of choosing a particular
orientation. In addition, when you grab an object in real space, you don’t simply
move it around, but also twist and turn it, for example when opening a door. Thus
the move from mice to 3D devices usually involves a change from two degrees of
freedom to six degrees of freedom, not just three.

Cockpit and virtual controls

Helicopter and aircraft pilots already have to navigate in real space. Many arcade
games and also more serious applications use controls modeled on an aircraft
cockpit to ‘fly’ through virtual space. However, helicopter pilots are very skilled and
it takes a lot of practice for users to be able to work easily in such environments.

In many PC games and desktop virtual reality (where the output is shown on
an ordinary computer screen), the controls are themselves virtual. This may be a
simulated form of the cockpit controls or more prosaic up/down left/right buttons.
The user manipulates these virtual controls using an ordinary mouse (or other 2D
device). Note that this means there are two levels of indirection. It is a tribute to the
flexibility of the human mind that people can not only use such systems but also
rapidly become proficient.

The 3D mouse

There are a variety of devices that act as 3D versions of a mouse. Rather than just
moving the mouse on a tabletop, you can pick it up, move it in three dimensions,
rotate the mouse and tip it forward and backward. The 3D mouse has a full six
degrees of freedom as its position can be tracked (three degrees), and also its
up/down angle (called pitch), its left/right orientation (called yaw) and the amount
it is twisted about its own axis (called roll) (see Figure 2.12). Various sensors are used
to track the mouse position and orientation: magnetic coils, ultrasound or even
mechanical joints where the mouse is mounted rather like an angle-poise lamp.

With the 3D mouse, and indeed most 3D positioning devices, users may experi-
ence strain from having to hold the mouse in the air for a long period. Putting the

2.5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

88 Chapter 2 n The computer

3D mouse down may even be treated as an action in the virtual environment, that is
taking a nose dive.

Dataglove

One of the mainstays of high-end VR systems (see Chapter 20), the dataglove is a 3D
input device. Consisting of a lycra glove with optical fibers laid along the fingers, it
detects the joint angles of the fingers and thumb. As the fingers are bent, the fiber
optic cable bends too; increasing bend causes more light to leak from the fiber, and
the reduction in intensity is detected by the glove and related to the degree of bend
in the joint. Attached to the top of the glove are two sensors that use ultrasound to
determine 3D positional information as well as the angle of roll, that is the degree of
wrist rotation. Such rich multi-dimensional input is currently a solution in search
of a problem, in that most of the applications in use do not require such a compre-
hensive form of data input, whilst those that do cannot afford it. However, the avail-
ability of cheaper versions of the dataglove will encourage the development of more
complex systems that are able to utilize the full power of the dataglove as an input
device. There are a number of potential uses for this technology to assist disabled
people, but cost remains the limiting factor at present.

The dataglove has the advantage that it is very easy to use, and is potentially very
powerful and expressive (it can provide 10 joint angles, plus the 3D spatial informa-
tion and degree of wrist rotation, 50 times a second). It suffers from extreme
expense, and the fact that it is difficult to use in conjunction with a keyboard.
However, such a limitation is shortsighted; one can imagine a keyboard drawn onto
a desk, with software detecting hand positions and interpreting whether the virtual
keys had been hit or not. The potential for the dataglove is vast; gesture recognition
and sign language interpretation are two obvious areas that are the focus of active
research, whilst less obvious applications are evolving all the time.

Figure 2.12 Pitch, yaw and roll

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.5 Devices for virtual reality and 3D interaction 89

Virtual reality helmets

The helmets or goggles worn in some VR systems have two purposes: (i) they display
the 3D world to each eye and (ii) they allow the user’s head position to be tracked.
We will discuss the former later when we consider output devices. The head tracking
is used primarily to feed into the output side. As the user’s head moves around the
user ought to see different parts of the scene. However, some systems also use the
user’s head direction to determine the direction of movement within the space and
even which objects to manipulate (rather like the eyegaze systems). You can think of
this rather like leading a horse in reverse. If you want a horse to go in a particular
direction, you use the reins to pull its head in the desired direction and the horse
follows its head.

Whole-body tracking

Some VR systems aim to be immersive, that is to make the users feel as if they are
really in the virtual world. In the real world it is possible (although not usually wise)
to walk without looking in the direction you are going. If you are driving down
the road and glance at something on the roadside you do not want the car to do a
sudden 90-degree turn! Some VR systems therefore attempt to track different kinds
of body movement. Some arcade games have a motorbike body on which you can
lean into curves. More strangely, small trampolines have been wired up so that the
user can control movement in virtual space by putting weight on different parts of
the trampoline. The user can literally surf through virtual space. In the extreme the
movement of the whole body may be tracked using devices similar to the dataglove,
or using image-processing techniques. In the latter, white spots are stuck at various
points of the user’s body and the position of these tracked using two or more cam-
eras, allowing the location of every joint to be mapped. Although the last of these
sounds a little constraining for the fashion conscious it does point the way to less
intrusive tracking techniques.

2.5.2 3D displays

Just as the 3D images used in VR have led to new forms of input device, they
also require more sophisticated outputs. Desktop VR is delivered using a standard
computer screen and a 3D impression is produced by using effects such as shadows,
occlusion (where one object covers another) and perspective. This can be very
effective and you can even view 3D images over the world wide web using a VRML
(virtual reality markup language) enabled browser.

Seeing in 3D

Our eyes use many cues to perceive depth in the real world (see also Chapter 1). It is
in fact quite remarkable as each eye sees only a flattened form of the world, like
a photograph. One important effect is stereoscopic vision (or simply stereo vision).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

90 Chapter 2 n The computer

Because each eye is looking at an object from a slightly different angle each sees a
different image and our brain is able to use this to assess the relative distance of dif-
ferent objects. In desktop VR this stereoscopic effect is absent. However, various
devices exist to deliver true stereoscopic images.

The start point of any stereoscopic device is the generation of images from differ-
ent perspectives. As the computer is generating images for the virtual world anyway,
this just means working out the right positions and angles corresponding to the typ-
ical distance between eyes on a human face. If this distance is too far from the natural
one, the user will be presented with a giant’s or gnat’s eye view of the world!

Different techniques are then used to ensure that each eye sees the appropriate
image. One method is to have two small screens fitted to a pair of goggles. A differ-
ent image is then shown to each eye. These devices are currently still quite cumber-
some and the popular image of VR is of a user with head encased in a helmet with
something like a pair of inverted binoculars sticking out in front. However, smaller
and lighter LCDs are now making it possible to reduce the devices towards the size
and weight of ordinary spectacles.

An alternative method is to have a pair of special spectacles connected so that each
eye can be blanked out by timed electrical signals. If this is synchronized with the
frame rate of a computer monitor, each eye sees alternate images. Similar techniques
use polarized filters in front of the monitor and spectacles with different polarized
lenses. These techniques are both effectively using similar methods to the red–green
3D spectacles given away in some breakfast cereals. Indeed, these red–green spectacles
have been used in experiments in wide-scale 3D television broadcasts. However,
the quality of the 3D image from the polarized and blanked eye spectacles is sub-
stantially better.

The ideal would be to be able to look at a special 3D screen and see 3D images just
as one does with a hologram – 3D television just like in all the best sci-fi movies!
But there is no good solution to this yet. One method is to inscribe the screen with
small vertical grooves forming hundreds of prisms. Each eye then sees only alternate
dots on the screen allowing a stereo image at half the normal horizontal resolution.
However, these screens have very narrow viewing angles, and are not ready yet for
family viewing.

In fact, getting stereo images is not the whole story. Not only do our eyes see dif-
ferent things, but each eye also focusses on the current object of interest (small mus-
cles change the shape of the lens in the pupil of the eye). The images presented to the
eye are generated at some fixed focus, often with effectively infinite depth of field.
This can be confusing and tiring. There has been some progress recently on using
lasers to detect the focal depth of each eye and adjust the images correspondingly,
similar to the technology used for eye tracking. However, this is not currently used
extensively.

VR motion sickness

We all get annoyed when computers take a long time to change the screen, pop up
a window, or play a digital movie. However, with VR the effects of poor display

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.6 Physical controls, sensors and special devices 91

performance can be more serious. In real life when we move our head the image our
eyes see changes accordingly. VR systems produce the same effect by using sensors in
the goggles or helmet and then using the position of the head to determine the right
image to show. If the system is slow in producing these images a lag develops
between the user moving his head and the scene changing. If this delay is more than
a hundred milliseconds or so the feeling becomes disorienting. The effect is very
similar to that of being at sea. You stand on the deck looking out to sea, the boat
gently rocking below you. Tiny channels in your ears detect the movement telling
your brain that you are moving; your eyes see the horizon moving in one direction
and the boat in another. Your brain gets confused and you get sick. Users of VR can
experience similar nausea and few can stand it for more than a short while. In fact,
keeping laboratories sanitary has been a major push in improving VR technology.

Simulators and VR caves

Because of the problems of delivering a full 3D environment via head-mounted
displays, some virtual reality systems work by putting the user within an environ-
ment where the virtual world is displayed upon it. The most obvious examples of this
are large flight simulators – you go inside a mock-up of an aircraft cockpit and the
scenes you would see through the windows are projected onto the virtual windows.
In motorbike or skiing simulators in video arcades large screens are positioned to fill
the main part of your visual field. You can still look over your shoulder and see your
friends, but while you are engaged in the game it surrounds you.

More general-purpose rooms called caves have large displays positioned all
around the user, or several back projectors. In these systems the user can look all
around and see the virtual world surrounding them.

PHYSICAL CONTROLS, SENSORS AND SPECIAL DEVICES

As we have discussed, computers are coming out of the box. The mouse keyboard
and screen of the traditional computer system are not relevant or possible in
applications that now employ computers such as interactive TV, in-car navigation
systems or personal entertainment. These devices may have special displays, may use
sound, touch and smell as well as visual displays, may have dedicated controls and
may sense the environment or your own bio-signs.

2.6.1 Special displays

Apart from the CRT screen there are a number of visual outputs utilized in com-
plex systems, especially in embedded systems. These can take the form of analog
representations of numerical values, such as dials, gauges or lights to signify a certain
system state. Flashing light-emitting diodes (LEDs) are used on the back of some

2.6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

92 Chapter 2 n The computer

computers to signify the processor state, whilst gauges and dials are found in process
control systems. Once you start in this mode of thinking, you can contemplate
numerous visual outputs that are unrelated to the screen. One visual display that has
found a specialized niche is the head-up display that is used in aircraft. The pilot is
fully occupied looking forward and finds it difficult to look around the cockpit to get
information. There are many different things that need to be known, ranging from
data from tactical systems to navigational information and aircraft status indicators.
The head-up display projects a subset of this information into the pilot’s line
of vision so that the information is directly in front of her eyes. This obviates the
need for large banks of information to be scanned with the corresponding lack
of attention to what is happening outside, and makes the pilot’s job easier. Less
important information is usually presented on a smaller number of dials and gauges
in the cockpit to avoid cluttering the head-up display, and these can be monitored
less often, during times of low stress.

2.6.2 Sound output

Another mode of output that we should consider is that of auditory signals. Often
designed to be used in conjunction with screen displays, auditory outputs are poorly
understood: we do not yet know how to utilize sound in a sensible way to achieve
maximum effect and information transference. We have discussed speech previ-
ously, but other sounds such as beeps, bongs, clanks, whistles and whirrs are all used
to varying effect. As well as conveying system output, sounds offer an important level
of feedback in interactive systems. Keyboards can be set to emit a click each time
a key is pressed, and this appears to speed up interactive performance. Telephone
keypads often sound different tones when the keys are pressed; a noise occurring
signifies that the key has been successfully pressed, whilst the actual tone provides
some information about the particular key that was pressed. The advantage of audit-
ory feedback is evident when we consider a simple device such as a doorbell. If we
press it and hear nothing, we are left undecided. Should we press it again, in case
we did not do it right the first time, or did it ring but we did not hear it? And if we
press it again but it actually did ring, will the people in the house think we are very
rude, ringing insistently? We feel awkward and a little stressed. If we were using a
computer system instead of a doorbell and were faced with a similar problem, we
would not enjoy the interaction and would not perform as well. Yet it is a simple
problem that could be easily rectified by a better initial design, using sound. Chap-
ter 10 will discuss the use of the auditory channel in more detail.

2.6.3 Touch, feel and smell

Our other senses are used less in normal computer applications, but you may have
played computer games where the joystick or artificial steering wheel vibrated, per-
haps when a car was about to go off the track. In some VR applications, such as the
use in medical domains to ‘practice’ surgical procedures, the feel of an instrument

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.6 Physical controls, sensors and special devices 93

moving through different tissue types is very important. The devices used to emulate
these procedures have force feedback, giving different amounts of resistance depend-
ing on the state of the virtual operation. These various forms of force, resistance and
texture that influence our physical senses are called haptic devices.

Haptic devices are not limited to virtual environments, but are used in specialist
interfaces in the real world too. Electronic braille displays either have pins that rise
or fall to give different patterns, or may involve small vibration pins. Force feedback
has been used in the design of in-car controls.

In fact, the car gives a very good example of the power of tactile feedback. If
you drive over a small bump in the road the car is sent slightly off course; however,
the chances are that you will correct yourself before you are consciously aware of the
bump. Within your body you have reactions that push back slightly against pressure
to keep your limbs where you ‘want’ them, or move your limbs out of the way when
you brush against something unexpected. These responses occur in your lower
brain and are very fast, not involving any conscious effort. So, haptic devices can
access very fast responses, but these responses are not fully controlled. This can be
used effectively in design, but of course also with caution.

Texture is more difficult as it depends on small changes between neighboring
points on the skin. Also, most of our senses notice change rather than fixed stimuli,
so we usually feel textures when we move our fingers over a surface, not just when
resting on it. Technology for this is just beginning to become available

There is evidence that smell is one of the strongest cues to memory. Various
historical recreations such as the Jorvik Centre in York, England, use smells to create
a feeling of immersion in their static displays of past life. Some arcade games also
generate smells, for example, burning rubber as your racing car skids on the track.
These examples both use a fixed smell in a particular location. There have been
several attempts to produce devices to allow smells to be recreated dynamically in
response to games or even internet sites. The technical difficulty is that our noses do
not have a small set of basic smells that are mixed (like salt/sweet/sour/bitter/savoury
on our tongue), but instead there are thousands of different types of receptor
responding to different chemicals in the air. The general pattern of devices to gener-
ate smells is to have a large repertoire of tiny scent-containing capsules that are
released in varying amounts on demand – rather like a printer cartridge with
hundreds of ink colors! So far there appears to be no mass market for these devices,
but they may eventually develop from niche markets.

Smell is a complex multi-dimensional sense and has a peculiar ability to trigger
memory, but cannot be changed rapidly. These qualities may prove valuable in areas
where a general sense of location and awareness is desirable. For example, a project
at the Massachusetts Institute of Technology explored the use of a small battery
of scent generators which may be particularly valuable for ambient displays and
background awareness [198, 161].

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

94 Chapter 2 n The computer

2.6.4 Physical controls

Look at Figure 2.13. In it you can see the controls for a microwave, a washing
machine and a personal MiniDisc player. See how they each use very different phys-
ical devices: the microwave has a flat plastic sheet with soft buttons, the washing
machine large switches and knobs, and the MiniDisc has small buttons and an inter-
esting multi-function end.

A desktop computer system has to serve many functions and so has generic keys
and controls that can be used for a variety of purposes. In contrast, these dedicated
control panels have been designed for a particular device and for a single use. This is
why they differ so much.

Looking first at the microwave, it has a flat plastic control panel. The buttons on
the panel are pressed and ‘give’ slightly. The choice of the smooth panel is probably
partly for visual design – it looks streamlined! However, there are also good prac-
tical reasons. The microwave is used in the kitchen whilst cooking, with hands that
may be greasy or have food on them. The smooth controls have no gaps where food
can accumulate and clog buttons, so it can easily be kept clean and hygienic.

When using the washing machine you are handling dirty clothes, which may be
grubby, but not to the same extent, so the smooth easy-clean panel is less important
(although some washing machines do have smooth panels). It has several major

DESIGN FOCUS

Feeling the road

In the BMW 7 Series you will find a single haptic feedback control for many of the functions that would
normally have dedicated controls. It uses technology developed by Immersion Corporation who are
also behind the force feedback found in many medical and entertainment haptic devices. The iDrive
control slides backwards and forwards and rotates to give access to various menus and lists of options.
The haptic feedback allows the user to feel ‘clicks’ appropriate to the number of items in the various
menu lists.

See: www.immersion.com/ and www.bmw.com/ Picture courtesy of BMW AG

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.6 Physical controls, sensors and special devices 95

settings and the large buttons act both as control and display. Also the dials for
dryer timer and the washing program act both as a means to set the desired time or
program and to display the current state whilst the wash is in progress.

Finally, the MiniDisc controller needs to be small and unobtrusive. It has tiny
buttons, but the end control is most interesting. It twists from side to side and
also can be pulled and twisted. This means the same control can be used for two
different purposes. This form of multi-function control is common in small
devices.

We discussed the immediacy of haptic feedback and these lessons are also import-
ant at the level of creating physical devices; do keys, dials, etc., feel as if they have
been pressed or turned? Getting the right level of resistance can make the device
work naturally, give you feedback that you have done something, or let you know
that you are controlling something. Where for some reason this is not possible,
something has to be done to prevent the user getting confused, perhaps pressing but-
tons twice; for example, the smooth control panel of the microwave in Figure 2.13
offers no tactile feedback, but beeps for each keypress. We will discuss these design
issues further when we look at user experience in Chapter 3 (Section 3.9).

Figure 2.13 Physical controls on microwave, washing machine and MiniDisc. Source: Photograph bottom
right by Alan Dix with permission from Sony (UK)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

96 Chapter 2 n The computer

Whereas texture is difficult to generate, it is easy to build into materials. This can
make a difference to the ease of use of a device. For example, a touchpad is smooth,
but a keyboard nipple is usually rubbery. If they were the other way round it would
be hard to drag your finger across the touchpad or to operate the nipple without
slipping. Texture can also be used to disambiguate. For example, most keyboards
have a small raised dot on the ‘home’ keys for touch typists and some calculators and
phones do the same on the ‘5’ key. This is especially useful in applications when the
eyes are elsewhere.

2.6.5 Environment and bio-sensing

In a public washroom there are often no controls for the wash basins, you simply put
your hands underneath and (hope that) the water flows. Similarly when you open
the door of a car, the courtesy light turns on. The washbasin is controlled by a small
infrared sensor that is triggered when your hands are in the basin (although it is

DESIGN FOCUS

Smart-Its – making using sensors easy

Building systems with physical sensors is no easy task. You need a soldering iron, plenty of experience
in electronics, and even more patience. Although some issues are unique to each sensor or project,
many of the basic building blocks are similar – connecting simple microprocessors to memory and
networks, connecting various standard sensors such as temperature, tilt, etc.

The Smart-Its project has made this job easier by creating a collection of components and an
architecture for adding new sensors. There are a number of basic Smart-It boards – the photo on
the left shows a microprocessor with wireless connectivity. Onto these boards are plugged a variety of
modules – in the center is a sensor board including temperature and light, and on the right is a power
controller.

See: www.smart-its.org/ Source: Courtesy of Hans Gellersen

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

sometimes hard to find the ‘sweet spot’ where this happens!). The courtesy lights are
triggered by a small switch in the car door.

Although we are not always conscious of them, there are many sensors in our
environment – controlling automatic doors, energy saving lights, etc. and devices
monitoring our behavior such as security tags in shops. The vision of ubiquitous
computing (see Chapters 4 and 20) suggests that our world will be filled with such
devices. Certainly the gap between science fiction and day-to-day life is narrow;
for example, in the film Minority Report (20th Century Fox) iris scanners identify
each passer-by to feed them dedicated advertisements, but you can buy just such an
iris scanner as a security add-on for your home computer.

There are many different sensors available to measure virtually anything: temper-
ature, movement (ultrasound, infrared, etc.), location (GPS, global positioning, in
mobile devices), weight (pressure sensors). In addition audio and video information
can be analyzed to identify individuals and to detect what they are doing. This
all sounds big brother like, but is also used in ordinary applications, such as the
washbasin.

Sensors can also be used to capture physiological signs such as body temperature,
unconscious reactions such as blink rate, or unconscious aspects of activities such
as typing rate, vocabulary shifts (e.g. modal verbs). For example, in a speech-based
game, Tsukahara and Ward use gaps in speech and prosody (patterns of rhythm,
pitch and loudness in speech) to infer the user’s emotional state and thus the nature
of acceptable responses [350] and Allanson discusses a variety of physiological
sensors to create ‘electrophysiological interactive computer systems’ [12].

PAPER: PRINTING AND SCANNING

Some years ago, a recurrent theme of information technology was the paperless office.
In the paperless office, documents would be produced, dispatched, read and filed
online. The only time electronic information would be committed to paper would be
when it went out of the office to ordinary customers, or to other firms who were lag-
gards in this technological race. This vision was fuelled by rocketing property prices,
and the realization that the floor space for a wastepaper basket could cost thousands
in rent each year. Some years on, many traditional paper files are now online, but the
desire for the completely paperless office has faded. Offices still have wastepaper bas-
kets, and extra floor space is needed for the special computer tables to house 14-inch
color monitors.

In this section, we will look at some of the available technology that exists to get
information to and from paper. We will look first at printing, the basic technology,
and issues raised by it. We will then go on to discuss the movement from paper back
into electronic media. Although the paperless office is no longer seen as the goal, the
less-paper office is perhaps closer, now that the technologies for moving between
media are better.

2.7

2.7 Paper: printing and scanning 97

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

98 Chapter 2 n The computer

2.7.1 Printing

If anything, computer systems have made it easier to produce paper documents. It is
so easy to run off many copies of a letter (or book), in order to get it looking ‘just
right’. Older printers had a fixed set of characters available on a printhead. These var-
ied from the traditional line printer to golf-ball and daisy-wheel printers. To change
a typeface or the size of type meant changing the printhead, and was an awkward,
and frequently messy, job, but for many years the daisy-wheel printer was the only
means of producing high-quality output at an affordable price. However, the drop in
the price of laser printers coupled with the availability of other cheap high-quality
printers means that daisy-wheels are fast becoming a rarity.

All of the popular printing technologies, like screens, build the image on the paper
as a series of dots. This enables, in theory, any character set or graphic to be printed,

Common types of dot-based printers

Dot-matrix printers
These use an inked ribbon, like a typewriter, but instead of a single character-shaped head striking
the paper, a line of pins is used, each of which can strike the ribbon and hence dot the paper.
Horizontal resolution can be varied by altering the speed of the head across the paper, and ver-
tical resolution can be improved by sending the head twice across the paper at a slightly different
position. So, dot-matrix printers can produce fast draft-quality output or slower ‘letter’-quality
output. They are cheap to run, but could not compete with the quality of jet and laser printers for
general office and home printing. They are now only used for bulk printing, or where carbon paper
is required for payslips, check printing, etc.)

Ink-jet and bubble-jet printers
These operate by sending tiny blobs of ink from the printhead to the paper. The ink is squirted at
pressure from an ink-jet, whereas bubble-jets use heat to create a bubble. Both are quite quiet in
operation. The ink from the bubble-jet (being a bubble rather than a droplet) dries more quickly
than the ink-jet and so is less likely to smear. Both approach laser quality, but the bubble-jet dots
tend to be more accurately positioned and of a less broken shape.

Laser printer
This uses similar technology to a photocopier: ‘dots’ of electrostatic charge are deposited on a
drum, which then picks up toner (black powder). This is then rolled onto the paper and cured by
heat. The curing is why laser printed documents come out warm, and the electrostatic charge is
why they smell of ozone! In addition, some toner can be highly toxic if inhaled, but this is more a
problem for full-time maintenance workers than end-users changing the occasional toner cartridge.

Laser printers give nearly typeset-quality output, with top-end printers used by desktop publishing
firms. Indeed, many books are nowadays produced using laser printers. The authors of this book
have produced camera-ready copy for other books on 300 and 600 dpi laser printers, although this
book required higher quality and the first edition was typeset at 1200 dpi onto special bromide
paper.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.7 Paper: printing and scanning 99

limited only by the resolution of the dots. This resolution is measured in dots per inch
(dpi). Imagine a sheet of graph paper, and building up an image by putting dots at
the intersection of each line. The number of lines per inch in each direction is the
resolution in dpi. For some mechanical printers this is slightly confused: the dots
printed may be bigger than the gaps, neighboring printheads may not be able to
print simultaneously and may be offset relative to one another (a diamond-shaped
rather than rectangular grid). These differences do not make too much difference to
the user, but mean that, given two printers at the same nominal resolution, the out-
put of one looks better than that of the other, because it has managed the physical
constraints better.

The most common types of dot-based printers are dot-matrix printers, ink-jet
printers and laser printers. These are listed roughly in order of increasing resolution
and quality, where dot-matrix printers typically have a resolution of 80–120 dpi ris-
ing to about 300–600 dpi for ink-jet printers and 600–2400 dpi for laser printers. By
varying the quantity of ink and quality of paper, ink-jet printers can be used to print
photo-quality prints from digital photographs.

Printing in the workplace

Although ink-jet and laser printers have the lion’s share of the office and home printer mar-
ket, there are many more specialist applications that require different technology.

Most shop tills use dot-matrix printing where the arrangement is often very clever, with one print-
head serving several purposes. The till will usually print one till roll which stays within the machine,
recording all transactions for audit purposes. An identical receipt is printed for the customer.
In addition, many will print onto the customer’s own check or produce a credit card slip for the
customer to sign. Sometimes the multiple copies are produced using two or more layers of paper
where the top layer receives the ink and the lower layers use pressure-sensitive paper – not
possible using ink-jet or laser technology. Alternatively, a single printhead may move back and
forth over several small paper rolls within the same machine, as well as moving over the slot for
the customer’s own check.

As any printer owner will tell you, office printers are troublesome, especially as they age. Dif-
ferent printing technology is therefore needed in harsh environments or where a low level of
supervision is required. Thermal printers use special heat-sensitive paper that changes color when
heated. The printhead simply heats the paper where it wants a dot. Often only one line of dots
is produced per pass, in contrast to dot-matrix and ink-jet printers, which have several pins or
jets in parallel. The image is then produced using several passes per line, achieving a resolution
similar to a dot-matrix. Thermal paper is relatively expensive and not particularly nice to look
at, but thermal printers are mechanically simple and require little maintenance (no ink or toner
splashing about). Thermal printers are used in niche applications, for example industrial equipment,
some portable printers, and fax machines (although many now use plain paper).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

100 Chapter 2 n The computer

As well as resolution, printers vary in speed and cost. Typically, office-quality ink-
jet or laser printers produce between four and eight pages per minute. Dot-matrix
printers are more often rated in characters per second (cps), and typical speeds may
be 200 cps for draft and 50 cps for letter-quality print. In practice, this means no
more than a page or so per minute. These are maximum speeds for simple text, and
printers may operate much more slowly for graphics.

Color ink-jet printers are substantially cheaper than even monochrome laser
printers. However, the recurrent costs of consumables may easily dominate this
initial cost. Both jet and laser printers have special-purpose parts (print cartridges,
toner, print drums), which need to be replaced every few thousand sheets; and they
must also use high-grade paper. It may be more difficult to find suitable grades of
recycled paper for laser printers.

2.7.2 Fonts and page description languages

Some printers can act in a mode whereby any characters sent to them (encoded in
ASCII, see Section 2.8.5) are printed, typewriter style, in a single font. Another case,
simple in theory, is when you have a bitmap picture and want to print it. The dots
to print are sent to the printer, and no further interpretation is needed. However, in
practice, it is rarely so simple.

Many printed documents are far more complex – they incorporate text in many
different fonts and many sizes, often italicized, emboldened and underlined. Within
the text you will find line drawings, digitized photographs and pictures generated
from ‘paint’ packages, including the ubiquitous ‘clip art’. Sometimes the computer
does all the work, converting the page image into a bitmap of the right size to be sent
to the printer. Alternatively, a description of the page may be sent to the printer.
At the simplest level, this will include commands to set the print position on the
page, and change the font size.

More sophisticated printers can accept a page description language, the most com-
mon of which is PostScript. This is a form of programming language for printing. It
includes some standard programming constructs, but also some special ones: paths
for drawing lines and curves, sophisticated character and font handling and scaled
bitmaps. The idea is that the description of a page is far smaller than the associated
bitmap, reducing the time taken to send the page to the printer. A bitmap version
of an A4 laser printer page at 300 dpi takes 8 Mbytes; to send this down a standard
serial printer cable would take 10 minutes! However, a computer in the printer has
to interpret the PostScript program to print the page; this is typically faster than 10
minutes, but is still the limiting factor for many print jobs.

Text is printed in a font with a particular size and shape. The size of a font is
measured in points (pt). The point is a printer’s measure and is about 1/72 of an
inch. The point size of the font is related to its height: a 12 point font has about
six lines per inch. The shape of a font is determined by its font name, for example
Times Roman, Courier or Helvetica. Times Roman font is similar to the type of
many newspapers, such as The Times, whereas Courier has a typewritten shape.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.7 Paper: printing and scanning 101

Some fonts, such as Courier, are fixed pitch, that is each character has the
same width. The alternative is a variable-pitched font, such as Times Roman or
Gill Sans, where some characters, such as the ‘m’, are wider than others, such as
the ‘i’. Another characteristic of fonts is whether they are serif or sans-serif. A serif
font has fine, short cross-lines at the ends of the strokes, imitating those found on cut
stone lettering. A sans-serif font has square-ended strokes. In addition, there are
special fonts looking like Gothic lettering or cursive script, and fonts of Greek letters
and special mathematical symbols.

This book is set in 10 point Minion font using PostScript. Minion is a variable-
pitched serif font. Figure 2.14 shows examples of different fonts.

A mathematics font: αβξ±π∈∀∞⊥≠ℵ∂√∃
Figure 2.14 Examples of different fonts

DESIGN FOCUS

Readability of text

There is a substantial body of knowledge about the readability of text, both on screen and on paper.
An MSc student visited a local software company and, on being shown some of their systems, remarked
on the fact that they were using upper case throughout their displays. At that stage she had only com-
pleted part of an HCI course but she had read Chapter 1 of this book and already knew that WORDS
WRITTEN IN BLOCK CAPITALS take longer to read than those in lower case. Recall that this is largely
because of the clues given by word shapes and is the principle behind ‘look and say’ methods of teach-
ing children to read. The company immediately recognized the value of the advice and she instantly rose
in their esteem!

However, as with many interface design guidelines there are caveats. Although lower-case words are
easier to read, individual letters and nonsense words are clearer in upper case. For example, one writes
flight numbers as ‘BA793’ rather than ‘ba793’. This is particularly important when naming keys to press
(for example, ‘Press Q to quit’) as keyboards have upper-case legends.

Font shapes can also make a difference; for printed text, serif fonts make it easier to run one’s eye
along a line of text. However, they usually reproduce less well on screen where the resolution is
poorer.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

102 Chapter 2 n The computer

2.7.3 Screen and page

A common requirement of word processors and desktop publishing software is that
what you see is what you get (see also Chapters 4 and 17), which is often called by its
acronym WYSIWYG (pronounced whizz-ee-wig). This means that the appearance
of the document on the screen should be the same as its eventual appearance on
the printed page. In so far as this means that, for example, centered text is displayed
centered on the screen, this is reasonable. However, this should not cloud the fact
that screen and paper are very different media.

A typical screen resolution is about 72 dpi compared with a laser printer at over
600 dpi. Some packages can show magnified versions of the document in order to
help in this. Most screens use an additive color model using red, green and blue light,
whereas printers use a subtractive color model with cyan, magenta, yellow and black
inks, so conversions have to be made. In addition, the sizes and aspect ratios are very
different. An A4 page is about 11 inches tall by 8 wide (297 × 210 mm), whereas a
screen is often of similar dimensions, but wider than it is tall.

These differences cause problems when designing software. Should you try to
make the screen image as close to the paper as possible, or should you try to make
the best of each? One approach to this would be to print only what could be dis-
played, but that would waste the extra resolution of the printer. On the other
hand, one can try to make the screen as much like paper as possible, which
is the intention behind the standard use of black text on a white background,
rotatable A4 displays, and tablet PCs. This is a laudable aim, but cannot get rid of
all the problems.

A particular problem lies with fonts. Imagine we have a line of ‘m’s, each having a
width of 0.15 inch (4 mm). If we print them on a 72 dpi screen, then we can make
the screen character 10 or 11 dots wide, in which case the screen version will be
narrower or wider than the printed version. Alternatively, we can print the screen
version as near as possible to where the printed characters would lie, in which case
the ‘m’s on the screen would have different spaces between them: ‘mm mm mm mm
m’. The latter looks horrible on the screen, so most software chooses the former
approach. This means that text that aligns on screen may not do so on printing.
Some systems use a uniform representation for screen and printer, using the same
font descriptions and even, in the case of the Next operating system, PostScript
for screen display as well as printer output (also PDF with MacOS X). However,
this simply exports the problem from the application program to the operating
system.

The differences between screen and printer mean that different forms of graphic
design are needed for each. For example, headings and changes in emphasis are made
using font style and size on paper, but using color, brightness and line boxes on
screen. This is not usually a problem for the display of the user’s own documents as
the aim is to give the user as good an impression of the printed page as possible, given
the limitations. However, if one is designing parallel paper and screen forms, then
one has to trade off consistency between the two representations with clarity in each.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.7 Paper: printing and scanning 103

An overall similar layout, but with different forms of presentation for details, may be
appropriate.

2.7.4 Scanners and optical character recognition

Printers take electronic documents and put them on paper – scanners reverse this
process. They start by turning the image into a bitmap, but with the aid of optical
character recognition can convert the page right back into text. The image to be con-
verted may be printed, but may also be a photograph or hand-drawn picture.

There are two main kinds of scanner: flat-bed and hand-held. With a flat-bed
scanner, the page is placed on a flat glass plate and the whole page is converted
into a bitmap. A variant of the flat-bed is where sheets to be scanned are pulled
through the machine, common in multi-function devices (printer/fax/copier). Many
flat-bed scanners allow a small pile of sheets to be placed in a feed tray so that
they can all be scanned without user intervention. Hand-held scanners are pulled
over the image by hand. As the head passes over an area it is read in, yielding
a bitmap strip. A roller at the ends ensures that the scanner knows how fast it is
being pulled and thus how big the image is. The scanner is typically only 3 or 4 inches
(80 or 100 mm) wide and may even be the size of a large pen (mainly used for
scanning individual lines of text). This means at least two or three strips must be
‘glued’ together by software to make a whole page image, quite a difficult process
as the strips will overlap and may not be completely parallel to one another, as
well as suffering from problems of different brightness and contrast. However,
for desktop publishing small images such as photographs are quite common, and
as long as one direction is less than the width of the scanner, they can be read in
one pass.

Scanners work by shining a beam of light at the page and then recording the intens-
ity and color of the reflection. Like photocopiers, the color of the light that is shone
means that some colors may appear darker than others on a monochrome scanner.
For example, if the light is pure red, then a red image will reflect the light completely
and thus not appear on the scanned image.

Like printers, scanners differ in resolution, commonly between 600 and 2400 dpi,
and like printers the quoted resolution needs careful interpretation. Many have a
lower resolution scanhead but digitally interpolate additional pixels – the same is
true for some digital cameras. Monochrome scanners are typically only found in
multi-function devices, but color scanners usually have monochrome modes for
black and white or grayscale copying. Scanners will usually return up to 256 levels
of gray or RGB (red, green, blue) color. If a pure monochrome image is required
(for instance, from a printed page), then it can threshold the grayscale image; that is,
turn all pixels darker than some particular value black, and the rest white.

Scanners are used extensively in desktop publishing (DTP) for reading in hand-
drawn pictures and photographs. This means that cut and paste can be performed
electronically rather than with real glue. In addition, the images can be rotated,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

104 Chapter 2 n The computer

scaled and otherwise transformed, using a variety of image manipulation software
tools. Such tools are becoming increasingly powerful, allowing complex image trans-
formations to be easily achieved; these range from color correction, through the
merging of multiple images to the application of edge-detection and special effects
filters. The use of multiple layers allows photomontage effects that would be imposs-
ible with traditional photographic or paper techniques. Even where a scanned image
is simply going to be printed back out as part of a larger publication, some process-
ing typically has to be performed to match the scanned colors with those produced
during printing. For film photographs there are also special film scanners that can
scan photographic negatives or color slides. Of course, if the photographs are digital
no scanning is necessary.

Another application area is in document storage and retrieval systems, where
paper documents are scanned and stored on computer rather than (or sometimes as
well as) in a filing cabinet. The costs of maintaining paper records are enormous, and
electronic storage can be cheaper, more reliable and more flexible. Storing a bitmap
image is neither most useful (in terms of access methods), nor space efficient (as we
will see later), so scanning may be combined with optical character recognition to
obtain the text rather than the page image of the document.

Optical character recognition (OCR) is the process whereby the computer can
‘read’ the characters on the page. It is only comparatively recently that print could be
reliably read, since the wide variety of typefaces and print sizes makes this more
difficult than one would imagine – it is not simply a matter of matching a character
shape to the image on the page. In fact, OCR is rather a misnomer nowadays as,
although the document is optically scanned, the OCR software itself operates on the
bitmap image. Current software can recognize ‘unseen’ fonts and can even produce
output in word-processing formats, preserving super- and subscripts, centering,
italics and so on.

Another important area is electronic publishing for multimedia and the world
wide web. Whereas in desktop publishing the scanned image usually ends up (after
editing) back on paper, in electronic publishing the scanned image is destined to be
viewed on screen. These images may be used simply as digital photographs or may
be made active, whereby clicking on some portion of the image causes pertinent
information to be displayed (see Chapter 3 for more on the point-and-click style
of interaction). One big problem when using electronic images is the plethora of
formats for storing graphics (see Section 2.8.5). Another problem is the fact that
different computers can display different numbers of colors and that the appearance
of the same image on different monitors can be very different.

The importance of electronic publishing and also the ease of electronically manip-
ulating images for printing have made the digital camera increasingly popular.
Rather than capturing an image on film, a digital camera has a small light-sensitive
chip that can directly record an image into memory.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.7 Paper: printing and scanning 105

Worked exercise What input and output devices would you use for the following systems? For each, compare
and contrast alternatives, and if appropriate indicate why the conventional keyboard, mouse
and CRT screen may be less suitable.

(a) portable word processor
(b) tourist information system
(c) tractor-mounted crop-spraying controller

Paper-based interaction

Paper is principally seen as an output medium. You type in some text, format it, print it and
read it. The idea of the paperless office was to remove the paper from the write–read loop entirely,
but it didn’t fundamentally challenge its place in the cycle as an output medium. However, this view of
paper as output has changed as OCR technology has improved and scanners become commonplace.

Workers at Xerox Palo Alto Research Center (also known as Xerox PARC) capitalized on this by
using paper as a medium of interaction with computer systems [195]. A special identifying mark is
printed onto forms and similar output. The printed forms may have check boxes or areas for writ-
ing numbers or (in block capitals!) words. The form can then be scanned back in. The system reads
the identifying mark and thereby knows what sort of paper form it is dealing with. It doesn’t have
to use OCR on the printed text of the form as it printed it, but can detect the check boxes that
have been filled in and even recognize the text that has been written. The identifying mark the
researchers used is composed of backward and forward slashes, ‘\’ and ‘/’, and is called a glyph.
An alternative would have been to use bar codes, but the slashes were found to fax and scan
more reliably. The research version of this system was known as XAX, but it is now marketed as
Xerox PaperWorks.

One application of this technology is mail order catalogs. The order form is printed with a glyph.
When completed, forms can simply be collected into bundles and scanned in batches, generating
orders automatically. If the customer faxes an order the fax-receiving software recognizes the
glyph and the order is processed without ever being handled at the company end. Such a paper
user interface may involve no screens or keyboards whatsoever.

Some types of paper now have identifying marks micro-printed like a form of textured water-
mark. This can be used both to identify the piece of paper (as the glyph does), and to identify the
location on the paper. If this book were printed on such paper it would be possible to point at
a word or diagram with a special pen-like device and have it work out what page you are on
and where you are pointing and thus take you to appropriate web materials . . . perhaps the fourth
edition . . .

It is paradoxical that Xerox PARC, where much of the driving work behind current ‘mouse and
window’ computer interfaces began, has also developed this totally non-screen and non-mouse
paradigm. However, the common principle behind each is the novel and appropriate use of differ-
ent media for graceful interaction.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

106 Chapter 2 n The computer

(d) air traffic control system
(e) worldwide personal communications system
(f) digital cartographic system.

Answer In the later exercise on basic architecture (see Section 2.8.6), we focus on ‘typical’
systems, whereas here the emphasis is on the diversity of different devices needed for
specialized purposes. You can ‘collect’ devices – watch out for shop tills, bank tellers,
taxi meters, lift buttons, domestic appliances, etc.

(a) Portable word processor
The determining factors are size, weight and battery power. However, remember
the purpose: this is a word processor not an address book or even a data entry
device.
(i) LCD screen – low-power requirement
(ii) trackball or stylus for pointing
(iii) real keyboard – you can’t word process without a reasonable keyboard and

stylus handwriting recognition is not good enough
(iv) small, low-power bubble-jet printer – although not always necessary, this

makes the package stand alone. It is probably not so necessary that the printer
has a large battery capacity as printing can probably wait until a power point is
found.

(b) Tourist information system
This is likely to be in a public place. Most users will only visit the system once, so
the information and mode of interaction must be immediately obvious.
(i) touchscreen only – easy and direct interaction for first-time users (see also

Chapter 3)
(ii) NO mice or styluses – in a public place they wouldn’t stay long!

(c) Tractor-mounted crop-spraying controller
A hostile environment with plenty of mud and chemicals. Requires numerical input
for flow rates, etc., but probably no text
(i) touch-sensitive keypad – ordinary keypads would get blocked up
(ii) small dedicated LED display (LCDs often can’t be read in sunlight and large

screens are fragile)
(iii) again no mice or styluses – they would get lost.

(d) Air traffic control system
The emphasis is on immediately available information and rapid interaction. The
controller cannot afford to spend time searching for information; all frequently used
information must be readily available.
(i) several specialized displays – including overlays of electronic information on

radar
(ii) light pen or stylus – high-precision direct interaction
(iii) keyboard – for occasional text input, but consider making it fold out of the way.

(e) Worldwide personal communications system
Basically a super mobile phone! If it is to be kept on hand all the time it must be
very light and pocket sized. However, to be a ‘communications’ system one would
imagine that it should also act as a personal address/telephone book, etc.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.8 Memory 107

(i) standard telephone keypad – the most frequent use
(ii) small dedicated LCD display – low power, specialized functions
(iii) possibly stylus for interaction – it allows relatively rich interaction with the

address book software, but little space
(iv) a ‘docking’ facility – the system itself will be too small for a full-sized key-

board(!), but you won’t want to enter in all your addresses and telephone num-
bers by stylus!

(f) Digital cartographic system
This calls for very high-precision input and output facilities. It is similar to CAD in
terms of the screen facilities and printing, but in addition will require specialized
data capture.
(i) large high-resolution color VDU (20 inch or bigger) – these tend to be enor-

mously big (from back to front). LCD screens, although promising far thinner
displays in the long term, cannot at present be made large enough

(ii) digitizing tablet – for tracing data on existing paper maps. It could also double
up as a pointing device for some interaction

(iii) possibly thumbwheels – for detailed pointing and positioning tasks
(iv) large-format printer – indeed very large: an A2 or A1 plotter at minimum.

MEMORY

Like human memory, we can think of the computer’s memory as operating at dif-
ferent levels, with those that have the faster access typically having less capacity. By
analogy with the human memory, we can group these into short-term and long-term
memories (STM and LTM), but the analogy is rather weak – the capacity of the com-
puter’s STM is a lot more than seven items! The different levels of computer mem-
ory are more commonly called primary and secondary storage.

The details of computer memory are not in themselves of direct interest to the
user interface designer. However, the limitations in capacity and access methods are
important constraints on the sort of interface that can be designed. After some fairly
basic information, we will put the raw memory capacity into perspective with the
sort of information which can be stored, as well as again seeing how advances in
technology offer more scope for the designer to produce more effective interfaces. In
particular, we will see how the capacity of typical memory copes with video images as
these are becoming important as part of multimedia applications (see Chapter 21).

2.8.1 RAM and short-term memory (STM)

At the lowest level of computer memory are the registers on the computer chip, but
these have little impact on the user except in so far as they affect the general speed of

2.8

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

108 Chapter 2 n The computer

the computer. Most currently active information is held in silicon-chip random
access memory (RAM). Different forms of RAM differ as to their precise access times,
power consumption and characteristics. Typical access times are of the order of
10 nanoseconds, that is a hundred-millionth of a second, and information can be
accessed at a rate of around 100 Mbytes (million bytes) per second. Typical storage
in modern personal computers is between 64 and 256 Mbytes.

Most RAM is volatile, that is its contents are lost when the power is turned off.
However, many computers have small amount of non-volatile RAM, which retains its
contents, perhaps with the aid of a small battery. This may be used to store setup
information in a large computer, but in a pocket organizer will be the whole mem-
ory. Non-volatile RAM is more expensive so is only used where necessary, but with
many notebook computers using very low-power static RAM, the divide is shrink-
ing. By strict analogy, non-volatile RAM ought to be classed as LTM, but the import-
ant thing we want to emphasize is the gulf between STM and LTM in a traditional
computer system.

In PDAs the distinctions become more confused as the battery power means that
the system is never completely off, so RAM memory effectively lasts for ever. Some
also use flash memory, which is a form of silicon memory that sits between fixed
content ROM (read-only memory) chips and normal RAM. Flash memory is relat-
ively slow to write, but once written retains its content even with no power whatso-
ever. These are sometimes called silicon disks on PDAs. Digital cameras typically
store photographs in some form of flash media and small flash-based devices are
used to plug into a laptop or desktop’s USB port to transfer data.

2.8.2 Disks and long-term memory (LTM)

For most computer users the LTM consists of disks, possibly with small tapes for
backup. The existence of backups, and appropriate software to generate and retrieve
them, is an important area for user security. However, we will deal mainly with those
forms of storage that impact the interactive computer user.

There are two main kinds of technology used in disks: magnetic disks and optical
disks. The most common storage media, floppy disks and hard (or fixed) disks,
are coated with magnetic material, like that found on an audio tape, on which the
information is stored. Typical capacities of floppy disks lie between 300 kbytes and
1.4 Mbytes, but as they are removable, you can have as many as you have room for
on your desk. Hard disks may store from under 40 Mbytes to several gigabytes
(Gbytes), that is several thousand million bytes. With disks there are two access times
to consider, the time taken to find the right track on the disk, and the time to read
the track. The former dominates random reads, and is typically of the order of 10 ms
for hard disks. The transfer rate once the track is found is then very high, perhaps
several hundred kilobytes per second. Various forms of large removable media are
also available, fitting somewhere between floppy disks and removable hard disks, and
are especially important for multimedia storage.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.8 Memory 109

Optical disks use laser light to read and (sometimes) write the information on the
disk. There are various high capacity specialist optical devices, but the most common
is the CD-ROM, using the same technology as audio compact discs. CD-ROMs have
a capacity of around 650 megabytes, but cannot be written to at all. They are useful
for published material such as online reference books, multimedia and software
distribution. Recordable CDs are a form of WORM device (write-once read-many)
and are more flexible in that information can be written, but (as the name suggests)
only once at any location – more like a piece of paper than a blackboard. They are
obviously very useful for backups and for producing very secure audit information.
Finally, there are fully rewritable optical disks, but the rewrite time is typically much
slower than the read time, so they are still primarily for archival not dynamic storage.
Many CD-ROM reader/writers can also read DVD format, originally developed for
storing movies. Optical media are more robust than magnetic disks and so it is easier
to use a jukebox arrangement, whereby many optical disks can be brought online auto-
matically as required. This can give an online capacity of many hundreds of giga-
bytes. However, as magnetic disk capacities have grown faster than the fixed standard
of CD-ROMs, some massive capacity stores are moving to large disk arrays.

2.8.3 Understanding speed and capacity

So what effect do the various capacities and speeds have on the user? Thinking of our
typical personal computer system, we can summarize some typical capacities as in
Table 2.1.

We think first of documents. This book is about 320,000 words, or about 2
Mbytes, so it would hardly make a dent in 256 Mbytes of RAM. (This size – 2 Mbytes
– is unformatted and without illustrations; the actual size of the full data files is an
order of magnitude bigger, but still well within the capacity of main memory.) To
take a more popular work, the Bible would use about 4.5 Mbytes. This would still
consume only 2% of main memory, and disappear on a hard disk. However, it might
look tight on a smaller PDA. This makes the memory look not too bad, so long as
you do not intend to put your entire library online. However, many word processors
come with a dictionary and thesaurus, and there is no standard way to use the same
one with several products. Together with help files and the program itself, it is not

Table 2.1 Typical capacities of different storage media

STM small/fast LTM large/slower

Media: RAM Hard disk
Capacity: 256 Mbytes 100 Gbytes
Access time: 10 ns 7 ms
Transfer rate: 100 Mbyte/s 30 Mbyte/s

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

110 Chapter 2 n The computer

unusual to find each application consuming tens or even hundreds of megabytes of
disk space – it is not difficult to fill a few gigabytes of disk at all!

Similarly, although 256 Mbytes of RAM are enough to hold most (but not all) sin-
gle programs, windowed systems will run several applications simultaneously, soon
using up many megabytes. Operating systems handle this by paging unused bits of
programs out of RAM onto disk, or even swapping the entire program onto disk.
This makes little difference to the logical functioning of the program, but has a
significant effect on interaction. If you select a window, and the relevant application
happens to be currently swapped out onto the disk, it has to be swapped back in. The
delay this causes can be considerable, and is both noticeable and annoying on many
systems.

The delays due to swapping are a symptom of the von Neumann bottleneck
between disk and main memory. There is plenty of information in the memory, but
it is not where it is wanted, in the machine’s RAM. The path between them is limited
by the transfer rate of the disk and is too slow. Swapping due to the operating system
may be difficult to avoid, but for an interactive system designer some of these prob-
lems can be avoided by thinking carefully about where information is stored and
when it is transferred. For example, the program can be lazy about information
transfer. Imagine the user wants to look at a document. Rather than reading in the
whole thing before letting the user continue, just enough is read in for the first page
to be displayed, and the rest is read during idle moments.

Returning to documents, if they are scanned as bitmaps (and not read using
OCR), then the capacity of our system looks even less impressive. Say an 11 × 8 inch
(297 × 210 mm) page is scanned with an 8 bit grayscale (256 levels) setting at 1200 dpi.
The image contains about one billion bits, that is about 128 Mbyte. So, our 100 Gbyte
disk could store 800 pages – just OK for this book, but not for the Bible.

If we turn to video, things are even worse. Imagine we want to store moving
video using 12 bits for each pixel (4 bits for each primary color giving 16 levels of
brightness), each frame is 512 × 512 pixels, and we store at 25 frames per second.

Technological change and storage capacity

Most of the changes in this book since the first and second editions have been additions
where new developments have come along. However, this portion has had to be scrutinized line
by line as the storage capacities of high-end machines when this book was first published in 1993
looked ridiculous as we revised it in 1997 and then again in 2003. One of our aims in this chapter
was to give readers a concrete feel for the capacities and computational possibilities in standard
computers. However, the pace of advances in this area means that it becomes out of date almost
as fast as it is written! This is also a problem for design; it is easy to build a system that is sensible
given a particular level of technology, but becomes meaningless later. The solution is either to issue
ever more frequent updates and new versions, or to exercise a bit of foresight . . .

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.8 Memory 111

This is by no means a high-quality image, but each frame requires approximately
400 kbytes giving 10 Mbytes per second. Our disk will manage about three hours
of video – one good movie. Lowering our sights to still photographs, good digital
cameras usually take 2 to 4 mega pixels at 24 bit color; that is 10 Mbytes of raw
uncompressed image – you’d not get all your holiday snaps into main memory!

2.8.4 Compression

In fact, things are not quite so bad, since compression techniques can be used to
reduce the amount of storage required for text, bitmaps and video. All of these things
are highly redundant. Consider text for a moment. In English, we know that if we use
the letter ‘q’ then ‘u’ is almost bound to follow. At the level of words, some words
like ‘the’ and ‘and’ appear frequently in text in general, and for any particular work
one can find other common terms (this book mentions ‘user’ and ‘computer’ rather
frequently). Similarly, in a bitmap, if one bit is white, there is a good chance the next
will be as well. Compression algorithms take advantage of this redundancy. For
example, Huffman encoding gives short codes to frequent words [182], and run-
length encoding represents long runs of the same value by length value pairs. Text
can easily be reduced by a factor of five and bitmaps often compress to 1% of their
original size.

For video, in addition to compressing each frame, we can take advantage of the
fact that successive frames are often similar. We can compute the difference between
successive frames and then store only this – compressed, of course. More sophistic-
ated algorithms detect when the camera pans and use this information also. These
differencing methods fail when the scene changes, and so the process periodically has
to restart and send a new, complete (but compressed) image. For storage purposes
this is not a problem, but when used for transmission over telephone lines or net-
works it can mean glitches in the video as the system catches up.

With these reductions it is certainly possible to store low-quality video at
64 kbyte/s; that is, we can store five hours of highly compressed video on our 1 Gbyte
hard disk. However, it still makes the humble video cassette look very good value.

Probably the leading edge of video still and photographic compression is fractal
compression. Fractals have been popularized by the images of the Mandelbrot set (that
swirling pattern of computer-generated colors seen on many T-shirts and posters).
Fractals refer to any image that contains parts which, when suitably scaled, are sim-
ilar to the whole. If we look at an image, it is possible to find parts which are approx-
imately self-similar, and these parts can be stored as a fractal with only a few numeric
parameters. Fractal compression is especially good for textured features, which cause
problems for other compression techniques. The decompression of the image can
be performed to any degree of accuracy, from a very rough soft-focus image, to
one more detailed than the original. The former is very useful as one can produce
poor-quality output quickly, and better quality given more time. The latter is rather
remarkable – the fractal compression actually fills in details that are not in the
original. These details are not accurate, but look convincing!

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

112 Chapter 2 n The computer

2.8.5 Storage format and standards

The most common data types stored by interactive programs are text and bitmap
images, with increasing use of video and audio, and this subsection looks at the
ridiculous range of file storage standards. We will consider database retrieval in the
next subsection.

The basic standard for text storage is the ASCII (American standard code for
information interchange) character codes, which assign to each standard printable
character and several control characters an internationally recognized 7 bit code
(decimal values 0–127), which can therefore be stored in an 8 bit byte, or be transmit-
ted as 8 bits including parity. Many systems extend the codes to the values 128–255,
including line-drawing characters, mathematical symbols and international letters such
as ‘æ’. There is a 16 bit extension, the UNICODE standard, which has enough room
for a much larger range of characters including the Japanese Kanji character set.

As we have already discussed, modern documents consist of more than just characters.
The text is in different fonts and includes formatting information such as centering,
page headers and footers. On the whole, the storage of formatted text is vendor specific,
since virtually every application has its own file format. This is not helped by the fact
that many suppliers attempt to keep their file formats secret, or update them fre-
quently to stop others’ products being compatible. With the exception of bare ASCII,
the most common shared format is rich text format (RTF), which encodes formatting
information including style sheets. However, even where an application will import
or export RTF, it may represent a cut-down version of the full document style.

RTF regards the document as formatted text, that is it concentrates on the appear-
ance. Documents can also be regarded as structured objects: this book has chapters
containing sections, subsections . . . paragraphs, sentences, words and characters. There
are ISO standards for document structure and interchange, which in theory could be
used for transfer between packages and sites, but these are rarely used in practice.
Just as the PostScript language is used to describe the printed page, SGML (standard
generalized markup language) can be used to store structured text in a reasonably
extensible way. You can define your own structures (the definition itself in SGML),
and produce documents according to them. XML (extensible markup language), a
lightweight version of SGML, is now used extensively for web-based applications.

For bitmap storage the range of formats is seemingly unending. The stored image
needs to record the size of the image, the number of bits per pixel, possibly a color
map, as well as the bits of the image itself. In addition, an icon may have a ‘hot-spot’
for use as a cursor. If you think of all the ways of encoding these features, or leaving
them implicit, and then consider all the combinations of these different encodings,
you can see why there are problems. And all this before we have even considered
the effects of compression! There is, in fact, a whole software industry producing
packages that convert from one format to another.

Given the range of storage standards (or rather lack of standards), there is no easy
advice as to which is best, but if you are writing a new word processor and are about
to decide how to store the document on disk, think, just for a moment, before
defining yet another format.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.8 Memory 113

2.8.6 Methods of access

Standard database access is by special key fields with an associated index. The user
has to know the key before the system can find the information. A telephone direct-
ory is a good example of this. You can find out someone’s telephone number if you
know their name (the key), but you cannot find the name given the number. This is
evident in the interface of many computer systems. So often, when you contact an
organization, they can only help you if you give your customer number, or last order
number. The usability of the system is seriously impaired by a shortsighted reliance
on a single key and index. In fact, most database systems will allow multiple keys and
indices, allowing you to find a record given partial information. So these problems
are avoidable with only slight foresight.

There are valid reasons for not indexing on too many items. Adding extra indices
adds to the size of the database, so one has to balance ease of use against storage cost.
However, with ever-increasing disk sizes, this is not a good excuse for all but extreme
examples. Unfortunately, brought up on lectures about algorithmic efficiency, it is
easy for computer scientists to be stingy with storage. Another, more valid, reason
for restricting the fields you index is privacy and security. For example, telephone
companies will typically hold an online index that, given a telephone number, would
return the name and address of the subscriber, but to protect the privacy of their cus-
tomers, this information is not divulged to the general public.

It is often said that dictionaries are only useful for people who can spell. Bad
spellers do not know what a word looks like so cannot look it up to find out. Not only
in spelling packages, but in general, an application can help the user by matching
badly spelt versions of keywords. One example of this is do what I mean (DWIM)
used in several of Xerox PARC’s experimental programming environments. If a
command name is misspelt the system prompts the user with a close correct name.
Menu-based systems make this less of an issue, but one can easily imagine doing
the same with, say, file selection. Another important instance of this principle is
Soundex, a way of indexing words, especially names. Given a key, Soundex finds
those words which sound similar. For example, given McCloud, it would find
MacCleod. These are all examples of forgiving systems, and in general one should aim
to accommodate the user’s mistakes. Again, there are exceptions to this: you do not
want a bank’s automated teller machine (ATM) to give money when the PIN num-
ber is almost correct!

Not all databases allow long passages of text to be stored in records, perhaps set-
ting a maximum length for text strings, or demanding the length be fixed in advance.
Where this is the case, the database seriously restricts interface applications where
text forms an important part. At the other extreme, free text retrieval systems are cen-
tered on unformatted, unstructured text. These systems work by keeping an index
of every word in every document, and so you can ask ‘give me all documents with
the words “human” and “computer” in them’. Programs, such as versions of the
UNIX ‘grep’ command, give some of the same facilities by quickly scanning a list of
files for a certain word, but are much slower. On the web, free text search is of course
the standard way to find things using search engines.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

114 Chapter 2 n The computer

Worked exercise What is the basic architecture of a computer system?

Answer In an HCI context, you should be assessing the architecture from the point of view of
the user. The material for this question is scattered throughout the chapter. Look too
at personal computer magazines, where adverts and articles will give you some idea of
typical capabilities . . . and costs. They may also raise some questions: just what is the
difference to the user between an 8 ms and a 10 ms disk drive?

The example answer below gives the general style, although more detail would be
expected of a full answer. In particular, you need to develop a feel for capacities
either as ball-park figures or in terms of typical capabilities (seconds of video, pages
of text).

Example
The basic architecture of a computer system consists of the computer itself (with asso-
ciated memory), input and output devices for user interaction and various forms of
hard-copy devices. (Note, the ‘computer science’ answer regards output to the user
and output to a printer as essentially equivalent. This is not an acceptable user-centered
view.)

A typical configuration of user input–output devices would be a screen with a keyboard
for typing text and a mouse for pointing and positioning. Depending on circumstance,
different pointing devices may be used such as a stylus (for more direct interaction) or
a touchpad (especially on portable computers).

The computer itself can be considered as composed of some processing element and
memory. The memory is itself divided into short-term memory which is lost when the
machine is turned off and permanent memory which persists.

PROCESSING AND NETWORKS

Computers that run interactive programs will process in the order of 100 million
instructions per second. It sounds a lot and yet, like memory, it can soon be used up.
Indeed, the first program written by one of the authors (some while ago) ‘hung’ and
all attempts to debug it failed. Later calculation showed that the program would have
taken more than the known age of the universe to complete! Failures need not be as
spectacular as that to render a system unusable. Consider, for example, one drawing
system known to the authors. To draw a line you press down the mouse button at
one end, drag the mouse and then release the mouse button at the other end of the
line – but not too quickly. You have to press down the button and then actually hold
your hand steady for a moment, otherwise the line starts half way! For activities
involving the user’s hand–eye coordination, delays of even a fraction of a second can
be disastrous.

2.9

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.9 Processing and networks 115

2.9.1 Effects of finite processor speed

As we can see, speed of processing can seriously affect the user interface. These effects
must be taken into account when designing an interactive system. There are two
sorts of faults due to processing speed: those when it is too slow, and those when it
is too fast!

We saw one example of the former above. This was a functional fault, in that the
program did the wrong thing. The system is supposed to draw lines from where the
mouse button is depressed to where it is released. However, the program gets it
wrong – after realizing the button is down, it does not check the position of the
mouse fast enough, and so the user may have moved the mouse before the start
position is registered. This is a fault at the implementation stage of the system rather
than of the design. But to be fair, the programmer may not be given the right sort of
information from lower levels of system software.

A second fault due to slow processing is where, in a sense, the program does the
right thing, but the feedback is too slow, leading to strange effects at the interface. In
order to avoid faults of the first kind, the system buffers the user input; that is, it
remembers keypresses and mouse buttons and movement. Unfortunately, this leads
to problems of its own. One example of this sort of problem is cursor tracking, which
happens in character-based text editors. The user is trying to move backwards on the
same line to correct an error, and so presses the cursor-left key. The cursor moves
and when it is over the correct position, the user releases the key. Unfortunately, the
system is behind in responding to the user, and so has a few more cursor-left keys

Moore’s law

Everyone knows that computers just get faster and faster. However, in 1965 Gordon
Moore, co-founder of Intel, noticed a regularity. It seemed that the speed of processors, related
closely to the number of transistors that could be squashed on a silicon wafer, was doubling every
18 months – exponential growth. One of the authors bought his first ‘proper’ computer in 1987;
it was a blindingly fast 1.47 MHz IBM compatible (Macs were too expensive). By 2002 a system
costing the same in real terms would have had a 1.5 GHz processor – 1000 times faster or 210 in
15 years, that is 10 × 18 months.

There is a similar pattern for computer memory, except that the doubling time for magnetic stor-
age seems to be closer to one year. For example, when the first edition of this book was written
one of the authors had a 20 Mbyte hard disk; now, 11 years later, his disk is 30 Gbytes – around
210 times more storage in just 10 years.

The effects of this are dramatic. If you took a young baby today and started recording a full audio
video diary of every moment, day and night, of that child’s life, by the time she was an old lady her
whole life experience would fit into memory the size of a small grain of dust.

For more on Moore’s law and life recording see: /e3/online/moores-law/

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

116 Chapter 2 n The computer

to process – the cursor then overshoots. The user tries to correct this by pressing the
cursor-right key, and again overshoots. There is typically no way for the user to tell
whether the buffer is empty or not, except by interacting very slowly with the system
and observing that the cursor has moved after every keypress.

A similar problem, icon wars, occurs on window systems. The user clicks the
mouse on a menu or icon, and nothing happens; for some reason the machine is
busy or slow. So the user clicks again, tries something else – then, suddenly, all
the buffered mouse clicks are interpreted and the screen becomes a blur of flashing
windows and menus. This time, it is not so much that the response is too slow – it is
fast enough when it happens – but that the response is variable. The delays due to
swapping programs in and out of main memory typically cause these problems.

Furthermore, a style of interaction that is optimal on one machine may not be
so on a slower machine. In particular, mouse-based interfaces cannot tolerate delays
between actions and feedback of more than a fraction of a second, otherwise the
immediacy required for successful interaction is lost. If these responses cannot be
met then a more old-fashioned, command-based interface may be required.

Whereas it is immediately obvious that slow responses can cause problems for the
user, it is not so obvious why one should not always aim for a system to be as fast
as possible. However, there are exceptions to this – the user must be able to read and
understand the output of the system. For example, one of the authors was once given
a demonstration disk for a spreadsheet. Unfortunately, the machine the demo was
written on was clearly slower than the author’s machine, not much, at worst half the
speed, but different enough. The demo passed in a blur over the screen with nothing
remaining on the screen long enough to read. Many high-resolution monitors suf-
fer from a similar problem when they display text. Whereas older character-based
terminals scrolled new text from the bottom of the screen or redrew from the top,
bitmap screens often ‘flash’ up the new page, giving no indication of direction of
movement. A final example is the rate of cursor flashing: the rate is often at a fixed

DESIGN FOCUS

The myth of the infinitely fast machine

The adverse effects of slow processing are made worse because the designers labor under the myth
of the infinitely fast machine [93]. That is, they design and document their systems as if response will be
immediate. Rather than blithely hoping that the eventual machine will be ‘fast enough’, the designer
ought to plan explicitly for slow responses where these are possible. A good example, where buffer-
ing is clear and audible (if not visible) to the user, is telephones. Even if the user gets ahead of the
telephone when entering a number, the tones can be heard as they are sent over the line. Now this is
probably an accident of the design rather than deliberate policy, as there are so many other problems
with telephones as interfaces. However, this type of serendipitous feedback should be emulated in
other areas.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

frequency, so varying the speed of the processor does not change the screen display.
But a rate which is acceptable for a CRT screen is too fast for an LCD screen, which
is more persistent, and the cursor may become invisible or a slight gray color.

In some ways the solution to these problems is easier: the designer can demand
fixed delays (dependent on media and user preference) rather than just going as fast
as the machine allows. To plan for the first problem, that of insufficient speed, the
designer needs to understand the limitations of the computer system and take
account of these at all stages in the design process.

2.9.2 Limitations on interactive performance

There are several factors that can limit the speed of an interactive system:

Computation bound This is rare for an interactive program, but possible, for
example when using find/replace in a large document. The system should be
designed so that long delays are not in the middle of interaction and so that the
user gets some idea of how the job is progressing. For a very long process try to
give an indication of duration before it starts; and during processing an indication
of the stage that the process has reached is helpful. This can be achieved by hav-
ing a counter or slowly filling bar on the screen that indicates the amount done,
or by changing the cursor to indicate that processing is occurring. Many systems
notice after they have been computing for some time and then say ‘this may take
some time: continue (Y/N)?’. Of course, by the time it says this the process may
be nearly finished anyway!

Storage channel bound As we discussed in the previous section, the speed of
memory access can interfere with interactive performance. We discussed one
technique, laziness, for reducing this effect. In addition, if there is plenty of raw
computation power and the system is held up solely by memory, it is possible to
trade off memory against processing speed. For example, compressed data take
less space to store, and is faster to read in and out, but must be compressed before
storage and decompressed when retrieved. Thus faster memory access leads to
increased processing time. If data is written more often than it is read, one can
choose a technique that is expensive to compress but fairly simple to decompress.
For many interactive systems the ability to browse quickly is very important, but
users will accept delays when saving updated information.

Graphics bound For many modern interfaces, this is the most common bottle-
neck. It is easy to underestimate the time taken to perform what appear to be
simple interface operations. Sometimes clever coding can reduce the time taken
by common graphics operations, and there is tremendous variability in per-
formance between programs running on the same hardware. Most computers
include a special-purpose graphics card to handle many of the most common
graphics operations. This is optimized for graphics operations and allows the
main processor to do other work such as manipulating documents and other
user data.

2.9 Processing and networks 117

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

118 Chapter 2 n The computer

Network capacity Most computers are linked by networks. At the simplest this can
mean using shared files on a remote machine. When accessing such files it can be
the speed of the network rather than that of the memory which limits perform-
ance. This is discussed in greater detail below.

2.9.3 Networked computing

Computer systems in use today are much more powerful than they were a few years
ago, which means that the standard computer on the desktop is quite capable
of high-performance interaction without recourse to outside help. However, it is
often the case that we use computers not in their standalone mode of operation, but
linked together in networks. This brings added benefits in allowing communication
between different parties, provided they are connected into the same network, as well
as allowing the desktop computer to access resources remote from itself. Such net-
works are inherently much more powerful than the individual computers that make
up the network: increased computing power and memory are only part of the story,
since the effects of allowing people much more extensive, faster and easier access to
information are highly significant to individuals, groups and institutions.

One of the biggest changes since the first edition of this book has been the explos-
ive growth of the internet and global connectivity. As well as fixed networks it is
now normal to use a high bandwidth modem or wireless local area network (LAN)
to connect into the internet and world wide web from home or hotel room anywhere
in the world. The effects of this on society at large can only be speculated upon
at present, but there are already major effects on computer purchases and perhaps
the whole face of personal computation. As more and more people buy computers
principally to connect to the internet the idea of the network computer has arisen – a
small computer with no disks whose sole purpose is to connect up to networks.

The internet

The internet has its roots back in 1969 as DARPANET when the US Government’s
Department of Defense commissioned research into networking. The initial four mainframe com-
puters grew to 23 in 1971 and the system had been renamed ARPANET. Growth has accelerated
ever since: in 1984 there were over a thousand machines connected, in 1989 the 100,000 mark
had been reached, and the latest estimates are in the millions. All the computers on the system,
now known as the internet, speak a set of common languages (protocols); the two most import-
ant of these are Transmission Control Protocol (TCP) which moves data from A to B, and the Internet
Protocol (IP) which specifies which B is being referred to so that the data goes to the correct place.
Together these protocols are known as TCP/IP. Thus, at its most basic level, the internet is simply
millions of computers connected together and talking to each other. Other protocols then build
on these low-level capabilities to provide services such as electronic mail, in which participants
send messages to each other; news, where articles of interest are posted to a special interest
group and can be read by anyone subscribing to that group; and of course the world wide web.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2.9 Processing and networks 119

Such networked systems have an effect on interactivity, over and above any addi-
tional access to distant peripherals or information sources. Networks sometimes
operate over large distances, and the transmission of information may take some
appreciable time, which affects the response time of the system and hence the nature
of the interactivity. There may be a noticeable delay in response, and if the user is not
informed of what is going on, he may assume that his command has been ignored,
or lost, and may then repeat it. This lack of feedback is an important factor in the
poor performance and frustration users feel when using such systems, and can be
alleviated by more sensible use of the capabilities of the desktop machine to inform
users of what is happening over the network.

Another effect is that the interaction between human and machine becomes
an open loop, rather than a closed one. Many people may be interacting with the
machine at once, and their actions may affect the response to your own. Many users
accessing a single central machine will slow its response; database updates carried out
by one user may mean that the same query by another user at slightly different times
may produce different results. The networked computer system, by the very nature
of its dispersal, distribution and multi-user access, has been transformed from a fully
predictable, deterministic system, under the total control of the user, into a non-
deterministic one, with an individual user being unaware of many important things
that are happening to the system as a whole. Such systems pose a particular problem
since ideals of consistency, informative feedback and predictable response are viol-
ated (see Chapter 7 for more on these principles). However, the additional power
and flexibility offered by networked systems means that they are likely to be with us
for a long time, and these issues need to be carefully addressed in their design.

Worked exercise How do you think new, fast, high-density memory devices and quick processors have influenced
recent developments in HCI? Do they make systems any easier to use? Do they expand the
range of applications of computer systems?

Answer Arguably it is not so much the increase in computer power as the decrease in the cost
of that power which has had the most profound effect. Because ‘ordinary’ users have
powerful machines on their desktops it has become possible to view that power as
available for the interface rather than hoarded for number-crunching applications.

Modern graphical interaction consumes vast amounts of processing power and would
have been completely impossible only a few years ago. There is an extent to which sys-
tems have to run faster to stay still, in that as screen size, resolution and color range
increase, so does the necessary processing power to maintain the ‘same’ interaction.
However, this extra processing is not really producing the same effect; screen quality is
still a major block on effective interaction.

The increase in RAM means that larger programs can be written, effectively allowing the
programmer ‘elbow room’. This is used in two ways: to allow extra functionality and to
support easier interaction. Whether the former really improves usability is debatable –
unused functionality is a good marketing point, but is of no benefit to the user. The
ease of use of a system is often determined by a host of small features, such as the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

120 Chapter 2 n The computer

appropriate choice of default options. These features make the interface seem ‘simple’,
but make the program very complex . . . and large. Certainly the availability of elbow room,
both in terms of memory and processing power, has made such features possible.

The increase in both short-term (RAM) and long-term (disks and optical storage) mem-
ory has also removed many of the arbitrary limits in systems: it is possible to edit docu-
ments of virtually unlimited size and to treat the computer (suitably backed up) as one’s
primary information repository.

Some whole new application areas have become possible because of advances in mem-
ory and processing. Most applications of multimedia including voice recognition and
online storage and capture of video and audio, require enormous amounts of process-
ing and/or memory. In particular, large magnetic and optical storage devices have been
the key to electronic document storage whereby all paper documents are scanned and
stored within a computer system. In some contexts such systems have completely
replaced paper-based filing cabinets.

SUMMARY

In Sections 2.2 and 2.3, we described a range of input devices. These performed
two main functions: text entry and pointing. The principal text entry device is the
QWERTY keyboard, but we also discussed alternative keyboards, chord keyboards,
the telephone keypad and speech input. Pointing devices included the mouse,
touchpad, trackball and joystick, as well as a large array of less common alternatives
including eyegaze systems.

Section 2.4 dealt mainly with the screen as a direct output device. We discussed
several different technologies, in particular CRT and LCD screens and the common
properties of all bitmap display devices. We considered some more recent display
methods including large displays, situated displays and digital paper.

Section 2.5 looked at the devices used for manipulating and seeing virtual reality
and 3D spaces. This included the dataglove, body tracking, head-mounted displays
and cave environments.

In Section 2.6 we moved outside the computer entirely and looked at physical
devices such as the special displays, knobs and switches of electronic appliances. We
also briefly considered sound, touch and smell as outputs from computer systems
and environmental and bio-sensing as inputs. These are topics that will be revisited
later in the book.

Section 2.7 discussed various forms of printer and scanner. Typical office printers
include ink-jet, bubble-jet and laser printers. In addition, dot-matrix and thermal
printers are used in specialized equipment. We also discussed font styles and page
description languages. Scanners are used to convert printed images and documents
into electronic form. They are particularly valuable in desktop publishing and for
electronic document storage systems.

2.10

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Exercises 121

In Section 2.8, we considered the typical capacities of computer memory, both of
main RAM, likened to human short-term memory, and long-term memory stored
on magnetic and optical disks. The storage capacities were compared with document
sizes and video images. We saw that a typical hard disk could only hold about two
minutes of moving video, but that compression techniques can increase the capacity
dramatically. We also discussed storage standards – or rather the lack of them –
including the ASCII character set and markup languages. The user ought to be able
to access information in ways that are natural and tolerant of small slips. Techniques
which can help this included multiple indices, free text databases, DWIM (do what
I mean) and Soundex.

Section 2.9 showed how processing speed, whether too slow or too fast, can affect
the user interface. In particular, we discussed the effects of buffering: cursor tracking
and icon wars. Processing speed is limited by various factors: computation, memory
access, graphics and network delays.

The lesson from this chapter is that the interface designer needs to be aware of the
properties of the devices with which a system is built. This includes not only input
and output devices, but all the factors that influence the behavior of the interface,
since all of these influence the nature and style of the interaction.

EXERCISES

2.1 Individually or in a group find as many different examples as you can of physical con-
trols and displays.

(a) List them.
(b) Try to group them, or classify them.
(c) Discuss whether you believe the control or display is suitable for its purpose (Section 3.9.3

may also help).

Exercises 2.2 and 2.3 involve you examining a range of input and output devices in order to understand
how they influence interaction.

2.2 A typical computer system comprises a QWERTY keyboard, a mouse and a color screen. There
is usually some form of loudspeaker as well. You should know how the keyboard, mouse and
screen work – if not, read up on it.

What sort of input does the keyboard support? What sort of input does the mouse support?
Are these adequate for all possible applications? If not, to which areas are they most suited?
Do these areas map well onto the typical requirements for users of computer systems?

If you were designing a keyboard for a modern computer, and you wanted to produce a faster,
easier-to-use layout, what information would you need to know and how would that influence
the design?

2.3 Pick a couple of computer input devices that you are aware of (joystick, light pen, touchscreen,
trackball, eyegaze, dataglove, etc.) and note down how each has different attributes that support
certain forms of interaction. You ought to know a little about all of these devices – if you don’t,
research them.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

RECOMMENDED READING

W. Buxton, There’s more to interaction than meets the eye: some issues in manual
input. In R. Baecker and W. Buxton, editors, Readings in Human–Computer
Interaction: A Multidisciplinary Approach, Morgan Kaufmann, 1987.

D. J. Mayhew, Principles and Guidelines in Software User Interface Design, Chapter 12,
Prentice Hall, 1992.
A look at input and output devices, complete with guidelines for using different
devices.

A. Dix, Network-based interaction. In J. Jacko and A. Sears, editors, Human–
Computer Interaction Handbook, Chapter 16, pp. 331–57, Lawrence Erlbaum,
2003.
Includes different kinds of network application and the effects of networks on
interaction including rich media. Also look at all of Part II of Jacko and Sears,
which includes chapters on input technology and on haptic interfaces.

2.4 What is the myth of the infinitely fast machine?

2.5 Pick one of the following scenarios, and choose a suitable combination of input and output devices
to best support the intended interaction. It may help to identify typical users or classes of user,
and identify how the devices chosen support these people in their tasks. Explain the major prob-
lems that the input and output devices solve.

(a) Environmental database
A computer database is under development that will hold environmental information. This ranges
from meteorological measurements through fish catches to descriptions of pollution, and will
include topographical details and sketches and photographs. The data has to be accessed only by
experts, but they want to be able to describe and retrieve any piece of data within a few seconds.

(b) Word processor for blind people
A word processor for blind users is needed, which can also be operated by sighted people. It has
to support the standard set of word-processing tasks.

2.6 Describe Fitts’ law (see Chapter 1). How does Fitts’ law change for different physical selection
devices, such as a three-button mouse, a touchpad, or a pen/stylus? (You’ll need to do some
research for this.)

122 Chapter 2 n The computer

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

THE INTERACTION

OV E RV I E W

n Interaction models help us to understand what is going
on in the interaction between user and system. They
address the translations between what the user wants
and what the system does.

n Ergonomics looks at the physical characteristics of the
interaction and how these influence its effectiveness.

n The dialog between user and system is influenced by
the style of the interface.

n The interaction takes place within a social and
organizational context that affects both user and
system.

3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

124 Chapter 3 n The interaction

INTRODUCTION

In the previous two chapters we have looked at the human and the computer respect-
ively. However, in the context of this book, we are not concerned with them in
isolation. We are interested in how the human user uses the computer as a tool to
perform, simplify or support a task. In order to do this the user must communicate
his requirements to the computer.

There are a number of ways in which the user can communicate with the system.
At one extreme is batch input, in which the user provides all the information to the
computer at once and leaves the machine to perform the task. This approach does
involve an interaction between the user and computer but does not support many
tasks well. At the other extreme are highly interactive input devices and paradigms,
such as direct manipulation (see Chapter 4) and the applications of virtual reality
(Chapter 20). Here the user is constantly providing instruction and receiving feed-
back. These are the types of interactive system we are considering.

In this chapter, we consider the communication between user and system: the
interaction. We will look at some models of interaction that enable us to identify and
evaluate components of the interaction, and at the physical, social and organiza-
tional issues that provide the context for it. We will also survey some of the different
styles of interaction that are used and consider how well they support the user.

MODELS OF INTERACTION

In previous chapters we have seen the usefulness of models to help us to under-
stand complex behavior and complex systems. Interaction involves at least two par-
ticipants: the user and the system. Both are complex, as we have seen, and are very
different from each other in the way that they communicate and view the domain
and the task. The interface must therefore effectively translate between them to allow
the interaction to be successful. This translation can fail at a number of points and
for a number of reasons. The use of models of interaction can help us to understand
exactly what is going on in the interaction and identify the likely root of difficulties.
They also provide us with a framework to compare different interaction styles and
to consider interaction problems.

We begin by considering the most influential model of interaction, Norman’s
execution–evaluation cycle; then we look at another model which extends the ideas
of Norman’s cycle. Both of these models describe the interaction in terms of the
goals and actions of the user. We will therefore briefly discuss the terminology
used and the assumptions inherent in the models, before describing the models
themselves.

3.2

3.1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.2 Models of interaction 125

3.2.1 The terms of interaction

Traditionally, the purpose of an interactive system is to aid a user in accomplishing
goals from some application domain. (Later in this book we will look at alternative
interactions but this model holds for many work-oriented applications.) A domain
defines an area of expertise and knowledge in some real-world activity. Some ex-
amples of domains are graphic design, authoring and process control in a factory.
A domain consists of concepts that highlight its important aspects. In a graphic
design domain, some of the important concepts are geometric shapes, a drawing
surface and a drawing utensil. Tasks are operations to manipulate the concepts of a
domain. A goal is the desired output from a performed task. For example, one task
within the graphic design domain is the construction of a specific geometric shape
with particular attributes on the drawing surface. A related goal would be to produce
a solid red triangle centered on the canvas. An intention is a specific action required
to meet the goal.

Task analysis involves the identification of the problem space (which we discussed
in Chapter 1) for the user of an interactive system in terms of the domain, goals,
intentions and tasks. We can use our knowledge of tasks and goals to assess the inter-
active system that is designed to support them. We discuss task analysis in detail
in Chapter 15. The concepts used in the design of the system and the description of
the user are separate, and so we can refer to them as distinct components, called the
System and the User, respectively. The System and User are each described by means
of a language that can express concepts relevant in the domain of the application.
The System’s language we will refer to as the core language and the User’s language
we will refer to as the task language. The core language describes computational
attributes of the domain relevant to the System state, whereas the task language
describes psychological attributes of the domain relevant to the User state.

The system is assumed to be some computerized application, in the context of this
book, but the models apply equally to non-computer applications. It is also a com-
mon assumption that by distinguishing between user and system we are restricted to
single-user applications. This is not the case. However, the emphasis is on the view
of the interaction from a single user’s perspective. From this point of view, other
users, such as those in a multi-party conferencing system, form part of the system.

3.2.2 The execution–evaluation cycle

Norman’s model of interaction is perhaps the most influential in Human–Computer
Interaction, possibly because of its closeness to our intuitive understanding of the
interaction between human user and computer [265]. The user formulates a plan of
action, which is then executed at the computer interface. When the plan, or part of
the plan, has been executed, the user observes the computer interface to evaluate the
result of the executed plan, and to determine further actions.

The interactive cycle can be divided into two major phases: execution and evalu-
ation. These can then be subdivided into further stages, seven in all. The stages in
Norman’s model of interaction are as follows:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

126 Chapter 3 n The interaction

1. Establishing the goal.
2. Forming the intention.
3. Specifying the action sequence.
4. Executing the action.
5. Perceiving the system state.
6. Interpreting the system state.
7. Evaluating the system state with respect to the goals and intentions.

Each stage is, of course, an activity of the user. First the user forms a goal. This is the
user’s notion of what needs to be done and is framed in terms of the domain, in the
task language. It is liable to be imprecise and therefore needs to be translated into
the more specific intention, and the actual actions that will reach the goal, before
it can be executed by the user. The user perceives the new state of the system, after
execution of the action sequence, and interprets it in terms of his expectations. If the
system state reflects the user’s goal then the computer has done what he wanted and
the interaction has been successful; otherwise the user must formulate a new goal
and repeat the cycle.

Norman uses a simple example of switching on a light to illustrate this cycle.
Imagine you are sitting reading as evening falls. You decide you need more light;
that is you establish the goal to get more light. From there you form an intention
to switch on the desk lamp, and you specify the actions required, to reach over and
press the lamp switch. If someone else is closer the intention may be different – you
may ask them to switch on the light for you. Your goal is the same but the intention
and actions are different. When you have executed the action you perceive the result,
either the light is on or it isn’t and you interpret this, based on your knowledge of
the world. For example, if the light does not come on you may interpret this as
indicating the bulb has blown or the lamp is not plugged into the mains, and you will
formulate new goals to deal with this. If the light does come on, you will evaluate
the new state according to the original goals – is there now enough light? If so, the
cycle is complete. If not, you may formulate a new intention to switch on the main
ceiling light as well.

Norman uses this model of interaction to demonstrate why some interfaces cause
problems to their users. He describes these in terms of the gulfs of execution and the
gulfs of evaluation. As we noted earlier, the user and the system do not use the same
terms to describe the domain and goals – remember that we called the language
of the system the core language and the language of the user the task language. The
gulf of execution is the difference between the user’s formulation of the actions to
reach the goal and the actions allowed by the system. If the actions allowed by the
system correspond to those intended by the user, the interaction will be effective.
The interface should therefore aim to reduce this gulf.

The gulf of evaluation is the distance between the physical presentation of the
system state and the expectation of the user. If the user can readily evaluate the
presentation in terms of his goal, the gulf of evaluation is small. The more effort
that is required on the part of the user to interpret the presentation, the less effective
the interaction.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.2 Models of interaction 127

Norman’s model is a useful means of understanding the interaction, in a way that
is clear and intuitive. It allows other, more detailed, empirical and analytic work
to be placed within a common framework. However, it only considers the system as
far as the interface. It concentrates wholly on the user’s view of the interaction.
It does not attempt to deal with the system’s communication through the interface.
An extension of Norman’s model, proposed by Abowd and Beale, addresses this
problem [3]. This is described in the next section.

3.2.3 The interaction framework

The interaction framework attempts a more realistic description of interaction by
including the system explicitly, and breaks it into four main components, as shown
in Figure 3.1. The nodes represent the four major components in an interactive sys-
tem – the System, the User, the Input and the Output. Each component has its own
language. In addition to the User’s task language and the System’s core language,
which we have already introduced, there are languages for both the Input and Output
components. Input and Output together form the Interface.

As the interface sits between the User and the System, there are four steps in the
interactive cycle, each corresponding to a translation from one component to
another, as shown by the labeled arcs in Figure 3.2. The User begins the interactive
cycle with the formulation of a goal and a task to achieve that goal. The only way
the user can manipulate the machine is through the Input, and so the task must be
articulated within the input language. The input language is translated into the core

Human error – slips and mistakes

Human errors are often classified into slips and mistakes. We can distinguish these using
Norman’s gulf of execution.

If you understand a system well you may know exactly what to do to satisfy your goals – you have
formulated the correct action. However, perhaps you mistype or you accidentally press the mouse
button at the wrong time. These are called slips; you have formulated the right action, but fail to
execute that action correctly.

However, if you don’t know the system well you may not even formulate the right goal. For ex-
ample, you may think that the magnifying glass icon is the ‘find’ function, but in fact it is to magnify
the text. This is called a mistake.

If we discover that an interface is leading to errors it is important to understand whether they are
slips or mistakes. Slips may be corrected by, for instance, better screen design, perhaps putting
more space between buttons. However, mistakes need users to have a better understanding of the
systems, so will require far more radical redesign or improved training, perhaps a totally different
metaphor for use.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

128 Chapter 3 n The interaction

language as operations to be performed by the System. The System then transforms
itself as described by the operations; the execution phase of the cycle is complete and
the evaluation phase now begins. The System is in a new state, which must now
be communicated to the User. The current values of system attributes are rendered
as concepts or features of the Output. It is then up to the User to observe the Output
and assess the results of the interaction relative to the original goal, ending the evalu-
ation phase and, hence, the interactive cycle. There are four main translations
involved in the interaction: articulation, performance, presentation and observation.

The User’s formulation of the desired task to achieve some goal needs to be articu-
lated in the input language. The tasks are responses of the User and they need to be
translated to stimuli for the Input. As pointed out above, this articulation is judged
in terms of the coverage from tasks to input and the relative ease with which the
translation can be accomplished. The task is phrased in terms of certain psycholo-
gical attributes that highlight the important features of the domain for the User. If
these psychological attributes map clearly onto the input language, then articulation
of the task will be made much simpler. An example of a poor mapping, as pointed

Figure 3.1 The general interaction framework

Figure 3.2 Translations between components

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.2 Models of interaction 129

out by Norman, is a large room with overhead lighting controlled by a bank of
switches. It is often desirable to control the lighting so that only one section of the
room is lit. We are then faced with the puzzle of determining which switch controls
which lights. The result is usually repeated trials and frustration. This arises from the
difficulty of articulating a goal (for example, ‘Turn on the lights in the front of the
room’) in an input language that consists of a linear row of switches, which may or
may not be oriented to reflect the room layout.

Conversely, an example of a good mapping is in virtual reality systems, where
input devices such as datagloves are specifically geared towards easing articulation
by making the user’s psychological notion of gesturing an act that can be directly
realized at the interface. Direct manipulation interfaces, such as those found on
common desktop operating systems like the Macintosh and Windows, make the
articulation of some file handling commands easier. On the other hand, some tasks,
such as repetitive file renaming or launching a program whose icon is not visible, are
not at all easy to articulate with such an interface.

At the next stage, the responses of the Input are translated to stimuli for the
System. Of interest in assessing this translation is whether the translated input lan-
guage can reach as many states of the System as is possible using the System stimuli
directly. For example, the remote control units for some compact disc players do not
allow the user to turn the power off on the player unit; hence the off state of the
player cannot be reached using the remote control’s input language. On the panel of
the compact disc player, however, there is usually a button that controls the power.
The ease with which this translation from Input to System takes place is of less import-
ance because the effort is not expended by the user. However, there can be a real
effort expended by the designer and programmer. In this case, the ease of the trans-
lation is viewed in terms of the cost of implementation.

Once a state transition has occurred within the System, the execution phase of
the interaction is complete and the evaluation phase begins. The new state of the
System must be communicated to the User, and this begins by translating the System
responses to the transition into stimuli for the Output component. This presentation
translation must preserve the relevant system attributes from the domain in the lim-
ited expressiveness of the output devices. The ability to capture the domain concepts
of the System within the Output is a question of expressiveness for this translation.

For example, while writing a paper with some word-processing package, it is
necessary at times to see both the immediate surrounding text where one is currently
composing, say, the current paragraph, and a wider context within the whole paper
that cannot be easily displayed on one screen (for example, the current chapter).

Ultimately, the user must interpret the output to evaluate what has happened. The
response from the Output is translated to stimuli for the User which trigger assess-
ment. The observation translation will address the ease and coverage of this final
translation. For example, it is difficult to tell the time accurately on an unmarked
analog clock, especially if it is not oriented properly. It is difficult in a command
line interface to determine the result of copying and moving files in a hierarchical
file system. Developing a website using a markup language like HTML would be
virtually impossible without being able to preview the output through a browser.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

130 Chapter 3 n The interaction

Assessing overall interaction

The interaction framework is presented as a means to judge the overall usability
of an entire interactive system. In reality, all of the analysis that is suggested by the
framework is dependent on the current task (or set of tasks) in which the User is
engaged. This is not surprising since it is only in attempting to perform a particular
task within some domain that we are able to determine if the tools we use are
adequate. For example, different text editors are better at different things. For
a particular editing task, one can choose the text editor best suited for interaction
relative to the task. The best editor, if we are forced to choose only one, is the
one that best suits the tasks most frequently performed. Therefore, it is not too
disappointing that we cannot extend the interaction analysis beyond the scope of
a particular task.

DESIGN FOCUS

Video recorder

A simple example of programming a VCR from a remote control shows that all four translations in the
interaction cycle can affect the overall interaction. Ineffective interaction is indicated by the user not
being sure the VCR is set to record properly. This could be because the user has pressed the keys on
the remote control unit in the wrong order; this can be classified as an articulatory problem. Or maybe
the VCR is able to record on any channel but the remote control lacks the ability to select channels,
indicating a coverage problem for the performance translation. It may be the case that the VCR display
panel does not indicate that the program has been set, a presentation problem. Or maybe the user does
not interpret the feedback properly, an observational error. Any one or more of these deficiencies
would give rise to ineffective interaction.

FRAMEWORKS AND HCI

As well as providing a means of discussing the details of a particular interaction,
frameworks provide a basis for discussing other issues that relate to the interaction.
The ACM SIGCHI Curriculum Development Group presents a framework similar to
that presented here, and uses it to place different areas that relate to HCI [9].

In Figure 3.3 these aspects are shown as they relate to the interaction framework.
In particular, the field of ergonomics addresses issues on the user side of the interface,
covering both input and output, as well as the user’s immediate context. Dialog
design and interface styles can be placed particularly along the input branch of the
framework, addressing both articulation and performance. However, dialog is most
usually associated with the computer and so is biased to that side of the framework.

3.3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.4 Ergonomics 131

Presentation and screen design relates to the output branch of the framework. The
entire framework can be placed within a social and organizational context that also
affects the interaction. Each of these areas has important implications for the design
of interactive systems and the performance of the user. We will discuss these in brief
in the following sections, with the exception of screen design which we will save until
Chapter 5.

ERGONOMICS

Ergonomics (or human factors) is traditionally the study of the physical character-
istics of the interaction: how the controls are designed, the physical environment in
which the interaction takes place, and the layout and physical qualities of the screen.
A primary focus is on user performance and how the interface enhances or detracts
from this. In seeking to evaluate these aspects of the interaction, ergonomics will
certainly also touch upon human psychology and system constraints. It is a large
and established field, which is closely related to but distinct from HCI, and full
coverage would demand a book in its own right. Here we consider a few of the issues
addressed by ergonomics as an introduction to the field. We will briefly look at the
arrangement of controls and displays, the physical environment, health issues and
the use of color. These are by no means exhaustive and are intended only to give an

3.4

Figure 3.3 A framework for human–computer interaction. Adapted from ACM
SIGCHI Curriculum Development Group [9]

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

132 Chapter 3 n The interaction

indication of the types of issues and problems addressed by ergonomics. For more
information on ergonomic issues the reader is referred to the recommended reading
list at the end of the chapter.

3.4.1 Arrangement of controls and displays

In Chapter 1 we considered perceptual and cognitive issues that affect the way
we present information on a screen and provide control mechanisms to the user.
In addition to these cognitive aspects of design, physical aspects are also important.
Sets of controls and parts of the display should be grouped logically to allow rapid
access by the user (more on this in Chapter 5). This may not seem so important
when we are considering a single user of a spreadsheet on a PC, but it becomes vital
when we turn to safety-critical applications such as plant control, aviation and air
traffic control. In each of these contexts, users are under pressure and are faced with
a huge range of displays and controls. Here it is crucial that the physical layout of
these be appropriate. Indeed, returning to the less critical PC application, inappro-
priate placement of controls and displays can lead to inefficiency and frustration.
For example, on one particular electronic newsreader, used by one of the authors,
the command key to read articles from a newsgroup (y) is directly beside the com-
mand key to unsubscribe from a newsgroup (u) on the keyboard. This poor design
frequently leads to inadvertent removal of newsgroups. Although this is recover-
able it wastes time and is annoying to the user. We saw similar examples in the
Introduction to this book including the MacOS X dock. We can therefore see that
appropriate layout is important in all applications.

We have already touched on the importance of grouping controls together logic-
ally (and keeping opposing controls separate). The exact organization that this will
suggest will depend on the domain and the application, but possible organizations
include the following:

functional controls and displays are organized so that those that are functionally
related are placed together;

sequential controls and displays are organized to reflect the order of their use in a
typical interaction (this may be especially appropriate in domains where a particu-
lar task sequence is enforced, such as aviation);

frequency controls and displays are organized according to how frequently they are
used, with the most commonly used controls being the most easily accessible.

In addition to the organization of the controls and displays in relation to each
other, the entire system interface must be arranged appropriately in relation to
the user’s position. So, for example, the user should be able to reach all controls
necessary and view all displays without excessive body movement. Critical displays
should be at eye level. Lighting should be arranged to avoid glare and reflection dis-
torting displays. Controls should be spaced to provide adequate room for the user to
manoeuvre.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.4 Ergonomics 133

DESIGN FOCUS

Industrial interfaces

The interfaces to office systems have changed dramatically since the 1980s. However, some care is
needed in transferring the idioms of office-based systems into the industrial domain. Office information
is primarily textual and slow varying, whereas industrial interfaces may require the rapid assimilation of
multiple numeric displays, each of which is varying in response to the environment. Furthermore, the
environmental conditions may rule out certain interaction styles (for example, the oil-soaked mouse).
Consequently, industrial interfaces raise some additional design issues rarely encountered in the office.

Glass interfaces vs. dials and knobs
The traditional machine interface consists of dials and knobs directly wired or piped to the equipment.
Increasingly, some or all of the controls are replaced with a glass interface, a computer screen through
which the equipment is monitored and controlled. Many of the issues are similar for the two kinds of
interface, but glass interfaces do have some special advantages and problems. For a complex system, a
glass interface can be both cheaper and more flexible, and it is easy to show the same information in
multiple forms (Figure 3.4). For example, a data value might be given both in a precise numeric field and
also in a quick to assimilate graphical form. In addition, the same information can be shown on several
screens. However, the information is not located in physical space and so vital clues to context are
missing – it is easy to get lost navigating complex menu systems. Also, limited display resolution often
means that an electronic representation of a dial is harder to read than its physical counterpart; in some
circumstances both may be necessary, as is the case on the flight deck of a modern aircraft.

Figure 3.4 Multiple representations of the same information

Indirect manipulation
The phrase ‘direct manipulation’ dominates office system design (Figure 3.5). There are arguments
about its meaning and appropriateness even there, but it is certainly dependent on the user being in
primary control of the changes in the interface. The autonomous nature of industrial processes makes
this an inappropriate model. In a direct manipulation system, the user interacts with an artificial world
inside the computer (for example, the electronic desktop).

In contrast, an industrial interface is merely an intermediary between the operator and the real
world. One implication of this indirectness is that the interface must provide feedback at two levels

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.4.2 The physical environment of the interaction

As well as addressing physical issues in the layout and arrangement of the machine
interface, ergonomics is concerned with the design of the work environment itself.
Where will the system be used? By whom will it be used? Will users be sitting, stand-
ing or moving about? Again, this will depend largely on the domain and will be more
critical in specific control and operational settings than in general computer use.
However, the physical environment in which the system is used may influence how
well it is accepted and even the health and safety of its users. It should therefore be
considered in all design.

The first consideration here is the size of the users. Obviously this is going to vary
considerably. However, in any system the smallest user should be able to reach all the
controls (this may include a user in a wheelchair), and the largest user should not be
cramped in the environment.

In particular, all users should be comfortably able to see critical displays. For long
periods of use, the user should be seated for comfort and stability. Seating should
provide back support. If required to stand, the user should have room to move
around in order to reach all the controls.

(Figure 3.6). At one level, the user must receive immediate feedback, generated by the interface, that
keystrokes and other actions have been received. In addition, the user’s actions will have some effect
on the equipment controlled by the interface and adequate monitoring must be provided for this.

The indirectness also causes problems with simple monitoring tasks. Delays due to periodic sampling,
slow communication and digital processing often mean that the data displayed are somewhat out
of date. If the operator is not aware of these delays, diagnoses of system state may be wrong. These
problems are compounded if the interface produces summary information displays. If the data com-
prising such a display are of different timeliness the result may be misleading.

134 Chapter 3 n The interaction

Figure 3.5 Office system – direct manipulation

Figure 3.6 Indirect manipulation – two kinds of feedback

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.4 Ergonomics 135

3.4.3 Health issues

Perhaps we do not immediately think of computer use as a hazardous activity but we
should bear in mind possible consequences of our designs on the health and safety
of users. Leaving aside the obvious safety risks of poorly designed safety-critical sys-
tems (aircraft crashing, nuclear plant leaks and worse), there are a number of factors
that may affect the use of more general computers. Again these are factors in the
physical environment that directly affect the quality of the interaction and the user’s
performance:

Physical position As we noted in the previous section, users should be able to reach
all controls comfortably and see all displays. Users should not be expected to
stand for long periods and, if sitting, should be provided with back support.
If a particular position for a part of the body is to be adopted for long periods
(for example, in typing) support should be provided to allow rest.

Temperature Although most users can adapt to slight changes in temperature
without adverse effect, extremes of hot or cold will affect performance and, in
excessive cases, health. Experimental studies show that performance deteriorates
at high or low temperatures, with users being unable to concentrate efficiently.

Lighting The lighting level will again depend on the work environment. However,
adequate lighting should be provided to allow users to see the computer screen
without discomfort or eyestrain. The light source should also be positioned to
avoid glare affecting the display.

Noise Excessive noise can be harmful to health, causing the user pain, and in acute
cases, loss of hearing. Noise levels should be maintained at a comfortable level in
the work environment. This does not necessarily mean no noise at all. Noise can
be a stimulus to users and can provide needed confirmation of system activity.

Time The time users spend using the system should also be controlled. As we saw
in the previous chapter, it has been suggested that excessive use of CRT displays
can be harmful to users, particularly pregnant women.

3.4.4 The use of color

In this section we have concentrated on the ergonomics of physical characteristics
of systems, including the physical environment in which they are used. However,
ergonomics has a close relationship to human psychology in that it is also con-
cerned with the perceptual limitations of humans. For example, the use of color
in displays is an ergonomics issue. As we saw in Chapter 1, the visual system has
some limitations with regard to color, including the number of colors that are dis-
tinguishable and the relatively low blue acuity. We also saw that a relatively high
proportion of the population suffers from a deficiency in color vision. Each of these
psychological phenomena leads to ergonomic guidelines; some examples are dis-
cussed below.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

136 Chapter 3 n The interaction

Colors used in the display should be as distinct as possible and the distinction
should not be affected by changes in contrast. Blue should not be used to display
critical information. If color is used as an indicator it should not be the only cue:
additional coding information should be included.

The colors used should also correspond to common conventions and user expecta-
tions. Red, green and yellow are colors frequently associated with stop, go and
standby respectively. Therefore, red may be used to indicate emergency and alarms;
green, normal activity; and yellow, standby and auxiliary function. These conven-
tions should not be violated without very good cause.

However, we should remember that color conventions are culturally determined.
For example, red is associated with danger and warnings in most western cultures,
but in China it symbolizes happiness and good fortune. The color of mourning is
black in some cultures and white in others. Awareness of the cultural associations of
color is particularly important in designing systems and websites for a global market.
We will return to these issues in more detail in Chapter 10.

3.4.5 Ergonomics and HCI

Ergonomics is a huge area, which is distinct from HCI but sits alongside it.
Its contribution to HCI is in determining constraints on the way we design systems
and suggesting detailed and specific guidelines and standards. Ergonomic factors are
in general well established and understood and are therefore used as the basis for
standardizing hardware designs. This issue is discussed further in Chapter 7.

INTERACTION STYLES

Interaction can be seen as a dialog between the computer and the user. The choice of
interface style can have a profound effect on the nature of this dialog. Dialog design
is discussed in detail in Chapter 16. Here we introduce the most common interface
styles and note the different effects these have on the interaction. There are a num-
ber of common interface styles including

n command line interface
n menus
n natural language
n question/answer and query dialog
n form-fills and spreadsheets
n WIMP
n point and click
n three-dimensional interfaces.

As the WIMP interface is the most common and complex, we will discuss each of its
elements in greater detail in Section 3.6.

3.5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.5 Interaction styles 137

3.5.1 Command line interface

The command line interface (Figure 3.7) was the first interactive dialog style to be
commonly used and, in spite of the availability of menu-driven interfaces, it is still
widely used. It provides a means of expressing instructions to the computer directly,
using function keys, single characters, abbreviations or whole-word commands. In
some systems the command line is the only way of communicating with the system,
especially for remote access using telnet. More commonly today it is supplementary
to menu-based interfaces, providing accelerated access to the system’s functionality
for experienced users.

Command line interfaces are powerful in that they offer direct access to system
functionality (as opposed to the hierarchical nature of menus), and can be combined
to apply a number of tools to the same data. They are also flexible: the command
often has a number of options or parameters that will vary its behavior in some way,
and it can be applied to many objects at once, making it useful for repetitive tasks.
However, this flexibility and power brings with it difficulty in use and learning.
Commands must be remembered, as no cue is provided in the command line to
indicate which command is needed. They are therefore better for expert users than
for novices. This problem can be alleviated a little by using consistent and meaning-
ful commands and abbreviations. The commands used should be terms within the
vocabulary of the user rather than the technician. Unfortunately, commands are
often obscure and vary across systems, causing confusion to the user and increasing
the overhead of learning.

3.5.2 Menus

In a menu-driven interface, the set of options available to the user is displayed
on the screen, and selected using the mouse, or numeric or alphabetic keys. Since
the options are visible they are less demanding of the user, relying on recognition
rather than recall. However, menu options still need to be meaningful and logic-
ally grouped to aid recognition. Often menus are hierarchically ordered and the
option required is not available at the top layer of the hierarchy. The grouping

sable.soc.staffs.ac.uk> javac HelloWorldApp

javac: invalid argument: HelloWorldApp

use: javac [-g][-O][-classpath path][-d dir] file.java…

sable.soc.staffs.ac.uk> javac HelloWorldApp.java

sable.soc.staffs.ac.uk> java HelloWorldApp

Hello world!!

sable.soc.staffs.ac.uk>

Figure 3.7 Command line interface

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

138 Chapter 3 n The interaction

and naming of menu options then provides the only cue for the user to find the
required option. Such systems either can be purely text based, with the menu
options being presented as numbered choices (see Figure 3.8), or may have a
graphical component in which the menu appears within a rectangular box and
choices are made, perhaps by typing the initial letter of the desired selection, or
by entering the associated number, or by moving around the menu with the arrow
keys. This is a restricted form of a full WIMP system, described in more detail
shortly.

3.5.3 Natural language

Perhaps the most attractive means of communicating with computers, at least at first
glance, is by natural language. Users, unable to remember a command or lost in a
hierarchy of menus, may long for the computer that is able to understand instruc-
tions expressed in everyday words! Natural language understanding, both of speech
and written input, is the subject of much interest and research. Unfortunately,
however, the ambiguity of natural language makes it very difficult for a machine
to understand. Language is ambiguous at a number of levels. First, the syntax, or
structure, of a phrase may not be clear. If we are given the sentence

The boy hit the dog with the stick

we cannot be sure whether the boy is using the stick to hit the dog or whether the
dog is holding the stick when it is hit.

Even if a sentence’s structure is clear, we may find ambiguity in the meaning of
the words used. For example, the word ‘pitch’ may refer to a sports field, a throw,
a waterproofing substance or even, colloquially, a territory. We often rely on the con-
text and our general knowledge to sort out these ambiguities. This information is
difficult to provide to the machine. To complicate matters more, the use of pronouns
and relative terms adds further ambiguity.

PAYMENT DETAILS P3-7

please select payment method:

1. cash

2. check

3. credit card

4. invoice

9. abort transaction

Figure 3.8 Menu-driven interface

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.5 Interaction styles 139

Given these problems, it seems unlikely that a general natural language inter-
face will be available for some time. However, systems can be built to understand
restricted subsets of a language. For a known and constrained domain, the system
can be provided with sufficient information to disambiguate terms. It is important
in interfaces which use natural language in this restricted form that the user is aware
of the limitations of the system and does not expect too much understanding.

The use of natural language in restricted domains is relatively successful, but
it is debatable whether this can really be called natural language. The user still has
to learn which phrases the computer understands and may become frustrated if
too much is expected. However, it is also not clear how useful a general natural
language interface would be. Language is by nature vague and imprecise: this gives
it its flexibility and allows creativity in expression. Computers, on the other hand,
require precise instructions. Given a free rein, would we be able to describe our
requirements precisely enough to guarantee a particular response? And, if we could,
would the language we used turn out to be a restricted subset of natural language
anyway?

3.5.4 Question/answer and query dialog

Question and answer dialog is a simple mechanism for providing input to an applica-
tion in a specific domain. The user is asked a series of questions (mainly with yes/no
responses, multiple choice, or codes) and so is led through the interaction step by
step. An example of this would be web questionnaires.

These interfaces are easy to learn and use, but are limited in functionality and
power. As such, they are appropriate for restricted domains (particularly informa-
tion systems) and for novice or casual users.

Query languages, on the other hand, are used to construct queries to retrieve
information from a database. They use natural-language-style phrases, but in fact
require specific syntax, as well as knowledge of the database structure. Queries
usually require the user to specify an attribute or attributes for which to search
the database, as well as the attributes of interest to be displayed. This is straight-
forward where there is a single attribute, but becomes complex when multiple
attributes are involved, particularly if the user is interested in attribute A or attribute
B, or attribute A and not attribute B, or where values of attributes are to be com-
pared. Most query languages do not provide direct confirmation of what was
requested, so that the only validation the user has is the result of the search. The
effective use of query languages therefore requires some experience. A specialized
example is the web search engine.

3.5.5 Form-fills and spreadsheets

Form-filling interfaces are used primarily for data entry but can also be useful in
data retrieval applications. The user is presented with a display resembling a paper

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

140 Chapter 3 n The interaction

form, with slots to fill in (see Figure 3.9). Often the form display is based upon
an actual form with which the user is familiar, which makes the interface easier to
use. The user works through the form, filling in appropriate values. The data are
then entered into the application in the correct place. Most form-filling interfaces
allow easy movement around the form and allow some fields to be left blank. They
also require correction facilities, as users may change their minds or make a mistake
about the value that belongs in each field. The dialog style is useful primarily for
data entry applications and, as it is easy to learn and use, for novice users. How-
ever, assuming a design that allows flexible entry, form filling is also appropriate for
expert users.

Spreadsheets are a sophisticated variation of form filling. The spreadsheet com-
prises a grid of cells, each of which can contain a value or a formula (see Figure 3.10).
The formula can involve the values of other cells (for example, the total of all cells
in this column). The user can enter and alter values and formulae in any order
and the system will maintain consistency amongst the values displayed, ensuring
that all formulae are obeyed. The user can therefore manipulate values to see the
effects of changing different parameters. Spreadsheets are an attractive medium
for interaction: the user is free to manipulate values at will and the distinc-
tion between input and output is blurred, making the interface more flexible and
natural.

Figure 3.9 A typical form-filling interface. Screen shot frame reprinted by
permission from Microsoft Corporation

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.5 Interaction styles 141

3.5.6 The WIMP interface

Currently many common environments for interactive computing are examples of
the WIMP interface style, often simply called windowing systems. WIMP stands for
windows, icons, menus and pointers (sometimes windows, icons, mice and pull-down
menus), and is the default interface style for the majority of interactive computer sys-
tems in use today, especially in the PC and desktop workstation arena. Examples of
WIMP interfaces include Microsoft Windows for IBM PC compatibles, MacOS for
Apple Macintosh compatibles and various X Windows-based systems for UNIX.

Figure 3.10 A typical spreadsheet

Mixing styles

The UNIX windowing environments are interesting as the contents of many of the windows
are often themselves simply command line or character-based programs (see Figure 3.11). In fact,
this mixing of interface styles in the same system is quite common, especially where older legacy
systems are used at the same time as more modern applications. It can be a problem if users
attempt to use commands and methods suitable for one environment in another. On the Apple
Macintosh, HyperCard uses a point-and-click style. However, HyperCard stack buttons look
very like Macintosh folders. If you double click on them, as you would to open a folder, your two
mouse clicks are treated as separate actions. The first click opens the stack (as you wanted), but
the second is then interpreted in the context of the newly opened stack, behaving in an apparently
arbitrary fashion! This is an example of the importance of consistency in the interface, an issue we
shall return to in Chapter 7.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

142 Chapter 3 n The interaction

3.5.7 Point-and-click interfaces

In most multimedia systems and in web browsers, virtually all actions take only a
single click of the mouse button. You may point at a city on a map and when you click
a window opens, showing you tourist information about the city. You may point at
a word in some text and when you click you see a definition of the word. You may
point at a recognizable iconic button and when you click some action is performed.

This point-and-click interface style is obviously closely related to the WIMP style.
It clearly overlaps in the use of buttons, but may also include other WIMP elements.
However, the philosophy is simpler and more closely tied to ideas of hypertext.
In addition, the point-and-click style is not tied to mouse-based interfaces, and is
also extensively used in touchscreen information systems. In this case, it is often
combined with a menu-driven interface.

The point-and-click style has been popularized by world wide web pages, which
incorporate all the above types of point-and-click navigation: highlighted words,
maps and iconic buttons.

3.5.8 Three-dimensional interfaces

There is an increasing use of three-dimensional effects in user interfaces. The most
obvious example is virtual reality, but VR is only part of a range of 3D techniques
available to the interface designer.

Figure 3.11 A typical UNIX windowing system – the OpenLook system.
Source: Sun Microsystems, Inc.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.5 Interaction styles 143

The simplest technique is where ordinary WIMP elements, buttons, scroll bars, etc.,
are given a 3D appearance using shading, giving the appearance of being sculpted out
of stone. By unstated convention, such interfaces have a light source at their top
right. Where used judiciously, the raised areas are easily identifiable and can be used
to highlight active areas (Figure 3.12). Unfortunately, some interfaces make indis-
criminate use of sculptural effects, on every text area, border and menu, so all sense
of differentiation is lost.

A more complex technique uses interfaces with 3D workspaces. The objects
displayed in such systems are usually flat, but are displayed in perspective when at an
angle to the viewer and shrink when they are ‘further away’. Figure 3.13 shows one
such system, WebBook [57]. Notice how size, light and occlusion provide a sense of

Figure 3.12 Buttons in 3D say ‘press me’

Figure 3.13 WebBook – using 3D to make more space (Card S.K., Robertson G.G.
and York W. (1996). The WebBook and the Web Forager: An Information workspace
for the World-Wide Web. CHI96 Conference Proceedings, 111–17. Copyright © 1996
ACM, Inc. Reprinted by permission)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

144 Chapter 3 n The interaction

distance. Notice also that as objects get further away they take up less screen space.
Three-dimensional workspaces give you extra space, but in a more natural way than
iconizing windows.

Finally, there are virtual reality and information visualization systems where the
user can move about within a simulated 3D world. These are discussed in detail in
Chapter 20.

These mechanisms overlap with other interaction styles, especially the use of
sculptured elements in WIMP interfaces. However, there is a distinct interaction
style for 3D interfaces in that they invite us to use our tacit abilities for the real world,
and translate them into the electronic world. Novice users must learn that an oval
area with a word or picture in it is a button to be pressed, but a 3D button says ‘push
me’. Further, more complete 3D environments invite one to move within the virtual
environment, rather than watch as a spectator.

DESIGN FOCUS

Navigation in 3D and 2D

We live in a three-dimensional world. So clearly 3D interfaces are good . . . or are they? Actually, our
3D stereo vision only works well close to us and after that we rely on cruder measures such as ‘this is
in front of that’. We are good at moving obects around with our hands in three dimensions, rotating,
turning them on their side. However, we walk around in two dimensions and do not fly. Not surpris-
ingly, people find it hard to visualize and control movement in three dimensions.

Normally, we use gravity to give us a fixed direction in space. This is partly through the channels in the
inner ear, but also largely through kinesthetic senses – feeling the weight of limbs. When we lose these
senses it is easy to become disoriented and we can lose track of which direction is up: divers are trained
to watch the direction their bubbles move and if buried in an avalanche you should spit and feel which
direction the spittle flows.

Where humans have to navigate in three dimensions they need extra aids such as the artificial horizon
in an airplane. Helicopters, where there are many degrees of freedom, are particularly difficult.

Even in the two-dimensional world of walking about we do not rely on
neat Cartesian maps in our head. Instead we mostly use models of location
such as ‘down the road near the church’ that rely on approximate topolo-
gical understanding and landmarks. We also rely on properties of normal
space, such as the ability to go backwards and the fact that things that are
close can be reached quickly. When two-dimensional worlds are not like
this, for example in a one-way traffic system or in a labyrinth, we have great
difficulty [98].

When we design systems we should take into account how people navigate in the real world and use
this to guide our navigation aids. For example, if we have a 3D interface or a virtual reality world we
should normally show a ground plane and by default lock movement to be parallel to the ground. In
information systems we can recruit our more network-based models of 2D space by giving landmarks
and making it as easy to ‘step back’ as to go forwards (as with the web browser ‘back’ button).

See the book website for more about 3D vision: /e3/online/seeing-3D/

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.6 Elements of the WIMP interface 145

ELEMENTS OF THE WIMP INTERFACE

We have already noted the four key features of the WIMP interface that give it its
name – windows, icons, pointers and menus – and we will now describe these in
turn. There are also many additional interaction objects and techniques commonly
used in WIMP interfaces, some designed for specific purposes and others more
general. We will look at buttons, toolbars, palettes and dialog boxes. Most of these
elements can be seen in Figure 3.14.

Together, these elements of the WIMP interfaces are called widgets, and they com-
prise the toolkit for interaction between user and system. In Chapter 8 we will
describe windowing systems and interaction widgets more from the programmer’s
perspective. There we will discover that though most modern windowing systems
provide the same set of basic widgets, the ‘look and feel’ – how widgets are physically
displayed and how users can interact with them to access their functionality – of dif-
ferent windowing systems and toolkits can differ drastically.

3.6.1 Windows
Windows are areas of the screen that behave as if they were independent terminals
in their own right. A window can usually contain text or graphics, and can be moved

3.6

Figure 3.14 Elements of the WIMP interface – Microsoft Word 5.1 on an Apple Macintosh. Screen shot
reprinted by permission from Apple Computer, Inc.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

146 Chapter 3 n The interaction

or resized. More than one window can be on a screen at once, allowing separate
tasks to be visible at the same time. Users can direct their attention to the different
windows as they switch from one thread of work to another.

If one window overlaps the other, the back window is partially obscured, and
then refreshed when exposed again. Overlapping windows can cause problems
by obscuring vital information, so windows may also be tiled, when they adjoin
but do not overlap each other. Alternatively, windows may be placed in a cascading
fashion, where each new window is placed slightly to the left and below the previous
window. In some systems this layout policy is fixed, in others it can be selected by the
user.

Usually, windows have various things associated with them that increase their use-
fulness. Scrollbars are one such attachment, allowing the user to move the contents
of the window up and down, or from side to side. This makes the window behave as
if it were a real window onto a much larger world, where new information is brought
into view by manipulating the scrollbars.

There is usually a title bar attached to the top of a window, identifying it to the
user, and there may be special boxes in the corners of the window to aid resizing,
closing, or making as large as possible. Each of these can be seen in Figure 3.15.

In addition, some systems allow windows within windows. For example, in
Microsoft Office applications, such as Excel and Word, each application has its own
window and then within this each document has a window. It is often possible to
have different layout policies within the different application windows.

Figure 3.15 A typical window. Screen shot reprinted by permission from
Apple Computer, Inc.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.6 Elements of the WIMP interface 147

3.6.2 Icons

Windows can be closed and lost for ever, or they can be shrunk to some very reduced
representation. A small picture is used to represent a closed window, and this repre-
sentation is known as an icon. By allowing icons, many windows can be available on
the screen at the same time, ready to be expanded to their full size by clicking on the
icon. Shrinking a window to its icon is known as iconifying the window. When a user
temporarily does not want to follow a particular thread of dialog, he can suspend
that dialog by iconifying the window containing the dialog. The icon saves space on
the screen and serves as a reminder to the user that he can subsequently resume the
dialog by opening up the window. Figure 3.16 shows a few examples of some icons
used in a typical windowing system (MacOS X).

Icons can also be used to represent other aspects of the system, such as a waste-
basket for throwing unwanted files into, or various disks, programs or functions that
are accessible to the user. Icons can take many forms: they can be realistic represen-
tations of the objects that they stand for, or they can be highly stylized. They can even
be arbitrary symbols, but these can be difficult for users to interpret.

3.6.3 Pointers

The pointer is an important component of the WIMP interface, since the interaction
style required by WIMP relies very much on pointing and selecting things such as
icons. The mouse provides an input device capable of such tasks, although joysticks
and trackballs are other alternatives, as we have previously seen in Chapter 2. The
user is presented with a cursor on the screen that is controlled by the input device.
A variety of pointer cursors are shown in Figure 3.17.

Figure 3.16 A variety of icons. Screen shot reprinted by permission from
Apple Computer, Inc.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

148 Chapter 3 n The interaction

The different shapes of cursor are often used to distinguish modes, for example the
normal pointer cursor may be an arrow, but change to cross-hairs when drawing a
line. Cursors are also used to tell the user about system activity, for example a watch
or hour-glass cursor may be displayed when the system is busy reading a file.

Pointer cursors are like icons, being small bitmap images, but in addition all cur-
sors have a hot-spot, the location to which they point. For example, the three arrows
at the start of Figure 3.17 each have a hot-spot at the top left, whereas the right-
pointing hand on the second line has a hot-spot on its right. Sometimes the hot-spot
is not clear from the appearance of the cursor, in which case users will find it hard to
click on small targets. When designing your own cursors, make sure the image has
an obvious hot-spot.

3.6.4 Menus

The last main feature of windowing systems is the menu, an interaction technique
that is common across many non-windowing systems as well. A menu presents a
choice of operations or services that can be performed by the system at a given time.
In Chapter 1, we pointed out that our ability to recall information is inferior to our
ability to recognize it from some visual cue. Menus provide information cues in the
form of an ordered list of operations that can be scanned. This implies that the
names used for the commands in the menu should be meaningful and informative.

The pointing device is used to indicate the desired option. As the pointer moves
to the position of a menu item, the item is usually highlighted (by inverse video,
or some similar strategy) to indicate that it is the potential candidate for selection.
Selection usually requires some additional user action, such as pressing a button on
the mouse that controls the pointer cursor on the screen or pressing some special
key on the keyboard. Menus are inefficient when they have too many items, and so
cascading menus are utilized, in which item selection opens up another menu adja-
cent to the item, allowing refinement of the selection. Several layers of cascading
menus can be used.

Figure 3.17 A variety of pointer cursors. Source: Sun Microsystems, Inc.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.6 Elements of the WIMP interface 149

The main menu can be visible to the user all the time, as a menu bar and submenus
can be pulled down or across from it upon request (Figure 3.18). Menu bars are
often placed at the top of the screen (for example, MacOS) or at the top of each
window (for example, Microsoft Windows). Alternatives include menu bars along
one side of the screen, or even placed amongst the windows in the main ‘desktop’
area. Websites use a variety of menu bar locations, including top, bottom and either
side of the screen. Alternatively, the main menu can be hidden and upon request it
will pop up onto the screen. These pop-up menus are often used to present context-
sensitive options, for example allowing one to examine properties of particular
on-screen objects. In some systems they are also used to access more global actions
when the mouse is depressed over the screen background.

Pull-down menus are dragged down from the title at the top of the screen, by
moving the mouse pointer into the title bar area and pressing the button. Fall-down
menus are similar, except that the menu automatically appears when the mouse
pointer enters the title bar, without the user having to press the button. Some menus
are pin-up menus, in that they can be ‘pinned’ to the screen, staying in place until
explicitly asked to go away. Pop-up menus appear when a particular region of the
screen, maybe designated by an icon, is selected, but they only stay as long as the
mouse button is depressed.

Another approach to menu selection is to arrange the options in a circular
fashion. The pointer appears in the center of the circle, and so there is the same
distance to travel to any of the selections. This has the advantages that it is easier to
select items, since they can each have a larger target area, and that the selection time
for each item is the same, since the pointer is equidistant from them all. Compare
this with a standard menu: remembering Fitts’ law from Chapter 1, we can see that
it will take longer to select items near the bottom of the menu than at the top.
However, these pie menus, as they are known [54], take up more screen space and are
therefore less common in interfaces.

Figure 3.18 Pull-down menu

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

150 Chapter 3 n The interaction

The major problems with menus in general are deciding what items to include
and how to group those items. Including too many items makes menus too long or
creates too many of them, whereas grouping causes problems in that items that relate
to the same topic need to come under the same heading, yet many items could be
grouped under more than one heading. In pull-down menus the menu label should
be chosen to reflect the function of the menu items, and items grouped within menus
by function. These groupings should be consistent across applications so that the
user can transfer learning to new applications. Menu items should be ordered in the
menu according to importance and frequency of use, and opposite functionalities
(such as ‘save’ and ‘delete’) should be kept apart to prevent accidental selection of the
wrong function, with potentially disastrous consequences.

3.6.5 Buttons

Buttons are individual and isolated regions within a display that can be selected
by the user to invoke specific operations. These regions are referred to as buttons
because they are purposely made to resemble the push buttons you would find on
a control panel. ‘Pushing’ the button invokes a command, the meaning of which
is usually indicated by a textual label or a small icon. Buttons can also be used to
toggle between two states, displaying status information such as whether the current
font is italicized or not in a word processor, or selecting options on a web form. Such
toggle buttons can be grouped together to allow a user to select one feature from a
set of mutually exclusive options, such as the size in points of the current font. These
are called radio buttons, since the collection functions much like the old-fashioned
mechanical control buttons on car radios. If a set of options is not mutually exclus-
ive, such as font characteristics like bold, italics and underlining, then a set of
toggle buttons can be used to indicate the on/off status of the options. This type of
collection of buttons is sometimes referred to as check boxes.

Keyboard accelerators

Menus often offer keyboard accelerators, key combinations that have the same effect as selecting
the menu item. This allows more expert users, familiar with the system, to manipulate things with-
out moving off the keyboard, which is often faster. The accelerators are often displayed alongside
the menu items so that frequent use makes them familiar. Unfortunately most systems do not
allow you to use the accelerators while the menu is displayed. So, for example, the menu might say

However, when the user presses function key F3 nothing happens. F3 only works when the menu
is not displayed – when the menu is there you must press ‘F’ instead! This is an example of an inter-
face that is dishonest (see also Chapter 7).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.6 Elements of the WIMP interface 151

3.6.6 Toolbars

Many systems have a collection of small buttons, each with icons, placed at the top
or side of the window and offering commonly used functions. The function of this
toolbar is similar to a menu bar, but as the icons are smaller than the equivalent
text more functions can be simultaneously displayed. Sometimes the content of the
toolbar is fixed, but often users can customize it, either changing which functions are
made available, or choosing which of several predefined toolbars is displayed.

DESIGN FOCUS

Learning toolbars

Although many applications now have toolbars, they are often underused because users simply do not
know what the icons represent. Once learned the meaning is often relatively easy to remember, but
most users do not want to spend time reading a manual, or even using online help to find out what
each button does – they simply reach for the menu.

There is an obvious solution – put the icons on the menus in the same way that accelerator keys are
written there. So in the ‘Edit’ menu one might find the option

Imagine now selecting this. As the mouse drags down through the menu selections, each highlights in
turn. If the mouse is dragged down the extreme left, the effect will be very similar to selecting the icon
from the toolbar, except that it will be incidental to selecting the menu item. In this way, the toolbar
icon will be naturally learned from normal menu interaction.

Selecting the menu option = selecting the icon

This trivial fix is based on accepted and tested knowledge of learning and has been described in more
detail by one of the authors elsewhere [95]. Given its simplicity, this technique should clearly be used
everywhere, but until recently was rare. However, it has now been taken up in the Office 97 suite and
later Microsoft Office products, so perhaps will soon become standard.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

152 Chapter 3 n The interaction

3.6.7 Palettes

In many application programs, interaction can enter one of several modes. The
defining characteristic of modes is that the interpretation of actions, such as
keystrokes or gestures with the mouse, changes as the mode changes. For example,
using the standard UNIX text editor vi, keystrokes can be interpreted either as
operations to insert characters in the document (insert mode) or as operations to
perform file manipulation (command mode). Problems occur if the user is not
aware of the current mode. Palettes are a mechanism for making the set of possible
modes and the active mode visible to the user. A palette is usually a collection of
icons that are reminiscent of the purpose of the various modes. An example in a
drawing package would be a collection of icons to indicate the pixel color or pattern
that is used to fill in objects, much like an artist’s palette for paint.

Some systems allow the user to create palettes from menus or toolbars. In the case
of pull-down menus, the user may be able ‘tear off ’ the menu, turning it into a palette
showing the menu items. In the case of toolbars, he may be able to drag the toolbar
away from its normal position and place it anywhere on the screen. Tear-off menus
are usually those that are heavily graphical anyway, for example line-style or color
selection in a drawing package.

3.6.8 Dialog boxes

Dialog boxes are information windows used by the system to bring the user’s atten-
tion to some important information, possibly an error or a warning used to prevent
a possible error. Alternatively, they are used to invoke a subdialog between user and
system for a very specific task that will normally be embedded within some larger
task. For example, most interactive applications result in the user creating some
file that will have to be named and stored within the filing system. When the user or
system wants to save the file, a dialog box can be used to allow the user to name
the file and indicate where it is to be located within the filing system. When the save
subdialog is complete, the dialog box will disappear. Just as windows are used to
separate the different threads of user–system dialog, so too are dialog boxes used to
factor out auxiliary task threads from the main task dialog.

INTERACTIVITY

When looking at an interface, it is easy to focus on the visually distinct parts (the but-
tons, menus, text areas) but the dynamics, the way they react to a user’s actions, are
less obvious. Dialog design, discussed in Chapter 16, is focussed almost entirely on
the choice and specification of appropriate sequences of actions and corresponding
changes in the interface state. However, it is typically not used at a fine level of detail
and deliberately ignores the ‘semantic’ level of an interface: for example, the valida-
tion of numeric information in a forms-based system.

3.7Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.7 Interactivity 153

It is worth remembering that interactivity is the defining feature of an interactive
system. This can be seen in many areas of HCI. For example, the recognition rate
for speech recognition is too low to allow transcription from tape, but in an airline
reservation system, so long as the system can reliably recognize yes and no it can
reflect back its understanding of what you said and seek confirmation. Speech-based
input is difficult, speech-based interaction easier. Also, in the area of information
visualization the most exciting developments are all where users can interact with a
visualization in real time, changing parameters and seeing the effect.

Interactivity is also crucial in determining the ‘feel’ of a WIMP environment. All
WIMP systems appear to have virtually the same elements: windows, icons, menus,
pointers, dialog boxes, buttons, etc. However, the precise behavior of these elements
differs both within a single environment and between environments. For example,
we have already discussed the different behavior of pull-down and fall-down menus.
These look the same, but fall-down menus are more easily invoked by accident (and
not surprisingly the windowing environments that use them have largely fallen into
disuse!). In fact, menus are a major difference between the MacOS and Microsoft
Windows environments: in MacOS you have to keep the mouse depressed through-
out menu selection; in Windows you can click on the menu bar and a pull-down
menu appears and remains there until an item is selected or it is cancelled. Similarly
the detailed behavior of buttons is quite complex, as we shall see in Chapter 17.

In older computer systems, the order of interaction was largely determined by the
machine. You did things when the computer was ready. In WIMP environments, the
user takes the initiative, with many options and often many applications simultan-
eously available. The exceptions to this are pre-emptive parts of the interface, where
the system for various reasons wrests the initiative away from the user, perhaps
because of a problem or because it needs information in order to continue.

The major example of this is modal dialog boxes. It is often the case that when a
dialog box appears the application will not allow you to do anything else until the
dialog box has been completed or cancelled. In some cases this may simply block the
application, but you can perform tasks in other applications. In other cases you can
do nothing at all until the dialog box has been completed. An especially annoying
example is when the dialog box asks a question, perhaps simply for confirmation of
an action, but the information you need to answer is hidden by the dialog box!

There are occasions when modal dialog boxes are necessary, for example when
a major fault has been detected, or for certain kinds of instructional software.
However, the general philosophy of modern systems suggests that one should mini-
mize the use of pre-emptive elements, allowing the user maximum flexibility.

Interactivity is also critical in dealing with errors. We discussed slips and mistakes
earlier in the chapter, and some ways to try to prevent these types of errors. The other
way to deal with errors is to make sure that the user or the system is able to tell when
errors have occurred. If users can detect errors then they can correct them. So, even
if errors occur, the interaction as a whole succeeds. Several of the principles in
Chapter 7 deal with issues that relate to this. This ability to detect and correct is
important both at the small scale of button presses and keystrokes and also at the
large scale. For example, if you have sent a client a letter and expect a reply, you can

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

154 Chapter 3 n The interaction

put in your diary a note on the day you expect a reply. If the other person forgets
to reply or the letter gets lost in the post you know to send a reminder or ring when
the due day passes.

THE CONTEXT OF THE INTERACTION

We have been considering the interaction between a user and a system, and how this
is affected by interface design. This interaction does not occur within a vacuum. We
have already noted some of the physical factors in the environment that can directly
affect the quality of the interaction. This is part of the context in which the interac-
tion takes place. But this still assumes a single user operating a single, albeit complex,
machine. In reality, users work within a wider social and organizational context. This
provides the wider context for the interaction, and may influence the activity and
motivation of the user. In Chapter 13, we discuss some methods that can be used to
gain a fuller understanding of this context, and, in Chapter 14, we consider in more
detail the issues involved when more than one user attempts to work together on a
system. Here we will confine our discussion to the influence social and organiza-
tional factors may have on the user’s interaction with the system. These may not be
factors over which the designer has control. However, it is important to be aware of
such influences to understand the user and the work domain fully.

3.8

Bank managers don’t type . . .

The safe in most banks is operated by at least two keys, held by different employees of the
bank. This makes it difficult for a bank robber to obtain both keys, and also protects the bank
against light-fingered managers! ATMs contain a lot of cash and so need to be protected by sim-
ilar measures. In one bank, which shall remain nameless, the ATM had an electronic locking device.
The machine could not be opened to replenish or remove cash until a long key sequence had been
entered. In order to preserve security, the bank gave half the sequence to one manager and half
to another, so both managers had to be present in order to open the ATM. However, these were
traditional bank managers who were not used to typing – that was a job for a secretary! So they
each gave their part of the key sequence to a secretary to type in when they wanted to gain entry
to the ATM. In fact, they both gave their respective parts of the key sequence to the same secret-
ary. Happily the secretary was honest, but the moral is you cannot ignore social expectations and
relationships when designing any sort of computer system, however simple it may be.

The presence of other people in a work environment affects the performance of
the worker in any task. In the case of peers, competition increases performance, at
least for known tasks. Similarly the desire to impress management and superiors
improves performance on these tasks. However, when it comes to acquisition of

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.8 The context of the interaction 155

new skills, the presence of these groups can inhibit performance, owing to the fear
of failure. Consequently, privacy is important to allow users the opportunity to
experiment.

In order to perform well, users must be motivated. There are a number of pos-
sible sources of motivation, as well as those we have already mentioned, including
fear, allegiance, ambition and self-satisfaction. The last of these is influenced by the
user’s perception of the quality of the work done, which leads to job satisfaction. If
a system makes it difficult for the user to perform necessary tasks, or is frustrating to
use, the user’s job satisfaction, and consequently performance, will be reduced.

The user may also lose motivation if a system is introduced that does not match
the actual requirements of the job to be done. Often systems are chosen and intro-
duced by managers rather than the users themselves. In some cases the manager’s
perception of the job may be based upon observation of results and not on actual
activity. The system introduced may therefore impose a way of working that is unsat-
isfactory to the users. If this happens there may be three results: the system will be
rejected, the users will be resentful and unmotivated, or the user will adapt the
intended interaction to his own requirements. This indicates the importance of
involving actual users in the design process.

DESIGN FOCUS

Half the picture?

When systems are not designed to match the way people actually work, then users end up having
to do ‘work arounds’. Integrated student records systems are becoming popular in universities in the
UK. They bring the benefits of integrating examination systems with enrolment and finance systems so
all data can be maintained together and cross-checked. All very useful and time saving – in theory.
However, one commonly used system only holds a single overall mark per module for each student,
whereas many modules on UK courses have multiple elements of assessment. Knowing a student’s
mark on each part of the assessment is often useful to academics making decisions in examination
boards as it provides a more detailed picture of performance. In many cases staff are therefore
supplementing the official records system with their own unofficial spreadsheets to provide this
information – making additional work for staff and increased opportunity for error.

On the other hand, the introduction of new technology may prove to be a motiva-
tion to users, particularly if it is well designed, integrated with the user’s current
work, and challenging. Providing adequate feedback is an important source of motiva-
tion for users. If no feedback is given during a session, the user may become bored,
unmotivated or, worse, unsure of whether the actions performed have been success-
ful. In general, an action should have an obvious effect to prevent this confusion and
to allow early recovery in the case of error. Similarly, if system delays occur, feedback
can be used to prevent frustration on the part of the user – the user is then aware of
what is happening and is not left wondering if the system is still working.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

156 Chapter 3 n The interaction

EXPERIENCE, ENGAGEMENT AND FUN

Ask many in HCI about usability and they may use the words ‘effective’ and
‘efficient’. Some may add ‘satisfaction’ as well. This view of usability seems to stem
mainly from the Taylorist tradition of time and motion studies: if you can get the
worker to pull the levers and turn the knobs in the right order then you can shave
10% off production costs.

However, users no longer see themselves as cogs in a machine. Increasingly,
applications are focussed outside the closed work environment: on the home, leisure,
entertainment, shopping. It is not sufficient that people can use a system, they must
want to use it.

Even from a pure economic standpoint, your employees are likely to work better
and more effectively if they enjoy what they are doing!

In this section we’ll look at these more experiential aspects of interaction.

3.9.1 Understanding experience

Shopping is an interesting example to consider. Most internet stores allow you
to buy things, but do you go shopping? Shopping is as much about going to the
shops, feeling the clothes, being with friends. You can go shopping and never intend
to spend money. Shopping is not about an efficient financial transaction, it is an
experience.

But experience is a difficult thing to pin down; we understand the idea of a
good experience, but how do we define it and even more difficult how do we design
it?

Csikszentimihalyi [82] looked at extreme experiences such as climbing a rock face
in order to understand that feeling of total engagement that can sometimes happen.
He calls this flow and it is perhaps related to what some sportspeople refer to as being
‘in the zone’. This sense of flow occurs when there is a balance between anxiety
and boredom. If you do something that you know you can do it is not engaging; you
may do it automatically while thinking of something else, or you may simply become
bored. Alternatively, if you do something completely outside your abilities you
may become anxious and, if you are half way up a rock face, afraid. Flow comes when
you are teetering at the edge of your abilities, stretching yourself to or a little beyond
your limits.

In education there is a similar phenomenon. The zone of proximal development is
those things that you cannot quite do yourself, but you can do with some support,
whether from teachers, fellow pupils, or electronic or physical materials. Learning is
at its best in this zone. Notice again this touching of limits.

Of course, this does not fully capture the sense of experience, and there is an active
subfield of HCI researchers striving to make sense of this, building on the work of
psychologists and philosophers on the one hand and literary analysis, film making
and drama on the other.

3.9

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.9 Experience, engagement and fun 157

3.9.2 Designing experience

Some of the authors were involved in the design of virtual Christmas crackers. These
are rather like electronic greetings cards, but are based on crackers. For those who
have not come across them, Christmas crackers are small tubes of paper between 8
and 12 inches long (20–30 cm). Inside there are a small toy, a joke or motto and a
paper hat. A small strip of card is threaded through, partly coated with gunpowder.
When two people at a party pull the cracker, it bursts apart with a small bang from
the gunpowder and the contents spill out.

The virtual cracker does not attempt to fully replicate each aspect of the physical
characteristics and process of pulling the cracker, but instead seeks to reproduce
the experience. To do this the original crackers experience was deconstructed and
each aspect of the experience produced in a similar, but sometimes different, way in
the new media. Table 3.1 shows the aspects of the experience deconstructed and
reconstructed in the virtual cracker.

For example, the cracker contents are hidden inside; no one knows what toy or
joke will be inside. Similarly, when you create a virtual cracker you normally cannot
see the contents until the recipient has opened it. Even the recipient initially sees
a page with just an image of the cracker; it is only after the recipient has clicked
on the ‘open’ icon that the cracker slowly opens and you get to see the joke, web toy
and mask.

The mask is also worth looking at. The first potential design was to have a picture
of a face with a hat on it – well, it wouldn’t rank highly on excitement! The essential
feature of the paper hat is that you can dress up. An iconic hat hardly does that.

Table 3.1 The crackers experience [101]

Real cracker Virtual cracker

Surface elements
Design Cheap and cheerful Simple page/graphics
Play Plastic toy and joke Web toy and joke
Dressing up Paper hat Mask to cut out

Experienced effects
Shared Offered to another Sent by email, message
Co-experience Pulled together Sender can’t see content until

opened by recipient
Excitement Cultural connotations Recruited expectation
Hiddenness Contents inside First page – no contents
Suspense Pulling cracker Slow . . . page change
Surprise Bang (when it works) WAV file (when it works)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

158 Chapter 3 n The interaction

Instead the cracker has a link to a web page with a picture of a mask that you
can print, cut out and wear. Even if you don’t actually print it out, the fact that you
could changes the experience – it is some dressing up you just happen not to have
done yet.

A full description of the virtual crackers case study is on the book website at:
/e3/casestudy/crackers/

3.9.3 Physical design and engagement

In Chapter 2 we talked about physical controls. Figure 2.13 showed controllers for a
microwave, washing machine and personal MiniDisc player. We saw then how cer-
tain physical interfaces were suited for different contexts: smooth plastic controls for
an easy clean microwave, multi-function knob for the MiniDisc.

Designers are faced with many constraints:

Ergonomic You cannot physically push buttons if they are too small or too close.

Physical The size or nature of the device may force certain positions or styles of con-
trol, for example, a dial like the one on the washing machine would not fit on the
MiniDisc controller; high-voltage switches cannot be as small as low-voltage ones.

Legal and safety Cooker controls must be far enough from the pans that you do not
burn yourself, but also high enough to prevent small children turning them on.

Context and environment The microwave’s controls are smooth to make them
easy to clean in the kitchen.

Aesthetic The controls must look good.

Economic It must not cost too much!

These constraints are themselves often contradictory and require trade-offs to
be made. For example, even within the safety category front-mounted controls are
better in that they can be turned on or off without putting your hands over the pans
and hot steam, but back-mounted controls are further from children’s grasp. The
MiniDisc player is another example; it physically needs to be small, but this means
there is not room for all the controls you want given the minimum size that can
be manipulated. In the case of the cooker there is no obvious best solution and so
different designs favor one or the other. In the case of the MiniDisc player the end
knob is multi-function. This means the knob is ergonomically big enough to turn
and physically small enough to fit, but at the cost of a more complex interaction
style.

To add to this list of constraints there is another that makes a major impact on the
ease of use and also the ability of the user to become engaged with the device, for it
to become natural to use:

Fluidity The extent to which the physical structure and manipulation of the device
naturally relate to the logical functions it supports.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3.9 Experience, engagement and fun 159

This is related closely to the idea of affordances, which we discuss in Section 5.7.2.
The knob at the end of the MiniDisc controller affords turning – it is an obvious
thing to do. However, this may not have mapped naturally onto the logical func-
tions. Two of the press buttons are for cycling round the display options and for
changing sound options. Imagine a design where turning the knob to clockwise
cycled through the display options and turning it anti-clockwise cycled through the
sound options. This would be a compact design satisfying all the ergonomic, physi-
cal and aesthetic constraints, but would not have led to as fluid an interaction. The
physically opposite motions lead to logically distinct effects. However, the designers
did a better job than this! The twist knob is used to move backwards and forwards
through the tracks of the MiniDisc – that is, opposite physical movements produce
opposite logical effects. Holding the knob out and twisting turns the volume up and
down. Again, although the pull action is not a natural mapping, the twist maps very
naturally onto controlling the sound level.

As well as being fluid in action, some controls portray by their physical appearance
the underlying state they control. For example, the dial on the washing machine
both sets the program and reflects the current stage in the washing cycle as it turns.
A simple on/off switch also does this. However, it is also common to see the power
on computers and hifi devices controlled by a push button – press for on, then
press again for off. The button does not reflect the state at all. When the screen is on
this is not a problem as the fact that there is something on the screen acts as a very
immediate indicator of the state. But if the screen has a power save then you might
accidentally turn the machine off thinking that you are turning it on! For this reason,
this type of power button often has a light beside it to show you the power is on.
A simple switch tells you that itself !

3.9.4 Managing value

If we want people to want to use a device or application we need to understand their
personal values. Why should they want to use it? What value do they get from using
it? Now when we say value here we don’t mean monetary value, although that may
be part of the story, but all the things that drive a person. For some people this may
include being nice to colleagues, being ecologically friendly, being successful in their
career. Whatever their personal values are, if we ask someone to do something or use
something they are only likely to do it if the value to them exceeds the cost.

This is complicated by the fact that for many systems the costs such as purchase
cost, download time of a free application, learning effort are incurred up front,
whereas often the returns – faster work, enjoyment of use – are seen later. In eco-
nomics, businesses use a measure called ‘net present value’ to calculate what a future
gain is worth today; because money can be invested, £100 today is worth the same as
perhaps £200 in five years’ time. Future gain is discounted. For human decision mak-
ing, future gains are typically discounted very highly; many of us are bad at saving
for tomorrow or even keeping the best bits of our dinner until last. This means that
not only must we understand people’s value systems, but we must be able to offer

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

160 Chapter 3 n The interaction

gains sooner as well as later, or at least produce a very good demonstration of poten-
tial future gains so that they have a perceived current value.

When we were preparing the website for the second edition of this book we
thought very hard about how to give things that were of value to those who had the
book, and also to those who hadn’t. The latter is partly because we are all academics
and researchers in the field and so want to contribute to the HCI community, but
also of course we would like lots of people to buy the book. One option we thought
of was to put the text online, which would be good for people without the book,
but this would have less value to people who have the book (they might even be
annoyed that those who hadn’t paid should have access). The search mechanism was
the result of this process (Figure 3.19). It gives value to those who have the book
because it is a way of finding things. It is of value to those who don’t because it
acts as a sort of online encyclopedia of HCI. However, because it always gives the
chapter and page number in the book it also says to those who haven’t got the book:
‘buy me’. See an extended case study about the design of the book search on the
website at /e3/casestudy/search/

SUMMARY

In this chapter, we have looked at the interaction between human and computer,
and, in particular, how we can ensure that the interaction is effective to allow the user
to get the required job done. We have seen how we can use Norman’s execution–
evaluation model, and the interaction framework that extends it, to analyze the

3.10

Figure 3.19 The web-based book search facility. Screen shot frame reprinted by
permission from Microsoft Corporation

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Exercises 161

interaction in terms of how easy or difficult it is for the user to express what he wants
and determine whether it has been done.

We have also looked at the role of ergonomics in interface design, in analyzing
the physical characteristics of the interaction, and we have discussed a number of
interface styles. We have considered how each of these factors can influence the
effectiveness of the interaction.

Interactivity is at the heart of all modern interfaces and is important at many
levels. Interaction between user and computer does not take place in a vacuum, but
is affected by numerous social and organizational factors. These may be beyond
the designer’s control, but awareness of them can help to limit any negative effects
on the interaction.

EXERCISES

3.1 Choose two of the interface styles (described in Section 3.5) that you have experience
of using. Use the interaction framework to analyze the interaction involved in using these inter-
face styles for a database selection task. Which of the distances is greatest in each case?

3.2 Find out all you can about natural language interfaces. Are there any successful systems? For what
applications are these most appropriate?

3.3 What influence does the social environment in which you work have on your interaction with the
computer? What effect does the organization (commercial or academic) to which you belong have
on the interaction?

3.4 (a) Group the following functions under appropriate headings, assuming that they are to form the
basis for a menu-driven word-processing system – the headings you choose will become the
menu titles, with the functions appearing under the appropriate one. You can choose as many
or as few menu headings as you wish. You may also alter the wordings of the functions slightly
if you wish.

save, save as, new, delete, open mail, send mail, quit, undo, table, glossary, preferences,
character style, format paragraph, lay out document, position on page, plain text, bold text,
italic text, underline, open file, close file, open copy of file, increase point size, decrease
point size, change font, add footnote, cut, copy, paste, clear, repaginate, add page break,
insert graphic, insert index entry, print, print preview, page setup, view page, find word,
change word, go to, go back, check spelling, view index, see table of contents, count words,
renumber pages, repeat edit, show alternative document, help

(b) If possible, show someone else your headings, and ask them to group the functions under your
headings. Compare their groupings with yours. You should find that there are areas of great
similarity, and some differences. Discuss the similarities and discrepancies.

Why do some functions always seem to be grouped together?
Why do some groups of functions always get categorized correctly?
Why are some less easy to place under the ‘correct’ heading?
Why is this important?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

RECOMMENDED READING

D. A. Norman, The Psychology of Everyday Things, Basic Books, 1988. (Republished
as The Design of Everyday Things by Penguin, 1991.)
A classic text, which discusses psychological issues in designing everyday objects and
addresses why such objects are often so difficult to use. Discusses the execution–
evaluation cycle. Very readable and entertaining. See also his more recent books
Turn Signals are the Facial Expressions of Automobiles [267], Things That Make Us
Smart [268] and The Invisible Computer [269].

R. W. Bailey, Human Performance Engineering: A Guide for System Designers, Prentice
Hall, 1982.
Detailed coverage of human factors and ergonomics issues, with plenty of examples.

3.5 Using your function groupings from Exercise 3.4, count the number of items in your menus.

(a) What is the average?
What is the disadvantage of putting all the functions on the screen at once?
What is the problem with using lots of menu headings?
What is the problem of using very few menu headings?

Consider the following: I can group my functions either into three menus, with lots of func-
tions in each one, or into eight menus with fewer in each. Which will be easier to use? Why?

(b) Optional experiment
Design an experiment to test your answers. Perform the experiment and report on your
results.

3.6 Describe (in words as well as graphically) the interaction framework introduced in Human–
Computer Interaction. Show how it can be used to explain problems in the dialog between a user
and a computer.

3.7 Describe briefly four different interaction styles used to accommodate the dialog between user
and computer.

3.8 The typical computer screen has a WIMP setup (what does WIMP stand for?). Most common
WIMP arrangements work on the basis of a desktop metaphor, in which common actions are
likened to similar actions in the real world. For example, moving a file is achieved by selecting it
and dragging it into a relevant folder or filing cabinet. The advantage of using a metaphor is that
the user can identify with the environment presented on the screen. Having a metaphor allows
users to predict the outcome of their actions more easily.

Note that the metaphor can break down, however. What is the real-world equivalent of format-
ting a disk? Is there a direct analogy for the concept of ‘undo’? Think of some more examples
yourself.

162 Chapter 3 n The interaction

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Recommended reading 163

G. Salvendy, Handbook of Human Factors and Ergonomics, John Wiley, 1997.
Comprehensive collection of contributions from experts in human factors and
ergonomics.

M. Helander, editor, Handbook of Human–Computer Interaction. Part II: User
Interface Design, North-Holland, 1988.
Comprehensive coverage of interface styles.

J. Raskin, The Humane Interface: New Directions for Designing Interactive Systems,
Addison Wesley, 2000.
Jef Raskin was one of the central designers of the original Mac user interface.
This book gives a personal, deep and practical examination of many issues of
interaction and its application in user interface design.

M. Blythe, A. Monk, K. Overbeeke and P. Wright, editors, Funology: From Usability
to Enjoyment, Kluwer, 2003.
This is an edited book with chapters covering many areas of user experience.
It includes an extensive review of theory from many disciplines from psychology
to literary theory and chapters giving design frameworks based on these. The
theoretical and design base is grounded by many examples and case studies
including a detailed analysis of virtual crackers.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

PARADIGMS

OV E RV I E W

n Examples of effective strategies for building interactive
systems provide paradigms for designing usable
interactive systems.

n The evolution of these usability paradigms also provides
a good perspective on the history of interactive
computing.

n These paradigms range from the introduction of time-
sharing computers, through the WIMP and web, to
ubiquitous and context-aware computing.

4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 Paradigms for interaction 165

INTRODUCTION

As we noted in Chapter 3, the primary objective of an interactive system is to allow
the user to achieve particular goals in some application domain, that is, the inter-
active system must be usable. The designer of an interactive system, then, is posed
with two open questions:

1. How can an interactive system be developed to ensure its usability?
2. How can the usability of an interactive system be demonstrated or measured?

One approach to answering these questions is by means of example, in which suc-
cessful interactive systems are commonly believed to enhance usability and, there-
fore, serve as paradigms for the development of future products.

We believe that we now build interactive systems that are more usable than those
built in the past. We also believe that there is considerable room for improvement in
designing more usable systems in the future. As discussed in Chapter 2, the great
advances in computer technology have increased the power of machines and enhanced
the bandwidth of communication between humans and computers. The impact of
technology alone, however, is not sufficient to enhance its usability. As our machines
have become more powerful, the key to increased usability has come from the creative
and considered application of the technology to accommodate and augment the
power of the human. Paradigms for interaction have for the most part been dependent
upon technological advances and their creative application to enhance interaction.

In this chapter, we investigate some of the principal historical advances in inter-
active designs. What is important to notice here is that the techniques and designs
mentioned are recognized as major improvements in interaction, though it is some-
times hard to find a consensus for the reason behind the success. It is even harder
to predict ahead what the new paradigms will be. Often new paradigms have arisen
through exploratory designs that have then been seen, after the fact, to have created
a new base point for future design.

We will discuss 15 different paradigms in this chapter. They do not provide mutu-
ally exclusive categories, as particular systems will often incorporate ideas from more
than one of the following paradigms. In a way, this chapter serves as a history of
interactive system development, though our emphasis is not so much on historical
accuracy as on interactive innovation. We are concerned with the advances in inter-
action provided by each paradigm.

PARADIGMS FOR INTERACTION

4.2.1 Time sharing
In the 1940s and 1950s, the significant advances in computing consisted of new hard-
ware technologies. Mechanical relays were replaced by vacuum electron tubes. Tubes
were replaced by transistors, and transistors by integrated chips, all of which meant

4.2

4.1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

166 Chapter 4 n Paradigms

that the amount of sheer computing power was increasing by orders of magnitude.
By the 1960s it was becoming apparent that the explosion of growth in computing
power would be wasted if there was not an equivalent explosion of ideas about how
to channel that power. One of the leading advocates of research into human-centered
applications of computer technology was J. C. R. Licklider, who became the director
of the Information Processing Techniques Office of the US Department of Defense’s
Advanced Research Projects Agency (ARPA). It was Licklider’s goal to finance vari-
ous research centers across the United States in order to encourage new ideas about
how best to apply the burgeoning computing technology.

One of the major contributions to come out of this new emphasis in research was
the concept of time sharing, in which a single computer could support multiple users.
Previously, the human (or more accurately, the programmer) was restricted to batch
sessions, in which complete jobs were submitted on punched cards or paper tape to
an operator who would then run them individually on the computer. Time-sharing
systems of the 1960s made programming a truly interactive venture and brought
about a subculture of programmers known as ‘hackers’ – single-minded masters of
detail who took pleasure in understanding complexity. Though the purpose of the
first interactive time-sharing systems was simply to augment the programming cap-
abilities of the early hackers, it marked a significant stage in computer applications for
human use. Rather than rely on a model of interaction as a pre-planned activity that
resulted in a complete set of instructions being laid out for the computer to follow,
truly interactive exchange between programmer and computer was possible. The
computer could now project itself as a dedicated partner with each individual user
and the increased throughput of information between user and computer allowed
the human to become a more reactive and spontaneous collaborator. Indeed, with
the advent of time sharing, real human–computer interaction was now possible.

4.2.2 Video display units

As early as the mid-1950s researchers were experimenting with the possibility of
presenting and manipulating information from a computer in the form of images
on a video display unit (VDU). These display screens could provide a more suitable
medium than a paper printout for presenting vast quantities of strategic information
for rapid assimilation. The earliest applications of display screen images were
developed in military applications, most notably the Semi-Automatic Ground
Environment (SAGE) project of the US Air Force. It was not until 1962, however,
when a young graduate student at the Massachusetts Institute of Technology (MIT),
Ivan Sutherland, astonished the established computer science community with his
Sketchpad program, that the capabilities of visual images were realized. As described
in Howard Rheingold’s history of computing book Tools for Thought [305]:

Sketchpad allowed a computer operator to use the computer to create, very rapidly,
sophisticated visual models on a display screen that resembled a television set. The
visual patterns could be stored in the computer’s memory like any other data, and
could be manipulated by the computer’s processor. . . . But Sketchpad was much more

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 Paradigms for interaction 167

than a tool for creating visual displays. It was a kind of simulation language that
enabled computers to translate abstractions into perceptually concrete forms. And it
was a model for totally new ways of operating computers; by changing something on the
display screen, it was possible, via Sketchpad, to change something in the computer’s
memory.

Sketchpad demonstrated two important ideas. First, computers could be used for
more than just data processing. They could extend the user’s ability to abstract away
from some levels of detail, visualizing and manipulating different representations of
the same information. Those abstractions did not have to be limited to representa-
tions in terms of bit sequences deep within the recesses of computer memory. Rather,
the abstractions could be made truly visual. To enhance human interaction, the
information within the computer was made more amenable to human consumption.
The computer was made to speak a more human language, instead of the human
being forced to speak more like a computer. Secondly, Sutherland’s efforts demon-
strated how important the contribution of one creative mind (coupled with a dogged
determination to see the idea through) could be to the entire history of computing.

4.2.3 Programming toolkits

Douglas Engelbart’s ambition since the early 1950s was to use computer technology
as a means of complementing human problem-solving activity. Engelbart’s idea as a
graduate student at the University of California at Berkeley was to use the computer
to teach humans. This dream of naïve human users actually learning from a com-
puter was a stark contrast to the prevailing attitude of his contemporaries that com-
puters were a purposely complex technology that only the intellectually privileged
were capable of manipulating. Engelbart’s dedicated research team at the Stanford
Research Institute in the 1960s worked towards achieving the manifesto set forth in
an article published in 1963 [124]:

By ‘augmenting man’s intellect’ we mean increasing the capability of a man to
approach a complex problem situation, gain comprehension to suit his particular
needs, and to derive solutions to problems. . . . We refer to a way of life in an integrated
domain where hunches, cut-and-try, intangibles, and the human ‘feel for the situation’
usefully coexist with powerful concepts, streamlined terminology and notation,
sophisticated methods, and high-powered electronic aids.

Many of the ideas that Engelbart’s team developed at the Augmentation Research
Center – such as word processing and the mouse – only attained mass commercial
success decades after their invention. A live demonstration of his oNLine System
(NLS, also later known as NLS/Augment) was given in the autumn of 1968 at the Fall
Joint Computer Conference in San Francisco before a captivated audience of computer
sceptics. We are not so concerned here with the interaction techniques that were pre-
sent in NLS, as many of those will be discussed later. What is important here is the
method that Engelbart’s team adopted in creating their very innovative and power-
ful interactive systems with the relatively impoverished technology of the 1960s.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

168 Chapter 4 n Paradigms

Engelbart wrote of how humans attack complex intellectual problems like a car-
penter who produces beautifully complicated pieces of woodwork with a good set of
tools. The secret to producing computing equipment that aided human problem-
solving ability was in providing the right toolkit. Taking this message to heart,
his team of programmers concentrated on developing the set of programming tools
they would require in order to build more complex interactive systems. The idea of
building components of a computer system that will allow you to rebuild a more
complex system is called bootstrapping and has been used to a great extent in all of
computing. The power of programming toolkits is that small, well-understood com-
ponents can be composed in fixed ways in order to create larger tools. Once these
larger tools become understood, they can continue to be composed with other tools,
and the process continues.

4.2.4 Personal computing

Programming toolkits provide a means for those with substantial computing skills
to increase their productivity greatly. But Engelbart’s vision was not exclusive to the
computer literate. The decade of the 1970s saw the emergence of computing power
aimed at the masses, computer literate or not. One of the first demonstrations that
the powerful tools of the hacker could be made accessible to the computer novice
was a graphics programming language for children called LOGO. The inventor,
Seymour Papert, wanted to develop a language that was easy for children to use.
He and his colleagues from MIT and elsewhere designed a computer-controlled
mechanical turtle that dragged a pen along a surface to trace its path. A child could
quite easily pretend they were ‘inside’ the turtle and direct it to trace out simple
geometric shapes, such as a square or a circle. By typing in English phrases, such as
Go forward or Turn left, the child/programmer could teach the turtle to draw
more and more complicated figures. By adapting the graphical programming lan-
guage to a model which children could understand and use, Papert demonstrated
a valuable maxim for interactive system development – no matter how powerful a
system may be, it will always be more powerful if it is easier to use.

Alan Kay was profoundly influenced by the work of both Engelbart and Papert.
He realized that the power of a system such as NLS was only going to be successful
if it was as accessible to novice users as was LOGO. In the early 1970s his view of
the future of computing was embodied in small, powerful machines which were
dedicated to single users, that is personal computers. Together with the founding
team of researchers at the Xerox Palo Alto Research Center (PARC), Kay worked on
incorporating a powerful and simple visually based programming environment,
Smalltalk, for the personal computing hardware that was just becoming feasible.
As technology progresses, it is now becoming more difficult to distinguish between
what constitutes a personal computer, or workstation, and what constitutes a main-
frame. Kay’s vision in the mid-1970s of the ultimate handheld personal computer –
he called it the Dynabook – outstrips even the technology we have available today
[197].

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 Paradigms for interaction 169

4.2.5 Window systems and the WIMP interface

With the advent and immense commercial success of personal computing, the
emphasis for increasing the usability of computing technology focussed on address-
ing the single user who engaged in a dialog with the computer in order to complete
some work. Humans are able to think about more than one thing at a time, and
in accomplishing some piece of work, they frequently interrupt their current train of
thought to pursue some other related piece of work. A personal computer system
which forces the user to progress in order through all of the tasks needed to achieve
some objective, from beginning to end without any diversions, does not correspond
to that standard working pattern. If the personal computer is to be an effective dia-
log partner, it must be as flexible in its ability to ‘change the topic’ as the human is.

But the ability to address the needs of a different user task is not the only require-
ment. Computer systems for the most part react to stimuli provided by the user, so
they are quite amenable to a wandering dialog initiated by the user. As the user
engages in more than one plan of activity over a stretch of time, it becomes difficult
for him to maintain the status of the overlapping threads of activity. It is therefore
necessary for the computer dialog partner to present the context of each thread of
dialog so that the user can distinguish them.

One presentation mechanism for achieving this dialog partitioning is to separate
physically the presentation of the different logical threads of user–computer con-
versation on the display device. The window is the common mechanism associated
with these physically and logically separate display spaces. We discussed windowing
systems in detail in Chapter 3.

Interaction based on windows, icons, menus and pointers – the WIMP interface –
is now commonplace. These interaction devices first appeared in the commercial
marketplace in April 1981, when Xerox Corporation introduced the 8010 Star
Information System. But many of the interaction techniques underlying a window-
ing system were used in Engelbart’s group in NLS and at Xerox PARC in the
experimental precursor to Star, the Alto.

4.2.6 The metaphor

In developing the LOGO language to teach children, Papert used the metaphor of a
turtle dragging its tail in the dirt. Children could quickly identify with the real-world
phenomenon and that instant familiarity gave them an understanding of how they
could create pictures. Metaphors are used quite successfully to teach new concepts in
terms of ones which are already understood, as we saw when looking at analogy in
Chapter 1. It is no surprise that this general teaching mechanism has been successful
in introducing computer novices to relatively foreign interaction techniques. We
have already seen how metaphors are used to describe the functionality of many
interaction widgets, such as windows, menus, buttons and palettes. Tremendous
commercial successes in computing have arisen directly from a judicious choice
of metaphor. The Xerox Alto and Star were the first workstations based on the
metaphor of the office desktop. The majority of the management tasks on a standard

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

170 Chapter 4 n Paradigms

workstation have to do with file manipulation. Linking the set of tasks associated
with file manipulation to the filing tasks in a typical office environment makes the
actual computerized tasks easier to understand at first. The success of the desktop
metaphor is unquestionable. Another good example in the personal computing
domain is the widespread use of the spreadsheet metaphor for accounting and
financial modeling.

Very few will debate the value of a good metaphor for increasing the initial
familiarity between user and computer application. The danger of a metaphor is
usually realized after the initial honeymoon period. When word processors were
first introduced, they relied heavily on the typewriter metaphor. The keyboard of
a computer closely resembles that of a standard typewriter, so it seems like a good
metaphor from which to start. However, the behavior of a word processor is differ-
ent from any typewriter. For example, the space key on a typewriter is passive,
producing nothing on the piece of paper and just moving the guide further along the
current line. For a typewriter, a space is not a character. However, for a word pro-
cessor, the blank space is a character which must be inserted within a text just as any
other character is inserted. So an experienced typist is not going to be able to predict
correctly the behavior of pressing the spacebar on the keyboard by appealing to
his experience with a typewriter. Whereas the typewriter metaphor is beneficial
for providing a preliminary understanding of a word processor, the analogy is
inadequate for promoting a full understanding of how the word processor works. In
fact, the metaphor gets in the way of the user understanding the computer.

A similar problem arises with most metaphors. Although the desktop metaphor is
initially appealing, it falls short in the computing world because there are no office
equivalents for ejecting a floppy disk or printing a document. When designers try
too hard to make the metaphor stick, the resulting system can be more confusing.
Who thinks it is intuitive to drag the icon of a floppy disk to the wastebasket in
order to eject it from the system? Ordinarily, the wastebasket is used to dispose of
things that we never want to use again, which is why it works for deleting files. We
must accept that some of the tasks we perform with a computer do not have real-
world equivalents, or if they do, we cannot expect a single metaphor to account
for all of them.

Another problem with a metaphor is the cultural bias that it portrays. With the
growing internationalization of software, it should not be assumed that a metaphor
will apply across national boundaries. A meaningless metaphor will only add another
layer of complexity between the user and the system.

A more extreme example of metaphor occurs with virtual reality systems. In a VR
system, the metaphor is not simply captured on a display screen. Rather, the user
is also portrayed within the metaphor, literally creating an alternative, or virtual,
reality. Any actions that the user performs are supposed to become more natural and
so more movements of the user are interpreted, instead of just keypresses, button
clicks and movements of an external pointing device. A VR system also needs
to know the location and orientation of the user. Consequently, the user is often
‘rigged’ with special tracking devices so that the system can locate them and interpret
their motion correctly.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 Paradigms for interaction 171

4.2.7 Direct manipulation

In the early 1980s as the price of fast and high-quality graphics hardware was steadily
decreasing, designers were beginning to see that their products were gaining popu-
larity as their visual content increased. As long as the user–system dialog remained
largely unidirectional – from user command to system command line prompt –
computing was going to stay within the minority population of the hackers who
revelled in the challenge of complexity. In a standard command line interface, the
only way to get any feedback on the results of previous interaction is to know that
you have to ask for it and to know how to ask for it. Rapid visual and audio feedback
on a high-resolution display screen or through a high-quality sound system makes it
possible to provide evaluative information for every executed user action.

Rapid feedback is just one feature of the interaction technique known as direct
manipulation. Ben Shneiderman [320, 321] is attributed with coining this phrase in
1982 to describe the appeal of graphics-based interactive systems such as Sketchpad
and the Xerox Alto and Star. He highlights the following features of a direct manip-
ulation interface:

n visibility of the objects of interest
n incremental action at the interface with rapid feedback on all actions
n reversibility of all actions, so that users are encouraged to explore without severe

penalties
n syntactic correctness of all actions, so that every user action is a legal operation
n replacement of complex command languages with actions to manipulate directly

the visible objects (and, hence, the name direct manipulation).

The first real commercial success which demonstrated the inherent usability of
direct manipulation interfaces for the general public was the Macintosh personal
computer, introduced by Apple Computer, Inc. in 1984 after the relatively unsuc-
cessful marketing attempt in the business community of the similar but more pricey
Lisa computer. We discussed earlier how the desktop metaphor makes the computer
domain of file management, usually described in terms of files and directories, easier
to grasp by likening it to filing in the typical office environment, usually described in
terms of documents and folders. The direct manipulation interface for the desktop
metaphor requires that the documents and folders are made visible to the user
as icons which represent the underlying files and directories. An operation such as
moving a file from one directory to another is mirrored as an action on the visible
document which is ‘picked up and dragged’ along the desktop from one folder to the
next. In a command line interface to a filing system, it is normal that typographical
errors in constructing the command line for a move operation would result in a
syntactically incorrect command (for example, mistyping the file’s name results in an
error if you are fortunate enough not to spell accidentally the name of another file in
the process). It is impossible to formulate a syntactically incorrect move operation
with the pick-up-and-drag style of command. It is still possible for errors to occur at
a deeper level, as the user might move a document to the wrong place, but it is relat-
ively easy to detect and recover from those errors. While the document is dragged,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

172 Chapter 4 n Paradigms

continual visual feedback is provided, creating the illusion that the user is actually
working in the world of the desktop and not just using the metaphor to help him
understand.

Ed Hutchins, Jim Hollan and Donald Norman [187] provide a more psycho-
logical justification in terms of the model-world metaphor for the directness that
the above example suggests. In Norman and Draper’s collection of papers on user-
centered design [270] they write:

In a system built on the model-world metaphor, the interface is itself a world where
the user can act, and which changes state in response to user actions. The world of
interest is explicitly represented and there is no intermediary between user and world.
Appropriate use of the model-world metaphor can create the sensation in the user of
acting upon the objects of the task domain themselves. We call this aspect of directness
direct engagement.

In the model-world metaphor, the role of the interface is not so much one of medi-
ating between the user and the underlying system. From the user’s perspective, the
interface is the system.

A consequence of the direct manipulation paradigm is that there is no longer a
clear distinction between input and output. In the interaction framework in Chap-
ter 3 we talked about a user articulating input expressions in some input language
and observing the system-generated output expressions in some output language.
In a direct manipulation system, the output expressions are used to formulate
subsequent input expressions. The document icon is an output expression in the
desktop metaphor, but that icon is used by the user to articulate the move operation.
This aggregation of input and output is reflected in the programming toolkits, as
widgets are not considered as input or output objects exclusively. Rather, widgets
embody both input and output languages, so we consider them as interaction objects.

Somewhat related to the visualization provided by direct manipulation is the
WYSIWYG paradigm, which stands for ‘what you see is what you get’. What you see
on a display screen, for example when you are using a word processor, is not the
actual document that you will be producing in the end. Rather, it is a representation
or rendering of what that final document will look like. The implication with a
WYSIWYG interface is that the difference between the representation and the final
product is minimal, and the user is easily able to visualize the final product from the
computer’s representation. So, in the word-processing example, you would be able
to see what the overall layout of your document would be from its image on screen,
minimizing any guesswork on your part to format the final printed copy.

With WYSIWYG interfaces, it is the simplicity and immediacy of the mapping
between representation and final product that matters. In terms of the interaction
framework, the observation of an output expression is made simple so that assess-
ment of goal achievement is straightforward. But WYSIWYG is not a panacea for
usability. What you see is all you get! In the case of a word processor, it is difficult to
achieve more sophisticated page design if you must always see the results of the lay-
out on screen. For example, suppose you want to include a picture in a document
you are writing. You design the picture and then place it in the current draft of your

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 Paradigms for interaction 173

document, positioning it at the top of the page on which it is first referenced. As you
make changes to the paper, the position of the picture will change. If you still want
it to appear at the top of a page, you will no doubt have to make adjustments to the
document. It would be easier if you only had to include the picture once, with a
directive that it should be positioned at the top of the printed page, whether or not
it appears that way on screen. You might sacrifice the WYSIWYG principle in order
to make it easier to incorporate such floatable objects in your documents.

Worked exercise Discuss the ways in which a full-page word processor is or is not a direct manipulation interface
for editing a document using Shneiderman’s criteria. What features of a modern word processor
break the metaphor of composition with pen (or typewriter) and paper?

Answer We will answer the first point by evaluating the word processor relative to the criteria
for direct manipulation given by Shneiderman.

Visibility of the objects of interest
The most important objects of interest in a word processor are the words themselves.
Indeed, the visibility of the text on a continual basis was one of the major usability
advances in moving from line-oriented to display-oriented editors. Depending on the
user’s application, there may be other objects of interest in word processing that may
or may not be visible. For example, are the margins for the text on screen similar to
the ones which would eventually be printed? Is the spacing within a line and the line
breaks similar? Are the different fonts and formatting characteristics of the text visible
(without altering the spacing)? Expressed in this way, we can see the visibility criterion
for direct manipulation as very similar to the criteria for a WYSIWYG interface.

Incremental action at the interface with rapid feedback on all actions
We expect from a word processor that characters appear in the text as we type them
in at the keyboard, with little delay. If we are inserting text on a page, we might also
expect that the format of the page adjust immediately to accommodate the new changes.
Various word processors do this reformatting immediately, whereas with others
changes in page breaks may take some time to be reflected. One of the other import-
ant actions which requires incremental and rapid feedback is movement of the window
using the scroll button. If there is a significant delay between the input command to
move the window down and the actual movement of the window on screen, it is quite
possible that the user will ‘overshoot’ the target when using the scrollbar button.

Reversibility of all actions, so that users are encouraged to explore without
severe penalties
Single-step undo commands in most word processors allow the user to recover from
the last action performed. One problem with this is that the user must recognize the
error before doing any other action. More sophisticated undo facilities allow the user
to retrace back more than one command at a time. The kind of exploration this revers-
ibility provides in a word processor is best evidenced with the ease of experimentation
that is now available for formatting changes in a document (font types and sizes and
margin changes). One problem with the ease of exploration is that emphasis may move
to the look of a document rather than what the text actually says (style over content).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

174 Chapter 4 n Paradigms

Syntactic correctness of all actions, so that every user action is
a legal operation
WYSIWYG word processors usually provide menus and buttons which the user uses
to articulate many commands. These interaction mechanisms serve to constrain the
input language to allow only legal input from the user. Document markup systems,
such as HTML and LaTeX, force the user to insert textual commands (which may be
erroneously entered by the user) to achieve desired formatting effects.

Replacement of complex command languages with actions to manipulate
directly the visible objects
The case for word processors is similar to that described above for syntactic correct-
ness. In addition, operations on portions of text are achieved many times by allowing
the user to highlight the text directly with a mouse (or arrow keys). Subsequent action
on that text, such as moving it or copying it to somewhere else, can then be achieved
more directly by allowing the user to ‘drag’ the selected text via the mouse to its new
location.

To answer the second question concerning the drawback of the pen (or typewriter)
metaphor for word processing, we refer to the discussion on metaphors in Section
4.2.6. The example there compares the functionality of the space key in typewriting ver-
sus word processing. For a typewriter, the space key is passive; it merely moves the
insertion point one space to the right. In a word processor, the space key is active,
as it inserts a character (the space character) into the document. The functionality of
the typewriter space key is produced by the movement keys for the word processor
(typically an arrow key pointing right to move forward within one line). In fact, much of
the functionality that we have come to expect of a word processor is radically different
from that expected of a typewriter, so much so that the typewriter as a metaphor for
word processing is not all that instructive. In practice, modern typewriters have begun
to borrow from word processors when defining their functionality!

4.2.8 Language versus action

Whereas it is true that direct manipulation interfaces make some tasks easier to per-
form correctly, it is equally true that some tasks are more difficult, if not impossible.
Contrary to popular wisdom, it is not generally true that actions speak louder than
words. The image we projected for direct manipulation was of the interface as a
replacement for the underlying system as the world of interest to the user. Actions
performed at the interface replace any need to understand their meaning at any
deeper, system level. Another image is of the interface as the interlocutor or medi-
ator between the user and the system. The user gives the interface instructions and it
is then the responsibility of the interface to see that those instructions are carried out.
The user–system communication is by means of indirect language instead of direct
actions.

We can attach two meaningful interpretations to this language paradigm. The first
requires that the user understands how the underlying system functions and the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 Paradigms for interaction 175

interface as interlocutor need not perform much translation. In fact, this inter-
pretation of the language paradigm is similar to the kind of interaction which
existed before direct manipulation interfaces were around. In a way, we have come
full circle!

The second interpretation does not require the user to understand the underlying
system’s structure. The interface serves a more active role, as it must interpret
between the intended operation as requested by the user and the possible system
operations that must be invoked to satisfy that intent. Because it is more active, some
people refer to the interface as an agent in these circumstances. We can see this kind
of language paradigm at work in an information retrieval system. You may know
what kind of information is in some internal system database, such as the UK high-
way code, but you would not know how that information is organized. If you had a
question about speed limits on various roads, how would you ask? The answer in this
case is that you would ask the question in whatever way it comes to mind, typing in
a question such as, ‘What are the speed limits on different roads?’ You then leave it
up to the interface agent to reinterpret your request as a legal query to the highway
code database.

Whatever interpretation we attach to the language paradigm, it is clear that it has
advantages and disadvantages when compared with the action paradigm implied by
direct manipulation interfaces. In the action paradigm, it is often much easier to per-
form simple tasks without risk of certain classes of error. For example, recognizing
and pointing to an object reduces the difficulty of identification and the possibility
of misidentification. On the other hand, more complicated tasks are often rather
tedious to perform in the action paradigm, as they require repeated execution of the
same procedure with only minor modification. In the language paradigm, there is
the possibility of describing a generic procedure once (for example, a looping con-
struct which will perform a routine manipulation on all files in a directory) and then
leaving it to be executed without further user intervention.

The action and language paradigms need not be completely separate. In the above
example, we distinguished between the two paradigms by saying that we can describe
generic and repeatable procedures in the language paradigm and not in the action
paradigm. An interesting combination of the two occurs in programming by example
when a user can perform some routine tasks in the action paradigm and the system
records this as a generic procedure. In a sense, the system is interpreting the user’s
actions as a language script which it can then follow.

4.2.9 Hypertext

In 1945, Vannevar Bush, then the highest-ranking scientific administrator in the US
war effort, published an article entitled ‘As We May Think’ in The Atlantic Monthly.
Bush was in charge of over 6000 scientists who had greatly pushed back the frontiers
of scientific knowledge during the Second World War. He recognized that a major
drawback of these prolific research efforts was that it was becoming increasingly
difficult to keep in touch with the growing body of scientific knowledge in the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

176 Chapter 4 n Paradigms

literature. In his opinion, the greatest advantages of this scientific revolution were to
be gained by those individuals who were able to keep abreast of an ever-increasing
flow of information. To that end, he described an innovative and futuristic informa-
tion storage and retrieval apparatus – the memex – which was constructed with
technology wholly existing in 1945 and aimed at increasing the human capacity to
store and retrieve connected pieces of knowledge by mimicking our ability to create
random associative links.

The memex was essentially a desk with the ability to produce and store a massive
quantity of photographic copies of documented information. In addition to its huge
storage capacity, the memex could keep track of links between parts of different docu-
ments. In this way, the stored information would resemble a vast interconnected
mesh of data, similar to how many perceive information is stored in the human
brain. In the context of scientific literature, where it is often very difficult to keep
track of the origins and interrelations of the ever-growing body of research, a device
which explicitly stored that information would be an invaluable asset.

We have already discussed some of the contributions of ‘disciples’ of Bush’s vision
– Douglas Engelbart and Alan Kay. One other follower was equally influenced by the
ideas behind the memex, though his dreams have not yet materialized to the extent
of Engelbart’s and Kay’s. Ted Nelson was another graduate student/dropout whose
research agenda was forever transformed by the advent of the computer. An unsuc-
cessful attempt to create a machine language equivalent of the memex on early 1960s
computer hardware led Nelson on a lifelong quest to produce Xanadu, a potentially
revolutionary worldwide publishing and information retrieval system based on the
idea of interconnected, non-linear text and other media forms. A traditional paper is
read from beginning to end, in a linear fashion. But within that text, there are often
ideas or footnotes that urge the reader to digress into a richer topic. The linear for-
mat for information does not provide much support for this random and associated
browsing task. What Bush’s memex suggested was to preserve the non-linear brows-
ing structure in the actual documentation. Nelson coined the phrase hypertext in the
mid-1960s to reflect this non-linear text structure.

It was nearly two decades after Nelson coined the term that the first hypertext sys-
tems came into commercial use. In order to reflect the use of such non-linear and
associative linking schemes for more than just the storage and retrieval of textual
information, the term hypermedia (or multimedia) is used for non-linear storage of
all forms of electronic media. We will discuss these systems in Part 4 of this book (see
Chapter 21). Most of the riches won with the success of hypertext and hypermedia
were not gained by Nelson, though his project Xanadu survives to this day.

4.2.10 Multi-modality

The majority of interactive systems still use the traditional keyboard and a pointing
device, such as a mouse, for input and are restricted to a color display screen with
some sound capabilities for output. Each of these input and output devices can
be considered as communication channels for the system and they correspond to

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 Paradigms for interaction 177

certain human communication channels, as we saw in Chapter 1. A multi-modal
interactive system is a system that relies on the use of multiple human communica-
tion channels. Each different channel for the user is referred to as a modality of inter-
action. In this sense, all interactive systems can be considered multi-modal, for
humans have always used their visual and haptic (touch) channels in manipulating
a computer. In fact, we often use our audio channel to hear whether the computer is
actually running properly.

However, genuine multi-modal systems rely to a greater extent on simultaneous
use of multiple communication channels for both input and output. Humans quite
naturally process information by simultaneous use of different channels. We point
to someone and refer to them as ‘you’, and it is only by interpreting the simultan-
eous use of voice and touch that our directions are easily articulated and understood.
Designers have wanted to mimic this flexibility in both articulation and observation
by extending the input and output expressions an interactive system will support.
So, for example, we can modify a gesture made with a pointing device by speaking,
indicating what operation is to be performed on the selected object.

Multi-modal, multimedia and virtual reality systems form a large core of current
research in interactive system design. These are discussed in more detail in Chapters
10, 20 and 21.

4.2.11 Computer-supported cooperative work

Another development in computing in the 1960s was the establishment of the first
computer networks which allowed communication between separate machines.
Personal computing was all about providing individuals with enough computing
power so that they were liberated from dumb terminals which operated on a
time-sharing system. It is interesting to note that as computer networks became
widespread, individuals retained their powerful workstations but now wanted to
reconnect themselves to the rest of the workstations in their immediate working
environment, and even throughout the world! One result of this reconnection
was the emergence of collaboration between individuals via the computer – called
computer-supported cooperative work, or CSCW.

The main distinction between CSCW systems and interactive systems designed
for a single user is that designers can no longer neglect the society within which any
single user operates. CSCW systems are built to allow interaction between humans via
the computer and so the needs of the many must be represented in the one product.
A fine example of a CSCW system is electronic mail – email – yet another metaphor
by which individuals at physically separate locations can communicate via electronic
messages which work in a similar way to conventional postal systems. One user can
compose a message and ‘post’ it to another user (specified by his electronic mail
address). When the message arrives at the remote user’s site, he is informed that a
new message has arrived in his ‘mailbox’. He can then read the message and respond
as desired. Although email is modeled after conventional postal systems, its major
advantage is that it is often much faster than the traditional system (jokingly referred

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

178 Chapter 4 n Paradigms

to by email devotees as ‘snail mail’). Communication turnarounds between sites
across the world are in the order of minutes, as opposed to weeks.

Electronic mail is an instance of an asynchronous CSCW system because the par-
ticipants in the electronic exchange do not have to be working at the same time in
order for the mail to be delivered. The reason we use email is precisely because of
its asynchronous characteristics. All we need to know is that the recipient will
eventually receive the message. In contrast, it might be desirable for synchronous
communication, which would require the simultaneous participation of sender and
recipient, as in a phone conversation.

CSCW is a major emerging topic in current HCI research, and so we devote much
more attention to it later in this book. CSCW systems built to support users work-
ing in groups are referred to as groupware. Chapter 19 discusses groupware systems
in depth. In Chapter 14 the more general issues and theories arising from CSCW are
discussed.

4.2.12 The world wide web
Probably the most significant recent development in interactive computing is the
world wide web, often referred to as just the web, or WWW. The web is built on
top of the internet, and offers an easy to use, predominantly graphical interface
to information, hiding the underlying complexities of transmission protocols,
addresses and remote access to data.

The internet (see Section 2.9) is simply a collection of computers, each linked
by any sort of data connection, whether it be slow telephone line and modem or
high-bandwidth optical connection. The computers of the internet all communic-
ate using common data transmission protocols (TCP/IP) and addressing systems
(IP addresses and domain names). This makes it possible for anyone to read anything
from anywhere, in theory, if it conforms to the protocol. The web builds on this with
its own layer of network protocol (http), a standard markup notation (such as
HTML) for laying out pages of information and a global naming scheme (uniform
resource locators or URLs). Web pages can contain text, color images, movies, sound
and, most important, hypertext links to other web pages. Hypermedia documents
can therefore be ‘published’ by anyone who has access to a computer connected to
the internet.

The world wide web project was conceived in 1989 by Tim Berners-Lee, work-
ing at CERN, the European Particle Physics Laboratory at Geneva, as a means to
enable the widespread distribution of scientific data generated at CERN and to share
information between physicists worldwide. In 1991 the first text-based web browser
was released. This was followed in early 1993 by several graphical web browsers,
most significantly Mosaic developed by Marc Andreesen at the National Center for
Supercomputer Applications (NCSA) at Champaign, Illinois. This was the defining
moment at which the meteoric growth of the web began, rapidly growing to domin-
ate internet traffic and change the public view of computing. Of all the ‘heroes’ of
interactive computing named in this chapter, it is only Berners-Lee who has achieved
widespread public fame.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 Paradigms for interaction 179

Whilst the internet has been around since 1969, it did not become a major para-
digm for interaction until the advent and ease of availability of well-designed graphical
interfaces (browsers) for the web. These browsers allow users to access multimedia
information easily, using only a mouse to point and click. This shift towards the integ-
ration of computation and communication is transparent to users; all they realize is
that they can get the current version of published information practically instantly.
In addition, the language used to create these multimedia documents is relatively
simple, opening the opportunity of publishing information to any literate, and con-
nected, person. However, there are important limitations of the web as a hypertext
medium and in Chapter 21 we discuss some of the special design issues for the web.
Interestingly, the web did not provide any technological breakthroughs; all the
required functionality previously existed, such as transmission protocols, distributed
file systems, hypertext and so on. The impact has been due to the ease of use of both the
browsers and HTML, and the fact that critical mass (see Chapter 13) was established,
first in academic circles, and then rapidly expanded into the leisure and business
domains. The burgeoning interest led to service providers, those providing connec-
tions to the internet, to make it cheap to connect, and a whole new subculture was born.

Currently, the web is one of the major reasons that new users are connecting to
the internet (probably even buying computers in the first place), and is rapidly
becoming a major activity for people both at work and for leisure. It is much more
a social phenomenon than anything else, with users attracted to the idea that com-
puters are now boxes that connect them with interesting people and exciting places
to go, rather than soulless cases that deny social contact. Computing often used to be
seen as an anti-social activity; the web has challenged this by offering a ‘global village’
with free access to information and a virtual social environment. Web culture has
emphasized liberality and (at least in principle) equality regardless of gender, race
and disability. In practice, the demographics of web users are only now coming close
to equal proportions in terms of gender, and, although internet use is increasing
globally, the vast majority of websites are still hosted in the United States. Indeed, the
web is now big business; corporate images and e-commerce may soon dominate the
individual and often zany aspects of the web.

4.2.13 Agent-based interfaces
In the human world agents are people who work on someone’s behalf: estate agents
buy and sell property for their customers, literary agents find publishers for authors,
travel agents book hotels and air tickets for tourists and secret agents obtain infor-
mation (secretly) for their governments. Software agents likewise act on behalf of
users within the electronic world. Examples include email agents which filter your
mail for you and web crawlers which search the world wide web for documents you
might find interesting. Agents can perform repetitive tasks, watch and respond to
events when the user is not present and even learn from the user’s own actions.

Some agents simply do what they are told. For example, many email systems allow
you to specify filters, simple if then rules, which determine the action to perform on
certain kinds of mail message:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

180 Chapter 4 n Paradigms

If Sender: is bank manager
Then Urgency: is high

A major problem with such agents is developing a suitable language between human
and agent which allows the user to express intentions. This is especially important
when the agent is going to act in the user’s absence. In this case, the user may not
receive feedback of any mistake until long after the effects have become irreversible;
hence the instructions have to be correct, and believed to be correct.

Other agents use artificial intelligence techniques to learn based on the user’s
actions. An early example of this was Eager [83]. Eager watches users while they work
on simple HyperCard applications. When it notices that the user is repeating similar
actions a small icon appears (a smiling cat!), suggesting the next action. The user is
free either to accept the suggestion or to ignore it. When the user is satisfied that
Eager knows what it is doing, it can be instructed to perform all the remaining
actions in a sequence.

Eager is also an example of an agent, which has a clear embodiment, that is, there
is a representation of Eager (the cat icon) in the interface. In contrast, consider
Microsoft Excel which incorporates some intelligence in its sum (Σ) function. If the
current cell is directly below a column of numbers, or if there is a series of numbers
to the left of the current cell, the sum range defaults to be the appropriate cells. It is
also clever about columns of numbers with subtotals so that they are not included
twice in the overall total. As around 80% of all spreadsheet formulae are simple sums
this is a very useful feature. However, the intelligence in this is not embodied, it
is diffuse, somewhere in ‘the system’. Although embodiment is not essential to an
agent-based system it is one of the key features which enable users to determine
where autonomy and intelligence may lie, and also which parts are stable [107].

We have already discussed the relationship between language and action
paradigms in human–computer interaction. To some extent agent-based systems
include aspects of both. Old command-based systems acted as intermediaries: you
asked them to do something, they did what you wanted (if you were lucky), and then
reported the results back to you. In contrast, direct manipulation emphasizes the
user’s own actions, possibly augmented by tools, on the electronic world. Agents act
on the user’s behalf, possibly, but not necessarily, instructed in a linguistic fashion.
But unlike the original intermediary paradigm, an agent is typically acting within a
world the user could also act upon. The difference is rather like that between a tradi-
tional shopkeeper who brings items to you as opposed to a shop assistant in a super-
market who helps you as you browse amongst the aisles. The latter does not prevent
you from selecting your own items from the shelves, but aids you when asked.

In fact, the proponents of direct manipulation and agent-based systems do not see
the paradigms as being quite as complementary as we have described them above.
Although amicable, the positions on each side are quite entrenched.

4.2.14 Ubiquitous computing

Where does computing happen, and more importantly, where do we as users go to
interact with a computer? The past 50 years of interactive computing show that we

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 Paradigms for interaction 181

still think of computers as being confined to a box on a desk or in an office or lab.
The actual form of the physical interface has been transformed from a noisy teletype
terminal to a large, graphical display with a WIMP or natural language interface, but
in all cases the user knows where the computer is and must walk over to it to begin
interacting with it.

In the late 1980s, a group of researchers at Xerox PARC, led by Mark Weiser, ini-
tiated a research program with the goal of moving human–computer interaction
away from the desktop and out into our everyday lives. Weiser observed:

The most profound technologies are those that disappear. They weave themselves into
the fabric of everyday life until they are indistinguishable from it.

These words have inspired a new generation of researchers in the area of ubiquitous
computing [369, 370]. Another popular term for this emerging paradigm is pervasive
computing, first coined by IBM. The intention is to create a computing infrastruc-
ture that permeates our physical environment so much that we do not notice the
computer any longer. A good analogy for the vision of ubiquitous computing is the
electric motor. When the electric motor was first introduced, it was large, loud and
very noticeable. Today, the average household contains so many electric motors
that we hardly ever notice them anymore. Their utility led to ubiquity and, hence,
invisibility.

How long in the future will it be before we no longer notice the interactive com-
puter? To some extent, this is already happening, since many everyday items, such as
watches, microwaves or automobiles, contain many microprocessors that we don’t
directly notice. But, to a large extent, the vision of Weiser, in which the computer is
hardly ever noticed, is a long way off.

To pursue the analogy with the electric motor a little further, one of the motor’s
characteristics is that it comes in many sizes. Each size is suited to a particular use.
Weiser thought that it was also important to think of computing technology in dif-
ferent sizes. The original work at PARC looked at three different scales of comput-
ing: the yard, the foot and the inch. In the middle of the scale, a foot-sized computer
is much like the personal computers we are familiar with today. Its size is suitable for
every individual to have one, perhaps on their desk or perhaps in their bedroom
or in their briefcase. A yard-sized computer, on the other hand, is so large that it
would be suitable for wide open public spaces, and would be shared by a group of
people. Perhaps there would be one of these in every home, or in a public hallway or
auditorium. On the opposite side of the scale, an inch-sized computer would be
a truly personal computing device that could fit in the palm of a hand. Everyone
would have a number of these at their disposal, and they would be as prevalent and
unremarkable as a pen or a pad of sticky notes.

There is an increasing number of examples of computing devices at these differ-
ent scales. At the foot scale, laptop computers are, of course, everywhere, but more
interesting examples of computing at this scale are commercially available tablet
computers or research prototypes, such as an interactive storybook (see Figure 4.1).
At the yard scale, there are various forms of high-resolution large screens and pro-
jected displays as we discussed in Chapter 2 (Section 2.4.3). These are still mainly
used as output-only devices showing presentations or fixed messages, but there is

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

182 Chapter 4 n Paradigms

increasing use of more interactive shared public displays, such as the Stanford
Interactive Mural shown in Figure 4.2. At the inch scale, there are many examples,
from powerful, pocket-sized personal organizers or personal digital assistants (PDAs)
to even smaller cellular phones or pagers, and many pocket electronic devices such
as electronic dictionaries and translators (see Figure 4.3). There are even badges
whose position can be automatically tracked.

Figure 4.1 Examples of computing devices at the foot scale. On the left is a tablet
computer – a Tablet PC from MotionComputing (Source: Motion Computing, Inc.).
On the right is a research prototype, the Listen Reader, an interactive storybook
developed at Palo Alto Research Center (picture courtesy Palo Alto Research Center)

Figure 4.2 The Stanford Interactive Mural, an example of a yard-scale interactive
display surface created by tiling multiple lower-resolution projectors. Picture courtesy
François GuimbretièreAru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 Paradigms for interaction 183

Figure 4.3 Example inch-scale devices. From left to right, a PDA, a mobile phone and pocket-sized
electronic bible. Source: Top left photograph by Alan Dix (Palm Pilot Series V), bottom left photograph by
Alan Dix with permission from Franklin Electronic Publishers, photograph right by Alan Dix (Ericsson phone)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

184 Chapter 4 n Paradigms

This influx of diverse computing devices represents the third wave of computing,
in which the ratio of computers to human drastically changes. In the first wave of
computing, one large mainframe computer served many people. In the second wave,
the PC revolution, computing devices roughly equalled the number of people using
them. In the third wave, the devices far outnumber the people. It is precisely because
of the large ratio of devices to people that Weiser and others note the importance of
minimizing the attention demands of any single device.

Many different technologies are converging to make the dream of ubiquitous
computing possible. These technologies include wireless networking, voice recogni-
tion, camera and vision systems, pen-based computing and positioning systems,
to name a few. What all of these technologies provide is the ability to move the
computer user away from a desktop, allow interaction in a number of modes (voice,
gesture, handwriting) in addition to a keyboard, and make information about the
user (through vision, speech recognition or positioning information) available to a
computational device that may be far removed from the actual user.

Ubiquitous computing is not simply about nifty gadgets, it is what can be
done with those gadgets. As Weiser pointed out, it is the applications that make
ubiquitous computing revolutionary. In Chapter 20, we discuss some examples of
the applications that ubiquitous computing makes possible, including the way this
is becoming part of everyday life in places as diverse as the home, the car and even
our own bodies. The vision of ubiquitous computing – first expressed by Weiser and
grounded in experimental work done at Xerox PARC – is now starting to become
reality.

4.2.15 Sensor-based and context-aware interaction

The yard-scale, foot-scale and inch-scale computers are all still clearly embodied
devices with which we interact, whether or not we consider them ‘computers’. There
are an increasing number of proposed and existing technologies that embed com-
putation even deeper, but unobtrusively, into day-to-day life. Weiser’s dream was
computers that ‘permeate our physical environment so much that we do not notice
the computers anymore’, and the term ubiquitous computing encompasses a wide
range from mobile devices to more pervasive environments.

We can consider the extreme situation in which the user is totally unaware of
interaction taking place. Information can be gathered from sensors in the environ-
ment (pressure mats, ultrasonic movement detectors, weight sensors, video cam-
eras), in our information world (web pages visited, times online, books purchased
online), and even from our own bodies (heart rate, skin temperature, brain signals).
This information is then used by systems that make inferences about our past
patterns and current context in order to modify the explicit interfaces we deal with
(e.g., modify default menu options) or to do things in the background (e.g., adjust
the air conditioning).

We already encounter examples of this: lights that turn on when we enter a room,
suggestions made for additional purchases at online bookstores, automatic doors

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.3 Summary 185

and washbasins. For elderly and disabled people, assistive technologies already
embody quite radical aspects of this. However, the vision of many is a world in which
the whole environment is empowered to sense and even understand the context of
activities within it.

Previous interactive computation has focussed on the user explicitly telling the
computer exactly what to do and the computer doing what it is told. In context-aware
computing the interaction is more implicit. The computer, or more accurately the
sensor-enhanced environment, is using heuristics and other semi-intelligent means
to predict what would be useful for the user. The data used for this inference and the
inference itself are both fuzzy, probabilistic and uncertain. Automatically sensing
context is, and will likely always remain, an imperfect activity, so it is important that
the actions resulting from these ‘intelligent’ predictions be made with caution.
Context-aware applications should follow the principles of appropriate intelligence:

1. Be right as often as possible, and useful when acting on these correct predictions.
2. Do not cause inordinate problems in the event of an action resulting from a

wrong prediction.

The failure of ‘intelligent’ systems in the past resulted from following the first
principle, but not the second. These new applications, which impinge so closely on
our everyday lives, demand that the second principle of appropriate intelligence is
upheld. (There is more on using intelligence in interfaces on the book website at
/e3/online/intelligence/)

Arguably this is a more radical paradigm shift than any other since the introduc-
tion of interactive computing itself. Whereas ubiquitous computing challenges the
idea of where computers are and how apparent they are to us, context-aware com-
puting challenges what it means to interact with a computer. It is as if we have
come full circle from the early days of computing. Large mainframes were placed
in isolation from the principle users (programmers) and interaction was usually
done through an intermediary operator. Half a century later, the implicit nature of
interaction implied by sensing creates a human–computer relationship that becomes
so seamless there is no conscious interaction at all.

This shift is so radical that one could even say it does not belong in this chapter
about paradigms for interaction! In fact, this shift is so dramatic that it is unclear
whether the basic models of interaction that have proved universal across techno-
logies, for example Norman’s execution–evaluation cycle (Chapter 3, Section 3.2.2),
are applicable at all. We will return to this issue in Chapter 18.

SUMMARY

In this chapter, we have discussed paradigms that promote the usability of inter-
active systems. We have seen that the history of computing is full of examples of
creative insight into how the interaction between humans and computers can be

4.3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

186 Chapter 4 n Paradigms

enhanced. While we expect never to replace the input of creativity in interactive
system design, we still want to maximize the benefit of one good idea by repeating its
benefit in many other designs. The problem with these paradigms is that they are
rarely well defined. It is not always clear how they support a user in accomplishing
some tasks. As a result, it is entirely possible that repeated use of some paradigm will
not result in the design of a more usable system. The derivation of principles and
theoretical models for interaction has often arisen out of a need to explain why
a paradigm is successful and when it might not be. Principles can provide the
repeatability that paradigms in themselves cannot provide. However, in defining
these principles, it is all too easy to provide general and abstract definitions that are
not very helpful to the designer. Therefore, the future of interactive system design
relies on a complementary approach. The creativity that gives rise to new paradigms
should be strengthened by the development of a theory that provides principles to
support the paradigm in its repeated application. We will consider such principles
and design rules in detail in Chapter 7 and more theoretical perspectives in Part 3.

EXERCISES

4.1. Choose one of the people mentioned in this chapter, or another important figure in
the history of HCI, and create a web page biography on them. Try to get at least one picture of
your subject, and find out about their life and work, with particular reference to their contribu-
tion to HCI.

4.2. Choose one paradigm of interaction and find three specific examples of it, not included in this
chapter. Compare these three – can you identify any general principles of interaction that are
embodied in each of your examples (see Chapter 7 for example principles)?

4.3. What new paradigms do you think may be significant in the future of interactive computing?

4.4. A truly ubiquitous computing experience would require the spread of computational capabilities
literally everywhere. Another way to achieve ubiquity is to carry all of your computational needs
with you everywhere, all the time. The field of wearable computing explores this interaction
paradigm. How do you think the first-person emphasis of wearable computing compares with the
third-person, or environmental, emphasis of ubiquitous computing? What impact would there be
on context-aware computing if all of the sensors were attached to the individual instead of embed-
ded in the environment?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Recommended reading 187

RECOMMENDED READING

H. Rheingold, Tools for Thought, Prentice Hall, 1985.
An easy to read history of computing, with particular emphasis on developments
in interactive systems. Much of the historical perspective of this chapter was
influenced by this book.

T. Berners-Lee, Weaving the Web: The Original Design and Ultimate Destiny of the
World Wide Web, Harper, 2000.
The history of the world wide web as told by its inventor Tim Berners-Lee makes
interesting and enlightening reading.

M. M. Waldrop, The Dream Machine: J.C.R. Licklider and the Revolution That Made
Computing Personal, Penguin, 2002.
A readable biography of Licklider and his pioneering work in making computing
available to all.

T. Bardini, Bootstrapping: Douglas Englebart, Coevolution and the Origins of Personal
Computing (Writing Science), Stanford University Press, 2000.
Biography of another great pioneer of interactive computing, Doug Engelbart and
his work at Stanford.

J. M. Nyce and P. Kahn, editors, and V. Bush, From Memex to Hypertext: Vannevar
Bush and the Mind’s Machine, Academic Press, 1992.
An edited collection of Bush’s writing about Memex, together with essays from
computing historians.

M. Weiser, Some computer science issues in ubiquitous computing, Communica-
tions of the ACM, Vol. 36, No. 7, pp. 75–84, July 1993.
Classic article on issues relating to ubiquitous computing, including hardware,
interaction software, networks, applications and methods.

A. Dix, T. Rodden, N. Davies, J. Trevor, A. Friday and K. Palfreyman, Exploiting
space and location as a design framework for interactive mobile systems, ACM
Transactions on Computer–Human Interaction (TOCHI), Vol. 7, No. 3, pp. 285–
321, September 2000.
Explores the space of context sensitive designs focussed especially on location.

There are also a number of special journal issues on ubiquitous, sensor-based and
context-aware computing in ACM TOCHI, Human–Computer Interaction and Com-
munications of the ACM and dedicated journals such as IEEE Pervasive and Personal
Technologies Journal.Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

DESIGN PROCESS

In this part, we concentrate on how design practice
addresses the critical feature of an interactive system –
usability from the human perspective. The chapters in
this part promote the purposeful design of more usable
interactive systems. We begin in Chapter 5 by introducing
the key elements in the interaction design process. These
elements are then expanded in later chapters.

Chapter 6 discusses the design process in more detail,
specifically focussing on the place of user-centered design
within a software engineering framework. Chapter 7 high-
lights the range of design rules that can help us to specify
usable interactive systems, including abstract principles,
guidelines and other design representations.

In Chapter 8, we provide an overview of implementa-
tion support for the programmer of an interactive system.
Chapter 9 is concerned with the techniques used to evalu-
ate the interactive system to see if it satisfies user needs.
Chapter 10 discusses how to design a system to be univer-
sally accessible, regardless of age, gender, cultural background
or ability. In Chapter 11 we discuss the provision of user
support in the form of help systems and documentation.

P A R T

2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

INTERACTION DESIGN

BASICS

OV E RV I E W

Interaction design is about creating interventions in often
complex situations using technology of many kinds including PC
software, the web and physical devices.

n Design involves:
– achieving goals within constraints and trade-off between

these
– understanding the raw materials: computer and human
– accepting limitations of humans and of design.

n The design process has several stages and is iterative and
never complete.

n Interaction starts with getting to know the users and their
context:
– finding out who they are and what they are like . . .

probably not like you!
– talking to them, watching them.

n Scenarios are rich design stories, which can be used and
reused throughout design:
– they help us see what users will want to do
– they give a step-by-step walkthrough of users’ interactions:

including what they see, do and are thinking.

n Users need to find their way around a system. This involves:
– helping users know where they are, where they have been

and what they can do next
– creating overall structures that are easy to understand and

fit the users’ needs
– designing comprehensible screens and control panels.

n Complexity of design means we don’t get it right first time:
– so we need iteration and prototypes to try out and

evaluate
– but iteration can get trapped in local maxima, designs that

have no simple improvements, but are not good
– theory and models can help give good start points.

5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

192 Chapter 5 n Interaction design basics

INTRODUCTION

Some of HCI is focussed on understanding: the academic study of the way people
interact with technology. However, a large part of HCI is about doing things and
making things – design.

In this chapter we will think about interaction design. Note that we are not just
thinking about the design of interactive systems, but about the interaction itself.
An office has just got a new electric stapler. It is connected to the mains electricity
and is hard to move around, so when you want to staple papers together you go
to the stapler. In the past when someone wanted to staple things they would take
the stapler to their desk and keep it until someone else wanted it. You might write a
letter, print it, staple it, write the next letter, staple it, and so on. Now you have to
take the letters to be stapled across the office, so instead you write–print, write–print
until you have a pile of things to staple and then take them across. The stapler
influences the whole pattern of interaction.

So, interaction design is not just about the artifact that is produced, whether
a physical device or a computer program, but about understanding and choosing
how that is going to affect the way people work. Furthermore, the artifacts we give to
people are not just these devices and programs, but also manuals, tutorials, online
help systems. In some cases we may realize that no additional system is required at
all, we may simply suggest a different way of using existing tools.

Because of this it may be better not to think of designing a system, or an artifact,
but to think instead about designing interventions. The product of a design exercise
is that we intervene to change the situation as it is; we hope, of course, changing it
for the better!

In the next section we will ask ‘what is design?’ which sets the spirit for the rest of
the chapter. Section 5.3 looks at the design process as a whole and this gives a frame-
work for the following sections. Section 5.4 looks at aspects of the requirements-
gathering phase of design focussed on getting to know and understand the user.
This is followed in Section 5.5 by a look at scenarios, which are a way of recording
existing situations and examining proposed designs. We then look at the details of
designing the overall application structure in Section 5.6 and individual screen
design in Section 5.7. Because design is never perfect first time (or ever!), most inter-
action design involves several cycles of prototyping and evaluation. The chapter ends
with an examination of the limits of this and why this emphasizes the importance of
deep knowledge of more general theories and models of interaction.

This chapter also functions as an introduction to much of Part 2 and Part 3 of this
book. In particular, Section 5.3 puts many of the succeeding chapters into the con-
text of the overall design process. Many of the individual sections of this chapter give
early views, or simple techniques, for issues and areas dealt with in detail later in the
book.

5.1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.2 What is design? 193

WHAT IS DESIGN?

So what is design? A simple definition is:

achieving goals within constraints

This does not capture everything about design, but helps to focus us on certain
things:

Goals What is the purpose of the design we are intending to produce? Who is it
for? Why do they want it? For example, if we are designing a wireless personal
movie player, we may think about young affluent users wanting to watch the lat-
est movies whilst on the move and download free copies, and perhaps wanting to
share the experience with a few friends.

Constraints What materials must we use? What standards must we adopt? How
much can it cost? How much time do we have to develop it? Are there health and
safety issues? In the case of the personal movie player: does it have to withstand
rain? Must we use existing video standards to download movies? Do we need to
build in copyright protection?

Of course, we cannot always achieve all our goals within the constraints. So perhaps
one of the most important things about design is:

Trade-off Choosing which goals or constraints can be relaxed so that others can be
met. For example, we might find that an eye-mounted video display, a bit like
those used in virtual reality, would give the most stable image whilst walking
along. However, this would not allow you to show friends, and might be danger-
ous if you were watching a gripping part of the movie as you crossed the road.

Often the most exciting moments in design are when you get a radically different
idea that allows you to satisfy several apparently contradictory constraints. However,
the more common skill needed in design is to accept the conflict and choose the
most appropriate trade-off. The temptation is to focus on one or other goal and opti-
mize for this, then tweak the design to make it just satisfy the constraints and other
goals. Instead, the best designs are where the designer understands the trade-offs and
the factors affecting them. Paradoxically, if you focus on the trade-off itself the more
radical solutions also become more apparent.

5.2.1 The golden rule of design

Part of the understanding we need is about the circumstances and context of the par-
ticular design problem. We will return to this later in the chapter. However, there are
also more generic concepts to understand. The designs we produce may be different,
but often the raw materials are the same. This leads us to the golden rule of design:

understand your materials

5.2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

194 Chapter 5 n Interaction design basics

In the case of a physical design this is obvious. Look at a chair with a steel frame and
one with a wooden frame. They are very different: often the steel frames are tubular
or thin L or H section steel. In contrast wooden chairs have thicker solid legs. If you
made a wooden chair using the design for a metal one it would break; if you made
the metal one in the design for the wooden one it would be too heavy to move.

For Human–Computer Interaction the obvious materials are the human and the
computer. That is we must:

n understand computers
– limitations, capacities, tools, platforms

n understand people
– psychological, social aspects, human error.

Of course, this is exactly the focus of Chapters 1 and 2. This is why they came first;
we must understand the fundamental materials of human–computer interaction in
order to design. In Chapters 3 and 4 we also looked at the nature of interaction itself.
This is equally important in other design areas. For example, the way you fit seats
and windows into an airplane’s hull affects the safety and strength of the aircraft as
a whole.

5.2.2 To err is human

It might sound demeaning to regard people as ‘materials’, possibly even dehumaniz-
ing. In fact, the opposite is the case: physical materials are treated better in most
designs than people. This is particularly obvious when it comes to failures.

The news headlines: an aircrash claims a hundred lives; an industrial accident
causes millions of pounds’ worth of damage; the discovery of systematic mistreat-
ment leads to thousands of patients being recalled to hospital. Some months later the
public inquiries conclude: human error in the operation of technical instruments.
The phrase ‘human error’ is taken to mean ‘operator error’, but more often than
not the disaster is inherent in the design or installation of the human interface. Bad
interfaces are slow or error-prone to use. Bad interfaces cost money and cost lives.

People make mistakes. This is not ‘human error’, an excuse to hide behind in
accident reports, it is human nature. We are not infallible consistent creatures,
but often make slips, errors and omissions. A concrete lintel breaks and a building
collapses. Do the headlines read ‘lintel error’? No. It is the nature of concrete lintels
to break if they are put under stress and it is the responsibility of architect and engi-
neer to ensure that a building only puts acceptable stress on the lintel. Similarly it is
the nature of humans to make mistakes, and systems should be designed to reduce
the likelihood of those mistakes and to minimize the consequences when mistakes
happen.

Often when an aspect of an interface is obscure and unclear, the response is to add
another line in the manual. People are remarkably adaptable and, unlike concrete
lintels, can get ‘stronger’, but better training and documentation (although necessary)
are not a panacea. Under stress, arcane or inconsistent interfaces will lead to errors.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.3 The process of design 195

If you design using a physical material, you need to understand how and where
failures would occur and strengthen the construction, build in safety features
or redundancy. Similarly, if you treat the human with as much consideration as a
piece of steel or concrete, it is obvious that you need to understand the way human
failures occur and build the rest of the interface accordingly.

5.2.3 The central message – the user

In this book you will find information on basic psychology, on particular techno-
logies, on methods and models. However, there is one factor that outweighs all
this knowledge. It is about attitude. Often it is said that the success of the various
methods used in HCI lies not in how good they are, but in that they simply focus the
mind of the designer on the user.

This is the core of interaction design: put the user first, keep the user in the center
and remember the user at the end.

THE PROCESS OF DESIGN

Often HCI professionals complain that they are called in too late. A system has been
designed and built, and only when it proves unusable do they think to ask how to do
it right! In other companies usability is seen as equivalent to testing – checking
whether people can use it and fixing problems, rather than making sure they can
from the beginning. In the best companies, however, usability is designed in from
the start.

In Chapter 6 we will look in detail at the software development process and how
HCI fits within it. Here we’ll take a simplified view of four main phases plus an
iteration loop, focussed on the design of interaction (Figure 5.1).

5.3

Figure 5.1 Interaction design process

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

196 Chapter 5 n Interaction design basics

Requirements – what is wanted The first stage is establishing what exactly is
needed. As a precursor to this it is usually necessary to find out what is currently
happening. For example, how do people currently watch movies? What sort of
personal appliances do they currently use?

There are a number of techniques used for this in HCI: interviewing people,
videotaping them, looking at the documents and objects that they work with,
observing them directly. We don’t have a chapter dedicated to this, but aspects
will be found in various places throughout the book. In particular, ethnography,
a form of observation deriving from anthropology, has become very influential
and is discussed in Chapter 13. We will look at some ways of addressing this stage
in Section 5.4.

Analysis The results of observation and interview need to be ordered in some way
to bring out key issues and communicate with later stages of design. Chapter 15
and part of Chapter 18 deal with task models, which are a means to capture how
people carry out the various tasks that are part of their work and life. In this chap-
ter (Section 5.5), we will look at scenarios, rich stories of interaction, which can
be used in conjunction with a method like task analysis or on their own to record
and make vivid actual interaction. These techniques can be used both to represent
the situation as it is and also the desired situation.

Design Well, this is all about design, but there is a central stage when you move
from what you want, to how to do it. There are numerous rules, guidelines and
design principles that can be used to help with this and Chapter 7 discusses these
in detail; whilst Chapter 10 looks at how to design taking into account many dif-
ferent kinds of user. We need to record our design choices in some way and there
are various notations and methods to do this, including those used to record the
existing situation. Chapters 16, 17 and 18 deal with ways of modeling and describ-
ing interaction. In this chapter, Section 5.6 will look at some simple notations
for designing navigation within a system and some basic heuristics to guide the
design of that navigation. Section 5.7 will look more closely at the layout of indi-
vidual screens. It is at this stage also where input from theoretical work is most
helpful, including cognitive models, organizational issues and understanding
communication (Chapters 12, 13 and 14).

Iteration and prototyping Humans are complex and we cannot expect to get
designs right first time. We therefore need to evaluate a design to see how well
it is working and where there can be improvements. We will discuss some
techniques for evaluation in Chapter 9. Some forms of evaluation can be done
using the design on paper, but it is hard to get real feedback without trying it
out. Most user interface design therefore involves some form of prototyping,
producing early versions of systems to try out with real users. We’ll discuss this
in Section 5.8.

Implementation and deployment Finally, when we are happy with our design,
we need to create it and deploy it. This will involve writing code, perhaps making
hardware, writing documentation and manuals – everything that goes into a real

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.4 User focus 197

system that can be given to others. Chapter 8 will deal with software architec-
tures for user interfaces and there are details about implementing groupware in
Chapter 19 and web interfaces in Chapter 21.

If you read all the chapters and look at all the techniques you might think
‘help! how can I ever do all this?’. Of course the answer is you can’t. Your time is
limited – there is a trade-off between the length of the design period and the
quality of the final design. This means one sometimes has to accept a design as final
even if it is not perfect: it is often better to have a product that is acceptable but on
time and to cost than it is to have one that has perfect interaction but is late and
over budget.

It is easy to think that the goal, especially of the iterative stages, is to find usability
problems and fix them. As you experience real designs, however, you soon find that
the real problem is not to find faults – that is easy; nor to work out how to fix them
– that may not be too difficult; instead the issue is: which usability problems is it
worth fixing?

In fact, if you ever come across a system that seems to be perfect it is a badly
designed system – badly designed not because the design is bad, but because too
much effort will have been spent in the design process itself. Just as with all trade-
offs, it may be possible to find radically different solutions that have a major effect
but are cheap to implement. However, it is best not to plan assuming such bolts of
inspiration will strike when wanted!

USER FOCUS

As we’ve already said, the start of any interaction design exercise must be the
intended user or users. This is often stated as:

know your users

Because this sounds somewhat like a commandment it is sometimes even written
‘know thy user’ (and originally ‘know the user’ [162]). Note, too, a little indecision
about user/users – much of traditional user interface design has focussed on a single
user. We will discuss issues of collaboration extensively in Chapters 13 and 19, but
even at this stage it is important to be aware that there is rarely one user of a system.
This doesn’t mean that every system is explicitly supporting collaboration like email
does. However, almost every system has an impact beyond the person immediately
using it.

Think about a stock control system. The warehouse manager queries the system
to find out how many six-inch nails are in stock – just a single user? Why did he do
this? Perhaps a salesperson has been asked to deliver 100,000 six-inch nails within a
fortnight and wants to know if the company is able to fulfill the order in time. So the
act of looking at the stock control system involves the warehouse manager, the sales-
person and the client. The auditors want to produce a valuation of company assets

5.4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

198 Chapter 5 n Interaction design basics

including stock in hand, the assistant warehouse manager needs to update the stock
levels while his boss is on holiday.

Over time many people are affected directly or indirectly by a system and these
people are called stakeholders (see also Chapter 13). Obviously, tracing the tenuous
links between people could go on for ever and you need to draw boundaries as to
whom you should consider. This depends very much on the nature of the systems
being designed, but largely requires plain common sense.

So, how do you get to know your users?

n Who are they?

Of course, the first thing to find out is who your users are. Are they young or old,
experienced computer users or novices? As we saw with the stock control system, it
may not be obvious who the users are, so you may need to ask this question again as
you find out more about the system and its context. This question becomes harder
to answer if you are designing generic software, such as a word processor, as there are
many different users with different purposes and characteristics. A similar problem
arises with many websites where the potential visitors are far from homogenous.
It may be tempting to try to think of a generic user with generic skills and generic
goals; however, it is probably better, either instead or in addition, to think of several
specific users.

n Probably not like you!

When designing a system it is easy to design it as if you were the main user: you
assume your own interests and abilities. So often you hear a designer say ‘but
it’s obvious what to do’. It may be obvious for her! This is not helped by the fact
that many software houses are primarily filled with male developers. Although
individuals differ a lot there is a tendency for women to have better empathetic
skills.

n Talk to them.

It is hard to get yourself inside someone else’s head, so the best thing is usually to
ask them. This can take many forms: structured interviews about their job or life,
open-ended discussions, or bringing the potential users fully into the design process.
The last of these is called participatory design (see Chapter 13, Section 13.3.4). By
involving users throughout the design process it is possible to get a deep knowledge
of their work context and needs. The obvious effect of this is that it produces better
designs. However, there is a second motivational effect, perhaps at least as important
as the quality of the design. By being involved, users come to ‘own’ the design and
become champions for it once deployed. Recall that a system must be not only use-
ful and usable, but also used.

People may also be able to tell you about how things really happen, not just how
the organization says they should happen. To encourage users to tell you this, you
will need to win their trust, since often the actual practices run counter to corporate
policy. However it is typically these ad hoc methods that make organizations work,
not the official story!

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.4 User focus 199

n Watch them.

Although what people tell you is of the utmost importance, it is not the whole
story.

When black-belt judo players are asked how they throw an opponent, their explana-
tions do not match what they actually do. Think about walking – how do your legs
and arms move? It is harder than you would think! Although people have run since
the earliest times, it was only with Eadweard Muybridge’s pioneering time-lapse
photography in the 1870s that the way people actually walk, run and move became
clear (see Figure 5.2). This is even more problematic with intellectual activities as it
is notoriously difficult to introspect.

A professional in any field is very practiced and can do things in the domain. An
academic in the same field may not be able to do things, but she knows about the
things in the domain. These are different kinds of knowledge and skill. Sometimes
people know both, but not necessarily so. The best sports trainers may not be the best
athletes, the best painters may not be the best art critics.

Because of this it is important to watch what people do as well as hear what they
say. This may involve sitting and taking notes of how they spend a day, watching
particular activities, using a video camera or tape recorder. It can be done in an
informal manner or using developed methods such as ethnography or contextual
inquiry, which we will discuss in Chapter 13.

Sometimes users can be involved in this; for example, asking them to keep a diary
or having a 15-minute buzzer and asking them to write down what they are doing
when the buzzer sounds. Although this sounds just like asking the users what they
do, the structured format helps them give a more accurate answer.

Another way to find out what people are doing is to look at the artifacts they are
using and creating. Look at a typical desk in an office. There are papers, letters, files,
perhaps a stapler, a computer, sticky notes . . . Some of these carry information, but
if they were only important for the information in them they could equally well be

Figure 5.2 Eadweard Muybridge’s time-lapse photography. Source for top plate
and middle plate: Kingston Museum and Heritage Service; source for bottom plate:
V&A Images, The Victoria and Albert Museum, London

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

200 Chapter 5 n Interaction design basics

in the filing cabinet and just taken out when needed. The sticky note on the edge of
Brian’s screen saying ‘book table’ is not just information that he needs to book a
restaurant table. The fact that it is on his screen is reminding him that something
needs to be done. In Chapter 18 we will look at the role of artifacts in detail.

DESIGN FOCUS

Cultural probes

Traditional ethnography has involved watching people and being present. There is always a disruptive
effect when someone is watching, but in, say, an office, after a while the ethnographer becomes ‘part
of the wallpaper’ and most activities carry on as normal. However, in some environments, for example
the home or with psychiatric patients, it is hard to go and watch people for long periods if at all.
Cultural probes have been used as one way to gather rich views of an area without intrusion. These
were originally developed as prompts for design [146], but have also been adopted as an added method
for ethnography [170].

Source: Photograph courtesy of William W. Gaver

Cultural probes are small packs of items designed to provoke and record comments in various ways.
They are given to people to take away and to open and use in their own environment. For example,
one probe pack for the domestic environment includes a glass with a paper sleeve. You use the glass
to listen to things and then write down what you hear. The same probe pack contains a repackaged
disposable camera and a small solid-state voice recorder. When the packs are returned, the notes,
recordings, photos, etc., are used as a means of understanding what is significant and important for the
people in the environment and as a means of enculturing designers.

For more see /e3/online/cultural-probes/ and www.crd.rca.ac.uk/equator/domestic_probes.html
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

5.5 Scenarios 201

In all these observational methods one should not just stop at the observation, but
go back and discuss the observations with the users. Even if they were not previously
aware of what they were doing, they are likely to be able to explain when shown. The
observations tell you what they do, they will tell you why.

n Use your imagination.

Even if you would like to involve many users throughout your design exercise this
will not always be possible. It may be too costly, it may be hard to get time with them
(e.g. hospital consultant), it may be that there are just too many (e.g. the web).
However, even if you cannot involve actual users you can at least try to imagine their
experiences.

Now this is very dangerous! It would be easy to think, ‘if I were a warehouse man-
ager I would do this’. The issue is not what you would do in the user’s shoes but what
they would do. This requires almost a kind of method acting. Imagine being a ware-
house manager. What does the word ‘undo’ in the menu mean to him?

One method that has been quite successful in helping design teams produce user-
focussed designs is the persona. A persona is a rich picture of an imaginary person
who represents your core user group. Figure 5.3 gives an example persona of Betty
the warehouse manager. A design team will have several of these personae covering
different types of intended users and different roles. The personae will themselves be
based on studies of actual users, observation, etc. When a design solution is proposed
the team can ask, ‘how would Betty react to this?’. The detail is deliberately more
than is strictly necessary, but this is essential. It is only by feeling that Betty is a real
person that the team can start to imagine how she will behave.

SCENARIOS

Scenarios are stories for design: rich stories of interaction. They are perhaps the
simplest design representation, but one of the most flexible and powerful. Some scen-
arios are quite short: ‘the user intends to press the “save” button, but accidentally

5.5

Betty is 37 years old. She has been Warehouse Manager for five years and has worked
for Simpkins Brothers Engineering for 12 years. She didn’t go to university, but has
studied in her evenings for a business diploma. She has two children aged 15 and 7 and
does not like to work late. She did part of an introductory in-house computer course
some years ago, but it was interrupted when she was promoted and could no longer
afford to take the time. Her vision is perfect, but her right-hand movement is slightly
restricted following an industrial accident three years ago. She is enthusiastic about
her work and is happy to delegate responsibility and take suggestions from her staff.
However, she does feel threatened by the introduction of yet another new computer
system (the third in her time at SBE).

Figure 5.3 Persona – a rich description of Betty the Warehouse Manager

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

202 Chapter 5 n Interaction design basics

presses the “quit” button so loses his work’. Others are focussed more on describing
the situation or context.

Figure 5.4 gives an example of a scenario for the personal movie player. Like the
persona it is perhaps more detailed than appears necessary, but the detail helps make
the events seem real. The figure shows plain text, but scenarios can be augmented by
sketches, simulated screen shots, etc. These sketches and pictures are called story-
boards and are similar to the techniques used in film making to envisage plot-lines.

Where the design includes physical artifacts the scenarios can be used as a script
to act out potential patterns of use. For example, we might imagine a digital Swiss
army knife, which has a small LCD screen and uses the toothpick as a stylus.
The knife connects to the internet via a wireless link through your phone and gives
interesting tips from other Swiss army knife users. Try getting two together at a party
– you will see this would appeal! It sounds like a great design idea – but wait, try act-
ing out the use. If you have a Swiss army knife, use it, or use something penknife-
sized if you don’t. The tip on the LCD says, ‘open the stone remover’: a small LED
glows near the right blade – you open it. ‘Now push the blade into the rubber of the
grommet’, it says. You do this and then look for the next instruction. Look at the
knife in your hand . . . oops, your thumb is covering where the screen would be.
Perhaps a voice interface would be better.

You can see already how scenarios force you to think about the design in detail
and notice potential problems before they happen. If you add more detail you can
get to a blow-by-blow account of the user–system interactions and then ask ‘what is
the user intending now?’; ‘what is the system doing now?’. This can help to verify that

Brian would like to see the new film Moments of Significance and wants to invite Alison,
but he knows she doesn’t like ‘arty’ films. He decides to take a look at it to see if she
would like it and so connects to one of the movie-sharing networks. He uses his work
machine as it has a higher bandwidth connection, but feels a bit guilty. He knows he
will be getting an illegal copy of the film, but decides it is OK as he is intending to
go to the cinema to watch it. After it downloads to his machine he takes out his new
personal movie player. He presses the ‘menu’ button and on the small LCD screen he
scrolls using the arrow keys to ‘bluetooth connect’ and presses the ‘select’ button.
On his computer the movie download program now has an icon showing that it has
recognized a compatible device and he drags the icon of the film over the icon for the
player. On the player the LCD screen says ‘downloading now’, with a per cent done
indicator and small whirling icon.

During lunchtime Brian takes out his movie player, plugs in his earphones and starts
to watch. He uses the arrow keys to skip between portions of the film and decides that,
yes, Alison would like it. Then he feels a tap on his shoulder. He turns round. It is Alison.
He had been so absorbed he hadn’t noticed her. ‘What are you watching’, she says. ‘Here,
listen’, he says and flicks a small switch. The built-in directional speaker is loud enough
for both Brian and Alison to hear, but not loud enough to disturb other people in the
canteen. Alison recognizes the film from trailers, ‘surprised this is out yet’ she says. ‘Well
actually . . .’, Brian confesses, ‘you’d better come with me to see it and make an honest
man of me’. ‘I’ll think about it’, she replies.

Figure 5.4 Scenario for proposed movie player

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.6 Navigation design 203

the design would make sense to the user and also that proposed implementation
architectures would work.

In addition scenarios can be used to:

Communicate with others – other designers, clients or users. It is easy to misunder-
stand each other whilst discussing abstract ideas. Concrete examples of use are far
easier to share.

Validate other models A detailed scenario can be ‘played’ against various more
formal representations such as task models (discussed in Chapter 15) or dialog
and navigation models (Chapter 16 and below).

Express dynamics Individual screen shots and pictures give you a sense of what a
system would look like, but not how it behaves.

In the next section we will discuss ways of describing the patterns of interaction
with a system. These are more complex and involve networks or hierarchies. In
contrast scenarios are linear – they represent a single path amongst all the potential
interactions.

This linearity has both positive and negative points:

Time is linear Our lives are linear as we live in time and so we find it easier to
understand simple linear narratives. We are natural storytellers and story listeners.

But no alternatives Real interactions have choices, some made by people, some by
systems. A simple scenario does not show these alternative paths. In particular, it
is easy to miss the unintended things a person may do.

Scenarios are a resource that can be used and reused throughout the design pro-
cess: helping us see what is wanted, suggesting how users will deal with the potential
design, checking that proposed implementations will work, and generating test cases
for final evaluation.

For more examples of scenarios see: /e3/online/scenario/

NAVIGATION DESIGN

As we stressed, the object of design is not just a computer system or device, but the
socio-technical intervention as a whole. However, as design progresses we come to a
point where we do need to consider these most tangible outputs of design.

Imagine yourself using a word processor. You will be doing this in some particu-
lar social and physical setting, for a purpose. But now we are focussing on the com-
puter system itself. You interact at several levels:

Widgets The appropriate choice of widgets and wording in menus and buttons will
help you know how to use them for a particular selection or action.

Screens or windows You need to find things on the screen, understand the logical
grouping of buttons.

5.6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

204 Chapter 5 n Interaction design basics

Navigation within the application You need to be able to understand what will
happen when a button is pressed, to understand where you are in the interaction.

Environment The word processor has to read documents from disk, perhaps some
are on remote networks. You swap between applications, perhaps cut and paste.

You can see similar levels in other types of application and device, as Table 5.1 shows.
There are differences; for example, in the web we have less control of how people
enter a site and on a physical device we have the same layout of buttons and displays
no matter what the internal state (although we may treat them differently).

We discussed graphical user interface widgets in Chapter 3 and in the next section
we will look at details of screen design. In this section we will look mainly at naviga-
tion design, that is the main screens or modes within a system and how they inter-
connect. We will also briefly consider how this interacts with the wider environment.

Just in case you haven’t already got the idea, the place to start when considering
the structure of an application is to think about actual use:

n who is going to use the application?
n how do they think about it?
n what will they do with it?

This can then drive the second task – thinking about structure. Individual screens or
the layout of devices will have their own structure, but this is for the next section.
Here we will consider two main kinds of issue:

n local structure
– looking from one screen or page out

n global structure
– structure of site, movement between screens.

5.6.1 Local structure

Much of interaction involves goal-seeking behavior. Users have some idea of what
they are after and a partial model of the system. In an ideal world if users had perfect
knowledge of what they wanted and how the system worked they could simply
take the shortest path to what they want, pressing all the right buttons and links.
However, in a world of partial knowledge users meander through the system. The

Table 5.1 Levels of interaction

PC application

Widgets
Screen design
Navigation design
Other apps and
operating system

Physical device

Buttons, dials, lights, displays
Physical layout
Main modes of device
The real world!

Website

Form elements, tags and links
Page design
Site structure
The web, browser,
external links

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.6 Navigation design 205

important thing is not so much that they take the most efficient route, but that
at each point in the interaction they can make some assessment of whether they are
getting closer to their (often partially formed) goal.

To do this goal seeking, each state of the system or each screen needs to give the
user enough knowledge of what to do to get closer to their goal. In Chapter 7 we will
look at various design rules, some of which address this issue. To get you started,
here are four things to look for when looking at a single web page, screen or state of
a device.

n knowing where you are
n knowing what you can do
n knowing where you are going – or what will happen
n knowing where you’ve been – or what you’ve done.

The screen, web page or device displays should make clear where you are in terms
of the interaction or state of the system. Some websites show ‘bread crumbs’ at the
top of the screen, the path of titles showing where the page is in the site (Figure 5.5).
Similarly, in the scenario in Figure 5.4, the personal movie player says ‘downloading
now’, so Brian knows that it is in the middle of downloading a movie from the PC.

It is also important to know what you can do – what can be pressed or clicked to go
somewhere or do something. Some web pages are particularly bad in that it is unclear
which images are pure decoration and which are links to take you somewhere.

On the web the standard underlined links make it clear which text is clickable and
which is not. However, in order to improve the appearance of the page many sites
change the color of links and may remove the underline too. This is especially con-
fusing if underline is then used as simple emphasis on words that are not links! The

Figure 5.5 Breadcrumbs. Screen shot frame reprinted by permission from
Microsoft Corporation

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

206 Chapter 5 n Interaction design basics

trade-off between appearance and ease of use may mean that this is the right thing
to do, but you should take care before confusing the user needlessly.

Chic design is also a problem in physical devices. One of the authors was once in
a really high-class hotel and found he could not locate the flush in the toilet. Only after
much fumbling did he discover that one of the tiles could be pressed. The ‘active’ tile
was level with the rest of the tiled wall – a very clean design, but not very usable!

You then need to know where you are going when you click a button or what
will happen. Of course you can try clicking the button to see. In the case of a website
or information system this may mean you then have to use some sort of ‘back’ mech-
anism to return, but that is all; however, in an application or device the action
of clicking the button may already have caused some effect. If the system has an easy
means to undo or reverse actions this is not so bad, but it is better if users do
not have to use this ‘try it and see’ interaction. Where response times are slow this is
particularly annoying.

Remember too that icons are typically not self-explanatory and should always be ac-
companied by labels or at the very least tooltips or some similar technique. A picture
paints a thousand words, but typically only when explained first using fifteen hundred!

DESIGN FOCUS

Beware the big button trap

Public information systems often have touchscreens and so have large buttons. Watch someone using
one of these and see how often they go to the wrong screen and have to use ‘back’ or ‘home’ to try
again. If you look more closely you will find that each button has only one or two words on it giving
the title of the next screen, and possibly some sort of icon. Quite rightly, the button label will be in a
large font as users may have poor eyesight.

It is hard to choose appropriate labels that mean the same for everyone, especially when the breadth
of the screen hierarchy is fixed by the maximum number of buttons. So it is no wonder that people
get confused. However, there is usually plenty of room for additional explanation in a smaller font,
possibly just the next level of button labels, or a sentence of explanation. It may not look as pretty, but
it may mean that people actually find the information they are looking for.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Special care has to be taken if the same command or button press means some-
thing different in different contexts. These different contexts that change the inter-
pretation of commands are called modes. Many older text editors would interpret
pressing ‘x’ to mean ‘enter me into the text’ in a normal typing mode, but ‘exit’ in a
special command mode. If modes are clearly visible or audible this is less of a prob-
lem and in Chapter 3 (Section 3.6.7) we saw how palettes are one way to achieve this.
In general, modes are less of a problem in windowed systems where the mode is
made apparent by the current window (if you remember which it is). However,
physical devices may have minimal displays and may be operated without visual
attention.

Finally, if you have just done some major action you also want some sort of
confirmation of what you’ve done. If you are faultless and have perfect knowledge,
of course you will be sure that you have hit the right key and know exactly what

5.6 Navigation design 207

DESIGN FOCUS

Modes

Alan’s mobile phone has a lock feature to prevent accidental use. To remove the lock he has to press
the ‘C’ (cancel) button which then asks for an additional ‘yes’ to confirm removing the lock. So, in
‘locked’ mode, ‘C’ followed by ‘yes’ means ‘turn off lock’ and these are the most frequent actions when
Alan takes the phone from his pocket.

However, Alan is forgetful and sometimes puts the phone in his pocket unlocked. This leads to occa-
sional embarrassing phone calls and also to another problem.

The ‘yes’ button is quite big and so this is often pressed while in his pocket. This puts the phone into
‘dial recent numbers’ mode with a list of recent calls on screen. In this mode, pressing ‘C’ gives a
prompt ‘delete number’ and pressing ‘yes’ then deletes the number from the phone’s address book.
Unhappily, this often means he takes the phone from his pocket, automatically presses ‘C’, ‘yes’ only to
see as he looks down to the handset the fatal words ‘number deleted’. Of course there is no undo!

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

will happen. Remember, too, that to know what will happen, you would need to
know everything about the internal state of the system and things outside, like the
contents of files, networked devices, etc., that could affect it. In other words, if you
were omniscient you could do it. For lesser mortals the system needs to give some
feedback to say what has happened.

In an information system, there is a related but slightly different issue, which is to
know where you have been. This helps you to feel in control and understand your
navigation of the information space. The feeling of disorientation when you do not
have sufficient means to know where you are and where you have been has been
called ‘lost in hyperspace’. Most web browsers offer a history system and also a ‘back’
button that keeps a list of recently visited pages.

5.6.2 Global structure – hierarchical organization

We will now look at the overall structure of an application. This is the way the
various screens, pages or device states link to one another.

One way to organize a system is in some form of hierarchy. This is typically
organized along functional boundaries (that is, different kinds of things), but may
be organized by roles, user type, or some more esoteric breakdown such as modules
in an educational system.

The hierarchy links screens, pages or states in logical groupings. For example,
Figure 5.6 gives a high-level breakdown of some sort of messaging system. This
sort of hierarchy can be used purely to help during design, but can also be used
to structure the actual system. For example, this may reflect the menu structure of
a PC application or the site structure on the web.

208 Chapter 5 n Interaction design basics

Figure 5.6 Application functional hierarchy

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.6 Navigation design 209

Any sort of information structuring is difficult, but there is evidence that people
find hierarchies simpler than most. One of the difficulties with organizing informa-
tion or system functionality is that different people have different internal structures
for their knowledge, and may use different vocabulary. This is one of the places
where a detailed knowledge of the intended users is essential: it is no good creating a
hierarchy that the designers understand, but not the users . . . and all too commonly
this is exactly what happens.

However much you think you have got the wording and categories right, because
there are different users it is inevitable that not everyone will understand it perfectly.
This is where clear guidance as suggested in Section 5.6.1 (knowing where you are
going – or what will happen) is essential, as well as the means to allow users to change
their mind if they make the wrong decisions.

There is also evidence that deep hierarchies are difficult to navigate, so it is
better to have broad top-level categories, or to present several levels of menu on one
screen or web page. Miller’s magic number of 7 ± 2 for working memory capacity
(see Chapter 1, Section 1.3.2) is often misused in this context. Many guidelines
suggest that menu breadth, that is the number of choices available at each level in
the menu, should be around seven. However, Miller’s result applies only to working
memory, not visual search. In fact, optimal breadth can be quite large, perhaps 60
or more items for a web index page if the items are organized in such a way that
the eye can easily find the right one [206]. (See /e3/online/menu-breadth/ for more
on optimal menu breadth.) Of course, to organize the items on the page requires
further classification. However, here the critical thing is the naturalness of the
classification, which itself may depend on the user’s purpose. For example, if the
user wants to look up information on a particular city, an alphabetical list of all
city names would be fast, but for other purposes a list by region would be more
appropriate.

5.6.3 Global structure – dialog

In a pure information system or static website it may be sufficient to have a fully
hierarchical structure, perhaps with next/previous links between items in the same
group. However, for any system that involves doing things, constantly drilling down
from one part of the hierarchy to another is very frustrating. Usually there are ways
of getting more quickly from place to place. For example, in a stock control system
there may be a way of going from a stock item to all orders outstanding on that item
and then from an order to the purchase record for the customer who placed the
order. These would each be in a very different part of a hierarchical view of the
application, yet directly accessible from one another.

As well as these cross-links in hierarchies, when you get down to detailed interac-
tions, such as editing or deleting a record, there is obviously a flow of screens and
commands that is not about hierarchy. In HCI the word ‘dialog’ is used to refer to
this pattern of interactions between the user and a system.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

210 Chapter 5 n Interaction design basics

Consider the following fragment from a marriage service:

Minister: Do you name take this woman . . .
Man: I do
Minister: Do you name take this man . . .
Woman: I do
Minister: I now pronounce you man and wife

Notice this describes the general flow of the service, but has blanks for the names of
the bride and groom. So it gives the pattern of the interaction between the parties,
but is instantiated differently for each service. Human–computer dialog is just the
same; there are overall patterns of movement between main states of a device or
windows in a PC application, but the details differ each time it is run.

Recall that scenarios gave just one path through the system. To describe a full
system we need to take into account different paths through a system and loops
where the system returns to the same screen. There are various ways to do this, and
in Chapter 16 we will expand on the wedding example and look at several different
types of dialog model.

A simple way is to use a network diagram showing the principal states or screens
linked together with arrows. This can:

n show what leads to what
n show what happens when
n include branches and loops
n be more task oriented than a hierarchy.

Figure 5.7 shows a network diagram illustrating the main screens for adding or delet-
ing a user from the messaging system in Figure 5.6. The arrows show the general flow
between the states. We can see that from the main screen we can get to either the
‘remove user’ screen or the ‘add user’ screen. This is presumably by selecting buttons
or links, but the way these are shown we leave to detailed screen design. We can also
see that from the ‘add user’ screen the system always returns to the main screen, but
after the ‘remove user’ screen there is a further confirmation screen.

Figure 5.7 Network of screens/states

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.7 Screen design and layout 211

5.6.4 Wider still

Donne said ‘No man is an Iland, intire of it selfe’. This is also true of the things we
design. Each sits amongst other devices and applications and this in turn has to be
reflected within our design.

This has several implications:

Style issues We should normally conform to platform standards, such as positions
for menus on a PC application, to ensure consistency between applications. For
example, on our proposed personal movie player we should make use of standard
fast-forward, play and pause icons.

Functional issues On a PC application we need to be able to interact with files, read
standard formats and be able to handle cut and paste.

Navigation issues We may need to support linkages between applications, for
example allowing the embedding of data from one application in another, or, in
a mail system, being able to double click an attachment icon and have the right
application launched for the attachment.

On the web we have the added difficulty that other sites and applications may
include links that bypass our ‘home page’ and other pages and go direct into the heart
of our site or web application. Also, when we link to other sites, we have no control
over them or the way their content may change over time.

SCREEN DESIGN AND LAYOUT

We have talked about the different elements that make up interactive applications,
but not about how we put them together. A single screen image often has to present
information clearly and also act as the locus for interacting with the system. This is
a complex area, involving some of the psychological understanding from Chapter 1
as well as aspects of graphical design.

The basic principles at the screen level reflect those in other areas of interaction
design:

Ask What is the user doing?

Think What information is required? What comparisons may the user need to
make? In what order are things likely to be needed?

Design Form follows function: let the required interactions drive the layout.

5.7.1 Tools for layout

We have a number of visual tools available to help us suggest to the user appropriate
ways to read and interact with a screen or device.

5.7

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

212 Chapter 5 n Interaction design basics

Grouping and structure

If things logically belong together, then we should normally physically group them
together. This may involve multiple levels of structure. For example, in Figure 5.8 we
can see a potential design for an ordering screen. Notice how the details for billing
and delivery are grouped together spatially; also note how they are separated from
the list of items actually ordered by a line as well as spatially. This reflects the fol-
lowing logical structure:

Order:
Administrative information

Billing details
Delivery details

Order information
Order line 1
Order line 2
. . .

Order of groups and items

If we look at Figure 5.8 again we can see that the screen seems to naturally suggest
reading or filling in the billing details first, followed by the delivery details, followed
by the individual order items. Is this the right order?

In general we need to think: what is the natural order for the user? This should
normally match the order on screen. For data entry forms or dialog boxes we should
also set up the order in which the tab key moves between fields.

Occasionally we may also want to force a particular order; for example we may
want to be sure that we do not forget the credit card details!

Decoration

Again looking at Figure 5.8, we can see how the design uses boxes and a separating
line to make the grouping clear. Other decorative features like font style, and text or
background colors can be used to emphasize groupings. Look at the microwave control

Figure 5.8 Grouping related items in an order screen

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.7 Screen design and layout 213

panel in Figure 5.9. See how the buttons differ in using the foreground and back-
ground colors (green and gold) so that groups are associated with one another. See
also how the buttons are laid out to separate them into groups of similar function.

Alignment

Alignment of lists is also very important. For users who read text from left to right,
lists of text items should normally be aligned to the left. Numbers, however, should

Figure 5.9 Microwave control panel

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

214 Chapter 5 n Interaction design basics

normally be aligned to the right (for integers) or at the decimal point. This is because
the shape of the column then gives an indication of magnitude – a sort of mini-
histogram. Items like names are particularly difficult. Consider list (i) in Figure 5.10.
It is clearly hard to look someone up if you only know their surname. To make
it easy, such lists should be laid out in columns as in (ii), or have forename and
surname reversed as in (iii). (The dates in Figure 5.13, Section 5.7.3, pose similar
problems, as the years do not align, even when the folder is sorted by date.)

Figure 5.10 Looking up surnames

DESIGN FOCUS

Alignment and layout matter

Look quickly at these two columns of numbers and try to find the biggest number in each column.

532.56 627.865
179.3 1.005763

256.317 382.583
15 2502.56

73.948 432.935
1035 2.0175
3.142 652.87

497.6256 56.34

Multiple column lists require more care. Text columns have to be wide enough for
the largest item, which means you can get large gaps between columns. Figure 5.11
shows an example of this (i), and you can see how hard this makes it for your eye to
scan across the rows. There are several visual ways to deal with this including: (ii)
‘leaders’ – lines of dots linking the columns; and (iii) using soft tone grays or colors
behind rows or columns. This is also a time when it may be worth breaking other

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.7 Screen design and layout 215

alignment rules, perhaps right aligning some text items as in (iv). This last alternat-
ive might be a good solution if you were frequently scanning the numbers and only
occasionally scanning the names of items, but not if you needed frequently to look
up names (which anyway are not sorted in this figure!). You can also see that this is
an example of a design trade-off – good alignment for individual columns versus
ability to see relationship across rows.

White space

In typography the space between the letters is called the counter. In painting this is
also important and artists may focus as much on the space between the foreground
elements such as figures and buildings as on the elements themselves. Often the
shape of the counter is the most important part of the composition of a painting and
in calligraphy and typography the balance of a word is determined by giving an even
weight to the counters. If one ignores the ‘content’ of a screen and instead concen-
trates on the counter – the space between the elements – one can get an overall feel
for the layout. If elements that are supposed to be related look separate when you
focus on the counter, then something is wrong. Screwing up your eyes so that the
screen becomes slightly blurred is another good technique for taking your attention
away from the content and looking instead at the broad structure.

Space can be used in several ways. Some of these are shown in Figure 5.12. The
colored areas represent continuous areas of text or graphics. In (i) we can see space
used to separate blocks as you often see in gaps between paragraphs or space between
sections in a report. Space can also be used to create more complex structures. In
(ii) there are clearly four main areas: ABC, D, E and F. Within one of these are three
further areas, A, B and C, which themselves are grouped as A on its own, followed by
B and C together. In Figure 5.12 (iii), we can see space used to highlight. This is a
technique used frequently in magazines to highlight a quote or graphic.

Figure 5.11 Managing multiple columns

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

216 Chapter 5 n Interaction design basics

5.7.2 User action and control

Entering information

Some of the most complicated and difficult screen layouts are found in forms-based
interfaces and dialog boxes. In each case the screen consists not only of information
presented to the user, but also of places for the user to enter information or select
options. Actually, many of the same layout issues for data presentation also apply to
fields for data entry. Alignment is still important. It is especially common to see the
text entry boxes aligned in a jagged fashion because the field names are of different
lengths. This is an occasion where right-justified text for the field labels may be best
or, alternatively, in a graphical interface a smaller font can be used for field labels and
the labels placed just above and to the left of the field they refer to.

For both presenting and entering information a clear logical layout is important.
The task analysis techniques in Chapter 15 can help in determining how to group
screen items and also the order in which users are likely to want to read them or fill
them in. Knowing also that users are likely to read from left to right and top to bot-
tom (depending on their native language!) means that a screen can be designed so
that users encounter items in an appropriate order for the task at hand.

Knowing what to do

Some elements of a screen are passive, simply giving you information; others are
active, expecting you to fill them in, or do something to them. It is often not even
clear which elements are active, let alone what the effect is likely to be when you
interact with them!

This is one of the reasons for platform and company style guides. If everyone
designs buttons to look the same and menus to look the same, then users will be able
to recognize them when they see them. However, this is not sufficient in itself. It is
important that the labels and icons on menus are also clear. Again, standards can
help for common actions such as save, delete or print. For more system-specific
actions, one needs to follow broader principles. For example, a button says ‘bold’:
does this represent the current state of a system or the action that will be performed
if the button is pressed?

Figure 5.12 Using white space in layout

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.7 Screen design and layout 217

Affordances

These are especially difficult problems in multimedia applications where one may
deliberately adopt a non-standard and avant-garde style. How are users supposed
to know where to click? The psychological idea of affordance says that things may
suggest by their shape and other attributes what you can do to them: a handle
affords pulling or lifting; a button affords pushing. These affordances can be
used when designing novel interaction elements. One can either mimic real-world
objects directly, or try to emulate the critical aspects of those objects. What you must
not do is depict a real-world object in a context where its normal affordances do
not work!

Note also that affordances are not intrinsic, but depend on the background and
culture of users. Most computer-literate users will click on an icon. This is not
because they go around pushing pictures in art galleries, but because they have
learned that this is an affordance of such objects in a computer domain. Similarly,
such experienced users may well double click if a single click has no effect, yet
novices would not even think of double clicking – after all, double clicking on most
real buttons turns them off again!

5.7.3 Appropriate appearance

Presenting information

The way of presenting information on screen depends on the kind of information:
text, numbers, maps, tables; on the technology available to present it: character dis-
play, line drawing, graphics, virtual reality; and, most important of all, on the pur-
pose for which it is being used. Consider the window in Figure 5.13. The file listing
is alphabetic, which is fine if we want to look up the details of a particular file, but
makes it very difficult to find recently updated files. Of course, if the list were ordered
by date then it would be difficult to find a particular file. Different purposes require
different representations. For more complex numerical data, we may be considering
scatter graphs, histograms or 3D surfaces; for hierarchical structures, we may con-
sider outlines or organization diagrams. But, no matter how complex the data, the
principle of matching presentation to purpose remains.

The issue of presentation has been around for many years, long before computers,
interactive systems or HCI! Probably the best source for this issue is Tufte’s book
[351]. It is targeted principally at static presentations of information, as in books, but
most design principles transfer directly.

We have an advantage when presenting information in an interactive system in
that it is easy to allow the user to choose among several representations, thus mak-
ing it possible to achieve different goals. For example, with Macintosh folder windows
(as in Figure 5.13) the user can click on a column heading and the file list is
reordered, so one can look at the files by, say, name or date. This is not an excuse for
ignoring the user’s purpose, but means that we can plan for a range of possible uses.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

218 Chapter 5 n Interaction design basics

Aesthetics and utility

Remember that a pretty interface is not necessarily a good interface. Ideally, as
with any well-designed item, an interface should be aesthetically pleasing. Indeed,
good graphic design and attractive displays can increase users’ satisfaction and thus
improve productivity.

However, beauty and utility may sometimes be at odds. For example, an industrial
control panel will often be built up of the individual controls of several subsystems,
some designed by different teams, some bought in. The resulting inconsistency in
appearance may look a mess and suggest tidying up. Certainly some of this inconsist-
ency may cause problems. For example, there may be a mix of telephone-style and
calculator-style numeric keypads. Under stress it would be easy to mis-key when
swapping between these. However, the diversity of controls can also help the oper-
ator keep track of which controls refer to which subsystem – any redesign must
preserve this advantage.

The conflict between aesthetics and utility can also be seen in many ‘well-
designed’ posters and multimedia systems. In particular, the backdrop behind text
must have low contrast in order to leave the text readable; this is often not the case
and graphic designers may include excessively complex and strong backgrounds
because they look good. The results are impressive, perhaps even award winning, but
completely unusable!

On a more positive note, careful application of aesthetic concepts can also aid
comprehensibility. An example of this is the idea of the counter and use of space that

Figure 5.13 Alphabetic file listing. Screen shot reprinted by permission from
Apple Computer, Inc.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.7 Screen design and layout 219

we discussed earlier. In consumer devices these aesthetic considerations may often be
the key differentiator between products, for example, the sleek curves of a car. This
is not missed by designers of electronic goods: devices are designed to be good to
touch and feel as well as look at and this is certainly one of the drivers for the futur-
istic shapes of the Apple iMac family.

Making a mess of it: color and 3D

One of the worst features in many interfaces is their appalling use of color. This is
partly because many monitors only support a limited range of primary colors and
partly because, as with the overuse of different fonts in word processors, the designer
got carried away. Aside from issues of good taste, an overuse of color can be dis-
tracting and, remembering from Chapter 1 that a significant proportion of the
population is color blind, may mean that parts of the text are literally invisible to
some users. In general, color should be used sparingly and not relied upon to give
information, but rather to reinforce other attributes.

The increasing use of 3D effects in interfaces has posed a whole new set of
problems for text and numerical information. Whilst excellent for presenting phys-
ical information and certain sorts of graphs, text presented in perspective can be
very difficult to read and the all too common 3D pie chart is all but useless. We will
discuss ways to make 3D actually useful for visualization in Chapter 20.

DESIGN FOCUS

Checking screen colors

Even non-color-blind users will find it hard to read text where the intensity of the text and background
are similar. A good trick is to adjust the color balance on your monitor so that it is reduced to grays,
or to print screens on a black and white printer. If your screen is unreadable in grayscale then it is prob-
ably difficult to read in full color.

Localization / internationalization

If you are working in a different country, you might see a document being word
processed where the text of the document and the file names are in the local
language, but all the menus and instructions are still in English. The process of mak-
ing software suitable for different languages and cultures is called localization or
internationalization.

It is clear that words have to change and many interface construction toolkits
make this easy by using resources. When the program uses names of menu items,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

220 Chapter 5 n Interaction design basics

error messages and other text, it does not use the text directly, but instead uses a
resource identifier, usually simply a number. A simple database is constructed separ-
ately that binds these identifiers to particular words and phrases. A different resource
database is constructed for each language, and so the program can be customized to
use in a particular country by simply choosing the appropriate resource database.

However, changing the language is only the simplest part of internationalization.
Much of the explicit guidance on alignment and layout is dependent on a left-to-
right, top-to-bottom language such as English and most European languages. This
obviously changes completely for other types of language. Furthermore, many
icons and images are only meaningful within a restricted cultural context. Despite
the apparent international hegemony of Anglo-American culture, one cannot
simply assume that its symbols and norms will be universally understood. A good
example of this is the use of ticks 3 and crosses 7. In Anglo-American culture
these represent opposites, positive and negative, whereas in most of Europe the two
are interchangeable.

ITERATION AND PROTOTYPING

Because human situations are complex and designers are not infallible it is likely that
our first design will not be perfect! For this reason, almost all interaction design
includes some form of iteration of ideas. This often starts early on with paper designs
and storyboards being demonstrated to colleagues and potential users. Later in
the design process one might use mockups of physical devices or tools such as
Shockwave or Visual Basic to create prototype versions of software.

Any of these prototypes, whether paper-based or running software, can then be
evaluated to see whether they are acceptable and where there is room for improve-
ment. This sort of evaluation, intended to improve designs, is called formative evalu-
ation. This is in contrast to summative evaluation, which is performed at the end to
verify whether the product is good enough. Chapter 9 considers evaluation in detail.
One approach is to get an expert to use a set of guidelines, for example the ‘knowing
where you are’ list above, and look screen by screen to see if there are any violations.
The other main approach is to involve real users either in a controlled experimental
setting, or ‘in the wild’ – a real-use environment.

The result of evaluating the system will usually be a list of faults or problems
and this is followed by a redesign exercise, which is then prototyped, evaluated . . .
Figure 5.14 shows this process. The end point is when there are no more problems
that can economically be fixed.

So iteration and prototyping are the universally accepted ‘best practice’ approach
for interaction design. However, there are some major pitfalls of prototyping, rarely
acknowledged in the literature.

Prototyping is an example of what is known as a hill-climbing approach. Imagine
you are standing somewhere in the open countryside. You walk uphill and keep
going uphill as steeply as possible. Eventually you will find yourself at a hill top. This

5.8

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5.8 Iteration and prototyping 221

is exactly how iterative prototyping works: you start somewhere, evaluate it to see
how to make it better, change it to make it better and then keep on doing this until
it can’t get any better.

However, hill climbing doesn’t always work. Imagine you start somewhere near
Cambridge, UK. If you keep moving uphill (and it is very difficult to work out which
direction that is because it is very flat!), then eventually you would end up at the
top of the Gog Magog hills, the nearest thing around . . . all of 300 feet. However, if
you started somewhere else you might end up at the top of the Matterhorn. Hill-
climbing methods always have the potential to leave you somewhere that is the best
in the immediate area, but very poor compared with more distant places. Figure 5.15
shows this schematically: if you start at A you get trapped at the local maximum at B,
but if you start at C you move up through D to the global maximum at E.

This problem of getting trapped at local maxima is also possible with interfaces. If
you start with a bad design concept you may end at something that is simply a tidied
up version of that bad idea!

From this we can see that there are two things you need in order for prototyping
methods to work:

1. To understand what is wrong and how to improve.
2. A good start point.

The first is obvious; you cannot iterate the design unless you know what must be
done to improve it. The second, however, is needed to avoid local maxima. If you

Figure 5.14 Role of prototyping

Figure 5.15 Moving little by little . . . but to where?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

222 Chapter 5 n Interaction design basics

wanted to climb as high as you could, you would probably book a plane to the
Himalayas, not Cambridgeshire.

A really good designer might guess a good initial design based on experience and
judgment. However, the complexity of interaction design problems means that this
insight is hard. Another approach, very common in graphical design, is to have
several initial design ideas and drop them one by one as they are developed further.
This is a bit like parachuting 10 people at random points of the earth. One of them
is perhaps likely to end up near a high mountain.

One of the things that theoretical methods and models, as found in Part 3 of this
book, can do is to help us with both (1) and (2).

SUMMARY

We have seen that design in HCI is not just about creating devices or software, but
instead is about the whole interaction between people, software and their environ-
ment. Because of this it is good to see the product of design not just as the obvious
artifacts but as the whole intervention that changes the existing situation to a new one.

In Section 5.2, design was defined as ‘achieving goals within constraints’. In
the case of interaction design the goals are about improving some aspect of work,
home or leisure using technology. The constraints remind us that the final design
will inevitably involve trade-offs between different design issues and furthermore
should never be ‘perfect’ as cost and timeliness should prevent indefinite tinkering.
To achieve good design we must understand our materials and in the case of inter-
action design these materials include not just the computers and technical devices,
but also humans. If we treated humans in design with only as much care as physical
materials it is clear that ‘human error’ after accidents would be regarded as ‘design
error’ – a good designer understands the natural limitations of ordinary people.

Section 5.3 gave a bird’s-eye view of the design process, which gives a context for
much of the rest of this book.

The process starts with understanding the situation as it is and the requirements
for change. Section 5.4 provided some simple techniques for dealing with this: get-
ting to know your users, who they are, remembering that they are different from you,
but trying to imagine what it is like for them. You can talk to users, but you should
also observe them in other ways, as we are all bad at articulating what we do. One
way to help retain a user focus in design is to use personae – detailed word pictures
of imaginary but typical users.

Section 5.5 introduced scenarios and rich stories about design, which can help us
explore the design space and to discuss potential designs with other designers and
potential users. Both scenarios and personae need to be vivid and to include rich
contextual details – not just a record of user actions on the system!

The details of potential designs need to be worked out and in Section 5.6 we
looked at the overall navigation design of the system. We started by looking at
local structure, the way one screen, page or state of an application relates to those it

5.9

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Exercises 223

immediately links to. The users need to know where they are, what they can do, what
will happen when they do things, and what has happened in the past. This can aid
users as they goal seek, or move closer towards their goals without having to neces-
sarily understand completely the whole route there. The global structure of the appli-
cation is also important. We saw how hierarchy diagrams can give a logical view
of an application, which can be used to design menu or site structures. In contrast,
the user dialog focusses on the flow of user and system actions. One way to do this is
using network diagrams of screens or states of the system and how they link to one
another. Any designed system must also relate to its environment: other applica-
tions, other websites, other physical devices.

In Section 5.7 we looked at screen design and layout. We saw that there were
various visual tools that could help us to ensure that the physical structure of our
screen emphasized the logical structure of the user interaction. These tools included
physical grouping, ordering of items, decoration such as fonts, lines and color, align-
ment and the use of white space. These are important both for appropriate display
of information and to lay out controls and data entry fields for ease of use. It is
also important that controls have appropriate affordances – that is have visual and
tactile attributes that suggest their use. Information presented on screen, whether
individual items, tabular or graphical, should be appropriate to the user’s purpose
and this may mean allowing interactions to change the layout, for example re-sort
tables by different columns. Aesthetics are also important, but may conflict with util-
ity. Depending on the context you may need to make different trade-offs between
these. Good graphical design is an area and a skill all of its own, but some features
such as bad use of color and 3D effects are bad for both aesthetics and usability!

Finally, in Section 5.8, we saw that iteration is an essential part of virtually any
interaction design process because we cannot get things right first time. However,
iterative methods may get trapped in local maxima. To make iterative processes
work, we need either extensive personal experience or theoretical understanding to
help us get better initial designs.

EXERCISES

5.1 Use a pocket alarm clock or wristwatch to set yourself alarms every 15 minutes one
working day. Write down exactly what you are doing. How surprising is it?

Exercises 5.2, 5.3, 5.4 and 5.5 are based around a nuclear reactor scenario on the book website at:
/e3/scenario/nuclear/ You will need to read the scenario in order to answer these exercises.

5.2 Comment on the user of color in the Alarm Control, Emergency Shutdown and Emergency
Confirm panels (Figure CS.2 – for figures, see the web scenario).

5.3 Comment on the use of layout and other elements in the control panels (Figures CS.1, CS.2 and CS.3),
including the way in which various visual elements support or hinder logical grouping and sequence.

5.4 Working through the accident scenario, explain why the various problems arise.

5.5 Suggest potential ways of improving the interface to avoid a similar problem recurring.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

224 Chapter 5 n Interaction design basics

RECOMMENDED READING

J. Preece, Y. Rogers and H. Sharp, Interaction Design: Beyond Human–Computer
Interaction, John Wiley, 2002.
A general textbook on interaction design with especially strong focus on evaluation.

J. Carroll, editor, Interacting with Computers, Vol. 13, No. 1, special issue on
‘Scenario-based system development’, 2000.
Contributions from several authors on using scenarios in design.

J. Carroll, Making Use: Scenario-Based Design of Human–Computer Interactions, MIT
Press, 2000.
John Carroll’s own book dedicated solely to using scenarios in design.

J. McGrenere and W. Ho, Affordances: clarifying and evolving a concept, Proceedings
of Graphics Interface 2000, pp. 179–86, 2000.
This paper reviews all the major work on affordances from Gibson’s original
definition and focusses especially on Norman’s popularization of the word which
has been the way many encounter it. It also reviews the work of Bill Gaver, who
is probably the first person to use affordance as a concept within HCI.

E. Tufte, Envisioning Information, Graphics Press, Cheshire, USA, 1990, and
E. Tufte, The Visual Display of Quantitative Information, Graphics Press,
Cheshire, USA, 1997.
Tufte’s books are the ‘must read’ for graphical presentation, packed with exam-
ples and pictures – from timetables to Napoleon’s disastrous Russian campaign.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

HCI IN THE SOFTWARE

PROCESS

OV E RV I E W

n Software engineering provides a means of
understanding the structure of the design process, and
that process can be assessed for its effectiveness in
interactive system design.

n Usability engineering promotes the use of explicit
criteria to judge the success of a product in terms
of its usability.

n Iterative design practices work to incorporate crucial
customer feedback early in the design process to
inform critical decisions which affect usability.

n Design involves making many decisions among
numerous alternatives. Design rationale provides an
explicit means of recording those design decisions
and the context in which the decisions were made.

6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

226 Chapter 6 n HCI in the software process

INTRODUCTION

In Chapter 4 we concentrated on identifying aspects of usable interactive systems
by means of concrete examples of successful paradigms. The design goal is to pro-
vide reliable techniques for the repeated design of successful and usable interactive
systems. It is therefore necessary that we go beyond the exercise of identifying
paradigms and examine the process of interactive system design. In the previous
chapter we introduced some of the elements of a user-centered design process.
Here we expand on that process, placing the design of interactive systems within the
established frameworks of software development.

Within computer science there is already a large subdiscipline that addresses the
management and technical issues of the development of software systems – called
software engineering. One of the cornerstones of software engineering is the software
life cycle, which describes the activities that take place from the initial concept
formation for a software system up until its eventual phasing out and replacement.
This is not intended to be a software engineering textbook, so it is not our major
concern here to discuss in depth all of the issues associated with software engineer-
ing and the myriad life-cycle models.

The important point that we would like to draw out is that issues from HCI affect-
ing the usability of interactive systems are relevant within all the activities of the
software life cycle. Therefore, software engineering for interactive system design is
not simply a matter of adding one more activity that slots in nicely with the existing
activities in the life cycle. Rather, it involves techniques that span the entire life cycle.

We will begin this chapter by providing an introduction to some of the important
concepts of software engineering, in Section 6.2. Specifically, we will describe the
major activities within the traditional software life cycle and discuss the issues raised
by the special needs of interactive systems. We will then describe some specific
approaches to interactive system design, which are used to promote product usabil-
ity throughout the life cycle. In Section 6.3, we will discuss a particular methodology
called usability engineering in which explicit usability requirements are used as goals
for the design process. In Section 6.4, we consider iterative design practices that
involve prototyping and participative evaluation. We conclude this chapter with a
discussion of design rationale. Design is a decision-making activity and it is import-
ant to keep track of the decisions that have been made and the context in which they
were made. Various design rationale techniques, presented in Section 6.5, are used
to support this critical activity.

THE SOFTWARE LIFE CYCLE

One of the claims for software development is that it should be considered as an
engineering discipline, in a way similar to how electrical engineering is considered for
hardware development. One of the distinguishing characteristics of any engineering

6.2

6.1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.2 The software life cycle 227

discipline is that it entails the structured application of scientific techniques to the
development of some product. A fundamental feature of software engineering,
therefore, is that it provides the structure for applying techniques to develop soft-
ware systems. The software life cycle is an attempt to identify the activities that occur
in software development. These activities must then be ordered in time in any devel-
opment project and appropriate techniques must be adopted to carry them through.

In the development of a software product, we consider two main parties: the
customer who requires the use of the product and the designer who must provide the
product. Typically, the customer and the designer are groups of people and some
people can be both customer and designer. It is often important to distinguish
between the customer who is the client of the designing company and the customer
who is the eventual user of the system. These two roles of customer can be played
by different people. The group of people who negotiate the features of the intended
system with the designer may never be actual users of the system. This is often par-
ticularly true of web applications. In this chapter, we will use the term ‘customer’ to
refer to the group of people who interact with the design team and we will refer to
those who will interact with the designed system as the user or end-user.

6.2.1 Activities in the life cycle

A more detailed description of the life cycle activities is depicted in Figure 6.1. The
graphical representation is reminiscent of a waterfall, in which each activity naturally
leads into the next. The analogy of the waterfall is not completely faithful to the real
relationship between these activities, but it provides a good starting point for dis-
cussing the logical flow of activity. We describe the activities of this waterfall model
of the software life cycle next.1

Requirements specification

In requirements specification, the designer and customer try to capture a description
of what the eventual system will be expected to provide. This is in contrast to deter-
mining how the system will provide the expected services, which is the concern of
later activities. Requirements specification involves eliciting information from the
customer about the work environment, or domain, in which the final product will
function. Aspects of the work domain include not only the particular functions that
the software product must perform but also details about the environment in which
it must operate, such as the people whom it will potentially affect and the new pro-
duct’s relationship to any other products which it is updating or replacing.

Requirements specification begins at the start of product development. Though
the requirements are from the customer’s perspective, if they are to be met by the

1 Some authors distinguish between the software development process and the software life cycle, the
waterfall model being used to describe the former and not the latter. The main distinction for our pur-
poses is that operation and maintenance of the product is not part of the development process.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

228 Chapter 6 n HCI in the software process

software product they must be formulated in a language suitable for implementa-
tion. Requirements are usually initially expressed in the native language of the cus-
tomer. The executable languages for software are less natural and are more closely
related to a mathematical language in which each term in the language has a precise
interpretation, or semantics. The transformation from the expressive but relatively
ambiguous natural language of requirements to the more precise but less expressive
executable languages is one key to successful development. In Chapter 15 we discuss
task analysis techniques, which are used to express work domain requirements in a
form that is both expressive and precise.

Architectural design

As we mentioned, the requirements specification concentrates on what the system
is supposed to do. The next activities concentrate on how the system provides the
services expected from it. The first activity is a high-level decomposition of the sys-
tem into components that can either be brought in from existing software products
or be developed from scratch independently. An architectural design performs this
decomposition. It is not only concerned with the functional decomposition of the
system, determining which components provide which services. It must also describe

Figure 6.1 The activities in the waterfall model of the software life cycle

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.2 The software life cycle 229

the interdependencies between separate components and the sharing of resources
that will arise between components.

There are many structured techniques that are used to assist a designer in deriving
an architectural description from information in the requirements specification
(such as CORE, MASCOT and HOOD). Details of these techniques are outside the
scope of this book, but can be found in any good software engineering textbook.
What we will mention here is that the majority of these techniques are adequate for
capturing the functional requirements of the system – the services the system must
provide in the work domain – but do not provide an immediate way to capture other
non-functional requirements – features of the system that are not directly related to
the actual services provided but relate to the manner in which those services must be
provided. Some classic examples of non-functional requirements are the efficiency,
reliability, timing and safety features of the system. Interactive features of the system,
such as those that will be described by the principles in Chapter 7, also form a large
class of non-functional requirements.

Detailed design

The architectural design provides a decomposition of the system description that
allows for isolated development of separate components which will later be integ-
rated. For those components that are not already available for immediate integra-
tion, the designer must provide a sufficiently detailed description so that they may
be implemented in some programming language. The detailed design is a refinement
of the component description provided by the architectural design. The behavior
implied by the higher-level description must be preserved in the more detailed
description.

Typically, there will be more than one possible refinement of the architectural
component that will satisfy the behavioral constraints. Choosing the best refinement
is often a matter of trying to satisfy as many of the non-functional requirements of
the system as possible. Thus the language used for the detailed design must allow
some analysis of the design in order to assess its properties. It is also important to
keep track of the design options considered, the eventual decisions that were made
and the reasons why, as we will discuss in Section 6.5 on design rationale.

Coding and unit testing

The detailed design for a component of the system should be in such a form that it
is possible to implement it in some executable programming language. After coding,
the component can be tested to verify that it performs correctly, according to some
test criteria that were determined in earlier activities. Research on this activity within
the life cycle has concentrated on two areas. There is plenty of research that is geared
towards the automation of this coding activity directly from a low-level detailed
design. Most of the work in formal methods operates under the hypothesis that, in
theory, the transformation from the detailed design to the implementation is from
one mathematical representation to another and so should be able to be entirely

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

230 Chapter 6 n HCI in the software process

automated. Other, more practical work concentrates on the automatic generation of
tests from output of earlier activities which can be performed on a piece of code to
verify that it behaves correctly.

Integration and testing

Once enough components have been implemented and individually tested, they
must be integrated as described in the architectural design. Further testing is done
to ensure correct behavior and acceptable use of any shared resources. It is also pos-
sible at this time to perform some acceptance testing with the customers to ensure
that the system meets their requirements. It is only after acceptance of the integrated
system that the product is finally released to the customer.

It may also be necessary to certify the final system according to requirements
imposed by some outside authority, such as an aircraft certification board. As of
1993, a European health and safety act requires that all employers provide their staff
with usable systems. The international standards authority, ISO, has also produced a
standard (ISO 9241) to define the usability of office environment workstations.
Coupled together, the health and safety regulations and ISO 9241 provide impetus
for designers to take seriously the HCI implications of their design.

Maintenance

After product release, all work on the system is considered under the category
of maintenance, until such time as a new version of the product demands a total
redesign or the product is phased out entirely. Consequently, the majority of the
lifetime of a product is spent in the maintenance activity. Maintenance involves the
correction of errors in the system which are discovered after release and the revision
of the system services to satisfy requirements that were not realized during previous
development. Therefore, maintenance provides feedback to all of the other activities
in the life cycle, as shown in Figure 6.2.

6.2.2 Validation and verification

Throughout the life cycle, the design must be checked to ensure that it both satisfies
the high-level requirements agreed with the customer and is also complete and
internally consistent. These checks are referred to as validation and verification,
respectively. Boehm [36a] provides a useful distinction between the two, charac-
terizing validation as designing ‘the right thing’ and verification as designing ‘the
thing right’. Various languages are used throughout design, ranging from informal
natural language to very precise and formal mathematical languages. Validation and
verification exercises are difficult enough when carried out within one language; they
become much more difficult, if not impossible, when attempted between languages.

Verification of a design will most often occur within a single life-cycle activity or
between two adjacent activities. For example, in the detailed design of a component

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.2 The software life cycle 231

of a payroll accounting system, the designer will be concerned with the correctness
of the algorithm to compute taxes deducted from an employee’s gross income. The
architectural design will have provided a general specification of the information
input to this component and the information it should output. The detailed descrip-
tion will introduce more information in refining the general specification. The
detailed design may also have to change the representations for the information and
will almost certainly break up a single high-level operation into several low-level
operations that can eventually be implemented. In introducing these changes to
information and operations, the designer must show that the refined description is
a legal one within its language (internal consistency) and that it describes all of the
specified behavior of the high-level description (completeness) in a provably correct
way (relative consistency).

Validation of a design demonstrates that within the various activities the cus-
tomer’s requirements are satisfied. Validation is a much more subjective exercise
than verification, mainly because the disparity between the language of the require-
ments and the language of the design forbids any objective form of proof. In inter-
active system design, the validation against HCI requirements is often referred to as
evaluation and can be performed by the designer in isolation or in cooperation with
the customer. We discuss evaluation in depth in Chapter 9.

Figure 6.2 Feedback from maintenance activity to other design activities

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

232 Chapter 6 n HCI in the software process

An important question, which applies to both verification and validation, asks
exactly what constitutes a proof. We have repeatedly mentioned the language used
in any design activity and the basis for the semantics of that language. Languages
with a mathematical foundation allow reasoning and proof in the objective sense.
An argument based entirely within some mathematical language can be accepted or
refuted based upon universally accepted measures. A proof can be entirely justified
by the rules of the mathematical language, in which case it is considered a formal
proof. More common is a rigorous proof, which is represented within some mathem-
atical language but which relies on the understanding of the reader to accept
its correctness without appeal to the full details of the argument, which could be
provided but usually are not. The difference between formality and rigour is in the
amount of detail the prover leaves out while still maintaining acceptance of the
proof.

Proofs that are for verification of a design can frequently occur within one lan-
guage or between two languages which both have a precise mathematical semantics.
Time constraints for a design project and the perceived economic implications of the
separate components usually dictate which proofs are carried out in full formality
and which are done only rigorously (if at all). As research in this area matures and
automated tools provide assistance for the mechanical aspects of proof, the cost of
proof should decrease.

Validation proofs are much trickier, as they almost always involve a transforma-
tion between languages. Furthermore, the origin of customer requirements arises
in the inherent ambiguity of the real world and not the mathematical world. This
precludes the possibility of objective proof, rigorous or formal. Instead, there will
always be a leap from the informal situations of the real world to any formal and
structured development process. We refer to this inevitable disparity as the formality
gap, depicted in Figure 6.3.

The formality gap means that validation will always rely to some extent on sub-
jective means of proof. We can increase our confidence in the subjective proof by
effective use of real-world experts in performing certain validation chores. These
experts will not necessarily have design expertise, so they may not understand the

Figure 6.3 The formality gap between the real world and structured design

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.2 The software life cycle 233

design notations used. Therefore, it is important that the design notations narrow
the formality gap, making clear the claims that the expert can then validate. For
interactive systems, the expert will have knowledge from a cognitive or psycholo-
gical domain, so the design specification must be readily interpretable from a psy-
chological perspective in order to validate it against interactive requirements of the
system. We will discuss design techniques and notations that narrow the formality
gap for validation of interactive properties of systems in Part 3.

6.2.3 Management and contractual issues

The life cycle described above concentrated on the more technical features of
software development. In a technical discussion, managerial issues of design, such as
time constraints and economic forces, are not as important. The different activities
of the life cycle are logically related to each other. We can see that requirements
for a system precede the high-level architectural design which precedes the detailed
design, and so on. In reality, it is quite possible that some detailed design is
attempted before all of the architectural design. In management, a much wider
perspective must be adopted which takes into account the marketability of a system,
its training needs, the availability of skilled personnel or possible subcontractors, and
other topics outside the activities for the development of the isolated system.

As an example, we will take the development of a new aircraft on which there
will be many software subsystems. The aircraft company will usually go through a
concept evaluation period of up to 10 years before making any decision about actual
product development. Once it has been decided to build a certain type of aircraft,
loosely specified in the case of commercial aircraft in terms of passenger capacity
and flight range, more explicit design activity follows. This includes joint analysis
for both the specification of the aircraft and determination of training needs. It is
only after the architectural specification of the aircraft is complete that the separate
systems to be developed are identified. Some of these systems will be software sys-
tems, such as the flight management system or the training simulator, and these will
be designed according to the life cycle described earlier. Typically, this will take four
to five years. The separate aircraft systems are then integrated for ground and flight
testing and certification before the aircraft is delivered to any customer airlines. The
operating lifetime of an aircraft model is expected to be in the range of 20–40 years,
during which time maintenance must be provided. The total lifetime of an aircraft
from conception to phasing out is up to 55 years, only 4–5 years (excluding mainten-
ance) of which contain the software life cycle which we are discussing in this chapter.

In managing the development process, the temporal relationship between the
various activities is more important, as are the intermediate deliverables which
represent the technical content, as the designer must demonstrate to the customer
that progress is being made. A useful distinction, taken from McDermid [232], is
that the technical perspective of the life cycle is described in stages of activity, whereas
the managerial perspective is described in temporally bound phases. A phase is
usually defined in terms of the documentation taken as input to the phase and the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

234 Chapter 6 n HCI in the software process

documentation delivered as output from the phase. So the requirements phase will
take any marketing or conceptual development information, identifying potential
customers, as input and produce a requirements specification that must be agreed
upon between customer and designer.

This brings up another important issue from the management perspective. As the
design activity proceeds, the customer and the designer must sign off on various docu-
ments, indicating their satisfaction with progress to date. These signed documents
can carry a varying degree of contractual obligation between customer and designer.
A signed requirements specification indicates both that the customer agrees to limit
demands of the eventual product to those listed in the specification and also that the
designer agrees to meet all of the requirements listed. From a technical perspective,
it is easy to acknowledge that it is difficult, if not impossible, to determine all of the
requirements before embarking on any other design activity. A satisfactory require-
ments specification may not be known until after the product has been in operation!
From a management perspective, it is unacceptable to both designer and customer
to delay the requirements specification that long.

So contractual obligation is a necessary consequence of managing software
development, but it has negative implications on the design process as well. It is very
difficult in the design of an interactive system to determine a priori what require-
ments to impose on the system to maximize its usability. Having to fix on some
requirements too early will result either in general requirements that are very little
guide for the designer or in specific requirements that compromise the flexibility
of design without guaranteeing any benefits.

6.2.4 Interactive systems and the software life cycle

The traditional software engineering life cycles arose out of a need in the 1960s and
1970s to provide structure to the development of large software systems. In those
days, the majority of large systems produced were concerned with data-processing
applications in business. These systems were not highly interactive; rather, they were
batch-processing systems. Consequently, issues concerning usability from an end-
user’s perspective were not all that important. With the advent of personal comput-
ing in the late 1970s and its huge commercial success and acceptance, most modern
systems developed today are much more interactive, and it is vital to the success of
any product that it be easy to operate for someone who is not expected to know
much about how the system was designed. The modern user has a great amount
of skill in the work that he performs without necessarily having that much skill in
software development.

The life cycle for development we described above presents the process of design
in a somewhat pipeline order. In reality, even for batch-processing systems, the
actual design process is iterative, work in one design activity affecting work in any
other activity both before or after it in the life cycle. We can represent this iterative
relationship as in Figure 6.4, but that does not greatly enhance any understanding
of the design process for interactive systems. You may ask whether it is worth the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.2 The software life cycle 235

intellectual effort to understand the interactive system design process. Is there really
much design effort spent on the interactive aspects of a system to warrant our atten-
tion? A classic survey in 1978 by Sutton and Sprague at IBM resulted in an estimate
that 50% of the designer’s time was spent on designing code for the user interface
[338]. A more recent and convincing survey by Myers and Rosson has confirmed
that that finding holds true for the 1990s [247]. So it is definitely worth the effort
to provide structure and techniques to understand, structure and improve the inter-
active design process! In this section, we will address features of interactive system
design which are not treated properly by the traditional software life cycle.

The traditional software life cycle suits a principled approach to design; that is, if
we know what it is we want to produce from the beginning, then we can structure
our approach to design in order to attain the goal. We have already mentioned how,
in practice, designers do not find out all of the requirements for a system before they
begin. Figure 6.4 depicts how discovery in later activities can be reflected in iterations
back to earlier stages. This is an admission that the requirements capture activity
is not executed properly. The more serious claim we are making here is that all of
the requirements for an interactive system cannot be determined from the start,
and there are many convincing arguments to support this position. The result is that
systems must be built and the interaction with users observed and evaluated in order
to determine how to make them more usable.

Figure 6.4 Representing iteration in the waterfall model

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

236 Chapter 6 n HCI in the software process

Our models of the psychology and sociology of the human and human cognition,
whether in isolation or in a group, are incomplete and do not allow us to predict
how to design for maximum usability. There is much research on models of human
users that allow prediction of their performance with interactive systems, which we
will discuss in Chapter 12. These models, however, either rely on too much detail of
the system to be useful at very early and abstract stages of design (see the section
in Chapter 12 on the keystroke-level model) or they only apply to goal-oriented
planned activity and not highly interactive WIMP systems (refer to the discussion at
the end of Chapter 12).

This dearth of predictive psychological theory means that in order to test certain
usability properties of their designs, designers must observe how actual users inter-
act with the developed product and measure their performance. In order for the
results of those observations to be worthwhile, the experiments must be as close to a
real interaction situation as possible. That means the experimental system must be
very much like it would be in the final product whose requirements the designer
is trying to establish! As John Carroll has pointed out, the very detail of the actual
system can crucially affect its usability, so it is not worthwhile to experiment on
crude estimates of it, as that will provide observations whose conclusions will not
necessarily apply to the real system [59].

One principled approach to interactive system design, which will be important
in later chapters, relies on a clear understanding early on in the design of the tasks
that the user wishes to perform. One problem with this assumption is that the tasks
a user will perform are often only known by the user after he is familiar with the
system on which he performs them. The chicken-and-egg puzzle applies to tasks and
the artifacts on which he performs those tasks. For example, before the advent of
word processors, an author would not have considered the use of a contracting and
expanding outlining facility to experiment easily and quickly with the structure of
a paper while it was being typed. A typewriter simply did not provide the ability
to perform such a task, so how would a designer know to support such a task in
designing the first word processor?

Also, some of the tasks a user performs with a system were never explicitly
intended as tasks by its designer. Take the example of a graphics drawing package
that separates the constructed picture into separate layers. One layer is used to build
graphical pictures which are entire objects – a circle or a square, for instance – and
can be manipulated as those objects and retain their object identity. The other layer
is used to paint pictures which are just a collection of pixels. The user can switch
between the layers in order to create very complex pictures which are part object,
part painted scene. But because of the complex interplay between overlapping
images between the two layers, it is also possible to hide certain parts of the picture
when in one layer and reveal them in the other layer. Such a facility will allow
the user to do simple simulations, such as showing the effect of shadowing when
switching a light on and off. It is very doubtful that the designers were think-
ing explicitly of supporting such simulation or animation tasks when they were
designing these graphics systems, which were meant to build complex, but static,
pictures.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.3 Usability engineering 237

A final point about the traditional software life cycle is that it does not promote
the use of notations and techniques that support the user’s perspective of the inter-
active system. We discussed earlier the purpose of validation and the formality gap.
It is very difficult for an expert on human cognition to predict the cognitive demands
that an abstract design would require of the intended user if the notation for the
design does not reflect the kind of information the user must recall in order to inter-
act. The same holds for assessing the timing behavior of an abstract design that does
not explicitly mention the timing characteristics of the operations to be invoked
or their relative ordering. Though no structured development process will entirely
eliminate the formality gap, the particular notations used can go a long way towards
making validation of non-functional requirements feasible with expert assistance.

In the remaining sections of this chapter, we will describe various approaches to
augment the design process to suit better the design of interactive systems. These
approaches are categorized under the banner of user-centered design.

USABILITY ENGINEERING

One approach to user-centered design has been the introduction of explicit usability
engineering goals into the design process, as suggested by Whiteside and colleagues at
IBM and Digital Equipment Corporation [377] and by Nielsen at Bellcore [260,
261]. Engineering depends on interpretation against a shared background of mean-
ing, agreed goals and an understanding of how satisfactory completion will be
judged. The emphasis for usability engineering is in knowing exactly what criteria
will be used to judge a product for its usability.

The ultimate test of a product’s usability is based on measurements of users’ experi-
ence with it. Therefore, since a user’s direct experience with an interactive system
is at the physical interface, focus on the actual user interface is understandable.
The danger with this limited focus is that much of the work that is accomplished
in interaction involves more than just the surface features of the systems used to
perform that work. In reality, the whole functional architecture of the system and the
cognitive capacity of the users should be observed in order to arrive at meaningful
measures. But it is not at all simple to derive measurements of activity beyond
the physical actions in the world, and so usability engineering is limited in its
application.

In relation to the software life cycle, one of the important features of usability
engineering is the inclusion of a usability specification, forming part of the require-
ments specification, that concentrates on features of the user–system interaction
which contribute to the usability of the product. Various attributes of the system are
suggested as gauges for testing the usability. For each attribute, six items are defined
to form the usability specification of that attribute. Table 6.1 provides an example of
a usability specification for the design of a control panel for a video cassette recorder
(VCR), based on the technique presented by Whiteside, Bennett and Holtzblatt [377].

6.3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

238 Chapter 6 n HCI in the software process

In this example, we choose the principle of recoverability, described fully in
Chapter 7, as the particular usability attribute of interest. Recoverability refers to the
ability to reach a desired goal after recognition of some error in previous interaction.
The recovery procedure can be in either a backward or forward sense. Current VCR
design has resulted in interactive systems that are notoriously difficult to use; the
redesign of a VCR provides a good case study for usability engineering. In designing
a new VCR control panel, the designer wants to take into account how a user might
recover from a mistake he discovers while trying to program the VCR to record some
television program in his absence. One approach that the designer decides to follow
is to allow the user the ability to undo the programming sequence, reverting the state
of the VCR to what it was before the programming task began.

The backward recoverability attribute is defined in terms of a measuring concept,
which makes the abstract attribute more concrete by describing it in terms of the
actual product. So in this case, we realize backward recoverability as the ability
to undo an erroneous programming sequence. The measuring method states how
the attribute will be measured, in this case by the number of explicit user actions
required to perform the undo, regardless of where the user is in the programming
sequence.

The remaining four entries in the usability specification then provide the agreed
criteria for judging the success of the product based on the measuring method. The
now level indicates the value for the measurement with the existing system, whether
it is computer based or not. The worst case value is the lowest acceptable measure-
ment for the task, providing a clear distinction between what will be acceptable and
what will be unacceptable in the final product. The planned level is the target
for the design and the best case is the level which is agreed to be the best possible
measurement given the current state of development tools and technology.

In the example, the designers can look at their previous VCR products and those
of their competitors to determine a suitable now level. In this case, it is determined
that no current model allows an undo which returns the state of the VCR to what it
was before the programming task. For example, if a VCR allows you three separate
recording programs, once you begin entering a new program in the number 1 pro-
gram slot, the VCR forgets the previous contents of that slot and so you cannot
recover it unless you remember what it was and then reprogram it.

Table 6.1 Sample usability specification for undo with a VCR

Attribute: Backward recoverability

Measuring concept: Undo an erroneous programming sequence
Measuring method: Number of explicit user actions to undo current program
Now level: No current product allows such an undo
Worst case: As many actions as it takes to program in mistake
Planned level: A maximum of two explicit user actions
Best case: One explicit cancel action

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.3 Usability engineering 239

Determining the worst case value depends on a number of things. Usually, it
should be no lower than the now level. The new product should provide some
improvement on the current state of affairs, and so it seems that at least some of the
usability attributes should provide worst case values that are better than the now
level. Otherwise, why would the customer bother with the new system (unless it can
be shown to provide the same usability at a fraction of the cost)? The designers in the
example have determined that the minimal acceptable undo facility would require
the user to perform as many actions as he had done to program in the mistake.
This is a clear improvement over the now level, since it at least provides for the pos-
sibility of undo. One way to provide such a capability would be by including an undo
button on the control panel, which would effectively reverse the previous non-undo
action. The designers figure that they should allow for the user to do a complete
restoration of the VCR state in a maximum of two explicit user actions, though they
recognize that the best case, at least in terms of the number of explicit actions, would
require only one.

Tables 6.2 and 6.3, adapted from Whiteside, Bennett and Holtzblatt [377], provide
a list of measurement criteria which can be used to determine the measuring method
for a usability attribute and the possible ways to set the worst/best case and planned/
now level targets. Measurements such as those promoted by usability engineering are
also called usability metrics.

Table 6.2 Criteria by which measuring method can be determined (adapted from
Whiteside, Bennett and Holtzblatt [377], Copyright 1988, reprinted with permission
from Elsevier)

1. Time to complete a task
2. Per cent of task completed
3. Per cent of task completed per unit time
4. Ratio of successes to failures
5. Time spent in errors
6. Per cent or number of errors
7. Per cent or number of competitors better than it
8. Number of commands used
9. Frequency of help and documentation use

10. Per cent of favorable/unfavorable user comments
11. Number of repetitions of failed commands
12. Number of runs of successes and of failures
13. Number of times interface misleads the user
14. Number of good and bad features recalled by users
15. Number of available commands not invoked
16. Number of regressive behaviors
17. Number of users preferring your system
18. Number of times users need to work around a problem
19. Number of times the user is disrupted from a work task
20. Number of times user loses control of the system
21. Number of times user expresses frustration or satisfaction

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

240 Chapter 6 n HCI in the software process

The ISO standard 9241, described earlier, also recommends the use of usability
specifications as a means of requirements specification. Table 6.4 gives examples of
usability metrics categorized by their contribution towards the three categories of
usability: effectiveness, efficiency and satisfaction.

6.3.1 Problems with usability engineering

The major feature of usability engineering is the assertion of explicit usability
metrics early on in the design process which can be used to judge a system once it is
delivered. There is a very solid argument which points out that it is only through
empirical approaches such as the use of usability metrics that we can reliably build

Table 6.3 Possible ways to set measurement levels in a usability specification (adapted
from Whiteside, Bennett and Holtzblatt [377], Copyright 1988, reprinted with permission
from Elsevier)

Set levels with respect to information on:

1. an existing system or previous version
2. competitive systems
3. carrying out the task without use of a computer system
4. an absolute scale
5. your own prototype
6. user’s own earlier performance
7. each component of a system separately
8. a successive split of the difference between best and worst values observed in user

tests

Table 6.4 Examples of usability metrics from ISO 9241

Usability objective

Suitability for the task

Appropriate for
trained users

Learnability

Error tolerance

Effectiveness
measures

Percentage of goals
achieved
Number of power
features used

Percentage of
functions learned
Percentage of
errors corrected
successfully

Efficiency
measures

Time to complete a
task
Relative efficiency
compared with an
expert user
Time to learn
criterion
Time spent on
correcting errors

Satisfaction
measures

Rating scale for
satisfaction
Rating scale for
satisfaction with
power features
Rating scale for
ease of learning
Rating scale for
error handling

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.4 Iterative design and prototyping 241

more usable systems. Although the ultimate yardstick for determining usability
may be by observing and measuring user performance, that does not mean that
these measurements are the best way to produce a predictive design process for
usability.

The problem with usability metrics is that they rely on measurements of very specific
user actions in very specific situations. When the designer knows what the actions
and situation will be, then she can set goals for measured observations. However, at
early stages of design, designers do not have this information. Take our example
usability specification for the VCR. In setting the acceptable and unacceptable levels
for backward recovery, there is an assumption that a button will be available to invoke
the undo. In fact, the designer was already making an implicit assumption that the
user would be making errors in the programming of the VCR. Why not address
the origin of the programming errors, then maybe undo would not be necessary?

We should recognize another inherent limitation for usability engineering, that is
it provides a means of satisfying usability specifications and not necessarily usability.
The designer is still forced to understand why a particular usability metric enhances
usability for real people. Again, in the VCR example, the designer assumed that
fewer explicit actions make the undo operation easier. Is that kind of assumption
warranted?

ITERATIVE DESIGN AND PROTOTYPING

A point we raised earlier is that requirements for an interactive system cannot be
completely specified from the beginning of the life cycle. The only way to be sure
about some features of the potential design is to build them and test them out on
real users. The design can then be modified to correct any false assumptions that
were revealed in the testing. This is the essence of iterative design, a purposeful design
process which tries to overcome the inherent problems of incomplete requirements
specification by cycling through several designs, incrementally improving upon the
final product with each pass.

The problems with the design process, which lead to an iterative design philo-
sophy, are not unique to the usability features of the intended system. The problem
holds for requirements specification in general, and so it is a general software
engineering problem, together with technical and managerial issues.

On the technical side, iterative design is described by the use of prototypes, artifacts
that simulate or animate some but not all features of the intended system. There are
three main approaches to prototyping:

Throw-away The prototype is built and tested. The design knowledge gained
from this exercise is used to build the final product, but the actual prototype is
discarded. Figure 6.5 depicts the procedure in using throw-away prototypes
to arrive at a final requirements specification in order for the rest of the design
process to proceed.

6.4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

242 Chapter 6 n HCI in the software process

Incremental The final product is built as separate components, one at a time.
There is one overall design for the final system, but it is partitioned into inde-
pendent and smaller components. The final product is then released as a series
of products, each subsequent release including one more component. This is
depicted in Figure 6.6.

Evolutionary Here the prototype is not discarded and serves as the basis for the
next iteration of design. In this case, the actual system is seen as evolving from
a very limited initial version to its final release, as depicted in Figure 6.7.
Evolutionary prototyping also fits in well with the modifications which must be
made to the system that arise during the operation and maintenance activity in
the life cycle.

Prototypes differ according to the amount of functionality and performance they
provide relative to the final product. An animation of requirements can involve no

Figure 6.5 Throw-away prototyping within requirements specification

Figure 6.6 Incremental prototyping within the life cycle

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.4 Iterative design and prototyping 243

real functionality, or limited functionality to simulate only a small aspect of the
interactive behavior for evaluative purposes. At the other extreme, full functionality
can be provided at the expense of other performance characteristics, such as speed
or error tolerance. Regardless of the level of functionality, the importance of a pro-
totype lies in its projected realism. The prototype of an interactive system is used to
test requirements by evaluating their impact with real users. An honest appraisal of
the requirements of the final system can only be trusted if the evaluation conditions
are similar to those anticipated for the actual operation. But providing realism is
costly, so there must be support for a designer/programmer to create a realistic pro-
totype quickly and efficiently.

On the management side, there are several potential problems, as pointed out by
Sommerville [327]:

Time Building prototypes takes time and, if it is a throw-away prototype, it can be
seen as precious time taken away from the real design task. So the value of proto-
typing is only appreciated if it is fast, hence the use of the term rapid prototyping.
However, rapid development and manipulation of a prototype should not be mis-
taken for rushed evaluation which might lead to erroneous results and invalidate
the only advantage of using a prototype in the first place.

Planning Most project managers do not have the experience necessary for
adequately planning and costing a design process which involves prototyping.

Non-functional features Often the most important features of a system will be
non-functional ones, such as safety and reliability, and these are precisely the
kinds of features which are sacrificed in developing a prototype. For evaluating
usability features of a prototype, response time – yet another feature often com-
promised in a prototype – could be critical to product acceptance. This problem
is similar to the technical issue of prototype realism.

Figure 6.7 Evolutionary prototyping throughout the life cycle

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

244 Chapter 6 n HCI in the software process

Contracts The design process is often governed by contractual agreements between
customer and designer which are affected by many of these managerial and tech-
nical issues. Prototypes and other implementations cannot form the basis for a
legal contract, and so an iterative design process will still require documentation
which serves as the binding agreement. There must be an effective way of trans-
lating the results derived from prototyping into adequate documentation. A rapid
prototyping process might be amenable to quick changes, but that does not also
apply to the design process.

6.4.1 Techniques for prototyping

Here we will describe some of the techniques that are available for producing rapid
prototypes.

Storyboards

Probably the simplest notion of a prototype is the storyboard, which is a graphical
depiction of the outward appearance of the intended system, without any accom-
panying system functionality. Storyboards do not require much in terms of com-
puting power to construct; in fact, they can be mocked up without the aid of any
computing resource. The origins of storyboards are in the film industry, where a
series of panels roughly depicts snapshots from an intended film sequence in order
to get the idea across about the eventual scene. Similarly, for interactive system
design, the storyboards provide snapshots of the interface at particular points in the
interaction. Evaluating customer or user impressions of the storyboards can deter-
mine relatively quickly if the design is heading in the right direction.

Modern graphical drawing packages now make it possible to create storyboards
with the aid of a computer instead of by hand. Though the graphic design achievable
on screen may not be as sophisticated as that possible by a professional graphic
designer, it is more realistic because the final system will have to be displayed on a
screen. Also, it is possible to provide crude but effective animation by automated
sequencing through a series of snapshots. Animation illustrates the dynamic aspects
of the intended user–system interaction, which may not be possible with traditional
paper-based storyboards. If not animated, storyboards usually include annotations
and scripts indicating how the interaction will occur.

Limited functionality simulations

More functionality must be built into the prototype to demonstrate the work that the
application will accomplish. Storyboards and animation techniques are not sufficient
for this purpose, as they cannot portray adequately the interactive aspects of the system.
To do this, some portion of the functionality must be simulated by the design team.

Programming support for simulations means a designer can rapidly build graph-
ical and textual interaction objects and attach some behavior to those objects, which
mimics the system’s functionality. Once this simulation is built, it can be evaluated
and changed rapidly to reflect the results of the evaluation study with various users.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.4 Iterative design and prototyping 245

For example, we might want to build a prototype for the VCR with undo described
earlier using only a workstation display, keyboard and mouse. We could draw a picture
of the VCR with its control panel using a graphics drawing package, but then we would
want to allow a subject to use the mouse to position a finger cursor over one of the
buttons to ‘press’ it and actuate some behavior of the VCR. In this way, we could
simulate the programming task and experiment with different options for undoing.

DESIGN FOCUS

Prototyping in practice

IBM supplied the computerized information and messaging booths for the 1984 Olympics in Los
Angeles. These booths were to be used by the many thousands of residents in the Olympic village who
would have to use them with no prior training (extensive instructions in several hundred languages
being impractical). IBM sampled several variants on the kiosk design of the telephone-based system,
using what they called the hallway and storefront methodology [152]. The final system was intended to
be a walk-up-and-use system, so it was important to get comments from people with no knowledge of
the process. Early versions of the kiosk were displayed as storyboards on a mock kiosk design in the
front hallway of the Yorktown Research Lab. Passers-by were encouraged to browse at the display
much as they would a storefront in the window. As casual comments were made and the kiosk was
modified according to those comments, more and more active evaluation was elicited. This procedure
helped to determine the ultimate positioning of display screens and telephones for the final design.

An Olympic Message System Kiosk (Gould J. D., Boies S. J., Levy S., Richards J. T. and Schoonard J. (1987).
The 1984 Olympic Message System: a test of behavioral principles of system design. Communications of
the ACM, 30(9), 758–69. Copyright © 1987 ACM, Inc. Reprinted by permission)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

246 Chapter 6 n HCI in the software process

There are now plenty of prototyping tools available which allow the rapid develop-
ment of such simulation prototypes. These simulation tools are meant to provide
a quick development process for a very wide range of small but highly interactive
applications. A well-known and successful prototyping tool is HyperCard, a simula-
tion environment for the Macintosh line of Apple computers. HyperCard is similar
to the animation tools described above in that the user can create a graphical depic-
tion of some system, say the VCR, with common graphical tools. The graphical
images are placed on cards, and links between cards can be created which control the
sequencing from one card to the next for animation effects. What HyperCard pro-
vides beyond this type of animation is the ability to describe more sophisticated
interactive behavior by attaching a script, written in the HyperTalk programming
language, to any object. So for the VCR, we could attach a script to any control panel
button to highlight it or make an audible noise when the user clicks the mouse cur-
sor over it. Then some functionality could be associated to that button by reflecting
some change in the VCR display window. Similar functionality is provided through
tools such as Macromedia Flash and Director.

Most of the simulations produced are intended to be throw-away prototypes
because of their relatively inefficient implementation. They are not intended to sup-
port full-blown systems development and they are unsatisfactory in that role.
However, as more designers recognize the utility of prototyping and iterative design,
they are beginning to demand ways of incorporating the prototypes into the final
delivered systems – more along the lines of evolutionary prototyping. A good exam-
ple of this is in the avionics industry, where it has long been recognized that iterative
development via rapid prototyping and evaluation is essential for the design of flight
deck instrumentation and controls. Workstation technology provides sufficient
graphics capabilities to enable a designer to produce very realistic gauges, which can
be assessed and critiqued by actual pilots. With the advent of the glass cockpit – in
which traditional mechanical gauges are replaced by gauges represented on video
displays – there is no longer a technology gap between the prototype designs of flight
deck instruments and the actual instruments in flight. Therefore, it is a reasonable
request by these designers that they be able to reuse the functionality of the proto-
types in the actual flight simulators and cockpits, and this demand is starting to be
met by commercial prototyping systems which produce efficient code for use in such
safety-critical applications.

One technique for simulation, which does not require very much computer-
supported functionality, is the Wizard of Oz technique. With this technique, the
designers can develop a limited functionality prototype and enhance its functional-
ity in evaluation by providing the missing functionality through human interven-
tion. A participant in the evaluation of a new accounting system may not have any
computer training but is familiar with accounting procedures. He is asked to sit
down in front of the prototype accounting system and to perform some task, say
to check the accounts receivable against some newly arrived payments. The naïve
computer user will not know the specific language of the system, but you do not
want him to worry about that. Instead, he is given instructions to type whatever
seems the most natural commands to the system. One of the designers – the wizard

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.4 Iterative design and prototyping 247

in this scenario – is situated in another room, out of sight of the subject, but she is
able to receive the subject’s input commands and translate them into commands that
will work on the prototype. By intervening between the user and system, the wizard
is able to increase the perceived functionality of the system so that evaluation can
concentrate on how the subject would react to the complete system. Examination of
how the wizard had to interpret the subject’s input can provide advice as to how the
prototype must be enhanced in its later versions.

High-level programming support

HyperTalk was an example of a special-purpose high-level programming language
which makes it easy for the designer to program certain features of an interactive sys-
tem at the expense of other system features like speed of response or space efficiency.
HyperTalk and many similar languages allow the programmer to attach functional
behavior to the specific interactions that the user will be able to do, such as position
and click on the mouse over a button on the screen. Previously, the difficulty of
interactive programming was that it was so implementation dependent that the
programmer would have to know quite a bit of intimate detail of the hardware sys-
tem in order to control even the simplest of interactive behavior. These high-level
programming languages allow the programmer to abstract away from the hardware
specifics and think in terms that are closer to the way the input and output devices
are perceived as interaction devices.

Though not usually considered together with such simulation environments,
a user interface management system – or UIMS (pronounced ‘you-imz’) – can be con-
sidered to provide such high-level programming support. The frequent conceptual
model put forth for interactive system design is to separate the application function-
ality from its presentation. It is then possible to program the underlying functional-
ity of the system and to program the behavior of the user interface separately.
The job of a UIMS, then, is to allow the programmer to connect the behavior at the
interface with the underlying functionality. In Chapter 8 we will discuss in more
detail the advantages and disadvantages of such a conceptual model and concentrate
on the programming implementation support provided by a UIMS. What is of
interest here is that the separation implied by a UIMS allows the independent
development of the features of the interface apart from the underlying functionality.
If the underlying system is already developed, then various prototypes of its interface
can be quickly constructed and evaluated to determine the optimal one.

6.4.2 Warning about iterative design

Though we have presented the process of iterative design as not only beneficial but
also necessary for good interactive system design, it is important to recognize some
of its drawbacks, in addition to the very real management issues we have already
raised. The ideal model of iterative design, in which a rapid prototype is designed,
evaluated and modified until the best possible design is achieved in the given project
time, is appealing. But there are two problems.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

248 Chapter 6 n HCI in the software process

First, it is often the case that design decisions made at the very beginning of the
prototyping process are wrong and, in practice, design inertia can be so great as
never to overcome an initial bad decision. So, whereas iterative design is, in theory,
amenable to great changes through iterations, it can be the case that the initial pro-
totype has bad features that will not be amended. We will examine this problem
through a real example of a clock on a microwave oven.2 The clock has a numeric
display of four digits. Thus the display is capable of showing values in the range from
00:00 to 99:99. The functional model of time for the actual clock is only 12 hours,
so quite a few of the possible clock displays do not correspond to possible times (for
example, 63:00, 85:49), even though some of them are legal four-digit time desig-
nations. That poses no problem, as long as both the designer and the ultimate users
of the clock both share the knowledge of the discrepancy between possible clock dis-
plays and legal times. Such would not be the case for someone assuming a 24-hour
time format, in which case the displays 00:30 and 13:45 would represent valid
times in their model but not in the microwave’s model. In this particular example,
the subjects tested during the evaluation must have all shared the 12-hour time
model, and the mismatch with the other users (with a 24-hour model) was only dis-
covered after the product was being shipped. At this point, the only impact of iterat-
ive design was a change to the documentation alerting the reader to the 12-hour
format, as it was too late to perform any hardware change.

The second problem is slightly more subtle, and serious. If, in the process of evalu-
ation, a potential usability problem is diagnosed, it is important to understand the
reason for the problem and not just detect the symptom. In the clock example, the
designers could have noticed that some subjects with a 24-hour time model were
having difficulty setting the time. Say they were trying to set the time for 14:45, but
they were not being allowed to do that. If the designers did not know the subject’s
goals, they might not detect the 24/12 hour discrepancy. They would instead notice
that the users were having trouble setting the time and so they might change the but-
tons used to set the time instead of other possible changes, such as an analog time
dial, or displaying AM or PM on the clock dial to make the 12-hour model more
obvious, or to change to a 24-hour clock.

The moral for iterative design is that it should be used in conjunction with
other, more principled approaches to interactive system design. These principled
approaches are the subject of Part 3 of this book.

DESIGN RATIONALE

In designing any computer system, many decisions are made as the product
goes from a set of vague customer requirements to a deliverable entity. Often it is
difficult to recreate the reasons, or rationale, behind various design decisions. Design

6.5

2 This example has been provided by Harold Thimbleby.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.5 Design rationale 249

rationale is the information that explains why a computer system is the way it is,
including its structural or architectural description and its functional or behavioral
description. In this sense, design rationale does not fit squarely into the software life
cycle described in this chapter as just another phase or box. Rather, design rationale
relates to an activity of both reflection (doing design rationale) and documentation
(creating a design rationale) that occurs throughout the entire life cycle.

It is beneficial to have access to the design rationale for several reasons:

n In an explicit form, a design rationale provides a communication mechanism
among the members of a design team so that during later stages of design and/or
maintenance it is possible to understand what critical decisions were made, what
alternatives were investigated (and, possibly, in what order) and the reason why
one alternative was chosen over the others. This can help avoid incorrect assump-
tions later.

n Accumulated knowledge in the form of design rationales for a set of products
can be reused to transfer what has worked in one situation to another situation
which has similar needs. The design rationale can capture the context of a design
decision in order that a different design team can determine if a similar rationale
is appropriate for their product.

n The effort required to produce a design rationale forces the designer to deliberate
more carefully about design decisions. The process of deliberation can be assisted
by the design rationale technique by suggesting how arguments justifying or
discarding a particular design option are formed.

In the area of HCI, design rationale has been particularly important, again for several
reasons:

n There is usually no single best design alternative. More often, the designer is faced
with a set of trade-offs between different alternatives. For example, a graphical
interface may involve a set of actions that the user can invoke by use of the mouse
and the designer must decide whether to present each action as a ‘button’ on the
screen, which is always visible, or hide all of the actions in a menu which must be
explicitly invoked before an action can be chosen. The former option maximizes
the operation visibility (see Chapter 7) but the latter option takes up less screen
space. It would be up to the designer to determine which criterion for evaluating
the options was more important and then communicating that information in a
design rationale.

n Even if an optimal solution did exist for a given design decision, the space of altern-
atives is so vast that it is unlikely a designer would discover it. In this case, it is
important that the designer indicates all alternatives that have been investigated.
Then later on it can be determined if she has not considered the best solution or
had thought about it and discarded it for some reason. In project management,
this kind of accountability for design is good.

n The usability of an interactive system is very dependent on the context of its use.
The flashiest graphical interface is of no use if the end-user does not have access
to a high-quality graphics display or a pointing device. Capturing the context in

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

250 Chapter 6 n HCI in the software process

which a design decision is made will help later when new products are designed.
If the context remains the same, then the old rationale can be adopted without
revision. If the context has changed somehow, the old rationale can be re-
examined to see if any rejected alternatives are now more favorable or if any new
alternatives are now possible.

Lee and Lai [209] explain that various proponents of design rationale have differ-
ent interpretations of what it actually is. We will make use of their classification to
describe various design rationale techniques in this section. The first set of tech-
niques concentrates on providing a historical record of design decisions and is very
much tailored for use during actual design discussions. These techniques are referred
to as process-oriented design rationale because they are meant to be integrated in the
actual design process itself. The next category is not so concerned with historical or
process-oriented information but rather with the structure of the space of all design
alternatives, which can be reconstructed by post hoc consideration of the design
activity. The structure-oriented approach does not capture historical information.
Instead, it captures the complete story of the moment, as an analysis of the design
space which has been considered so far. The final category of design rationale con-
centrates on capturing the claims about the psychology of the user that are implied
by an interactive system and the tasks that are performed on them.

There are some issues that distinguish the various techniques in terms of their
usability within design itself. We can use these issues to sketch an informal rationale for
design rationale. One issue is the degree to which the technique impinges on the design
process. Does the use of a particular design rationale technique alter the decision pro-
cess, or does it just passively serve to document it? Another issue is the cost of using
the technique, both in terms of creating the design rationale and in terms of access-
ing it once created. A related issue is the amount of computational power the design
rationale provides and the level to which this is supported by automated tools. A design
rationale for a complex system can be very large and the exploration of the design space
changes over time. The kind of information stored in a given design rationale will
affect how that vast amount of information can be effectively managed and browsed.

6.5.1 Process-oriented design rationale

Much of the work on design rationale is based on Rittel’s issue-based information
system, or IBIS, a style for representing design and planning dialog developed in
the 1970s [308]. In IBIS (pronounced ‘ibbiss’), a hierarchical structure to a design
rationale is created. A root issue is identified which represents the main problem or
question that the argument is addressing. Various positions are put forth as potential
resolutions for the root issue, and these are depicted as descendants in the IBIS
hierarchy directly connected to the root issue. Each position is then supported or
refuted by arguments, which modify the relationship between issue and position. The
hierarchy grows as secondary issues are raised which modify the root issue in some
way. Each of these secondary issues is in turn expanded by positions and arguments,
further sub-issues, and so on.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.5 Design rationale 251

A graphical version of IBIS has been defined by Conklin and Yakemovic [77],
called gIBIS (pronounced ‘gibbiss’), which makes the structure of the design ratio-
nale more apparent visually in the form of a directed graph which can be directly
edited by the creator of the design rationale. Figure 6.8 gives a representation of the
gIBIS vocabulary. Issues, positions and arguments are nodes in the graph and the
connections between them are labeled to clarify the relationship between adjacent
nodes. So, for example, an issue can suggest further sub-issues, or a position can
respond to an issue or an argument can support a position. The gIBIS structure can
be supported by a hypertext tool to allow a designer to create and browse various
parts of the design rationale.

There have been other versions of the IBIS notation, both graphical and textual,
besides gIBIS. Most versions retain the distinction between issues, positions and
arguments. Some add further nodes, such as Potts and Bruns’s [297] addition of
design artifacts which represent the intermediate products of a design that lead to the
final product and are associated with the various alternatives discussed in the design
rationale. Some add a richer vocabulary to modify the relationships between the
node elements, such as McCall’s Procedural Hierarchy of Issues (PHI) [231], which
expands the variety of inter-issue relationships. Interesting work at the University
of Colorado has attempted to link PHI argumentation to computer-aided design
(CAD) tools to allow critique of design (in their example, the design of a kitchen) as
it occurs. When the CAD violates some known design rule, the designer is warned
and can then browse a PHI argument to see the rationale for the design rule.

Figure 6.8 The structure of a gIBIS design rationale

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

252 Chapter 6 n HCI in the software process

The use of IBIS and any of its descendants is process oriented, as we described
above. It is intended for use during design meetings as a means of recording and
structuring the issues deliberated and the decisions made. It is also intended to
preserve the order of deliberation and decision making for a particular product,
placing less stress on the generalization of design knowledge for use between dif-
ferent products. This can be contrasted with the structure-oriented technique
discussed next.

6.5.2 Design space analysis

MacLean and colleagues [222] have proposed a more deliberative approach to design
rationale which emphasizes a post hoc structuring of the space of design alternatives
that have been considered in a design project. Their approach, embodied in the
Questions, Options and Criteria (QOC) notation, is characterized as design space
analysis (see Figure 6.9).

The design space is initially structured by a set of questions representing the major
issues of the design. Since design space analysis is structure oriented, it is not
so important that the questions recorded are the actual questions asked during
design meetings. Rather, these questions represent an agreed characterization of the

Figure 6.9 The QOC notation

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.5 Design rationale 253

issues raised based on reflection and understanding of the actual design activities.
Questions in a design space analysis are therefore similar to issues in IBIS except
in the way they are captured. Options provide alternative solutions to the question.
They are assessed according to some criteria in order to determine the most
favorable option. In Figure 6.9 an option which is favorably assessed in terms of
a criterion is linked with a solid line, whereas negative links have a dashed line.
The most favorable option is boxed in the diagram.

The key to an effective design space analysis using the QOC notation is deciding
the right questions to use to structure the space and the correct criteria to judge the
options. The initial questions raised must be sufficiently general that they cover a
large enough portion of the possible design space, but specific enough that a range
of options can be clearly identified. It can be difficult to decide the right set of
criteria with which to assess the options. The QOC technique advocates the use of
general criteria, like the usability principles we shall discuss in Chapter 7, which are
expressed more explicitly in a given analysis. In the example of the action buttons
versus the menu of actions described earlier, we could contextualize the general
principle of operation visibility as the criterion that all possible actions are displayed
at all times. It can be very difficult to decide from a design space analysis which
option is most favorable. The positive and negative links in the QOC notation
do not provide all of the context for a trade-off decision. There is no provision for
indicating, for example, that one criterion is more important than any of the others
and the most favorable option must be positively linked.

Another structure-oriented technique, called Decision Representation Language
(DRL), developed by Lee and Lai, structures the design space in a similar fashion
to QOC, though its language is somewhat larger and it has a formal semantics.
The questions, options and criteria in DRL are given the names: decision problem,
alternatives and goals. QOC assessments are represented in DRL by a more complex
language for relating goals to alternatives. The sparse language in QOC used to assess
an option relative to a criterion (positive or negative assessment only) is probably
insufficient, but there is a trade-off involved in adopting a more complex vocabulary
which may prove too difficult to use in practice. The advantage of the formal seman-
tics of DRL is that the design rationale can be used as a computational mechanism
to help manage the large volume of information. For example, DRL can track the
dependencies between different decision problems, so that subsequent changes to
the design rationale for one decision problem can be automatically propagated to
other dependent problems.

Design space analysis directly addresses the claim that no design activity can hope
to uncover all design possibilities, so the best we can hope to achieve is to document
the small part of the design space that has been investigated. An advantage of the post
hoc technique is that it can abstract away from the particulars of a design meeting
and therefore represent the design knowledge in such a way that it can be of use in
the design of other products. The major disadvantage is the increased overhead such
an analysis warrants. More time must be taken away from the design activity to do
this separate documentation task. When time is scarce, these kinds of overhead costs
are the first to be trimmed.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

254 Chapter 6 n HCI in the software process

6.5.3 Psychological design rationale

The final category of design rationale tries to make explicit the psychological claims
of usability inherent in any interactive system in order better to suit a product for
the tasks users have. This psychological design rationale has been introduced by
Carroll and Rosson [62], and before we describe the application of the technique it
is important to understand some of its theoretical background.

People use computers to accomplish some tasks in their particular work domain,
as we have seen before. When designing a new interactive system, the designers take
into account the tasks that users currently perform and any new ones that they may
want to perform. This task identification serves as part of the requirements for the
new system, and can be done through empirical observation of how people perform
their work currently and presented through informal language or a more formal
task analysis language (see Chapter 15). When the new system is implemented,
or becomes an artifact, further observation reveals that in addition to the required
tasks it was built to support, it also supports users in tasks that the designer never
intended. Once designers understand these new tasks, and the associated problems
that arise between them and the previously known tasks, the new task definitions can
serve as requirements for future artifacts.

Carroll refers to this real-life phenomenon as the task–artifact cycle. He provides a
good example of this cycle through the evolution of the electronic spreadsheet.
When the first electronic spreadsheet, VisiCalc, was marketed in the late 1970s, it was
presented simply as an automated means of supporting tabular calculation, a task
commonly used in the accounting world. Within little over a decade of its introduc-
tion, the application of spreadsheets had far outstripped its original intent within
accounting. Spreadsheets were being used for all kinds of financial analysis, ‘what-if ’
simulations, report formatting and even as a general programming language
paradigm! As the set of tasks expands, new spreadsheet products have flooded the
marketplace trying to satisfy the growing customer base. Another good example
of the task–artifact cycle in action is with word processing, which was originally
introduced to provide more automated support for tasks previously achieved with a
typewriter and now provides users with the ability to carry out various authoring
tasks that they never dreamed possible with a conventional typewriter. And today,
the tasks for the spreadsheet and the word processor are intermingled in the same
artifact.

The purpose of psychological design rationale is to support this natural task–
artifact cycle of design activity. The main emphasis is not to capture the designer’s
intention in building the artifact. Rather, psychological design rationale aims to
make explicit the consequences of a design for the user, given an understanding of
what tasks he intends to perform. Previously, these psychological consequences were
left implicit in the design, though designers would make informal claims about their
systems (for example, that it is more ‘natural’ for the user, or easier to learn).

The first step in the psychological design rationale is to identify the tasks that the
proposed system will address and to characterize those tasks by questions that the
user tries to answer in accomplishing them. For instance, Carroll gives an example

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6.5 Design rationale 255

of designing a system to help programmers learn the Smalltalk object-oriented
programming language environment. The main task the system is to support is
learning how Smalltalk works. In learning about the programming environment, the
programmer will perform tasks that help her answer the questions:

n What can I do: that is, what are the possible operations or functions that this
programming environment allows?

n How does it work: that is, what do the various functions do?
n How can I do this: that is, once I know a particular operation I want to perform,

how do I go about programming it?

For each question, a set of scenarios of user–system behavior is suggested to support
the user in addressing the question. For example, to address the question ‘What can
I do?’, the designers can describe a scenario whereby the novice programmer is first
confronted with the learning environment and sees that she can invoke some demo
programs to investigate how Smalltalk programs work. The initial system can then
be implemented to provide the functionality suggested by the scenarios (for example,
some demos would be made accessible and obvious to the user/programmer from
the very beginning). Once this system is running, observation of its use and some
designer reflection is used to produce the actual psychological design rationale for
that version of the system. This is where the psychological claims are made explicit.
For example, there is an assumption that the programmer knows that what she can
see on the screen relates to what she can do (if she sees the list of programs under a
heading ‘Demos’, she can click on one program name to see the associated demo).
The psychological claim of this demo system is that the user learns by doing, which
is a good thing. However, there may also be negative aspects that are equally import-
ant to mention. The demo may not be very interactive, in which case the user clicks
on it to initiate it and then just sits back and watches a graphic display, never really
learning how the demo application is constructed in Smalltalk. These negative
aspects can be used to modify later versions of the system to allow more interactive
demos, which represent realistic, yet simple, applications, whose behavior and struc-
ture the programmer can appreciate.

By forcing the designer to document the psychological design rationale, it is
hoped that she will become more aware of the natural evolution of user tasks and the
artifact, taking advantage of how consequences of one design can be used to improve
later designs.

Worked exercise What is the distinction between a process-oriented and a structure-oriented design rationale
technique? Would you classify psychological design rationale as process or structure oriented?
Why?

Answer The distinction between a process- and structure-oriented design rationale resides in
what information the design rationale attempts to capture. Process-oriented design
rationale is interested in recording an historically accurate description of a design team
making some decision on a particular issue for the design. In this sense, process-
oriented design rationale becomes an activity concurrent with the rest of the design

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

256 Chapter 6 n HCI in the software process

process. Structure-oriented design rationale is less interested in preserving the histor-
ical evolution of the design. Rather, it is more interested in providing the conclusions of
the design activity, so it can be done in a post hoc and reflective manner after the fact.

The purpose of psychological design rationale is to support the task–artifact cycle. Here,
the tasks that the users perform are changed by the systems on which they perform the
tasks. A psychological design rationale proceeds by having the designers of the system
record what they believe are the tasks that the system should support and then build-
ing the system to support the tasks. The designers suggest scenarios for the tasks which
will be used to observe new users of the system. Observations of the users provide the
information needed for the actual design rationale of that version of the system. The
consequences of the design’s assumptions about the important tasks are then gauged
against the actual use in an attempt to justify the design or suggest improvements.

Psychological design rationale is mainly a process-oriented approach. The activity of
a claims analysis is precisely about capturing what the designers assumed about the
system at one point in time and how those assumptions compared with actual use.
Therefore, the history of the psychological design rationale is important. The discipline
involved in performing a psychological design rationale requires designers to perform
the claims analysis during the actual design activity, and not as post hoc reconstruction.

SUMMARY

In this chapter, we have shown how software engineering and the design process
relate to interactive system design. The software engineering life cycle aims to struc-
ture design in order to increase the reliability of the design process. For interactive
system design, this would equate to a reliable and reproducible means of designing
predictably usable systems. Because of the special needs of interactive systems, it is
essential to augment the standard life cycle in order to address issues of HCI.

Usability engineering encourages incorporating explicit usability goals within the
design process, providing a means by which the product’s usability can be judged.
Iterative design practices admit that principled design of interactive systems alone
cannot maximize product usability, so the designer must be able to evaluate early
prototypes and rapidly correct features of the prototype which detract from the
product usability.

The design process is composed of a series of decisions, which pare down the
vast set of potential systems to the one that is actually delivered to the customer.
Design rationale, in its many forms, is aimed at allowing the designer to manage the
information about the decision-making process, in terms of when and why design
decisions were made and what consequences those decisions had for the user in
accomplishing his work.

6.6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Recommended reading 257

RECOMMENDED READING

J. A. McDermid, editor, The Software Engineer’s Reference Book, Butterworth–
Heinemann, 1992.
A very good general reference book for all topics in software engineering. In
particular, we refer you to Chapter 15 on software life cycles and Chapter 40 on
prototyping.

I. Sommerville, Software Engineering, 6th edition, Addison-Wesley, 2000.
This textbook is one of the few texts in software engineering that specifically treats
issues of interface design.

X. Faulkner, Usability Engineering, Macmillan, 2000.
An excellent and accessible introduction to usability engineering covering,
amongst other things, user requirements capture and usability metrics.

J. Whiteside, J. Bennett and K. Holtzblatt, Usability engineering: our experience and
evolution. In M. Helander, editor, Handbook for Human–Computer Interaction,
North-Holland, 1988.
The seminal work on usability engineering. More recent work on usability engi-
neering has also been published by Jakob Nielsen [260, 261].

J. M. Carroll and T. P. Moran, editors, Design Rationale: Concepts, Techniques and
Use, Lawrence Erlbaum, 1996.
Expanded from a double special journal issue, this provides comprehensive
coverage of relevant work in the field.

EXERCISES

6.1 (a) How can design rationale benefit interface design and why might it be rejected by
design teams?

(b) Explain QOC design rationale using an example to illustrate.

6.2 Imagine you have been asked to produce a prototype for the diary system discussed in the worked
exercise in Section 7.2.3. What would be an appropriate prototyping approach to enable you to
test the design using the usability metrics specified, and why?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

DESIGN RULES

OV E RV I E W

n Designing for maximum usability is the goal of
interactive systems design.

n Abstract principles offer a way of understanding
usability in a more general sense, especially if we can
express them within some coherent catalog.

n Design rules in the form of standards and guidelines
provide direction for design, in both general and more
concrete terms, in order to enhance the interactive
properties of the system.

n The essential characteristics of good design are often
summarized through ‘golden rules’ or heuristics.

n Design patterns provide a potentially generative
approach to capturing and reusing design knowledge.

7

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.1 Introduction 259

INTRODUCTION

One of the central problems that must be solved in a user-centered design process is
how to provide designers with the ability to determine the usability consequences of
their design decisions. We require design rules, which are rules a designer can follow
in order to increase the usability of the eventual software product. We can classify
these rules along two dimensions, based on the rule’s authority and generality. By
authority, we mean an indication of whether or not the rule must be followed in
design or whether it is only suggested. By generality, we mean whether the rule can
be applied to many design situations or whether it is focussed on a more limited
application situation. Rules also vary in their level of abstraction, with some abstract-
ing away from the detail of the design solution and others being quite specific. It is
also important to determine the origins of a design rule. We will consider a number
of different types of design rules. Principles are abstract design rules, with high gen-
erality and low authority. Standards are specific design rules, high in authority and
limited in application, whereas guidelines tend to be lower in authority and more
general in application.

Design rules for interactive systems can be supported by psychological, cognitive,
ergonomic, sociological, economic or computational theory, which may or may
not have roots in empirical evidence. Designers do not always have the relevant
background in psychology, cognitive science, ergonomics, sociology, business or
computer science necessary to understand the consequences of those theories in
the instance of the design they are creating. The design rules are used to apply the
theory in practice. Often a set of design rules will be in conflict with each other,
meaning that strict adherence to all of them is impossible. The theory underlying the
separate design rules can help the designer understand the trade-off for the design
that would result in following or disregarding some of the rules. Usually, the more
general a design rule is, the greater the likelihood that it will conflict with other rules
and the greater the need for the designer to understand the theory behind it.

We can make another rough distinction between principles, standards and guide-
lines. Principles are derived from knowledge of the psychological, computational
and sociological aspects of the problem domains and are largely independent of the
technology; they depend to a much greater extent on a deeper understanding of the
human element in the interaction. They can therefore be applied widely but are not
so useful for specific design advice. Guidelines are less abstract and often more tech-
nology oriented, but as they are also general, it is important for a designer to know
what theoretical evidence there is to support them. A designer will have less of a need
to know the underlying theory for applying a standard. However, since standards
carry a much higher level of authority, it is more important that the theory under-
lying them be correct or sound.

The previous chapter was about the process of design, and we need to consider
when design rules can be of use within that process. Design rules are mechanisms for
restricting the space of design options, preventing a designer from pursuing design
options that would be likely to lead to an unusable system. Thus, design rules would

7.1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

260 Chapter 7 n Design rules

be most effective if they could be adopted in the earliest stages of the life cycle, such
as in requirements specification and architectural design, when the space of possible
designs is still very large. We have already seen, for example, in Chapter 6, how
abstract principles can be applied in usability engineering.

However, if the designer does not understand the assumptions underlying a
design rule, it is quite possible that early application can prevent the best design
choice. For example, a set of design rules might be specific to a particular hardware
platform and inappropriate for other platforms (for example, color versus mono-
chrome screens, one- versus two- or three-button mouse). Such bias in some design
rules causes them to be applicable only in later stages of the life cycle.

We will first discuss abstract principles, then go on to consider in more depth
some examples of standards and guidelines for user-centered design. Finally, we will
consider some well-known heuristics or ‘golden rules’ which, it has been suggested,
provide a succinct summary of the essence of good design. We end the chapter
with a discussion of design patterns, a relatively new approach to capturing design
knowledge in HCI.

PRINCIPLES TO SUPPORT USABILITY

The most abstract design rules are general principles, which can be applied to the
design of an interactive system in order to promote its usability. In Chapter 4 we
looked at the different paradigms that represent the development of interactive
systems. Derivation of principles for interaction has usually arisen out of a need
to explain why a paradigm is successful and when it might not be. Principles can
provide the repeatability which paradigms in themselves cannot provide. In this sec-
tion we present a collection of usability principles. Since it is too bold an objective to
produce a comprehensive catalog of such principles, our emphasis will be on struc-
turing the presentation of usability principles in such a way that the catalog can be
easily extended as our knowledge increases.

The principles we present are first divided into three main categories:

Learnability – the ease with which new users can begin effective interaction and
achieve maximal performance.

Flexibility – the multiplicity of ways in which the user and system exchange
information.

Robustness – the level of support provided to the user in determining successful
achievement and assessment of goals.

In the following, we will subdivide these main categories into more specific prin-
ciples that support them. In most cases, we are able to situate these more specific
principles within a single category, but we have made explicit those cases when a
principle falls into two of the above categories.

7.2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.2 Principles to support usability 261

7.2.1 Learnability

Learnability concerns the features of the interactive system that allow novice users to
understand how to use it initially and then how to attain a maximal level of perform-
ance. Table 7.1 contains a summary of the specific principles that support learn-
ability, which we will describe below.

Predictability

Except when interacting with some video games, a user does not take very well to
surprises. Predictability of an interactive system means that the user’s knowledge of
the interaction history is sufficient to determine the result of his future interaction
with it. There are many degrees to which predictability can be satisfied. The knowledge
can be restricted to the presently perceivable information, so that the user need not
remember anything other than what is currently observable. The knowledge require-
ment can be increased to the limit where the user is actually forced to remember what
every previous keystroke was and what every previous screen display contained (and
the order of each!) in order to determine the consequences of the next input action.

Predictability of an interactive system is distinguished from deterministic
behavior of the computer system alone. Most computer systems are ultimately deter-
ministic machines, so that given the state at any one point in time and the operation
which is to be performed at that time, there is only one possible state that can
result. Predictability is a user-centered concept; it is deterministic behavior from the
perspective of the user. It is not enough for the behavior of the computer system to
be determined completely from its state, as the user must be able to take advantage
of the determinism.

Table 7.1 Summary of principles affecting learnability

Principle

Predictability

Synthesizability

Familiarity

Generalizability

Consistency

Related principles

Operation visibility

Immediate/eventual
honesty
Guessability,
affordance

–

–

Definition

Support for the user to determine the effect of
future action based on past interaction history
Support for the user to assess the effect of
past operations on the current state
The extent to which a user’s knowledge and
experience in other real-world or computer-
based domains can be applied when interacting
with a new system
Support for the user to extend knowledge
of specific interaction within and across
applications to other similar situations
Likeness in input–output behavior arising from
similar situations or similar task objectives

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

262 Chapter 7 n Design rules

For example, a common mathematical puzzle would be to present you with a
sequence of three or more numbers and ask you what would be the next number in
the sequence. The assumption in this puzzle (and one that can often be incorrect) is
that there is a unique function or algorithm that produces the entire sequence of
numbers and it is up you to figure it out. We know the function, but all you know
are the results it provides from the first three calculations. The function is certainly
deterministic; the test for you is a test of its predictability given the first three num-
bers in the sequence.

As another, possibly more pertinent, example, imagine you have created a com-
plex picture using a mouse-driven graphical drawing package. You leave the picture
for a few days and then go back to change it around a bit. You are allowed to select
certain objects for editing by positioning the mouse over the object and clicking a
mouse button to highlight it. Can you tell what the set of selectable objects is? Can
you determine which area of the screen belongs to which of these objects, especially
if some objects overlap? Does the visual image on the screen indicate what objects
form a compound object that can only be selected as a group? Predictability of selec-
tion in this example depends on how much of the history of the creation of the visual
image is necessary in order for you to determine what happens when you click on the
mouse button.

This notion of predictability deals with the user’s ability to determine the effect of
operations on the system. Another form of predictability has to do with the user’s
ability to know which operations can be performed. Operation visibility refers to how
the user is shown the availability of operations that can be performed next. If an
operation can be performed, then there may be some perceivable indication of this
to the user. This principle supports the superiority in humans of recognition over
recall. Without it, the user will have to remember when he can perform the opera-
tion and when he cannot. Likewise, the user should understand from the interface if
an operation he might like to invoke cannot be performed.

Synthesizability

Predictability focusses on the user’s ability to determine the effect of future inter-
actions. This assumes that the user has some mental model (see Chapter 1) of how
the system behaves. Predictability says nothing about the way the user forms a model
of the system’s behavior. In building up some sort of predictive model of the system’s
behavior, it is important for the user to assess the consequences of previous inter-
actions in order to formulate a model of the behavior of the system. Synthesis, there-
fore, is the ability of the user to assess the effect of past operations on the current
state.

When an operation changes some aspect of the internal state, it is important that
the change is seen by the user. The principle of honesty relates to the ability of the
user interface to provide an observable and informative account of such change.
In the best of circumstances, this notification can come immediately, requiring no
further interaction initiated by the user. At the very least, the notification should
appear eventually, after explicit user directives to make the change observable. A

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.2 Principles to support usability 263

good example of the distinction between immediacy and eventuality can be seen in
the comparison between command language interfaces and visual desktop interfaces
for a file management system. You have moved a file from one directory to another.
The principle of honesty implies that after moving the file to its new location in the
file system you are then able to determine its new whereabouts. In a command lan-
guage system, you would typically have to remember the destination directory and
then ask to see the contents of that directory in order to verify that the file has been
moved (in fact, you would also have to check that the file is no longer in its original
directory to determine that it has been moved and not copied). In a visual desktop
interface, a visual representation (or icon) of the file is dragged from its original
directory and placed in its destination directory where it remains visible (assuming
the destination folder is selected to reveal its contents). In this case, the user need
not expend any more effort to assess the result of the move operation. The visual
desktop is immediately honest.

The problem with eventual honesty is that the user must know to look for the
change. In a situation in which the user is learning a new interactive system, it is
likely that he will not know to look for change. In earlier versions of the Apple
Macintosh Finder, performing the operation to create a new folder in another folder
did not necessarily result in that new folder’s icon being visible in the original folder.
New users (and even some experienced users) would often think that they had not
issued the new folder operations correctly and would ask for another new folder (and
another, and another, . . .). They would not know to search through the entire open
folder for the latest addition. Then several minutes (hours, days) later, they would
notice that there were a number of empty and untitled folders lying around. The
eventual (accidental) discovery of the change brought about by the new folder
operation was then difficult to associate to that operation. Fortunately, this problem
was addressed in Version 7 of the Finder.

As another example of the benefit of immediate over eventual honesty, let us
examine a typical global search and replace function in a word processor. Imagine
you have noticed in the past a tendency to repeat words in a document (for exam-
ple, you type ‘the the’ without noticing the error). In an attempt to automate your
proofreading, you decide to replace globally all occurrences of ‘the the’ with ‘the’.
The typical global search and replace function performs this substitution without
revealing the changes made to you. Suddenly, a careless typing error is transformed
into unacceptable grammar as the sentence

We will prove the theorem holds as a corollary of the following lemma.

is transformed to

We will prove theorem holds as a corollary of the following lemma.

Familiarity

New users of a system bring with them a wealth of experience across a wide number
of application domains. This experience is obtained both through interaction in the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

264 Chapter 7 n Design rules

real world and through interaction with other computer systems. For a new user,
the familiarity of an interactive system measures the correlation between the user’s
existing knowledge and the knowledge required for effective interaction. For ex-
ample, when word processors were originally introduced the analogy between the
word processor and a typewriter was intended to make the new technology more
immediately accessible to those who had little experience with the former but a
lot of experience with the latter. Familiarity has to do with a user’s first impression
of the system. In this case, we are interested in how the system is first perceived and
whether the user can determine how to initiate any interaction. An advantage of
a metaphor, such as the typewriter metaphor for word processing described above,
is precisely captured by familiarity. Jordan et al. refer to this familiarity as the guess-
ability of the system [196].

Some psychologists argue that there are intrinsic properties, or affordances, of any
visual object that suggest to us how they can be manipulated (see also Chapter 5,
Section 5.7.2). The appearance of the object stimulates a familiarity with its beha-
vior. For example, the shape of a door handle can suggest how it should be manipu-
lated to open a door, and a key on a keyboard suggests to us that it can be pushed.
In the design of a graphical user interface, it is implied that a soft button used in a
form’s interface suggests it should be pushed (though it does not suggest how it is to
be pushed via the mouse). Effective use of the affordances that exist for interface
objects can enhance the familiarity of the interactive system.

Generalizability

Users often try to extend their knowledge of specific interaction behavior to situations
that are similar but previously unencountered. The generalizability of an interactive
system supports this activity, leading to a more complete predictive model of the sys-
tem for the user. We can apply generalization to situations in which the user wants
to apply knowledge that helps achieve one particular goal to another situation where
the goal is in some way similar. Generalizability can be seen as a form of consistency.

Generalization can occur within a single application or across a variety of applica-
tions. For example, in a graphical drawing package that draws a circle as a con-
strained form of ellipse, we would want the user to generalize that a square can be
drawn as a constrained rectangle. A good example of generalizability across a variety
of applications can be seen in multi-windowing systems that attempt to provide
cut/paste/copy operations to all applications in the same way (with varying degrees
of success). Generalizability within an application can be maximized by any con-
scientious designer. One of the main advantages of standards and programming
style guides, which we will discuss in Sections 7.3 and 7.4, is that they increase
generalizability across a wide variety of applications within the same environment.

Consistency

Consistency relates to the likeness in behavior arising from similar situations or
similar task objectives. Consistency is probably the most widely mentioned principle

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.2 Principles to support usability 265

in the literature on user interface design. ‘Be consistent!’ we are constantly urged.
The user relies on a consistent interface. However, the difficulty of dealing with
consistency is that it can take many forms. Consistency is not a single property of an
interactive system that is either satisfied or not satisfied. Instead, consistency must
be applied relative to something. Thus we have consistency in command naming, or
consistency in command/argument invocation.

Another consequence of consistency having to be defined with respect to some
other feature of the interaction is that many other principles can be ‘reduced’ to
qualified instances of consistency. Hence, familiarity can be considered as consist-
ency with respect to past real-world experience, and generalizability as consistency
with respect to experience with the same system or set of applications on the same
platform. Because of this pervasive quality of consistency, it might be argued that
consistency should be a separate category of usability principles, on the same level as
learnability, flexibility and robustness. Rather than do that, we will discuss different
ways in which consistency can be manifested.

Consistency can be expressed in terms of the form of input expressions or output
responses with respect to the meaning of actions in some conceptual model of the
system. For example, before the introduction of explicit arrow keys, some word pro-
cessors used the relative position of keys on the keyboard to indicate directionality
for operations (for example, to move one character to the left, right, up or down).
The conceptual model for display-based editing is a two-dimensional plane, so the
user would think of certain classes of operations in terms of movements up, down,
left or right in the plane of the display. Operations that required directional infor-
mation, such as moving within the text or deleting some unit of text, could be
articulated by using some set of keys on the keyboard that form a pattern consistent
with up, down, left and right (for example, the keys e, x, s and d, respectively). For
output responses, a good example of consistency can be found in a warnings system
for an aircraft. Warnings to the pilot are classified into three categories, depending
on whether the situation with the aircraft requires immediate recovery action, even-
tual but not immediate action, or no action at all (advisory) on the part of the crew.
These warnings are signalled to the crew by means of a centralized warnings panel
in which the categories are consistently color coded (red for immediate, amber for
eventual and green for advisory).

Grudin has argued that because of the relative nature of consistency it can be
a dangerous principle to follow [160]. A good example he gives is the development
and evolution of the standard typewriter keyboard. When keyboards for typewriters
were first made, the designers laid out the keys in alphabetical order. Then it was dis-
covered that such an arrangement of keys was both inefficient from the machine’s
perspective (adjacent typewriter keys pressed in succession caused jams in the
mechanism, so the likelihood of this occurrence had to be designed out) and tiring
for the typist (a touch-typist would not have equal stress distributed over all fingers).
The resulting QWERTY and DVORAK keyboards have since been adopted to
combat the problems of the ‘consistent’ keyboard layout.1

1 See Chapter 2 for a discussion of different keyboards.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

266 Chapter 7 n Design rules

7.2.2 Flexibility

Flexibility refers to the multiplicity of ways in which the end-user and the system
exchange information. We identify several principles that contribute to the flexibil-
ity of interaction, and these are summarized in Table 7.2.

Dialog initiative

When considering the interaction between user and system as a dialog between
partners (see Chapter 16), it is important to consider which partner has the initiative
in the conversation. The system can initiate all dialog, in which case the user simply
responds to requests for information. We call this type of dialog system pre-emptive.
For example, a modal dialog box prohibits the user from interacting with the system
in any way that does not direct input to the box. Alternatively, the user may be
entirely free to initiate any action towards the system, in which case the dialog is
user pre-emptive. The system may control the dialog to the extent that it prohibits
the user from initiating any other desired communication concerning the current
task or some other task the user would like to perform. From the user’s perspective,
a system-driven interaction hinders flexibility whereas a user-driven interaction
favours it.

In general, we want to maximize the user’s ability to pre-empt the system and
minimize the system’s ability to pre-empt the user. Although a system pre-emptive
dialog is not desirable in general, some situations may require it. In a cooperative
editor (in which two people edit a document at the same time) it would be impolite

Table 7.2 Summary of principles affecting flexibility

Principle

Dialog initiative

Multi-threading

Task migratability

Substitutivity

Customizability

Related principles

System/user
pre-emptiveness

Concurrent vs.
interleaving,
multi-modality
–

Representation
multiplicity, equal
opportunity
Adaptivity,
adaptability

Definition

Allowing the user freedom from artificial
constraints on the input dialog imposed
by the system
Ability of the system to support user
interaction pertaining to more than one
task at a time
The ability to pass control for the
execution of a given task so that it
becomes either internalized by the user
or the system or shared between them
Allowing equivalent values of input and
output to be arbitrarily substituted for
each other
Modifiability of the user interface by the
user or the system

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.2 Principles to support usability 267

for you to erase a paragraph of text that your partner is currently editing. For safety
reasons, it may be necessary to prohibit the user from the ‘freedom’ to do potentially
serious damage. A pilot about to land an aircraft in which the flaps have asymmetric-
ally failed in their extended position2 should not be allowed to abort the landing, as
this failure will almost certainly result in a catastrophic accident.

On the other hand, a completely user pre-emptive dialog allows the user to offer
any input action at any time for maximum flexibility. This is not an entirely desir-
able situation, since it increases the likelihood that the user will lose track of the tasks
that have been initiated and not yet completed. However, if the designers have
a good understanding of the sets of tasks the user is likely to perform with a system
and how those tasks are related, they can minimize the likelihood that the user will
be prevented from initiating some task at a time when he wishes to do so.

Multi-threading

A thread of a dialog is a coherent subset of that dialog. In the user–system dialog, we
can consider a thread to be that part of the dialog that relates to a given user task.
Multi-threading of the user–system dialog allows for interaction to support more
than one task at a time. Concurrent multi-threading allows simultaneous commun-
ication of information pertaining to separate tasks. Interleaved multi-threading permits
a temporal overlap between separate tasks, but stipulates that at any given instant
the dialog is restricted to a single task.

Multi-modality of a dialog is related to multi-threading. Coutaz has characterized
two dimensions of multi-modal systems [80]. First, we can consider how the separ-
ate modalities (or channels of communication) are combined to form a single input
or output expression. Multiple channels may be available, but any one expression
may be restricted to just one channel (keyboard or audio, for example). As an ex-
ample, to open a window the user can choose between a double click on an icon,
a keyboard shortcut, or saying ‘open window’. Alternatively, a single expression
can be formed by a mixing of channels. Examples of such fused modality are error
warnings, which usually contain a textual message accompanied by an audible
beep. On the input side, we could consider chord sequences of input with a keyboard
and mouse (pressing the shift key while a mouse button is pressed, or saying ‘drop’
as you drag a file over the trash icon). We can also characterize a multi-modality
dialog depending on whether it allows concurrent or interleaved use of multiple
modes.

A windowing system naturally supports a multi-threaded dialog that is interleaved
amongst a number of overlapping tasks. Each window can represent a different task,
for example text editing in one window, file management in another, a telephone
directory in another and electronic mail in yet another. A multi-modal dialog can
allow for concurrent multi-threading. A very simple example can occur in the

2 Flaps increase the surface area and curvature of the aircraft’s wing, providing the extra lift necessary for,
among other things, a smooth touchdown. An asymmetric failure results in extreme instability and the
aircraft will not fly level.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

268 Chapter 7 n Design rules

windowing system with an audible bell. You are editing a program when a beep
indicates that a new electronic mail message has arrived. Even though at the level of
the system the audible beep has been interleaved with your requests from the key-
board to perform edits, the overlap between the editing task and the mail message
from your perspective is simultaneous.

Task migratability

Task migratability concerns the transfer of control for execution of tasks between
system and user. It should be possible for the user or system to pass the control of
a task over to the other or promote the task from a completely internalized one to
a shared and cooperative venture. Hence, a task that is internal to one can become
internal to the other or shared between the two partners.

Spell-checking a paper is a good example of the need for task migratability.
Equipped with a dictionary, you are perfectly able to check your spelling by reading
through the entire paper and correcting mistakes as you spot them. This mundane
task is perfectly suited to automation, as the computer can check words against
its own list of acceptable spellings. It is not desirable, however, to leave this task
completely to the discretion of the computer, as most computerized dictionaries do
not handle proper names correctly, nor can they distinguish between correct and
unintentional duplications of words. In those cases, the task is handed over to the
user. The spell-check is best performed in such a cooperative way.

In safety-critical applications, task migratability can decrease the likelihood of
an accident. For example, on the flight deck of an aircraft, there are so many control
tasks that must be performed that a pilot would be overwhelmed if he had to
perform them all. Therefore, mundane control of the aircraft’s position within its
flight envelope is greatly automated. However, in the event of an emergency, it must
be possible to transfer flying controls easily and seamlessly from the system to the
pilot.

Substitutivity

Substitutivity requires that equivalent values can be substituted for each other. For
example, in considering the form of an input expression to determine the margin
for a letter, you may want to enter the value in either inches or centimeters. You
may also want to input the value explicitly (say 1.5 inches) or you may want to enter
a calculation which produces the right input value (you know the width of the text
is 6.5 inches and the width of the paper is 8.5 inches and you want the left margin
to be twice as large as the right margin, so you enter 2/3 (8.5 − 6.5) inches). This
input substitutivity contributes towards flexibility by allowing the user to choose
whichever form best suits the needs of the moment. By avoiding unnecessary calcu-
lations in the user’s head, substitutivity can minimize user errors and cognitive
effort.

We can also consider substitutivity with respect to output, or the system’s render-
ing of state information. Representation multiplicity illustrates flexibility for state

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.2 Principles to support usability 269

rendering. For example, the temperature of a physical object over a period of time
can be presented as a digital thermometer if the actual numerical value is important
or as a graph if it is only important to notice trends. It might even be desirable to
make these representations simultaneously available to the user. Each representation
provides a perspective on the internal state of the system. At a given time, the user is
free to consider the representations that are most suitable for the current task.

Equal opportunity blurs the distinction between input and output at the interface.
The user has the choice of what is input and what is output; in addition, output can
be reused as input. Thimbleby describes this principle as, ‘If you can see it, you can
use it!’ It is a common belief that input and output are separate. Many have stressed
the significance of the link between input and output. Equal opportunity pushes
that view to the extreme. For example, in spreadsheet programs, the user fills in some
cells and the system automatically determines the values attributed to some other
cells. Conversely, if the user enters values for those other cells, the system would
compute the values for the first ones. In this example, it is not clear which cells are
the inputs and which are the outputs. Furthermore, this distinction might not be
clear or useful to the user. In a drawing package, the user may draw a line by direct
manipulation and the system would compute the length of the line; or conversely,
the user may specify the line coordinates and the system would draw the line. Both
means of manipulating the line are equally important and must be made equally
available. Note that equal opportunity implies that the system is not pre-emptive
towards the user.

Customizability

Customizability is the modifiability of the user interface by the user or the system.
From the system side, we are not concerned with modifications that would be
attended to by a programmer actually changing the system and its interface during
system maintenance. Rather, we are concerned with the automatic modification that
the system would make based on its knowledge of the user. We distinguish between
the user-initiated and system-initiated modification, referring to the former as
adaptability and the latter as adaptivity.

Adaptability refers to the user’s ability to adjust the form of input and output.
This customization could be very limited, with the user only allowed to adjust
the position of soft buttons on the screen or redefine command names. This type
of modifiability, which is restricted to the surface of the interface, is referred to as
lexical customization. The overall structure of the interaction is kept unchanged. The
power given to the user can be increased by allowing the definition of macros to
speed up the articulation of certain common tasks. In the extreme, the interface can
provide the user with programming language capabilities, such as the UNIX shell or
the script language Hypertalk in HyperCard. Thimbleby points out that in these
cases it would be suitable to apply well-known principles of programming languages
to the user’s interface programming language.

Adaptivity is automatic customization of the user interface by the system.
Decisions for adaptation can be based on user expertise or observed repetition of

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

270 Chapter 7 n Design rules

certain task sequences. The distinction between adaptivity and adaptability is that the
user plays an explicit role in adaptability, whereas his role in an adaptive interface
is more implicit. A system can be trained to recognize the behavior of an expert or
novice and accordingly adjust its dialog control or help system automatically to
match the needs of the current user. This is in contrast with a system that would
require the user to classify himself as novice or expert at the beginning of a session.
We discuss adaptive systems further in the context of user support in Chapter 11.
Automatic macro construction is a form of programming by example, combining
adaptability with adaptivity in a simple and useful way. Repetitive tasks can be detected
by observing user behavior and macros can be automatically (or with user consent)
constructed from this observation to perform repetitive tasks automatically.

7.2.3 Robustness

In a work or task domain, a user is engaged with a computer in order to achieve
some set of goals. The robustness of that interaction covers features that support the
successful achievement and assessment of the goals. Here, we describe principles that
support robustness. A summary of these principles is presented in Table 7.3.

Observability

Observability allows the user to evaluate the internal state of the system by means
of its perceivable representation at the interface. As we described in Chapter 3,
evaluation allows the user to compare the current observed state with his intention
within the task–action plan, possibly leading to a plan revision. Observability can be

Table 7.3 Summary of principles affecting robustness

Principle

Observability

Recoverability

Responsiveness

Task conformance

Related principles

Browsability, static/dynamic
defaults, reachability,
persistence, operation
visibility
Reachability, forward/
backward recovery,
commensurate effort
Stability

Task completeness, task
adequacy

Definition

Ability of the user to evaluate the
internal state of the system from
its perceivable representation

Ability of the user to take
corrective action once an error
has been recognized
How the user perceives the rate
of communication with the system
The degree to which the system
services support all of the tasks
the user wishes to perform
and in the way that the user
understands them

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.2 Principles to support usability 271

discussed through five other principles: browsability, defaults, reachability, persist-
ence and operation visibility. Operation visibility was covered in Section 7.2.1 in
relation to predictability. The remaining four are discussed next.

Browsability allows the user to explore the current internal state of the system via
the limited view provided at the interface. Usually the complexity of the domain does
not allow the interface to show all of the relevant domain concepts at once. Indeed,
this is one reason why the notion of task is used, in order to constrain the domain
information needed at one time to a subset connected with the user’s current activ-
ity. While you may not be able to view an entire document’s contents, you may be
able to see all of an outline view of the document, if you are only interested in its
overall structure. Even with a restriction of concepts relevant to the current task, it is
probable that all of the information a user needs to continue work on that task is not
immediately perceivable. Or perhaps the user is engaged in a multi-threaded dialog
covering several tasks. There needs to be a way for the user to investigate, or browse,
the internal state. This browsing itself should not have any side-effects on that state;
that is, the browsing commands should be passive with respect to the domain-
specific parts of the internal state.

The availability of defaults can assist the user by passive recall (for example, a sug-
gested response to a question can be recognized as correct instead of recalled). It also
reduces the number of physical actions necessary to input a value. Thus, providing
default values is a kind of error prevention mechanism. There are two kinds of
default values: static and dynamic. Static defaults do not evolve with the session.
They are either defined within the system or acquired at initialization. On the other
hand, dynamic defaults evolve during the session. They are computed by the system
from previous user inputs; the system is then adapting default values.

Reachability refers to the possibility of navigation through the observable system
states. There are various levels of reachability that can be given precise mathematical
definitions (see Chapter 17), but the main notion is whether the user can navigate
from any given state to any other state. Reachability in an interactive system affects
the recoverability of the system, as we will discuss later. In addition, different levels
of reachability can reflect the amount of flexibility in the system as well, though we
did not make that explicit in the discussion on flexibility.

Persistence deals with the duration of the effect of a communication act and the
ability of the user to make use of that effect. The effect of vocal communication
does not persist except in the memory of the receiver. Visual communication, on the
other hand, can remain as an object which the user can subsequently manipulate
long after the act of presentation. If you are informed of a new email message by a
beep at your terminal, you may know at that moment and for a short while later that
you have received a new message. If you do not attend to that message immediately,
you may forget about it. If, however, some persistent visual information informs you
of the incoming message (say, the flag goes up on your electronic mailbox), then that
will serve as a reminder that an unread message remains long after its initial receipt.3

3 Chapter 19 discusses notification mechanisms for email in more detail.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

272 Chapter 7 n Design rules

Recoverability

Users make mistakes from which they want to recover. Recoverability is the ability
to reach a desired goal after recognition of some error in a previous interaction.
There are two directions in which recovery can occur, forward or backward. Forward
error recovery involves the acceptance of the current state and negotiation from that
state towards the desired state. Forward error recovery may be the only possibility for
recovery if the effects of interaction are not revocable (for example, in building a house
of cards, you might sneeze whilst placing a card on the seventh level, but you cannot
undo the effect of your misfortune except by rebuilding). Backward error recovery is
an attempt to undo the effects of previous interaction in order to return to a prior
state before proceeding. In a text editor, a mistyped keystroke might wipe out a large
section of text which you would want to retrieve by an equally simple undo button.

Recovery can be initiated by the system or by the user. When performed by the
system, recoverability is connected to the notions of fault tolerance, safety, reliability
and dependability, all topics covered in software engineering. However, in software
engineering this recoverability is considered only with respect to system functional-
ity; it is not tied to user intent. When recovery is initiated by the user, it is important
that it determines the intent of the user’s recovery actions; that is, whether he desires
forward (negotiation) or backward (using undo/redo actions) corrective action.

Recoverability is linked to reachability because we want to avoid blocking the user
from getting to a desired state from some other undesired state (going down a blind
alley).

In addition to providing the ability to recover, the procedure for recovery should
reflect the work being done (or undone, as the case may be). The principle of com-
mensurate effort states that if it is difficult to undo a given effect on the state, then it
should have been difficult to do in the first place. Conversely, easily undone actions
should be easily doable. For example, if it is difficult to recover files which have been
deleted in an operating system, then it should be difficult to remove them, or at least
it should require more effort by the user to delete the file than to, say, rename it.

Responsiveness

Responsiveness measures the rate of communication between the system and the
user. Response time is generally defined as the duration of time needed by the
system to express state changes to the user. In general, short durations and instantan-
eous response times are desirable. Instantaneous means that the user perceives
system reactions as immediate. But even in situations in which an instantaneous
response cannot be obtained, there must be some indication to the user that the
system has received the request for action and is working on a response.

As significant as absolute response time is response time stability. Response time
stability covers the invariance of the duration for identical or similar computational
resources. For example, pull-down menus are expected to pop up instantaneously
as soon as a mouse button is pressed. Variations in response time will impede
anticipation exploited by motor skill.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.2 Principles to support usability 273

Task conformance

Since the purpose of an interactive system is to allow a user to perform various
tasks in achieving certain goals within a specific application domain, we can ask
whether the system supports all of the tasks of interest and whether it supports these
as the user wants. Task completeness addresses the coverage issue and task adequacy
addresses the user’s understanding of the tasks.

It is not sufficient that the computer system fully implements some set of com-
putational services that were identified at early specification stages. It is essential
that the system allows the user to achieve any of the desired tasks in a particular
work domain as identified by a task analysis that precedes system specification
(see Chapter 15 for a more complete discussion of task analysis techniques). Task
completeness refers to the level to which the system services can be mapped onto all
of the user tasks. However, it is quite possible that the provision of a new computer-
based tool will suggest to a user some tasks that were not even conceivable before the
tool. Therefore, it is also desirable that the system services be suitably general so that
the user can define new tasks.

Discussion of task conformance has its roots in an attempt to understand the suc-
cess of direct manipulation interfaces. We can view the direct manipulation interface
as a separate world from that inside the system. Task completeness covers only one
part of the conformance. This separate world is understood and operated upon by
the user. With the intuition of the Hutchins, Hollan and Norman model-world meta-
phor discussed in Chapter 4, we require that the task, as represented by the world of
the interface, matches the task as understood by the user and supported by the sys-
tem. If the model-world metaphor satisfies the principle of task adequacy, then the
user will be directly on his task plan, minimizing the effort required in the articulation
and observation translations discussed in the interaction framework of Chapter 3.

Worked exercise Look at some of the principles outlined in this section, and use one or two to provide a usabil-
ity specification (see Chapter 6, Section 6.3) for an electronic meetings diary or calendar. First
identify some of the tasks that would be performed by a user trying to keep track of future
meetings, and then complete the usability specification assuming that the electronic system will
be replacing a paper-based system. What assumptions do you have to make about the user
and the electronic diary in order to create a reasonable usability specification?

Answer This exercise could be easily extended to a small project which would involve the design
of such an electronic diary or calendar. The purpose of this smaller usability engineer-
ing exercise is to show how usability goals can be formulated early on to drive the
design activity. We will select two of the usability principles from this chapter, which
will serve as attributes for separate usability specifications.

In the first example, we will consider the interaction principle of guessability, which con-
cerns how easy it is for new users to perform tasks initially. The measuring concept will
be how long it takes a new user, without any instruction on the new system, to enter
his first appointment in the diary. A sample usability specification is given below.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

274 Chapter 7 n Design rules

Attribute: Guessability
Measuring concept: Ease of first use of system without training
Measuring method: Time to create first entry in diary

Now level: 30 seconds on paper-based system
Worst case: 1 minute

Planned level: 45 seconds
Best case: 30 seconds (equivalent to now)

The values in this usability specification might seem a little surprising at first, since we
are saying that the best case is only equivalent to the currently achievable now level.
The point in this example is that the new system is replacing a very familiar paper and
pencil system which requires very little training. The objective of this system is not so
much to improve guessability but to preserve it. Earlier, we discussed that the worst
case level should not usually be worse than the now level, but we are hoping for this
product to improve overall functionality of the system. The user will be able to do more
things with the electronic diary than he could with the conventional system. As a result,
we worry less about improving its guessability. Perhaps we could have been more ambi-
tious in setting the best case value by considering the potential for voice input or other
exotic input techniques that would make entry faster than writing.

As another example, we want to support the task migratability of the system. A fre-
quent sort of task for a diary is to schedule weekly meetings. The conventional system
would require the user to make an explicit entry for the meeting each week – the task
of the scheduling is the responsibility of the user. In the new system, we want to allow
the user to push the responsibility of scheduling over to the system, so that the user
need only indicate the desire to have a meeting scheduled for a certain time each week
and the system will take care of entering the meeting at all of the appropriate times.
The task of scheduling has thus migrated over to the system. The usability specification
for this example follows.

Attribute: Task migratability
Measuring concept: Scheduling a weekly meeting
Measuring method: Time it takes to enter a weekly meeting appointment

Now level: (Time to schedule one appointment) × (Number of weeks)
Worst case: Time to schedule two appointments

Planned level: 1.5 × (Time to schedule one appointment)
Best case: Time to schedule one appointment

In this specification, we have indicated that the now level is equivalent to the time
it takes to schedule each appointment separately. The worst, planned and best case
levels are all targeted at some proportion of the time it takes to schedule just a single
appointment – a dramatic improvement. The difference between the worst, planned
and best case levels is the amount of overhead it will take to indicate that a single
appointment is to be considered an example to be repeated at the weekly level.

What are the assumptions we have to make in order to arrive at such a usability
specification? One of the problems with usability specifications, discussed earlier, is that
they sometimes require quite specific information about the design. For example, had
we set one of our measuring methods to count keystrokes or mouse clicks, we would

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.3 Standards 275

have had to start making assumptions about the method of interaction that the system
would allow. Had we tried to set a usability specification concerning the browsing of
the diary, we would have had to start making assumptions about the layout of the calen-
dar (monthly, weekly, daily) in order to make our estimates specific enough to measure.
In the examples we have provided above, we have tried to stay as abstract as possible,
so that the usability specifications could be of use as early in the design life cycle as pos-
sible. A consequence of this abstractness, particularly evident in the second example, is
that we run the risk in the usability specification of setting goals that may be completely
unrealistic, though well intentioned. If the usability specification were to be used as a
contract with the customer, such speculation could spell real trouble for the designer.

STANDARDS

Standards for interactive system design are usually set by national or international
bodies to ensure compliance with a set of design rules by a large community.
Standards can apply specifically to either the hardware or the software used to build
the interactive system. Smith [324] points out the differing characteristics between
hardware and software, which affect the utility of design standards applied to them:

Underlying theory Standards for hardware are based on an understanding of
physiology or ergonomics/human factors, the results of which are relatively well
known, fixed and readily adaptable to design of the hardware. On the other hand,
software standards are based on theories from psychology or cognitive science,
which are less well formed, still evolving and not very easy to interpret in the
language of software design. Consequently, standards for hardware can directly
relate to a hardware specification and still reflect the underlying theory, whereas
software standards would have to be more vaguely worded.

Change Hardware is more difficult and expensive to change than software, which
is usually designed to be very flexible. Consequently, requirements changes for
hardware do not occur as frequently as for software. Since standards are also
relatively stable, they are more suitable for hardware than software.

Historically, for these reasons, a given standards institution, such as the British
Standards Institution (BSI) or the International Organization for Standardization (ISO)
or a national military agency, has had standards for hardware in place before any for
software. For example, the UK Ministry of Defence has published an Interim Defence
Standard 00–25 on Human Factors for Designers of Equipment, produced in 12 parts:

Part 1 Introduction
Part 2 Body Size
Part 3 Body Strength and Stamina
Part 4 Workplace Design
Part 5 Stresses and Hazards
Part 6 Vision and Lighting

7.3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

276 Chapter 7 n Design rules

Part 7 Visual Displays
Part 8 Auditory Information
Part 9 Voice Communication
Part 10 Controls
Part 11 Design for Maintainability
Part 12 Systems

Only the last of these is concerned with the software design process. The inter-
national standard ISO 9241, entitled Ergonomic Requirements for Office Work with
Visual Display Terminals (VDT)s, has 17 parts. Seven of these are concerned with
hardware issues – requirements for visual display, keyboard layout, workstation lay-
out, environment, display with reflections, display colors and non-keyboard input
devices. Seven parts are devoted to software issues – general dialog principles,
menu dialogs, presentation of information, user guidance, command dialogs, direct
manipulation dialogs and form-filling dialogs. However, standards covering soft-
ware issues are now being produced, for example, the draft standard ISO 14915
covers software ergonomics for multimedia user interfaces.

Figure 7.1 provides examples of the language of standards for displays. Note the
increasing generality and vagueness of the language as we progress from the hard-
ware issues in a UK defence standard for pilot cockpit controls and instrumentation
through a German standard for user interface design of display workstations to a US
military standard for display contents.

11.3 Arrangement of displays
11.3.1 Vertical Grouping. The engine display parameters shall be arranged so that the
primary or most important display for a particular engine and airplane (thrust, torque,
RPM, etc.) be located at the top of the display group if a vertical grouping is provided.
The next most important display parameter shall be positioned under the primary display
progressing down the panel with the least important at the bottom.

(a) A typical example of a military standard

5.1 Subdivision of the display area
In consideration of a simple, fast and accurate visual acquisition, the display area shall be
divided into different sub-areas.
Such a division should be:
n Input area
n Output area
n Area for operational indications (such as status and alarms)

(b) From German standard DIN 66 234 Part 3 (1984), adapted from Smith [324]

5.15.3.2.1 Standardization
The content of displays within a system shall be presented in a consistent manner.

(c) From US military standard MIL-STD-1472C, revised (1983), adapted from Smith [324]

Figure 7.1 Sample design standards for displays. Adapted from Smith [324].
Copyright © 1986 IEEE

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.4 Guidelines 277

One component of the ISO standard 9241, pertaining to usability specification,
applies equally to both hardware and software design. In the beginning of that
document, the following definition of usability is given:

Usability The effectiveness, efficiency and satisfaction with which specified users
achieve specified goals in particular environments.

Effectiveness The accuracy and completeness with which specified users can
achieve specified goals in particular environments.

Efficiency The resources expended in relation to the accuracy and completeness of
goals achieved.

Satisfaction The comfort and acceptability of the work system to its users and
other people affected by its use.

The importance of such a definition in the standard is as a means of describing
explicit measurements for usability. Such metrics can support usability engineering,
as we saw in Chapter 6.

The strength of a standard lies in its ability to force large communities to abide –
the so-called authority we have referred to earlier. It should be noted that such
authority does not necessarily follow from the publication of a standard by a national
or international body. In fact, many standards applying to software design are put
forth as suggestive measures, rather than obligatory. The authority of a standard (or
a guideline, for that matter) can only be determined from its use in practice. Some
software products become de facto standards long before any formal standards docu-
ment is published (for example, the X windowing system).

There is a much longer history of standards in safety-critical domains, such as
nuclear power plants or aircraft design, where the consequences of poor design out-
weigh the expense of principled design. It is only as the perceived costs of unusable
software in less safety-critical domains have become less acceptable that there has
been a greater effort in developing standards for promoting usability.

GUIDELINES

We have observed that the incompleteness of theories underlying the design of inter-
active software makes it difficult to produce authoritative and specific standards. As
a result, the majority of design rules for interactive systems are suggestive and more
general guidelines. Our concern in examining the wealth of available guidelines is in
determining their applicability to the various stages of design. The more abstract the
guideline, the more it resembles the principles that we outlined in Section 7.2, which
would be most suited to requirements specification. The more specific the guideline,
the more suited it is to detailed design. The guidelines can also be automated to
some extent, providing a direct means for translating detailed design specifications
into actual implementation. There are a vast amount of published guidelines for

7.4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

278 Chapter 7 n Design rules

interactive system design (they are frequently referred to as guidelines for user inter-
face design). We will present only a few examples here to demonstrate the content of
guidelines in that vast literature.

Several books and technical reports contain huge catalogs of guidelines. A classic
example was a very general list compiled by Smith and Mosier in 1986 at the Mitre
Corporation and sponsored by the Electronic Systems Division of the US Air Force
[325]. The basic categories of the Smith and Mosier guidelines are:

1. Data Entry
2. Data Display
3. Sequence Control
4. User Guidance
5. Data Transmission
6. Data Protection

Each of these categories is further broken down into more specific subcategories
which contain the particular guidelines. Figure 7.2 provides an example of the
information contained in the Smith and Mosier guidelines. A striking feature of this
compendium of guidelines is the extensive cross-referencing within the catalog, and
citation to published work that supports each guideline. The Mitre Corporation has
taken advantage of this structure and implemented the Smith and Mosier guidelines
on a hypertext system, which provides rapid traversal of the network of guidelines to
investigate the cross-references and citations.

1. Data Entry

1.1 Position Designation

1.1–1 Distinctive Cursor
For position designation on an electronic display, provide a movable cursor with distinct-
ive visual features (shape, blink, etc.).

Exception When position designation involves only selection among displayed
alternatives, highlighting selected items might be used instead of a separately displayed
cursor.

Comment When choosing a cursor shape, consider the general content of the display.
For instance, an underscore cursor would be difficult to see on a display of under-
scored text, or on a graphical display containing many other lines.

Comment If the cursor is changed to denote different functions (e.g. to signal deletion
rather than entry), then each different cursor should be distinguishable from the
others.

Comment If multiple cursors are used on the same display (e.g. one for alphanumeric
entry and one for line drawing), then each cursor should be distinguishable from the
others.

Reference Whitfield, Ball and Bird, 1983

See also 1.1–17 Distinctive multiple cursors
4.0–9 Distinctive cursor

Figure 7.2 Sample guideline from Smith and Mosier [325], courtesy of The MITRE
Corporation

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.4 Guidelines 279

A more recent, equally comprehensive catalog of general guidelines has been
compiled by Mayhew [230]. Though this catalog is only in book form, and so limits
the possibility of quick cross-referencing, this is one of the best sources for the
experimental results which back the specific guidelines.

A major concern for all of the general guidelines is the subject of dialog styles,
which in the context of these guidelines pertains to the means by which the user
communicates input to the system, including how the system presents the commun-
ication device. Smith and Mosier identify eight different dialog styles and Mayhew
identifies seven (see Table 7.4 for a comparison). The only real difference is the
absence of query languages in Mayhew’s list, but we can consider a query language
as a special case of a command language. These interface styles have been described
in more detail in Chapter 3.

Most guidelines are applicable for the implementation of any one of these dialog
styles in isolation. It is also important to consider the possibility of mixing dialog
styles in one application. In contrasting the action and language paradigms in
Chapter 4, we concluded that it is not always the case that one paradigm wins over
the other for all tasks in an application and, therefore, an application may want to
mix the two paradigms. This equates to a mixing of dialog styles – a direct manipu-
lation dialog being suitable for the action paradigm and a command language being
suitable for the language paradigm. Mayhew provides guidelines and a technique for
deciding how to mix dialog styles.

In moving from abstract guidelines to more specific and automated ones, it is
necessary to introduce assumptions about the computer platform on which the
interactive system is designed. So, for example, in Apple’s Human Interface
Guidelines: the Apple Desktop Interface, there is a clear distinction between the
abstract guidelines (or principles), independent of the specific Macintosh hard-
ware and software, and the concrete guidelines, which assume them. The abstract
guidelines provide the so-called philosophy of programming that Apple would like
designers to adopt in programming applications for the Macintosh. The more con-
crete guidelines are then seen as more concrete manifestations of that philosophy.

As an example, one abstract principle espoused in the Apple guidelines is
consistency:

Table 7.4 Comparison of dialog styles mentioned in guidelines

Smith and Mosier [325] Mayhew [230]

Question and answer Question and answer
Form filling Fill-in forms
Menu selection Menus
Function keys Function keys
Command language Command language
Query language –
Natural language Natural language
Graphic selection Direct manipulation

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

280 Chapter 7 n Design rules

Effective applications are both consistent within themselves and consistent with one
another.

We discussed consistency in Section 7.2 under the larger usability category of learn-
ability, and the meaning in this context is similar. A more concrete directive that
Apple provides is the ‘noun–verb’ ordering guideline: the user first selects an object
(the noun) from the visible set on the Desktop and then selects an operation (the
verb) to be applied to the object. For the sake of consistency, this ordering guideline
is to be followed for all operation invocation involving the explicit and separate
indication of an operation and the object or arguments of that operation.

Another less straightforward example from the Apple guidelines refers to user
control:

The user, not the computer, initiates and controls all actions.

We considered issues of dialog initiative in Section 7.2 under the general usability
category of flexibility. As we mentioned there, the issue of dialog initiative involves
a trade-off between user freedom and system protection. In general, single-user
computer systems operate in strict abidance of this guideline for user control; the
user is allowed to initiate any dialog at all with the computer, whether or not it will
have the intended result. Part of the success of direct manipulation interfaces lies
in their ability to constrain user interaction to actions which are both syntactically
correct (for example, preventing errors due to slips in typing) and will probably
correspond to the intended user tasks.

Other popular graphical user interface (GUI) systems have published guidelines
that describe how to adhere to abstract principles for usability in the narrower con-
text of a specific programming environment. These guidelines are often referred
to as style guides to reflect that they are not hard and fast rules, but suggested con-
ventions for programming in that environment. Some examples are the OpenLook
and the Open Software Foundation (OSF) Motif graphical user interfaces, both of
which have published style guides [337, 275]. Programming in the style of these
GUIs involves the use of toolkits which provide high-level widgets, as we have
mentioned earlier in this book and will discuss in more detail in Chapter 8. More
importantly, each of these GUIs has its own look and feel, which describes their
expected behavior. The style guides are intended to help a programmer capture the
elements of the look and feel of a GUI in her own programming. Therefore, style
guides for the look and feel of a GUI promote the consistency within and between
applications on the same computer platform.

We discussed menus in Chapter 3 as one of the major elements of the WIMP
interface. As one example of a guideline for the design of menus, the OpenLook style
guide suggests the following for grouping items in the same menu:

Use white space between long groups of controls on menus or in short groups when
screen real estate is not an issue.

The justification for such a guideline is that the more options (or controls, as the
term is used in the quoted guideline) on a menu, the longer it will take a user to

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.4 Guidelines 281

locate and point to a desired item. As we discussed in Chapter 1, humans chunk
related information in the learning process and this can be used to increase the
efficiency of searching. Grouping of related items in a menu can supplement this
chunking procedure. But be warned! Remember the scenario described in the Intro-
duction to this book, in which we fell victim to closely grouped menu items which
had drastically different effects in our word processor. Saving and deleting files might
be considered logically similar since they both deal with operations on the file level.
But simple slips made in pointing (which are all too easy with trackball devices) can
change an intended save operation into an unintended and dangerous delete.

Worked exercise Look up and report back guidelines for the use of color. Be able to state the empirical psy-
chological evidence that supports the guidelines. Do the guidelines conflict with any other
known guidelines? Which principles of interaction do they support?

Answer There are many examples of guidelines for the use of color in the literature. Here are
three good sources:

n C. Marlin Brown, Human–Computer Interface Design Guidelines, Ablex, 1988.
n Deborah J. Mayhew, Principles and Guidelines in Software User Interface Design, Prentice

Hall, 1992.
n Sun Microsystems, Inc., OpenLook Graphical User Interface Application Style Guidelines,

Addison-Wesley, 1990.

Taking an example from Mayhew, we have the following design guideline for the use of
color as an informational cue for the user (for example, to inform the user that a string
of text is a warning or error message):

Do not use color without some other redundant cue.

Mayhew provides three reasons which empirically support this guideline:

1. Color may not be available on all machines on which the system is to be imple-
mented. Therefore, if use of color is the only means to convey some important
information to the user, then that information will be lost in a monochrome (no
color) system. Redundant color coding will allow for portability across different
computing platforms.

2. Empirical evidence shows that 8% of the (general) male population and 0.4% of the
female population has some color deficiency, so they cannot accurately recognize or
distinguish between various colors. Again, if color is the only means for conveying
some information, this significant portion of the user population will be slighted.

3. It has been shown that redundant color coding enhances user performance

This guideline supports several of the principles discussed in this chapter:

Substitutivity The system is able to substitute color-coded information and other
means (for example, text, sound) to represent some important information. We
could turn the argument around and suggest that the user be able to provide color
input (by selecting from a palette menu) or other forms of input to provide relevant
information to the system.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

282 Chapter 7 n Design rules

Observability This principle is all about the system being able to provide the user
with enough information about its internal state to assist his task. Relying strictly on
color-coded information, as pointed out above, could reduce the observability of a
system for some users.

Synthesis If a change in color is used to indicate the changing status of some system
entity (perhaps a change in temperature above a threshold value is signalled by an
icon becoming red), those who cannot detect the change in color would be deprived
of this information. Synthesis is about supporting the user’s ability to detect such
significant changes, especially when they are a result of previous user actions.

There is no evidence of existing guidelines that this particular guideline for color violates.

Another example of a color guideline (found in all three of the above references) is the
demand to consider cultural information in the selection of particular colors. For example,
Mayhew states that western cultures tend to interpret green to mean go or safe; red
to mean stop, on, hot or emergency; and blue to mean cold or off. Using color to suggest
these kinds of meanings is in support of the familiarity principle within learnability.
However, in other cultures different meanings may be associated with these colors, as we
saw in Chapter 3, and consistent use of color (another guideline) might lead to confusion.
Hence, strict adherence to this guideline would suggest a violation of the consistency of
color application guideline. However, if consistency is applied relative to the meaning of
the color (as opposed to its actual color), this guideline would not have to conflict.

GOLDEN RULES AND HEURISTICS

So far we have considered a range of abstract principles and detailed guidelines,
which can be used to help designers produce more usable systems. But all of these
rules require a certain amount of commitment on the part of the designer, either to
track down appropriate guidelines or to interpret principles. Is there a simpler way?

A number of advocates of user-centered design have presented sets of ‘golden
rules’ or heuristics. While these are inevitably ‘broad-brush’ design rules, which may
not be always be applicable to every situation, they do provide a useful checklist
or summary of the essence of design advice. It is clear that any designer following
even these simple rules will produce a better system than one who ignores them.

There are many sets of heuristics, but the most well used are Nielsen’s ten heur-
istics, Shneiderman’s eight golden rules and Norman’s seven principles. Nielsen’s
heuristics are intended to be used in evaluation and will therefore be discussed in
Chapter 9. We will consider the other two sets here.

7.5.1 Shneiderman’s Eight Golden Rules of Interface Design

Shneiderman’s eight golden rules provide a convenient and succinct summary of
the key principles of interface design. They are intended to be used during design but

7.5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.5 Golden rules and heuristics 283

can also be applied, like Nielsen’s heuristics, to the evaluation of systems. Notice
how they relate to the abstract principles discussed earlier.

1. Strive for consistency in action sequences, layout, terminology, command use and
so on.

2. Enable frequent users to use shortcuts, such as abbreviations, special key sequences
and macros, to perform regular, familiar actions more quickly.

3. Offer informative feedback for every user action, at a level appropriate to the
magnitude of the action.

4. Design dialogs to yield closure so that the user knows when they have completed
a task.

5. Offer error prevention and simple error handling so that, ideally, users are prevented
from making mistakes and, if they do, they are offered clear and informative
instructions to enable them to recover.

6. Permit easy reversal of actions in order to relieve anxiety and encourage
exploration, since the user knows that he can always return to the previous state.

7. Support internal locus of control so that the user is in control of the system, which
responds to his actions.

8. Reduce short-term memory load by keeping displays simple, consolidating
multiple page displays and providing time for learning action sequences.

These rules provide a useful shorthand for the more detailed sets of principles
described earlier. Like those principles, they are not applicable to every eventuality
and need to be interpreted for each new situation. However, they are broadly useful
and their application will only help most design projects.

7.5.2 Norman’s Seven Principles for Transforming Difficult Tasks
into Simple Ones

In Chapter 3 we discussed Norman’s execution–evaluation cycle, in which he elabor-
ates the seven stages of action. Later, in his classic book The Design of Everyday
Things, he summarizes user-centered design using the following seven principles:

1. Use both knowledge in the world and knowledge in the head. People work bet-
ter when the knowledge they need to do a task is available externally – either
explicitly or through the constraints imposed by the environment. But experts
also need to be able to internalize regular tasks to increase their efficiency. So sys-
tems should provide the necessary knowledge within the environment and their
operation should be transparent to support the user in building an appropriate
mental model of what is going on.

2. Simplify the structure of tasks. Tasks need to be simple in order to avoid complex
problem solving and excessive memory load. There are a number of ways to sim-
plify the structure of tasks. One is to provide mental aids to help the user keep
track of stages in a more complex task. Another is to use technology to provide
the user with more information about the task and better feedback. A third
approach is to automate the task or part of it, as long as this does not detract from
the user’s experience. The final approach to simplification is to change the nature

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

284 Chapter 7 n Design rules

of the task so that it becomes something more simple. In all of this, it is import-
ant not to take control away from the user.

3. Make things visible: bridge the gulfs of execution and evaluation. The interface
should make clear what the system can do and how this is achieved, and should
enable the user to see clearly the effect of their actions on the system.

4. Get the mappings right. User intentions should map clearly onto system controls.
User actions should map clearly onto system events. So it should be clear what
does what and by how much. Controls, sliders and dials should reflect the task –
so a small movement has a small effect and a large movement a large effect.

5. Exploit the power of constraints, both natural and artificial. Constraints are things in
the world that make it impossible to do anything but the correct action in the cor-
rect way. A simple example is a jigsaw puzzle, where the pieces only fit together in one
way. Here the physical constraints of the design guide the user to complete the task.

6. Design for error. To err is human, so anticipate the errors the user could make and
design recovery into the system.

7. When all else fails, standardize. If there are no natural mappings then arbitrary
mappings should be standardized so that users only have to learn them once. It
is this standardization principle that enables drivers to get into a new car and
drive it with very little difficulty – key controls are standardized. Occasionally
one might switch on the indicator lights instead of the windscreen wipers, but the
critical controls (accelerator, brake, clutch, steering) are always the same.

Norman’s seven principles provide a useful summary of his user-centered design
philosophy but the reader is encouraged to read the complete text of The Design of
Everyday Things to gain the full picture.

HCI PATTERNS

As we observed in Chapter 4, one way to approach design is to learn from examples
that have proven to be successful in the past: to reuse the knowledge of what made a
system – or paradigm – successful. Patterns are an approach to capturing and reusing
this knowledge – of abstracting the essential details of successful design so that these
can be applied again and again in new situations.

Patterns originated in architecture, where they have been used successfully, and they
are also used widely in software development to capture solutions to common pro-
gramming problems. More recently they have been used in interface and web design.

A pattern is an invariant solution to a recurrent problem within a specific
context. Patterns address the problems that designers face by providing a ‘solution
statement’. This is best illustrated by example. Alexander, who initiated the pattern
concept, proposes a pattern for house building called ‘Light on Two Sides of Every
Room’. The problem being addressed here is that

When they have a choice, people will always gravitate to those rooms which have light
on two sides, and leave the rooms which are lit only from one side unused and empty.

The proposed solution is to provide natural light from two sides of every room:

7.6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7.6 HCI patterns 285

Locate each room so that it has outdoor space outside it on at least two sides, and then
place windows in these outdoor walls so that natural light falls into every room from
more than one direction [9a, pattern 159].

Note that the solution says nothing about where these windows should be located
or at what angle they should be to each other. A room with windows on opposite
walls, or at right angles, or with a window and a skylight would all fulfill the pattern.
Patterns capture only the invariant properties of good design – the common ele-
ments that hold between all instances of the solution. The specific implementation
of the pattern will depend on the circumstance and the designer’s creativity.

There are many examples of HCI patterns, and the interested reader is referred
to pattern collections and languages such as [345, 37, 356] and the Pattern Gallery,
which illustrates some of the various forms used in HCI patterns [132]. A well-
known example, ‘go back to a safe place’, adapted from Tidwell’s Common Ground
collection, is given as an illustration (Figure 7.3). This is quite a low-level interface
pattern, but patterns can also address high-level issues such as organizational struc-
tures or cooperative groups. As you can see, the pattern states the problem and the
solution but also includes a rationale, explaining where the pattern has come from
and in what context it applies, and examples to illustrate the pattern.

The pattern also has references to other patterns, indicating both the context
in which it can be applied (the top references) and the patterns that may be needed
to complete it (the bottom references). This connects the patterns together into a
language. Patterns in isolation have limited use, but by traversing the hierarchy,
through these references, the user is assisted in generating a complete design.

Patterns and pattern languages are characterized by a number of features, which,
taken as a whole, distinguish them from other design rules:

n They capture design practice and embody knowledge about successful solutions:
they come from practice rather than psychological theory.

n They capture the essential common properties of good design: they do not tell the
designer how to do something but what needs to be done and why.

n They represent design knowledge at varying levels, ranging from social and organ-
izational issues through conceptual design to detailed widget design.

n They are not neutral but embody values within their rationale. Alexander’s
language clearly expresses his values about architecture. HCI patterns can express
values about what is humane in interface design.

n The concept of a pattern language is generative and can therefore assist in the
development of complete designs.

n They are generally intuitive and readable and can therefore be used for commun-
ication between all stakeholders.

Patterns are a relatively recent addition to HCI representations, in which there are
still many research issues to resolve. For instance, it is not clear how patterns can best
be identified or how languages should be structured to reflect the temporal concerns
of interaction. However, the recent publication of a complete pattern language for
web design [356], aimed at commercial designers, may mark a turning point and see
a more widespread adoption of the approach in interface design.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

286 Chapter 7 n Design rules

SUMMARY

We have seen how design rules can be used to provide direction for the design pro-
cess, although the more general and interesting the design rule is for promoting
usability, the further away it is from the actual language of design.

7.7

Figure 7.3 An example pattern ‘go back to a safe place’ adapted from Tidwell’s Common Ground
collection. Courtesy of Jenifer Tidwell

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Exercises 287

We have considered abstract principles, standards and guidelines, golden rules
and heuristics, and patterns, and have looked at examples of each. The most abstract
design rules are principles, which represent generic knowledge about good design
practice. Standards and guidelines are more specific. Standards have the highest
authority, being set by national or international bodies to ensure compliance by a
large community. Guidelines are less authoritative but offer specific contextual
advice, which can inform detailed design. Heuristics and ‘golden rules’ are succinct
collections of design principles and advice that are easily assimilated by any designer.
Patterns capture design practice and attempt to provide a generative structure to
support the design process.

EXERCISES

7.1 What was the problem with the synthesis example comparing a command language
interface with a visual interface? Can you suggest a fix to make a visual interface really immedi-
ately honest?

7.2 It has been suggested in this chapter that consistency could be considered a major category of
interactive principles, on the same level as learnability, flexibility and robustness. If this was the
case, which principles discussed in this chapter would appear in support of consistency?

7.3 Find as much information as you can on ISO standards that relate to usability. (Hint: Many stan-
dards are discussed in terms of ergonomics.) How many different standards and draft standards
can you find?

7.4 Can you think of any instances in which the ‘noun–verb’ guideline for operations, as suggested in
the Apple human interface guidelines for the Desktop Interface, would be violated? Suggest other
abstract guidelines or principles besides consistency which support your example. (Hint: Think
about moving files around on the Desktop.)

7.5 Can you think of any instances in which the user control guideline suggested by Apple is not
followed? (Hint: Think about the use of dialog boxes.)

7.6 Find a book on guidelines. List the guidelines that are provided and classify them in terms of the
activity in the software life cycle to which they would most likely apply.

7.7 (a) Distinguish between principles, guidelines and standards, using examples of each to illustrate.
(b) Why is context important in selecting and applying guidelines and principles for interface

design? Illustrate your answer with examples.

7.8 (a) Why are there few effective HCI standards?
(b) How do ‘golden rules’ and heuristics help interface designers take account of cognitive

psychology? Illustrate your answer with examples.

7.9 Using the web design pattern language in The Design of Sites [356] produce a design for an
e-commerce site for a small retail business. How well does the language support the design
process?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

RECOMMENDED READING

H. Thimbleby, Design of interactive systems. In J. A. McDermid, editor, The Software
Engineer’s Reference Book, Chapter 57, Butterworth–Heinemann, 1992.
Thimbleby provides a very insightful list of general principles which apply to
interactive systems. Some of the principles we have described in this chapter come
from Thimbleby’s work, though we have concentrated more on providing an
overall organizational framework for the principles.

T. Stewart, Ergonomics user interface standards: are they more trouble than they are
worth?, Ergonomics, Vol. 43, No. 7, pp. 1030–44, July 2000.
A review of the development of user interface standards, which considers the his-
tory of the endeavour, its successes and failures.

D. J. Mayhew, Principles and Guidelines in Software User Interface Design, Prentice
Hall, 1992.
A comprehensive catalog of general interactive system guidelines which provides
much of the experimental evidence to support specific guidelines.

B. Shneiderman, Designing the User Interface, 3rd edition, Addison-Wesley, 1998.
The source of Eight Golden Rules.

D. Norman, The Design of Everyday Things, MIT Press, 1998.
Classic exposition of design, including the seven principles.

D. Van Duyne, J. Landay and J. Hong, The Design of Sites: Patterns, Principles and
Processes for Crafting a Customer-centred Web Experience, Addison-Wesley, 2003.
The first substantial and widely applicable HCI complete pattern language (for
web design) presented accessibly for use in design teams.

The HCI Service, HCI Tools & Methods Handbook, 1991.
This booklet was produced under the United Kingdom Department of Trade and
Industry (DTI) Usability Now! program. It contains a list of books on guidelines
as well as a summary of the available user-centered design techniques as they can
be applied to the software life cycle. The booklet and other information about the
program is available from the HCI Service, PO Box 31, Loughborough,
Leicestershire LE11 1QU, United Kingdom.

288 Chapter 7 n Design rules

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

EVALUATION TECHNIQUES

OV E RV I E W

n Evaluation tests the usability, functionality and
acceptability of an interactive system.

n Evaluation may take place:
– in the laboratory
– in the field.

n Some approaches are based on expert evaluation:
– analytic methods
– review methods
– model-based methods.

n Some approaches involve users:
– experimental methods
– observational methods
– query methods.

n An evaluation method must be chosen carefully and
must be suitable for the job.

9

9.2 Goals of evaluation 319

WHAT IS EVALUATION?

In previous chapters we have discussed a design process to support the design of
usable interactive systems. However, even if such a process is used, we still need to
assess our designs and test our systems to ensure that they actually behave as we
expect and meet user requirements. This is the role of evaluation.

Evaluation should not be thought of as a single phase in the design process (still
less as an activity tacked on the end of the process if time permits). Ideally, evalu-
ation should occur throughout the design life cycle, with the results of the evaluation
feeding back into modifications to the design. Clearly, it is not usually possible to
perform extensive experimental testing continuously throughout the design, but
analytic and informal techniques can and should be used. In this respect, there is a
close link between evaluation and the principles and prototyping techniques we have
already discussed – such techniques help to ensure that the design is assessed con-
tinually. This has the advantage that problems can be ironed out before considerable
effort and resources have been expended on the implementation itself: it is much
easier to change a design in the early stages of development than in the later stages.
We can make a broad distinction between evaluation by the designer or a usability
expert, without direct involvement by users, and evaluation that studies actual use
of the system. The former is particularly useful for assessing early designs and
prototypes; the latter normally requires a working prototype or implementation.
However, this is a broad distinction and, in practice, the user may be involved in
assessing early design ideas (for example, through focus groups), and expert-based
analysis can be performed on completed systems, as a cheap and quick usability
assessment. We will consider evaluation techniques under two broad headings:
expert analysis and user participation.

Before looking at specific techniques, however, we will consider why we do evalu-
ation and what we are trying to achieve.

GOALS OF EVALUATION

Evaluation has three main goals: to assess the extent and accessibility of the system’s
functionality, to assess users’ experience of the interaction, and to identify any
specific problems with the system.

The system’s functionality is important in that it must accord with the user’s
requirements. In other words, the design of the system should enable users to per-
form their intended tasks more easily. This includes not only making the appro-
priate functionality available within the system, but making it clearly reachable by
the user in terms of the actions that the user needs to take to perform the task. It also
involves matching the use of the system to the user’s expectations of the task. For
example, if a filing clerk is used to retrieving a customer’s file by the postal address,

9.2

9.1

320 Chapter 9 n Evaluation techniques

the same capability (at least) should be provided in the computerized file system.
Evaluation at this level may also include measuring the user’s performance with the
system, to assess the effectiveness of the system in supporting the task.

In addition to evaluating the system design in terms of its functional capabilities,
it is important to assess the user’s experience of the interaction and its impact upon
him. This includes considering aspects such as how easy the system is to learn, its
usability and the user’s satisfaction with it. It may also include his enjoyment and
emotional response, particularly in the case of systems that are aimed at leisure or
entertainment. It is important to identify areas of the design that overload the user
in some way, perhaps by requiring an excessive amount of information to be remem-
bered, for example. A fuller classification of principles that can be used as evaluation
criteria is provided in Chapter 7. Much evaluation is aimed at measuring features
such as these.

The final goal of evaluation is to identify specific problems with the design. These
may be aspects of the design which, when used in their intended context, cause
unexpected results, or confusion amongst users. This is, of course, related to both the
functionality and usability of the design (depending on the cause of the problem).
However, it is specifically concerned with identifying trouble-spots which can then
be rectified.

EVALUATION THROUGH EXPERT ANALYSIS

As we have noted, evaluation should occur throughout the design process. In
particular, the first evaluation of a system should ideally be performed before any
implementation work has started. If the design itself can be evaluated, expensive mis-
takes can be avoided, since the design can be altered prior to any major resource
commitments. Typically, the later in the design process that an error is discovered,
the more costly it is to put right and, therefore, the less likely it is to be rectified.
However, it can be expensive to carry out user testing at regular intervals during the
design process, and it can be difficult to get an accurate assessment of the experience
of interaction from incomplete designs and prototypes. Consequently, a number of
methods have been proposed to evaluate interactive systems through expert analysis.
These depend upon the designer, or a human factors expert, taking the design and
assessing the impact that it will have upon a typical user. The basic intention is
to identify any areas that are likely to cause difficulties because they violate known
cognitive principles, or ignore accepted empirical results. These methods can be
used at any stage in the development process from a design specification, through
storyboards and prototypes, to full implementations, making them flexible evalu-
ation approaches. They are also relatively cheap, since they do not require user
involvement. However, they do not assess actual use of the system, only whether or
not a system upholds accepted usability principles.

We will consider four approaches to expert analysis: cognitive walkthrough,
heuristic evaluation, the use of models and use of previous work.

9.3

9.3 Evaluation through expert analysis 321

9.3.1 Cognitive walkthrough

Cognitive walkthrough was originally proposed and later revised by Polson and col-
leagues [294, 376] as an attempt to introduce psychological theory into the informal
and subjective walkthrough technique.

The origin of the cognitive walkthrough approach to evaluation is the code walk-
through familiar in software engineering. Walkthroughs require a detailed review of
a sequence of actions. In the code walkthrough, the sequence represents a segment
of the program code that is stepped through by the reviewers to check certain char-
acteristics (for example, that coding style is adhered to, conventions for spelling
variables versus procedure calls, and to check that system-wide invariants are not
violated). In the cognitive walkthrough, the sequence of actions refers to the steps
that an interface will require a user to perform in order to accomplish some known
task. The evaluators then ‘step through’ that action sequence to check it for poten-
tial usability problems. Usually, the main focus of the cognitive walkthrough is to
establish how easy a system is to learn. More specifically, the focus is on learning
through exploration. Experience shows that many users prefer to learn how to use a
system by exploring its functionality hands on, and not after sufficient training or
examination of a user’s manual. So the checks that are made during the walkthrough
ask questions that address this exploratory learning. To do this, the evaluators go
through each step in the task and provide a ‘story’ about why that step is or is not
good for a new user. To do a walkthrough (the term walkthrough from now on refers
to the cognitive walkthrough, and not to any other kind of walkthrough), you need
four things:

1. A specification or prototype of the system. It doesn’t have to be complete, but it
should be fairly detailed. Details such as the location and wording for a menu can
make a big difference.

2. A description of the task the user is to perform on the system. This should be a
representative task that most users will want to do.

3. A complete, written list of the actions needed to complete the task with the pro-
posed system.

4. An indication of who the users are and what kind of experience and knowledge
the evaluators can assume about them.

Given this information, the evaluators step through the action sequence
(identified in item 3 above) to critique the system and tell a believable story about its
usability. To do this, for each action, the evaluators try to answer the following four
questions for each step in the action sequence.

1. Is the effect of the action the same as the user’s goal at that point? Each user
action will have a specific effect within the system. Is this effect the same as what
the user is trying to achieve at this point? For example, if the effect of the action
is to save a document, is ‘saving a document’ what the user wants to do?

2. Will users see that the action is available? Will users see the button or menu item,
for example, that is used to produce the action? This is not asking whether they
will recognize that the button is the one they want. This is merely asking whether

322 Chapter 9 n Evaluation techniques

it is visible to them at the time when they will need to use it. Instances where
the answer to this question might be ‘no’ are, for example, where a VCR remote
control has a covered panel of buttons or where a menu item is hidden away in a
submenu.

3. Once users have found the correct action, will they know it is the one they need?
This complements the previous question. It is one thing for a button or menu
item to be visible, but will the user recognize that it is the one he is looking for to
complete his task? Where the previous question was about the visibility of the
action, this one is about whether its meaning and effect is clear.

4. After the action is taken, will users understand the feedback they get? If you now
assume that the user did manage to achieve the correct action, will he know that
he has done so? Will the feedback given be sufficient confirmation of what has
actually happened? This is the completion of the execution–evaluation interac-
tion cycle (see Chapter 3). In order to determine if they have accomplished their
goal, users need appropriate feedback.

It is vital to document the cognitive walkthrough to keep a record of what is good
and what needs improvement in the design. It is therefore a good idea to produce
some standard evaluation forms for the walkthrough. The cover form would list the
information in items 1–4 in our first list above, as well as identifying the date and
time of the walkthrough and the names of the evaluators. Then for each action (from
item 3 on the cover form), a separate standard form is filled out that answers each of
the four questions in our second list above. Any negative answer for any of the ques-
tions for any particular action should be documented on a separate usability prob-
lem report sheet. This problem report sheet should indicate the system being built
(the version, if necessary), the date, the evaluators and a detailed description of the
usability problem. It is also useful to indicate the severity of the problem, that is
whether the evaluators think this problem will occur often, and how serious it will
be for the users. This information will help the designers to decide priorities for
correcting the design, since it is not always possible to fix every problem.

Example: programming a video recorder by remote control

We can illustrate how the walkthrough method works using a simple example. Imagine we
are designing a remote control for a video recorder (VCR) and are interested in the task of pro-
gramming the VCR to do timed recordings. Our initial design is shown in Figure 9.1. The picture
on the left illustrates the handset in normal use, the picture on the right after the timed record
button has been pressed. The VCR allows the user to program up to three timed recordings in
different ‘streams’. The next available stream number is automatically assigned. We want to know
whether our design supports the user’s task. We begin by identifying a representative task.

Program the video to time-record a program starting at 18.00 and finishing at 19.15 on channel
4 on 24 February 2005.

9.3 Evaluation through expert analysis 323

We will assume that the user is familiar with VCRs but not with this particular design.

The next step in the walkthrough is to identify the action sequence for this task. We specify this
in terms of the user’s action (UA) and the system’s display or response (SD). The initial display is
as the left-hand picture in Figure 9.1.

UA 1: Press the ‘timed record’ button
SD 1: Display moves to timer mode. Flashing cursor appears after ‘start:’
UA 2: Press digits 1 8 0 0
SD 2: Each digit is displayed as typed and flashing cursor moves to next position
UA 3: Press the ‘timed record’ button
SD 3: Flashing cursor moves to ‘end:’
UA 4: Press digits 1 9 1 5
SD 4: Each digit is displayed as typed and flashing cursor moves to next position
UA 5: Press the ‘timed record’ button
SD 5: Flashing cursor moves to ‘channel:’
UA 6: Press digit 4
SD 6: Digit is displayed as typed and flashing cursor moves to next position
UA 7: Press the ‘timed record’ button
SD 7: Flashing cursor moves to ‘date:’
UA 8: Press digits 2 4 0 2 0 5
SD 8: Each digit is displayed as typed and flashing cursor moves to next position
UA 9: Press the ‘timed record’ button
SD 9: Stream number in top right-hand corner of display flashes
UA 10: Press the ‘transmit’ button
SD 10: Details are transmitted to video player and display returns to normal mode

Figure 9.1 An initial remote control design

324 Chapter 9 n Evaluation techniques

9.3.2 Heuristic evaluation

A heuristic is a guideline or general principle or rule of thumb that can guide a design
decision or be used to critique a decision that has already been made. Heuristic
evaluation, developed by Jakob Nielsen and Rolf Molich, is a method for structuring
the critique of a system using a set of relatively simple and general heuristics.
Heuristic evaluation can be performed on a design specification so it is useful for
evaluating early design. But it can also be used on prototypes, storyboards and fully
functioning systems. It is therefore a flexible, relatively cheap approach. Hence it is
often considered a discount usability technique.

The general idea behind heuristic evaluation is that several evaluators inde-
pendently critique a system to come up with potential usability problems. It is
important that there be several of these evaluators and that the evaluations be done
independently. Nielsen’s experience indicates that between three and five evaluators
is sufficient, with five usually resulting in about 75% of the overall usability problems
being discovered.

Having determined our action list we are in a position to proceed with the walkthrough. For each
action (1–10) we must answer the four questions and tell a story about the usability of the system.
Beginning with UA 1:

UA 1: Press the ‘timed record’ button
Question 1: Is the effect of the action the same as the user’s goal at that point?
The timed record button initiates timer programming. It is reasonable to assume that a user
familiar with VCRs would be trying to do this as his first goal.
Question 2: Will users see that the action is available?
The ‘timed record’ button is visible on the remote control.
Question 3: Once users have found the correct action, will they know it is the one they need?
It is not clear which button is the ‘timed record’ button. The icon of a clock (fourth button
down on the right) is a possible candidate but this could be interpreted as a button to change
the time. Other possible candidates might be the fourth button down on the left or the filled
circle (associated with record). In fact, the icon of the clock is the correct choice but it is quite
possible that the user would fail at this point. This identifies a potential usability problem.
Question 4: After the action is taken, will users understand the feedback they get?
Once the action is taken the display changes to the timed record mode and shows familiar head-
ings (start, end, channel, date). It is reasonable to assume that the user would recognize these
as indicating successful completion of the first action.

So we find we have a potential usability problem relating to the icon used on the ‘timed record’
button. We would now have to establish whether our target user group could correctly distin-
guish this icon from others on the remote.

The analysis proceeds in this fashion, with a walkthrough form completed for each action. We will
leave the rest of the walkthrough for you to complete as an exercise. What other usability prob-
lems can you identify with this design?

9.3 Evaluation through expert analysis 325

To aid the evaluators in discovering usability problems, a set of 10 heuristics are
provided. The heuristics are related to principles and guidelines (see Chapter 7). These
can be supplemented where required by heuristics that are specific to the particular
domain. So, for example, if the system is for synchronous group communication, one
might add ‘awareness of other users’ as a heuristic. Although Nielsen recommends
the use of these 10 as providing the most effective coverage of the most common us-
ability problems, other rules, such as those discussed in Chapter 7, could also be used.

Each evaluator assesses the system and notes violations of any of these heuristics
that would indicate a potential usability problem. The evaluator also assesses the
severity of each usability problem, based on four factors: how common is the prob-
lem, how easy is it for the user to overcome, will it be a one-off problem or a persist-
ent one, and how seriously will the problem be perceived? These can be combined
into an overall severity rating on a scale of 0–4:

0 = I don’t agree that this is a usability problem at all
1 = Cosmetic problem only: need not be fixed unless extra time is available on project
2 = Minor usability problem: fixing this should be given low priority
3 = Major usability problem: important to fix, so should be given high priority
4 = Usability catastrophe: imperative to fix this before product can be released (Nielsen)

Nielsen’s ten heuristics are:

1. Visibility of system status Always keep users informed about what is going on,
through appropriate feedback within reasonable time. For example, if a system
operation will take some time, give an indication of how long and how much is
complete.

2. Match between system and the real world The system should speak the user’s
language, with words, phrases and concepts familiar to the user, rather than
system-oriented terms. Follow real-world conventions, making information
appear in natural and logical order.

3. User control and freedom Users often choose system functions by mistake
and need a clearly marked ‘emergency exit’ to leave the unwanted state without
having to go through an extended dialog. Support undo and redo.

4. Consistency and standards Users should not have to wonder whether words,
situations or actions mean the same thing in different contexts. Follow platform
conventions and accepted standards.

5. Error prevention Make it difficult to make errors. Even better than good error
messages is a careful design that prevents a problem from occurring in the first
place.

6. Recognition rather than recall Make objects, actions and options visible. The
user should not have to remember information from one part of the dialog to
another. Instructions for use of the system should be visible or easily retrievable
whenever appropriate.

7. Flexibility and efficiency of use Allow users to tailor frequent actions.
Accelerators – unseen by the novice user – may often speed up the interaction
for the expert user to such an extent that the system can cater to both inexperi-
enced and experienced users.

326 Chapter 9 n Evaluation techniques

8. Aesthetic and minimalist design Dialogs should not contain information that
is irrelevant or rarely needed. Every extra unit of information in a dialog competes
with the relevant units of information and diminishes their relative visibility.

9. Help users recognize, diagnose and recover from errors Error messages should
be expressed in plain language (no codes), precisely indicate the problem, and
constructively suggest a solution.

10. Help and documentation Few systems can be used with no instructions so it
may be necessary to provide help and documentation. Any such information
should be easy to search, focussed on the user’s task, list concrete steps to be
carried out, and not be too large.

Once each evaluator has completed their separate assessment, all of the problems
are collected and the mean severity ratings calculated. The design team will then
determine the ones that are the most important and will receive attention first.

9.3.3 Model-based evaluation

A third expert-based approach is the use of models. Certain cognitive and design
models provide a means of combining design specification and evaluation into the
same framework. These are discussed in detail in Chapter 12. For example, the
GOMS (goals, operators, methods and selection) model predicts user performance
with a particular interface and can be used to filter particular design options.
Similarly, lower-level modeling techniques such as the keystroke-level model pro-
vide predictions of the time users will take to perform low-level physical tasks.

Design methodologies, such as design rationale (see Chapter 6), also have a role to
play in evaluation at the design stage. Design rationale provides a framework in
which design options can be evaluated. By examining the criteria that are associated
with each option in the design, and the evidence that is provided to support these
criteria, informed judgments can be made in the design.

Dialog models can also be used to evaluate dialog sequences for problems, such as
unreachable states, circular dialogs and complexity. Models such as state transition
networks are useful for evaluating dialog designs prior to implementation. These are
discussed in detail in Chapter 16.

9.3.4 Using previous studies in evaluation

Experimental psychology and human–computer interaction between them possess
a wealth of experimental results and empirical evidence. Some of this is specific to a
particular domain, but much deals with more generic issues and applies in a variety
of situations. Examples of such issues are the usability of different menu types, the
recall of command names, and the choice of icons.

A final approach to expert evaluation exploits this inheritance, using previous
results as evidence to support (or refute) aspects of the design. It is expensive to
repeat experiments continually and an expert review of relevant literature can avoid

9.4 Evaluation through user participation 327

the need to do so. It should be noted that experimental results cannot be expected
to hold arbitrarily across contexts. The reviewer must therefore select evidence care-
fully, noting the experimental design chosen, the population of participants used, the
analyses performed and the assumptions made. For example, an experiment testing
the usability of a particular style of help system using novice participants may not
provide accurate evaluation of a help system designed for expert users. The review
should therefore take account of both the similarities and the differences between
the experimental context and the design under consideration. This is why this is
an expert review: expertise in the area is required to ensure that correct assumptions
are made.

EVALUATION THROUGH USER PARTICIPATION

The techniques we have considered so far concentrate on evaluating a design or
system through analysis by the designer, or an expert evaluator, rather than testing
with actual users. However, useful as these techniques are for filtering and refining
the design, they are not a replacement for actual usability testing with the people
for whom the system is intended: the users. In this section we will look at a number
of different approaches to evaluation through user participation. These include
empirical or experimental methods, observational methods, query techniques, and
methods that use physiological monitoring, such as eye tracking and measures of
heart rate and skin conductance.

User participation in evaluation tends to occur in the later stages of development
when there is at least a working prototype of the system in place. This may range
from a simulation of the system’s interactive capabilities, without its underlying
functionality (for example, the Wizard of Oz technique, which is discussed in
Chapter 6, through a basic functional prototype to a fully implemented system.
However, some of the methods discussed can also contribute to the earlier design
stages, such as requirements capture, where observation and surveying users are
important (see Chapter 13).

9.4.1 Styles of evaluation

Before we consider some of the techniques that are available for evaluation with
users, we will distinguish between two distinct evaluation styles: those performed
under laboratory conditions and those conducted in the work environment or ‘in the
field’.

Laboratory studies

In the first type of evaluation studies, users are taken out of their normal work envir-
onment to take part in controlled tests, often in a specialist usability laboratory

9.4

328 Chapter 9 n Evaluation techniques

(although the ‘lab’ may simply be a quiet room). This approach has a number of
benefits and disadvantages.

A well-equipped usability laboratory may contain sophisticated audio/visual
recording and analysis facilities, two-way mirrors, instrumented computers and the
like, which cannot be replicated in the work environment. In addition, the particip-
ant operates in an interruption-free environment. However, the lack of context – for
example, filing cabinets, wall calendars, books or interruptions – and the unnatural
situation may mean that one accurately records a situation that never arises in the
real world. It is especially difficult to observe several people cooperating on a task in
a laboratory situation, as interpersonal communication is so heavily dependent on
context (see Section 9.4.2).

There are, however, some situations where laboratory observation is the only
option, for example, if the system is to be located in a dangerous or remote loca-
tion, such as a space station. Also some very constrained single-user tasks may be
adequately performed in a laboratory. Finally, and perhaps most commonly, we may
deliberately want to manipulate the context in order to uncover problems or observe
less used procedures, or we may want to compare alternative designs within a con-
trolled context. For these types of evaluation, laboratory studies are appropriate.

Field studies

The second type of evaluation takes the designer or evaluator out into the user’s
work environment in order to observe the system in action. Again this approach has
its pros and cons.

High levels of ambient noise, greater levels of movement and constant inter-
ruptions, such as phone calls, all make field observation difficult. However, the
very ‘open’ nature of the situation means that you will observe interactions between
systems and between individuals that would have been missed in a laboratory study.
The context is retained and you are seeing the user in his ‘natural environment’.
In addition, some activities, such as those taking days or months, are impossible to
study in the laboratory (though difficult even in the field).

On balance, field observation is to be preferred to laboratory studies as it allows us
to study the interaction as it occurs in actual use. Even interruptions are important
as these will expose behaviors such as saving and restoring state during a task.
However, we should remember that even in field observations the participants are
likely to be influenced by the presence of the analyst and/or recording equipment, so
we always operate at a slight remove from the natural situation, a sort of Heisenberg
uncertainty principle.

This is, of course, a generalization: there are circumstances, as we have noted, in
which laboratory testing is necessary and desirable. In particular, controlled experi-
ments can be useful for evaluation of specific interface features, and must normally
be conducted under laboratory conditions. From an economic angle, we need to
weigh the costs of establishing recording equipment in the field, and possibly dis-
rupting the actual work situation, with the costs of taking one or more participants

9.4 Evaluation through user participation 329

away from their jobs into the laboratory. This balance is not at all obvious and any
study must weigh the loss of contextual information against the increased costs and
difficulty of field studies.

9.4.2 Empirical methods: experimental evaluation

One of the most powerful methods of evaluating a design or an aspect of a design
is to use a controlled experiment. This provides empirical evidence to support a
particular claim or hypothesis. It can be used to study a wide range of different issues
at different levels of detail.

Any experiment has the same basic form. The evaluator chooses a hypothesis to
test, which can be determined by measuring some attribute of participant behavior.
A number of experimental conditions are considered which differ only in the values
of certain controlled variables. Any changes in the behavioral measures are attributed
to the different conditions. Within this basic form there are a number of factors that
are important to the overall reliability of the experiment, which must be considered
carefully in experimental design. These include the participants chosen, the variables
tested and manipulated, and the hypothesis tested.

Participants

The choice of participants is vital to the success of any experiment. In evaluation
experiments, participants should be chosen to match the expected user population
as closely as possible. Ideally, this will involve experimental testing with the actual
users but this is not always possible. If participants are not actual users, they should
be chosen to be of a similar age and level of education as the intended user group.
Their experience with computers in general, and with systems related to that being
tested, should be similar, as should their experience or knowledge of the task
domain. It is no good testing an interface designed to be used by the general public
on a participant set made up of computer science undergraduates: they are simply
not representative of the intended user population.

A second issue relating to the participant set is the sample size chosen. Often
this is something that is determined by pragmatic considerations: the availability of
participants is limited or resources are scarce. However, the sample size must be large
enough to be considered to be representative of the population, taking into account
the design of the experiment and the statistical methods chosen.

Nielsen and Landauer [264] suggest that usability testing with a single participant
will find about a third of the usability problems, and that there is little to be gained
from testing with more than five. While this may be true of observational studies
where the aim is simply to uncover usability issues, it is not possible to discover
much about the extent of usability problems from such small numbers. Certainly, if
the intention is to run a controlled experiment and perform statistical analysis on the
results, at least twice this number is recommended.

330 Chapter 9 n Evaluation techniques

Variables

Experiments manipulate and measure variables under controlled conditions, in
order to test the hypothesis. There are two main types of variable: those that are
‘manipulated’ or changed (known as the independent variables) and those that are
measured (the dependent variables).

Independent variables are those elements of the experiment that are manipu-
lated to produce different conditions for comparison. Examples of independent
variables in evaluation experiments are interface style, level of help, number of
menu items and icon design. Each of these variables can be given a number of dif-
ferent values; each value that is used in an experiment is known as a level of the
variable. So, for example, an experiment that wants to test whether search speed
improves as the number of menu items decreases may consider menus with five,
seven, and ten items. Here the independent variable, number of menu items, has
three levels.

More complex experiments may have more than one independent variable. For
example, in the above experiment, we may suspect that the speed of the user’s
response depends not only on the number of menu items but also on the choice of
commands used on the menu. In this case there are two independent variables.
If there were two sets of command names (that is, two levels), we would require
six experimental conditions to investigate all the possibilities (three levels of menu
size × two levels of command names).

Dependent variables, on the other hand, are the variables that can be measured in
the experiment, their value is ‘dependent’ on the changes made to the independent
variable. In the example given above, this would be the speed of menu selection.
The dependent variable must be measurable in some way, it must be affected by the
independent variable, and, as far as possible, unaffected by other factors. Common
choices of dependent variable in evaluation experiments are the time taken to com-
plete a task, the number of errors made, user preference and the quality of the user’s
performance. Obviously, some of these are easier to measure objectively than others.
However, the more subjective measures can be applied against predetermined scales,
and can be very important factors to consider.

Hypotheses

A hypothesis is a prediction of the outcome of an experiment. It is framed in terms
of the independent and dependent variables, stating that a variation in the inde-
pendent variable will cause a difference in the dependent variable. The aim of the
experiment is to show that this prediction is correct. This is done by disproving the
null hypothesis, which states that there is no difference in the dependent variable
between the levels of the independent variable. The statistical measures described
below produce values that can be compared with various levels of significance. If
a result is significant it shows, at the given level of certainty, that the differences
measured would not have occurred by chance (that is, that the null hypothesis is
incorrect).

9.4 Evaluation through user participation 331

Experimental design

In order to produce reliable and generalizable results, an experiment must be care-
fully designed. We have already looked at a number of the factors that the experi-
menter must consider in the design, namely the participants, the independent and
dependent variables, and the hypothesis. The first phase in experimental design then
is to choose the hypothesis: to decide exactly what it is you are trying to demonstrate.
In doing this you are likely to clarify the independent and dependent variables, in
that you will have identified what you are going to manipulate and what change you
expect. If your hypothesis does not clearly identify these variables then you need to
rethink it. At this stage you should also consider your participants: how many are
available and are they representative of the user group?

The next step is to decide on the experimental method that you will use. There
are two main methods: between-subjects and within-subjects. In a between-subjects
(or randomized) design, each participant is assigned to a different condition. There
are at least two conditions: the experimental condition (in which the variable has
been manipulated) and the control, which is identical to the experimental condition
except for this manipulation. This control serves to ensure that it is the manipulation
that is responsible for any differences that are measured. There may, of course, be
more than two groups, depending on the number of independent variables and the
number of levels that each variable can take.

The advantage of a between-subjects design is that any learning effect resulting
from the user performing in one condition and then the other is controlled: each
user performs under only one condition. The disadvantages are that a greater num-
ber of participants are required, and that significant variation between the groups
can negate any results. Also, individual differences between users can bias the
results. These problems can be handled by a careful selection of participants, ensur-
ing that all are representative of the population and by matching participants
between groups.

The second experimental design is within-subjects (or repeated measures). Here
each user performs under each different condition. This design can suffer from
transfer of learning effects, but this can be lessened if the order in which the condi-
tions are tackled is varied between users, for example, group A do first condition fol-
lowed by second and group B do second condition followed by first. Within-subjects
is less costly than between-subjects, since fewer users are required, and it can be
particularly effective where learning is involved. There is also less chance of effects
from variation between participants.

The choice of experimental method will depend on the resources available, how
far learning transfer is likely or can be controlled, and how representative the particip-
ant group is considered to be. A popular compromise, in cases where there is more
than one independent variable, is to devise a mixed design where one variable is
placed between-groups and one within-groups. So, returning to our example of the
menu design, the participants would be split into two groups, one for each command
set, but each group would perform in three conditions, corresponding to the three
possible levels of the number of menu items.

332 Chapter 9 n Evaluation techniques

Once we have determined the hypothesis we are trying to test, the variables we are
studying, the participants at our disposal, and the design that is most appropriate,
we have to decide how we are going to analyze the results we record. There are a
number of statistical tests available, and the choice of test is vital to the success of the
experiment. Different tests make different assumptions about the data and if an
inappropriate test is chosen, the results can be invalid. The next subsection discusses
the factors to consider in choosing a statistical test and surveys the most common
statistical measures available.

Statistical measures

The first two rules of statistical analysis are to look at the data and to save the data.
It is easy to carry out statistical tests blindly when a glance at a graph, histogram
or table of results would be more instructive. In particular, looking at the data
can expose outliers, single data items that are very different from the rest. Outliers
are often the result of a transcription error or a freak event not connected to the
experiment. For example, we notice that one participant took three times as long as
everyone else to do a task. We investigate and discover that the participant had been
suffering from flu on the day of the experiment. Clearly, if the participant’s data were
included it would bias the results.

Saving the data is important, as we may later want to try a different analysis
method. It is all too common for an experimenter to take some averages or other-
wise tabulate results, and then throw away the original data. At worst, the remaining
statistics can be useless for statistical purposes, and, at best, we have lost the ability
to trace back odd results to the original data, as, for example, we want to do for
outliers.

Our choice of statistical analysis depends on the type of data and the questions we
want to answer. It is worth having important results checked by an experienced
statistician, but in many situations standard tests can be used.

Variables can be classified as either discrete variables or continuous variables. A
discrete variable can only take a finite number of values or levels, for example, a
screen color that can be red, green or blue. A continuous variable can take any value
(although it may have an upper or lower limit), for example a person’s height or the
time taken to complete a task. A special case of continuous data is when they are pos-
itive, for example a response time cannot be negative. A continuous variable can be
rendered discrete by clumping it into classes, for example we could divide heights
into short (<5 ft (1.5 m)), medium (5–6 ft (1.5–1.8 m)) and tall (>6 ft (1.8 m)). In
many interface experiments we will be testing one design against another. In these
cases the independent variable is usually discrete.

The dependent variable is the measured one and subject to random experimental
variation. In the case when this variable is continuous, the random variation may
take a special form. If the form of the data follows a known distribution then special
and more powerful statistical tests can be used. Such tests are called parametric tests
and the most common of these are used when the variation follows the normal
distribution. This means that if we plot a histogram of the random errors, they will

9.4 Evaluation through user participation 333

form the well-known bell-shaped graph (Figure 9.2). Happily, many of these tests are
fairly robust, that is they give reasonable results even when the data are not precisely
normal. This means that you need not worry too much about checking normality
during early analysis.

There are ways of checking whether data are really normal, but for these the
reader should consult a statistics book, or a professional statistician. However, as
a general rule, if data can be seen as the sum or average of many small independ-
ent effects they are likely to be normal. For example, the time taken to complete a
complex task is the sum of the times of all the minor tasks of which it is composed.
On the other hand, a subjective rating of the usability of an interface will not be
normal. Occasionally data can be transformed to become approximately normal.
The most common is the log-transformation, which is used for positive data
with near-zero values. As a log-transformation has little effect when the data are
clustered well away from zero, many experimenters habitually log-transform.
However, this practice makes the results more difficult to interpret and is not
recommended.

When we cannot assume that data are normally distributed, we must often resort
to non-parametric tests. These are statistical tests that make no assumptions about
the particular distribution and are usually based purely on the ranking of the data.
That is, each item of a data set (for example, 57, 32, 61, 49) is reduced to its rank
(3, 1, 4, 2), before analysis begins. Because non-parametric tests make fewer assump-
tions about the data than parametric tests, and are more resistant to outliers, there
is less danger of getting spurious results. However, they are less powerful than the
corresponding parametric tests. This means that, given the same set of data, a para-
metric test might detect a difference that the non-parametric test would miss.

A third sort of test is the contingency table, where we classify data by several
discrete attributes and then count the number of data items with each attribute
combination.

Table 9.1 lists some of the standard tests categorized by the form of independent
and dependent variables (discrete/continuous/normal). Normality is not an issue

Figure 9.2 Histogram of normally distributed errors

334 Chapter 9 n Evaluation techniques

for the independent variable, but a special case is when it is discrete with only
two values, for example comparing two systems. We cannot describe all the tech-
niques here; for this you should use a standard statistics text, such as one of those
recommended in the reading list. The table is only intended to guide you in your
choice of test.

An extensive and accurate analysis is no use if it answers the wrong question.
Examples of questions one might ask about the data are as follows:

Is there a difference? For example, is one system better than another? Techniques
that address this are called hypothesis testing. The answers to this question are not
simply yes/no, but of the form: ‘we are 99% certain that selection from menus of
five items is faster than that from menus of seven items’.

How big is the difference? For example, ‘selection from five items is 260 ms
faster than from seven items’. This is called point estimation, often obtained by
averages.

How accurate is the estimate? For example, ‘selection is faster by 260 ± 30 ms’.
Statistical answers to this are in the form of either measures of variation such as
the standard deviation of the estimate, or confidence intervals. Again, the answers
one obtains are probabilistic: ‘we are 95% certain that the difference in response
time is between 230 and 290 ms’.

The experimental design issues we have discussed have been principally addressed
at the first question. However, most of the statistical techniques listed above, both
parametric and non-parametric, give some answer to one or both of the other
questions.

Table 9.1 Choosing a statistical technique

Independent Dependent
variable variable

Parametric
Two valued Normal Student’s t test on difference of means
Discrete Normal ANOVA (ANalysis Of VAriance)
Continuous Normal Linear (or non-linear) regression factor analysis

Non-parametric
Two valued Continuous Wilcoxon (or Mann–Whitney) rank-sum test
Discrete Continuous Rank-sum versions of ANOVA
Continuous Continuous Spearman’s rank correlation

Contingency tests
Two valued Discrete No special test, see next entry
Discrete Discrete Contingency table and chi-squared test
Continuous Discrete (Rare) Group independent variable and then as above

9.4 Evaluation through user participation 335

An example: evaluating icon designs

Imagine you are designing a new interface to a document-processing package, which
is to use icons for presentation. You are considering two styles of icon design and you
wish to know which design will be easier for users to remember. One set of icons uses
naturalistic images (based on a paper document metaphor), the other uses abstract
images (see Figure 9.3). How might you design an experiment to help you decide
which style to use?

The first thing you need to do is form a hypothesis: what do you consider to be the
likely outcome? In this case, you might expect the natural icons to be easier to recall
since they are more familiar to users. We can therefore form the following hypothesis:

Example of non-parametric statistics

We will not see an example of the use of non-parametric statistics later, so we will go
through a small example here. Imagine we had the following data for response times under two
conditions:

condition A: 33, 42, 25, 79, 52
condition B: 87, 65, 92, 93, 91, 55

We gather the data together and sort them into order: 25, 33, 42, . . . , 92, 93. We then substitute
for each value its rank in the list: 25 becomes 1, 33 becomes 2, etc. The transformed data are then

condition A: 2, 3, 1, 7, 4
condition B: 8, 6, 10, 11, 9, 5

Tests are then carried out on the data. For example, to test whether there is any difference
between the two conditions we can use the Wilcoxon test. To do this, we take each condition and
calculate the sum of ranks, and subtract the least value it could have (that is, 1 + 2 + 3 + 4 + 5 = 15
for condition A, 1 + 2 + 3 + 4 + 5 + 6 = 21 for condition B), giving the statistic U:

rank sum least U
condition A: (2 + 3 + 1 + 7 + 4) − 15 = 2
condition B: (8 + 6 + 10 + 11 + 9 + 5) − 21 = 28

In fact, the sum of these two U statistics, 2 + 28 = 30, is the product of the number of data values
in each condition 5 × 6. This will always happen and so one can always get away with calculating
only one of the U. Finally, we then take the smaller of two U values and compare it with a set of
critical values in a book of statistical tables, to see if it is unusually small. The table is laid out depend-
ent on the number of data values in each condition (five and six). The critical value at the 5% level
turns out to be 3. As the smallest statistic is smaller than this, we can reject the null hypothesis and
conclude that there is likely to be a difference between the conditions. To be precise, it says that
there is only a 1 in 20 (5%) chance that the data happened by chance. In fact the test is right – the
authors constructed random data in the range 1–100 and then subtracted 10 from each of the
values in condition A.

336 Chapter 9 n Evaluation techniques

Users will remember the natural icons more easily than the abstract ones.

The null hypothesis in this case is that there will be no difference between recall of
the icon types.

This hypothesis clearly identifies the independent variable for our experiment: we
are varying the style of icon. The independent variable has two levels: natural and
abstract. However, when we come to consider the dependent variable, things are not
so obvious. We have expressed our hypothesis in terms of users being able to remem-
ber more easily. How can we measure this? First we need to clarify exactly what we
mean by the phrase more easily: are we concerned with the user’s performance in
terms of accurate recall or in terms of speed, for example, or are we looking at more
subjective measures like user preference? In this example, we will assume that the
speed at which a user can accurately select an icon is an indication of how easily it
is remembered. Our dependent variables are therefore the number of mistakes in
selection and the time taken to select an icon.

Of course, we need to control the experiment so that any differences we observe
are clearly attributable to the independent variable, and so that our measurements of
the dependent variables are comparable. To do this, we provide an interface that
is identical in every way except for the icon design, and a selection task that can be
repeated for each condition. The latter could be either a naturalistic task (such
as producing a document) or a more artificial task in which the user has to select
the appropriate icon to a given prompt. The second task has the advantage that it
is more controlled (there is little variation between users as to how they will perform
the task) and it can be varied to avoid transfer of learning. Before performing the
selection task, the users will be allowed to learn the icons in controlled conditions:
for example, they may be given a fixed amount of time to learn the icon meanings.

The next stage is to decide upon an experimental method. This may depend on the
participants that are available, but in this case we will assume that we have sufficient
participants from the intended user group. A between-subjects experiment would
remove any learning effect for individual participants, but it would be more difficult

Figure 9.3 Abstract and concrete icons for file operations

9.4 Evaluation through user participation 337

to control for variation in learning style between participants. On balance, therefore,
a within-subjects design is preferred, with order of presentation controlled.

So all that remains is to finalize the details of our experiment, given the constraints
imposed by these choices. We devise two interfaces composed of blocks of icons, one
for each condition. The user is presented with a task (say ‘delete a document’) and is
required to select the appropriate icon. The selection task comprises a set of such pre-
sentations. In order to avoid learning effects from icon position, the placing of icons
in the block can be randomly varied on each presentation. Each user performs the selec-
tion task under each condition. In order to avoid transfer of learning, the users are
divided into two groups with each group taking a different starting condition. For each
user, we measure the time taken to complete the task and the number of errors made.

Finally, we must analyze our results. Table 9.2 shows a possible set of results for
ten participants.1 The first five had the abstract icons presented first (order AN), and
the last five had the natural icons presented first (order NA). Columns (1) and (2) in
the table show the completion times for the task using natural and abstract icons
respectively. As the times are the result of lots of presentations, we will assume that
they are normally distributed. The main independent variable, the icon type, is two
valued, suggesting we can use a simple difference of means with Student’s t test
(Table 9.1). In fact, because we have used a within-subjects design, there is another
independent variable we have to take into account – the participant. This means we

Table 9.2 Example experimental results – completion times

(1) (2) (3) (4) (5)
Participant Presentation Natural Abstract Participant Natural Abstract
number order (s) (s) mean (1)–(3) (2)–(3)

1 AN 656 702 679 −23 23
2 AN 259 339 299 −40 40
3 AN 612 658 635 −23 23
4 AN 609 645 627 −18 18
5 AN 1049 1129 1089 −40 40
6 NA 1135 1179 1157 −22 22
7 NA 542 604 573 −31 31
8 NA 495 551 523 −28 28
9 NA 905 893 899 6 −6

10 NA 715 803 759 −44 44
mean (μ) 698 750 724 −26 26
s.d. (σ) 265 259 262 14 14

s.e.d. 117 s.e. 4.55
Student’s t 0.32 (n.s.) 5.78 (p<1%, two tailed)

1 Note that these are fabricated results for the purposes of exposition and this is a rather small sample set
for real purposes.

338 Chapter 9 n Evaluation techniques

have more than one discrete independent variable, and referring again to Table 9.1,
we see that this implies we should use analysis of variance (ANOVA). A full analysis
of variance is quite complex, and is ideally done with the aid of a statistics package.
However, this experiment is particularly simple, so we can use a simplified analysis.

Look at columns (2) and (3) of Table 9.2. The completion times range from less
than 5 minutes (participant 2) to nearly 20 minutes (participant 6), showing a wide
variation between individuals. This wide variation emphasizes the importance of the
within-subjects design. To see how this affects the results, we will first try to analyze
them ignoring the fact that each participant performed under each condition. At
the end of the table, the mean and standard deviation have been calculated for each
condition. These means can then be compared using Student’s t test. The difference
between the means is 52 seconds, but the standard error of the difference (s.e.d.)
is 117. This is calculated as follows:

where σN and σA are the standard deviations (s.d.) of the two conditions, and nN

and nA are the number of data items in each condition (10 in each). The s.e.d. is
a measure of the expected variability of the difference between the means, and as
we see the actual difference is well within this random variation. Testing the ratio
52/117 against tables of Student’s t distribution indeed shows that this is not
significant.

However, if we glance down the table, we see that in almost every case the time
taken with the abstract icons is greater than the time taken for the natural icons. That
is, the data seem to support our claim that natural icons are better than abstract ones,
but the wide variation between individuals has hidden the effect.

A more sophisticated analysis, a special case of ANOVA, can expose the difference.
Looking back at the table, column (3) shows, for each participant, the average of
the time they took under the two conditions. This participant mean is then sub-
tracted from the data for each condition, yielding columns (4) and (5). These
columns show the effect of the icon design once the differences between participants
have been removed. The two columns are redundant as they always add up to zero.
They show that in all but one case (participant 9) the natural icons are faster than the
abstract ones.

Even a non-parametric test would show this as a significant difference at the 5%
level, but the use of a t test is more precise. We can take either column and see
that the column average 26 is much greater than the standard error (14.4/). The
ratio (mean/s.e.) is compared with the Student’s t table (in statistical tables) using
nine degrees of freedom (10 values minus 1 for the mean), and is indeed far greater
than the 1% level (3.250); that is, the likelihood of getting our results by chance is
less than 1 in 100. So, we reject the null hypothesis that there is no difference and
conclude that natural icons are more easily remembered than abstract ones.

In fact, the last statement is not quite correct. What we have shown is that in
this experiment natural icons are more rapidly remembered. Possibly, if we go on to

 10

s.e.d. N

N

A

A

 .= + = + =
σ σ2 2 2 2265

10

259

10
117 2

n n

9.4 Evaluation through user participation 339

analyze the errors, these may present a different story. If these error figures were
quite large (say 15 errors or more per condition), then we may be able to assume
these are normal and use ANOVA. If not, we can either use non-parametric tests, or
make use of special tests based on the binomial distribution. We will not perform
these analyses here. Possibly, looking at the errors we may find that the natural icons
have more errors – it could well be that they are more rapidly, but less accurately,
remembered. It is always worth keeping in mind the difference between the intended
purpose of the experiment (to see which is better remembered) and the actual meas-
urements (speed and accuracy).

Finally, one ought to look carefully at the experimental results to see whether
there is any other effect that might confuse the results. The graphical presentation
of results will help with this, possibly highlighting odd clumps in the data or other
irregularities. In this experiment we may want to check to see if there has been any
significant transfer effect between the first and second condition for each participant.
The second set may be faster as the participants are more practiced, or possibly the
second set may be slower as learning a second set of icons may be confusing. This will
not matter if the effect is uniform – say they always are 15 seconds slower on the sec-
ond test. But there may be systematic effects. For example, seeing the natural icons
first might make it more difficult to learn the abstract ones, but not vice versa. If this
were the case, our observed effect may be about the interference between the icon
sets, rather than that one is better than the other.

Worked exercise Design an experiment to test whether adding color coding to an interface will improve accur-
acy. Identify your hypothesis, participant group, dependent and independent variables, experi-
mental design, task and analysis approach.

Answer The following is only an example of the type of experiment that might be devised.

Participants Taken from user population.

Hypothesis Color coding will make selection more accurate.

IV (Independent Variable) Color coding.

DV (Dependent Variable) Accuracy measured as number of errors.

Design Between-groups to ensure no transfer of learning (or within-groups with
appropriate safeguards if participants are scarce).

Task The interfaces are identical in each of the conditions, except that, in the second,
color is added to indicate related menu items. Participants are presented with a
screen of menu choices (ordered randomly) and verbally told what they have to
select. Selection must be done within a strict time limit when the screen clears.
Failure to select the correct item is deemed an error. Each presentation places items
in new positions. Participants perform in one of the two conditions.

Analysis t test.

340 Chapter 9 n Evaluation techniques

Studies of groups of users

So far we have considered the experimental evaluation of single-user systems.
Experiments to evaluate elements of group systems bring additional problems. Given
the complexities of human–human communication and group working, it is hardly
surprising that experimental studies of groups and of groupware are more difficult
than the corresponding single-user experiments already considered. For the purpose
of discussion, let us assume that we are evaluating a shared application with video
connections between the participants and consider some of the problems we will
encounter.

The participant groups To organize, say, 10 experiments of a single-user system
requires 10 participants. For an experiment involving groups of three, we will, of
course, need 30 participants for the same number of experiments. In addition, experi-
ments in group working are often longer than the single-user equivalents as we must
allow time for the group to ‘settle down’ and some rapport to develop. This all means
more disruption for participants and possibly more expense payments.

Arranging a mutually convenient slot when both participants and the equipment
are available is no mean feat. Often the workstations being used in the experiment
will be colleagues’ personal systems, so we are trying to accommodate at least six
people, not to mention the experimenters themselves.

Not surprisingly, many reports of group working involve only three or four groups.
This is obviously a problem for statistical purposes, but not the primary obstacle.

The experimental task Choosing a suitable task is also difficult. We may want
to test a variety of different task types: creative, structured, information passing,
and so on. Also, the tasks must encourage active cooperation, either because the
task requires consensus, or because information and control is distributed among
the participants. Obviously, the task also depends on the nature of the groupware
system: if it has several available channels, we want to encourage broad use. For
example, in the case of shared application with video, it should not be possible (or at
least not easy) to perform the task without using the application, otherwise we are
simply investigating video conferencing.

Creative tasks such as ‘write a short report on . . .’ or ‘write a research proposal’
are often effective, in that the participants must reach agreement, and can be asked
to produce their final report using the shared application. Design tasks are also used.
For instance, in one experiment, users of the York Conferencer system (see Fig-
ure 14.2 in Section 14.4) were asked to redesign a bank layout. A picture of the
current layout was used as a background for the spatially arranged electronic pin-
board, and the participants made use of this to arrange comments and suggestions
close to the features they referred to.

Decision games, as used in management courses, are designed to test and train
cooperative activity. They often rely for their success on group coordination, not
individual ability. An example of this is the desert survival task, where the particip-
ants are told that they have crashed in the desert. They are given a list of items to rank

9.4 Evaluation through user participation 341

in order of importance for their survival: knife, plastic sheet, etc. The participants
must produce one list between them, a single knowledgeable participant cannot ‘go
it alone’. A computerized version of the game of Diplomacy has also been used (see
Figure 14.5 in Section 14.4) as it includes aspects of conflict as well as cooperation.

Finally, time-critical simulated process control tasks force a higher pace of inter-
action as the participants control different parts of the model. An example of this
is ARKola [147], a simulated bottling plant, which was used at Xerox PARC to invest-
igate the importance of background noise in complex cooperative control tasks.

Often the chosen task will require extra implementation effort, and in the case
of games this may be extensive. This is obviously a strong factor in the choice of a
suitable task.

Data gathering Even in a single-user experiment we may well use several video
cameras as well as direct logging of the application. In a group setting this is replic-
ated for each participant. So for a three-person group, we are trying to synchronize
the recording of six or more video sources and three keystroke logs. To compound
matters, these may be spread over different offices, or even different sites. The tech-
nical problems are clearly enormous. Four-into-one video recording is possible,
storing a different image in each quadrant of the screen, but even this is insufficient
for the number of channels we would like.

One way round this is to focus on the participants individually, recording, for each
one, the video images that are being relayed as part of the system (assuming there
is a video connection) and the sounds that the participant hears. These can then
be synchronized with the particular participant’s keystrokes and additional video
observations. Thus, we can recreate the situation as it appeared to the participant.
From this recording, we may not be able to interpret the other participants’ actions,
but at least we have a complete record for one.

Given sufficient recording equipment, this can be repeated for each participant.
Happily, the level of synchronization required between participants is not as great as
that required for each one individually. One can simply start the recorders’ clocks at
the same time, but not worry about sub-second accuracy between participants. The
important thing is that we can, as it were, relive the experience for each individual.

Analysis In true experimental tradition, we would like to see statistical differences
between experimental conditions. We saw earlier that individual differences made
this difficult in single-user experiments. If anything, group variation is more
extreme. Given randomly mixed groups, one group will act in a democratic fashion;
in another, a particular pair will dominate discussion; in a third, one of the parti-
cipants will act as coordinator, filtering the others’ contributions. The level of
variation is such that even catastrophic failures under one condition and fabulous
successes in another may not always lead to statistically significant results.

As an example of this, imagine we have some quantitative measure of quality of
output. We will almost certainly have to use non-parametric tests, so imagine we
have found that all the groups under one condition obtained higher scores than any
group under the other condition. We would need at least four in each condition to

342 Chapter 9 n Evaluation techniques

obtain even 5% significance (one tailed). If our results were only slightly less good,
say one of the generally better groups performed poorly, we would then require at
least five in each condition.

Now this example only considered one condition, and assumed the best possible
results. In general, we would expect that the spread between groups within condi-
tions would be greater, and we may want to test more conditions at once. Our 10
groups will have to increase rapidly to stand any chance of statistically significant
results. However, we saw above that even gathering 10 experimental groups is a
significant problem.

There are three possible solutions to this problem. First, one can use within-group
experiments, having each group work under several conditions. We have, of course,
the normal problems of such analysis, transfer effects and the like, but we also have
more chance of cancelling out the group effect. Secondly, we can look to a micro-
analysis of features like gaps between utterances. Such measures are more likely to
fit a standard distribution, and thus one can use more powerful parametric tests. In
addition, they may be more robust to the large-scale social differences between groups.

The third solution is to opt for a more anecdotal analysis, looking for critical
incidents – for example, interesting events or breakdowns – in the data. The concepts
and methods for analyzing conversation in Chapter 14 can be used to drive such
an analysis. The advantage of this approach is that instead of regarding group differ-
ences as a ‘problem’, they can be included in the analysis. That is, we can begin
to look for the systematic ways in which different group structures interact with the
communications media and applications they use.

Of course, experiments can be analyzed using both quantitative and qualitative
methods. Indeed, any detailed anecdotal analysis of the logs will indicate fruitful
measures for statistical analysis. However, if the number of experimental groups is
limited, attempts at controlled experiments may not be productive, and may effect-
ively ‘waste’ the groups used in the control. Given the high costs of group-working
experiments, one must choose conditions that are likely to give interesting results,
even if statistical analysis proves impossible.

Field studies with groups There are, of course, problems with taking groups of
users and putting them in an experimental situation. If the groups are randomly
mixed, then we are effectively examining the process of group formation, rather than
that of a normal working group. Even where a pre-existent group is used, excluding
people from their normal working environment can completely alter their working
patterns. For a new system, there may be no ‘normal’ workplace and all we can do is
produce an artificial environment. However, even with a new system we have the
choice of producing a ‘good’ experiment or a naturalistic setting. The traditions
of experimental psychology are at odds with those of more qualitative sociological
analysis.

It can be argued that group work can only be studied in context. Moving out of
the real situation will alter the very nature of the work that is studied. Alternative
approaches from the social sciences, such as ethnography, have therefore become
popular, particularly in relation to studying group interaction. Ethnography involves

9.4 Evaluation through user participation 343

very detailed recording of the interactions between people, their environment
and each other. The ethnographer attempts to remain outside the situation being
studied and does not impose a particular viewpoint on what is observed. This is very
different from the experimental perspective with its hypothesis testing. Ethnography
is discussed in more detail in Chapter 13.

9.4.3 Observational techniques

A popular way to gather information about actual use of a system is to observe users
interacting with it. Usually they are asked to complete a set of predetermined tasks,
although, if observation is being carried out in their place of work, they may be
observed going about their normal duties. The evaluator watches and records the
users’ actions (using a variety of techniques – see below). Simple observation is
seldom sufficient to determine how well the system meets the users’ requirements
since it does not always give insight into the their decision processes or attitude.
Consequently users are asked to elaborate their actions by ‘thinking aloud’. In this
section we consider some of the techniques used to evaluate systems by observing
user behavior.

Think aloud and cooperative evaluation

Think aloud is a form of observation where the user is asked to talk through what
he is doing as he is being observed; for example, describing what he believes is
happening, why he takes an action, what he is trying to do.

Think aloud has the advantage of simplicity; it requires little expertise to perform
(though can be tricky to analyze fully) and can provide useful insight into problems
with an interface. It can also be employed to observe how the system is actually used.
It can be used for evaluation throughout the design process, using paper or simu-
lated mock-ups for the earlier stages. However, the information provided is often
subjective and may be selective, depending on the tasks provided. The process of
observation can alter the way that people perform tasks and so provide a biased view.
The very act of describing what you are doing often changes the way you do it – like
the joke about the centipede who was asked how he walked . . .

A variation on think aloud is known as cooperative evaluation [240] in which the
user is encouraged to see himself as a collaborator in the evaluation and not simply
as an experimental participant. As well as asking the user to think aloud at the begin-
ning of the session, the evaluator can ask the user questions (typically of the ‘why?’
or ‘what-if ?’ type) if his behavior is unclear, and the user can ask the evaluator for
clarification if a problem arises. This more relaxed view of the think aloud process
has a number of advantages:

n the process is less constrained and therefore easier to learn to use by the evaluator
n the user is encouraged to criticize the system
n the evaluator can clarify points of confusion at the time they occur and so maxim-

ize the effectiveness of the approach for identifying problem areas.

344 Chapter 9 n Evaluation techniques

The usefulness of think aloud, cooperative evaluation and observation in general
is largely dependent on the effectiveness of the recording method and subsequent
analysis. The record of an evaluation session of this type is known as a protocol, and
there are a number of methods from which to choose.

Protocol analysis

Methods for recording user actions include the following:

Paper and pencil This is primitive, but cheap, and allows the analyst to note inter-
pretations and extraneous events as they occur. However, it is hard to get detailed
information, as it is limited by the analyst’s writing speed. Coding schemes for
frequent activities, developed during preliminary studies, can improve the rate
of recording substantially, but can take some time to develop. A variation of
paper and pencil is the use of a notebook computer for direct entry, but then one
is limited to the analyst’s typing speed, and one loses the flexibility of paper
for writing styles, quick diagrams and spatial layout. If this is the only record-
ing facility available then a specific note-taker, separate from the evaluator, is
recommended.

Audio recording This is useful if the user is actively ‘thinking aloud’. However, it
may be difficult to record sufficient information to identify exact actions in later
analysis, and it can be difficult to match an audio recording to some other form
of protocol (such as a handwritten script).

Video recording This has the advantage that we can see what the participant is
doing (as long as the participant stays within the range of the camera). Choosing
suitable camera positions and viewing angles so that you get sufficient detail
and yet keep the participant in view is difficult. Alternatively, one has to ask the
participant not to move, which may not be appropriate for studying normal
behavior! For single-user computer-based tasks, one typically uses two video
cameras, one looking at the computer screen and one with a wider focus includ-
ing the user’s face and hands. The former camera may not be necessary if the
computer system is being logged.

Computer logging It is relatively easy to get a system automatically to record user
actions at a keystroke level, particularly if this facility has been considered early in
the design. It can be more difficult with proprietary software where source code
is not available (although some software now provides built-in logging and play-
back facilities). Obviously, computer logging only tells us what the user is doing
on the system, but this may be sufficient for some purposes. Keystroke data are
also ‘semantics free’ in that they only tell us about the lowest-level actions, not
why they were performed or how they are structured (although slight pauses and
gaps can give clues). Direct logging has the advantages that it is cheap (except
in terms of disk storage), unobtrusive and can be used for longitudinal studies,
where we look at one or more users over periods of weeks or months. Technical

9.4 Evaluation through user participation 345

problems with it are that the sheer volume of data can become unmanageable
without automatic analysis, and that one often has to be careful to restore the
state of the system (file contents, etc.) before replaying the logs.

User notebooks The participants themselves can be asked to keep logs of activity/
problems. This will obviously be at a very coarse level – at most, records every
few minutes and, more likely, hourly or less. It also gives us ‘interpreted’ records,
which have advantages and problems. The technique is especially useful in longit-
udinal studies, and also where we want a log of unusual or infrequent tasks and
problems.

In practice, one uses a mixture of recording methods as they complement one
another. For instance, we may keep a paper note of special events and circum-
stances, even when we have more sophisticated audio/visual recording. Similarly,
we may use separate audio recording, even where a video recorder is used, as the
quality of specialist audio recording is better than most built-in video micro-
phones. In addition, we may use stereo audio recording, which helps us to locate
out-of-screen noises. If one is using a collection of different sources, say audio,
video (×2) and keystroke logging, there is considerable difficulty in synchronizing
them during play-back. Most video recorders can superimpose an on-screen clock,
which can help, but ideally one uses specialized equipment that can automatically
synchronize the different sources, possibly merging several video displays onto a
single screen. Unfortunately, this sort of equipment is often only available in spe-
cialized laboratories.

With both audio and video recording, a major problem is transcription. Typing
a transcript from a tape is not the same as taped dictation. The conversation will
typically consist of part or broken sentences, mumbled words and inarticulated
noises. In addition, the transcript will need annotating with the different voices
(which may only be clear from context) and with non-verbal items such as
pauses, emphases, equipment noises, phones ringing, etc. A good audio-typist will
be accustomed to completing mumbled words and correcting ungrammatical
sentences – typing exactly what is recorded may prove difficult. Some practitioners
say that the use of typists is not good practice anyway as the analyst will miss
many nuances that are lost in the written transcript. However, if you wish to pro-
duce your own typed transcripts from tape, a course in touch-typing is highly
recommended.

For video transcription, professional typists are not an option; there is no standard
way of annotating video recordings, and the analyst must invent notations to suit the
particular circumstances. The scale of this task is not to be underestimated. It is com-
mon to talk to practitioners who have tens or hundreds of hours of video recording,
but have only analyzed tiny fragments in detail. Of course, the fragments will have
been chosen after more extensive perusal of the material, but it certainly removes any
idea of comprehensive coverage.

Coding can be introduced to indicate particular events but it is sometimes difficult
to determine a suitable coding scheme and to use this consistently, particularly if

346 Chapter 9 n Evaluation techniques

more than one person is doing the coding. A range of transcribers should therefore
test coding schemes to ensure that they are being interpreted appropriately for a
particular data set.

Automatic protocol analysis tools

Analyzing protocols, whether video, audio or system logs, is time consuming and
tedious by hand. It is made harder if there is more than one stream of data to
synchronize. One solution to this problem is to provide automatic analysis tools to
support the task. These offer a means of editing and annotating video, audio and
system logs and synchronizing these for detailed analysis.

EVA (Experimental Video Annotator) is a system that runs on a multimedia work-
station with a direct link to a video recorder [220]. The evaluator can devise a set of
buttons indicating different events. These may include timestamps and snapshots, as
well as notes of expected events and errors. The buttons are used within a recording
session by the evaluator to annotate the video with notes. During the session the user
works at a workstation and is recorded, using video and perhaps audio and system
logging as well. The evaluator uses the multimedia workstation running EVA. On the
screen is the live video record and a view of the user’s screen (see Figure 9.4). The
evaluator can use the buttons to tag interesting events as they occur and can record
additional notes using a text editor. After the session, the evaluator can ask to review
the tagged segments and can then use these and standard video controls to search
the information. Links can be made with other types of record such as audio and
system logs. A system such as EVA alleviates the burden of video analysis but it is
not without its problems. The act of tagging and annotating events can prevent the
evaluator from actually concentrating on the events themselves. This may mean that
events are missed or tagged late.

Commercial systems such as Observer Pro from Noldus have similar functionality
to EVA; portable versions are now available for use in field studies (www.noldus.com).

Figure 9.4 EVA: an automatic protocol analysis tool. Source: Wendy Mackay

9.4 Evaluation through user participation 347

The Workplace project at Xerox PARC [348] also includes a system to aid pro-
tocol analysis. The main emphasis here is to support the analysis of synchronized
information from different data streams, such as video, audio, notes and dia-
grams. Each data stream is viewed in an aligned display so that it is possible to
compare the records of each for a given point in the interaction. The alignment
may be based on timestamps or on an event or action and is implemented using
hypertext links.

A third example is DRUM [223], which also provides video annotation and tag-
ging facilities. DRUM is part of the MUSiC (Measuring the Usability of Systems in
Context/Metrics for Usability Standards in Computing) toolkit, which supports
a complete methodology for evaluation, based upon the application of usability
metrics on analytic metrics, cognitive workload, performance and user satisfaction.
DRUM is concerned particularly with measuring performance. The methodology
provides a range of tools as well as DRUM, including manuals, questionnaires,
analysis software and databases.

Systems such as these are extremely important as evaluation tools since they offer
a means of handling the data that are collected in observational studies and allowing
a more systematic approach to the analysis. The evaluator’s task is facilitated and it
is likely that more valuable observations will emerge as a result.

Post-task walkthroughs

Often data obtained via direct observation lack interpretation. We have the basic
actions that were performed, but little knowledge as to why. Even where the particip-
ant has been encouraged to think aloud through the task, the information may be at
the wrong level. For example, the participant may say ‘and now I’m selecting the
undo menu’, but not tell us what was wrong to make undo necessary. In addition,
a think aloud does not include information such as alternative, but not pursued,
actions.

A walkthrough attempts to alleviate these problems, by reflecting the participants’
actions back to them after the event. The transcript, whether written or recorded,
is replayed to the participant who is invited to comment, or is directly questioned
by the analyst. This may be done straightaway, when the participant may actually
remember why certain actions were performed, or after an interval, when the
answers are more likely to be the participant’s post hoc interpretation. (In fact, inter-
pretation is likely even in the former case.) The advantage of a delayed walkthrough
is that the analyst has had time to frame suitable questions and focus on specific
incidents. The disadvantage is a loss of freshness.

There are some circumstances when the participant cannot be expected to talk
during the actual observation, for instance during a critical task, or when the task
is too intensive. In these circumstances, the post-task walkthrough is the only way
to obtain a subjective viewpoint on the user’s behavior. There is also an argument
that it is preferable to minimize non-task-related talk during direct observation in
order to get as natural a performance as possible. Again this makes the walkthrough
essential.

348 Chapter 9 n Evaluation techniques

9.4.4 Query techniques

Another set of evaluation techniques relies on asking the user about the interface
directly. Query techniques can be useful in eliciting detail of the user’s view of a
system. They embody the philosophy that states that the best way to find out how a
system meets user requirements is to ‘ask the user’. They can be used in evaluation
and more widely to collect information about user requirements and tasks. The
advantage of such methods is that they get the user’s viewpoint directly and may
reveal issues that have not been considered by the designer. In addition, they are
relatively simple and cheap to administer. However, the information gained is neces-
sarily subjective, and may be a ‘rationalized’ account of events rather than a wholly
accurate one. Also, it may be difficult to get accurate feedback about alternative
designs if the user has not experienced them, which limits the scope of the informa-
tion that can be gleaned. However, the methods provide useful supplementary mater-
ial to other methods. There are two main types of query technique: interviews and
questionnaires.

Interviews

Interviewing users about their experience with an interactive system provides a
direct and structured way of gathering information. Interviews have the advantages
that the level of questioning can be varied to suit the context and that the evaluator
can probe the user more deeply on interesting issues as they arise. An interview will
usually follow a top-down approach, starting with a general question about a task
and progressing to more leading questions (often of the form ‘why?’ or ‘what if ?’) to
elaborate aspects of the user’s response.

Interviews can be effective for high-level evaluation, particularly in eliciting
information about user preferences, impressions and attitudes. They may also reveal
problems that have not been anticipated by the designer or that have not occurred
under observation. When used in conjunction with observation they are a useful
means of clarifying an event (compare the post-task walkthrough).

In order to be as effective as possible, the interview should be planned in advance,
with a set of central questions prepared. Each interview is then structured around
these questions. This helps to focus the purpose of the interview, which may, for
instance, be to probe a particular aspect of the interaction. It also helps to ensure a
base of consistency between the interviews of different users. That said, the evalu-
ator may, of course, choose to adapt the interview form to each user in order to
get the most benefit: the interview is not intended to be a controlled experimental
technique.

Questionnaires

An alternative method of querying the user is to administer a questionnaire. This is
clearly less flexible than the interview technique, since questions are fixed in advance,

9.4 Evaluation through user participation 349

and it is likely that the questions will be less probing. However, it can be used to
reach a wider participant group, it takes less time to administer, and it can be ana-
lyzed more rigorously. It can also be administered at various points in the design
process, including during requirements capture, task analysis and evaluation, in
order to get information on the user’s needs, preferences and experience.

Given that the evaluator is not likely to be directly involved in the completion of
the questionnaire, it is vital that it is well designed. The first thing that the evaluator
must establish is the purpose of the questionnaire: what information is sought? It is
also useful to decide at this stage how the questionnaire responses are to be analyzed.
For example, do you want specific, measurable feedback on particular interface fea-
tures, or do you want the user’s impression of using the interface?

There are a number of styles of question that can be included in the questionnaire.
These include the following:

General These are questions that help to establish the background of the user
and his place within the user population. They include questions about age, sex,
occupation, place of residence, and so on. They may also include questions on
previous experience with computers, which may be phrased as open-ended,
multi-choice or scalar questions (see below).

Open-ended These ask the user to provide his own unprompted opinion on a
question, for example ‘Can you suggest any improvements to the interface?’. They
are useful for gathering general subjective information but are difficult to analyze
in any rigorous way, or to compare, and can only be viewed as supplementary.
They are also most likely to be missed out by time-conscious respondents!
However, they may identify errors or make suggestions that have not been con-
sidered by the designer. A special case of this type is where the user is asked for
factual information, for example how many commands were used.

Scalar These ask the user to judge a specific statement on a numeric scale, usually
corresponding to a measure of agreement or disagreement with the statement.
For example,

It is easy to recover from mistakes.
Disagree 1 2 3 4 5 Agree

The granularity of the scale varies: a coarse scale (say, from 1 to 3) gives a clear
indication of the meaning of the numbers (disagree, neutral and agree). However,
it gives no room for varying levels of agreement, and users may therefore be
tempted to give neutral responses to statements that they do not feel strongly
about but with which they mildly disagree or agree. A very fine scale (say 1 to 10)
suffers from the opposite problem: the numbers become difficult to interpret in
a consistent way. One user will undoubtedly interpret the scale differently
from another. A middle ground is therefore advisable. Scales of 1 to 5 or 1 to 7
have been used effectively. They are fine enough to allow users to differentiate
adequately but still retain clarity in meaning. It can help to provide an indication

350 Chapter 9 n Evaluation techniques

of the meaning of intermediate scalar values. Odd-numbered scales are used most
often but it is possible to use even-numbered scales (e.g. 1–6) if the ‘neutral’
option is not wanted. This does not allow for fence sitting – except decisively by
selecting 31/2!).

Multi-choice Here the respondent is offered a choice of explicit responses, and
may be asked to select only one of these, or as many as apply. For example,

How do you most often get help with the system (tick one)?
Online manual q
Contextual help system q
Command prompt q
Ask a colleague q

Which types of software have you used (tick all that apply)?
Word processor q
Database q
Spreadsheet q
Expert system q
Online help system q
Compiler q

These are particularly useful for gathering information on a user’s previous experi-
ence. A special case of this type is where the offered choices are ‘yes’ or ‘no’.

Ranked These place an ordering on items in a list and are useful to indicate a user’s
preferences. For example,

Please rank the usefulness of these methods of issuing a command (1 most useful,
2 next, 0 if not used).

Menu selection q
Command line q
Control key accelerator q

These question types are all useful for different purposes, as we have noted.
However, in order to reduce the burden of effort on the respondent, and so encour-
age a high response rate amongst users, it is best to use closed questions, such as
scalar, ranked or multi-choice, as much as possible. These provide the user with
alternative responses and so reduce the effort required. They also have the advantage
of being easier to analyze. Responses can be analyzed in a number of ways, from
determining simple percentages for each response, to looking at correlations and
factor analysis. For more detail on available methods the reader is referred to the
recommended reading list at the end of the chapter.

Whatever type of questionnaire is planned, it is wise to carry out a pilot study.
This allows any problems with the questionnaire design to be ironed out before the
questionnaire is distributed to potentially hundreds of users! The questionnaire
should be tested on four or five users to see if the questions are comprehensible and
the results are as expected and can be used in the manner intended. If users seem to

9.4 Evaluation through user participation 351

be misunderstanding a particular question, it can then be rephrased (and retested)
before the final version is sent out.

Distribution of questionnaires can also be problematic. It is important that the
respondents are representative of the user population but you also need to ensure
that you are able to reach as many potential respondents as possible. Return rate
for questionnaires is quite low (often 25–30%) so many more need to be sent out to
get a reasonable return. Questionnaires should ideally be distributed to a random
subset of the user population. So, for example, if the population is all workers in
a company, one may choose to send a questionnaire to every fourth person on an
alphabetically ordered personnel list. However, questionnaires are now often dis-
tributed via the internet, either by email, where potential respondents can be selected
randomly, or via a website, where the respondents are limited to those who visit
the site and who may not be representative. In practice, questionnaire respondents
are self-selecting anyway, in that only those who choose to respond are included in
the study; if the questionnaire is designed to capture demographic information
about each respondent then the level of representativeness (or otherwise) can be
determined from the responses.

Worked exercise You have been asked to compare user performance and preferences with two different learn-
ing systems, one using hypermedia (see Chapter 21), the other sequential lessons. Design a
questionnaire to find out what the users think of the system. How would you go about com-
paring user performance with these two systems?

Answer Assume that all users have used both systems.

Questionnaire
Consider the following questions in designing the questionnaire:

n what information is required?
n how is the questionnaire to be analyzed?

You are particularly interested in user preferences so questions should focus on differ-
ent aspects of the systems and try to measure levels of satisfaction. The use of scales
will make responses for each system easier to compare.

Table 9.3 shows an example questionnaire.

To test performance you would design an experiment where two groups of participants
learn the same material using the two systems, and test how well they have learned
(using a standard measurable test).

Participants User group

IV (Independent Variable) Style of learning system

DV (Dependent Variable) Performance (measured as test score)

Design Between-subjects design

352 Chapter 9 n Evaluation techniques

Table 9.3 Questionnaire to compare two systems

PART I: Repeat for each system
Indicate your agreement or disagreement with the following statements. (1 indicates complete
disagreement and 5 complete agreement.)

The system tells me what to do at every point.
Disagree 1 2 3 4 5 Agree

It is easy to recover from mistakes.
Disagree 1 2 3 4 5 Agree

It is easy to get help when needed.
Disagree 1 2 3 4 5 Agree

I always know what the system is doing.
Disagree 1 2 3 4 5 Agree

I always know where I am in the training material.
Disagree 1 2 3 4 5 Agree

I have learned the material well using the system.
Disagree 1 2 3 4 5 Agree

I could have learned the material more effectively using a book.
Disagree 1 2 3 4 5 Agree

I always know how well I am doing.
Disagree 1 2 3 4 5 Agree

PART II: Comparing both systems:

Which system (choose 1) was most:
Helpful to use A B
Efficient to use A B
Enjoyable to use A B

Please add any comments you have about either system:

9.4.5 Evaluation through monitoring physiological responses

One of the problems with most evaluation techniques is that we are reliant on obser-
vation and the users telling us what they are doing and how they are feeling. What if
we were able to measure these things directly? Interest has grown recently in the use
of what is sometimes called objective usability testing, ways of monitoring physi-
ological aspects of computer use. Potentially this will allow us not only to see more
clearly exactly what users do when they interact with computers, but also to measure
how they feel. The two areas receiving the most attention to date are eye tracking and
physiological measurement.

9.4 Evaluation through user participation 353

Eye tracking for usability evaluation

Eye tracking has been possible for many years, but recent improvements in hard-
ware and software have made it more viable as an approach to measuring usability.
The original eye trackers required highly invasive procedures where eye caps were
attached to the cornea under anaesthetic. Clearly inappropriate for usability testing!
Modern systems vary: some use a head-mounted camera to monitor the eye, but
the most sophisticated do not involve any contact between the equipment and
the participant, with the camera and light sources mounted in desk units (see
Figures 9.5, 9.6) [112].

Furthermore, there have been rapid improvements in the software available both
for the control of eye-tracking equipment and the analysis and visualization of the
large volumes of data it produces.

Eye movements are believed to reflect the amount of cognitive processing a dis-
play requires and, therefore, how easy or difficult it is to process [150]. So measur-
ing not only where people look, but also their patterns of eye movement, may tell us
which areas of a screen they are finding easy or difficult to understand. Eye move-
ment measurements are based on fixations, where the eye retains a stable position
for a period of time, and saccades, where there is rapid ballistic eye movement from
one point of interest to another. There are many possible measurements related to
usability evaluation including:

Number of fixations The more fixations the less efficient the search strategy.

Fixation duration Longer fixations may indicate difficulty with a display.

Figure 9.5 Eye-tracking equipment. Source: Courtesy of J. A. Renshaw

354 Chapter 9 n Evaluation techniques

Scan path indicating areas of interest, search strategy and cognitive load. Moving
straight to a target with a short fixation at the target is the optimal scan path but
plotting scan paths and fixations can indicate what people look at, how often and
for how long.

Eye tracking for usability is still very new and equipment is prohibitively expens-
ive for everyday use. However, it is a promising technique for providing insights
into what really attracts the eye in website design and where problem areas are in
system use. More research is needed to interpret accurately the meaning of the vari-
ous eye movement measurements, as well as to develop more accessible and robust
equipment. But, given the potential for gathering new data measurements relatively
unobtrusively, it is likely that eye tracking will become part of the standard equip-
ment for usability laboratories in the coming few years.

Figure 9.6 Calibrating the eye tracker. Source: Courtesy of J. A. Renshaw

9.4 Evaluation through user participation 355

Physiological measurements

As we saw in Chapter 1, emotional response is closely tied to physiological changes.
These include changes in heart rate, breathing and skin secretions. Measuring these
physiological responses may therefore be useful in determining a user’s emotional
response to an interface [288, 363]. Could we determine which interaction events
really cause a user stress or which promote relaxation?

Physiological measurement involves attaching various probes and sensors to the
user (see Figure 9.7). These measure a number of factors:

Figure 9.7 Data Lab Psychophysiology equipment showing some of the sensors
(above) and a typical experimental arrangement (below) with sensors attached to the
participant’s fingers and the monitoring software displayed on the evaluator’s machine.
Source: Courtesy of Dr R. D. Ward

356 Chapter 9 n Evaluation techniques

Heart activity, indicated by blood pressure, volume and pulse. These may respond
to stress or anger.

Activity of the sweat glands, indicated by skin resistance or galvanic skin response
(GSR). These are thought to indicate levels of arousal and mental effort.

Electrical activity in muscle, measured by the electromyogram (EMG). These appear
to reflect involvement in a task.

Electrical activity in the brain, measured by the electroencephalogram (EEG). These
are associated with decision making, attention and motivation.

Figure 9.8 illustrates the output obtained from such measurements.
One of the problems with applying these measurements to interaction events is

that it is not clear what the relationship between these events and measurements
might be. For example, if increased pulse rate is observed during an interactive task,
does that indicate frustration with the interface or stress at being unable to complete
the task? How will physiological changes differ in response to discrete events or to
continuous interface use? Is it possible to map patterns of physiological measure-
ment to specific emotional states?

These are still research questions but the approach is interesting, as it offers a
potential means of objectively capturing information about the user’s emotional

Figure 9.8 Output of monitoring pulse rate (above) and skin conductivity (below).
Source: Screen shot courtesy of Dr R. D. Ward; frame source: National Instruments
BioBench software

9.5 Choosing an evaluation method 357

state, which, as we saw in Chapter 1, impacts on our ability to solve problems and
perform tasks.

CHOOSING AN EVALUATION METHOD

As we have seen in this chapter, a range of techniques is available for evaluating an
interactive system at all stages in the design process. So how do we decide which
methods are most appropriate for our needs? There are no hard and fast rules in this
– each method has its particular strengths and weaknesses and each is useful if
applied appropriately. However, there are a number of factors that should be taken
into account when selecting evaluation techniques. These also provide a way of cat-
egorizing the different methods so that we can compare and choose between them.
In this final section we will consider these factors.

9.5.1 Factors distinguishing evaluation techniques

We can identify at least eight factors that distinguish different evaluation techniques
and therefore help us to make an appropriate choice. These are:

n the stage in the cycle at which the evaluation is carried out
n the style of evaluation
n the level of subjectivity or objectivity of the technique
n the type of measures provided
n the information provided
n the immediacy of the response
n the level of interference implied
n the resources required.

Design vs. implementation

The first factor to affect our choice of evaluation method is the stage in the design
process at which evaluation is required. As we saw earlier in this chapter, it is desir-
able to include evaluation of some sort throughout the design process. The main
distinction between evaluation of a design and evaluation of an implementation is
that in the latter case a physical artifact exists. This may be anything from a paper
mock-up to a full implementation, but it is something concrete that can be tested.
Evaluation of a design, on the other hand, precedes this stage and seeks instead to
provide information to feed the development of the physical artifact.

Roughly speaking, evaluation at the design stage needs to be quick and cheap
so might involve design experts only and be analytic, whereas evaluation of the
implementation needs to be more comprehensive, so brings in users as participants.
There are, of course, exceptions to this: participatory design (see Chapter 13)

9.5

358 Chapter 9 n Evaluation techniques

involves users throughout the design process, and techniques such as cognitive walk-
through are expert based and analytic but can be used to evaluate implementations
as well as designs.

Early evaluation, whether of a design or an early prototype or mock-up, will bring
the greatest pay-off since problems can be easily resolved at this stage. As more
commitment is made to a particular design in the implementation, it becomes
increasingly difficult for changes to be made, no matter what the evaluation suggests.
Ironically, the most resources are often ploughed into late evaluations. This is less
profitable and should be avoided, although obviously some evaluation with users is
required with a complete, or almost complete, system, since some elements (such as
system performance) will only be evident in the working system.

Laboratory vs. field studies

We have already discussed the pros and cons of these two styles of evaluation.
Laboratory studies allow controlled experimentation and observation while losing
something of the naturalness of the user’s environment. Field studies retain the
latter but do not allow control over user activity. Ideally the design process should
include both styles of evaluation, probably with laboratory studies dominating the
early stages and field studies conducted with the new implementation.

Subjective vs. objective

Evaluation techniques also vary according to their objectivity – some techniques
rely heavily on the interpretation of the evaluator, others would provide similar
information for anyone correctly carrying out the procedure. The more subjective
techniques, such as cognitive walkthrough or think aloud, rely to a large extent on
the knowledge and expertise of the evaluator, who must recognize problems and
understand what the user is doing. They can be powerful if used correctly and will
provide information that may not be available from more objective methods.
However, the problem of evaluator bias should be recognized and avoided. One
way to decrease the possibility of bias is to use more than one evaluator. Objective
techniques, on the other hand, should produce repeatable results, which are not
dependent on the persuasion of the particular evaluator. Controlled experiments
are an example of an objective measure. These avoid bias and provide comparable
results but may not reveal the unexpected problem or give detailed feedback on user
experience. Ideally, both objective and subjective approaches should be used.

The extent to which the results are dependent on the subjective response of
the user also varies. At one extreme is asking for the user’s opinions, which is highly
subjective; at the other is measuring physiological changes in the body, which are
outside the user’s control.

Qualitative vs. quantitative measures

The type of measurement provided by the evaluation technique is also an important
consideration. There are two main types: quantitative measurement and qualitative

9.5 Choosing an evaluation method 359

measurement. The former is usually numeric and can be easily analyzed using statist-
ical techniques. The latter is non-numeric and is therefore more difficult to analyze,
but can provide important detail that cannot be determined from numbers. The type
of measure is related to the subjectivity or objectivity of the technique, with subject-
ive techniques tending to provide qualitative measures and objective techniques,
quantitative measures. This is not a hard and fast rule, however. It is sometimes
possible to quantify what is, in fact, qualitative information by mapping it onto a
scale or similar measure. A common example of this is in questionnaires where qual-
itative information is being sought (for example, user preferences) but a quantitative
scale is used. This is also common in experimental design where factors such as the
quality of the user’s performance are used as dependent variables, and measured on
a quantitative scale.

Information provided

The level of information required from an evaluation may also vary. The informa-
tion required by an evaluator at any stage of the design process may range from
low-level information to enable a design decision to be made (for example, which
font is most readable) to higher-level information, such as ‘Is the system usable?’.
Some evaluation techniques, such as controlled experiments, are excellent at provid-
ing low-level information – an experiment can be designed to measure a particular
aspect of the interface. Higher-level information can be gathered using questionnaire
and interview techniques, which provide a more general impression of the user’s
view of the system.

Immediacy of response

Another factor distinguishing evaluation techniques is the immediacy of the
response they provide. Some methods, such as think aloud, record the user’s
behavior at the time of the interaction itself. Others, such as post-task walkthrough,
rely on the user’s recollection of events. Such recollection is liable to suffer from
bias in recall and reconstruction, with users interpreting events according to their
preconceptions. Recall may also be incomplete. However, immediate techniques can
also be problematic, since the process of measurement can actually alter the way the
user works.

Intrusiveness

Related to the immediacy of the response is the intrusiveness of the technique itself.
Certain techniques, particularly those that produce immediate measurements, are
obvious to the user during the interaction and therefore run the risk of influencing
the way the user behaves. Sensitive activity on the part of the evaluator can help to
reduce this but cannot remove it altogether. Most immediate evaluation techniques
are intrusive, with the exception of automatic system logging. Unfortunately, this is
limited in the information that it can provide and is difficult to interpret.

360 Chapter 9 n Evaluation techniques

Resources

The final consideration when selecting an evaluation technique is the availability
of resources. Resources to consider include equipment, time, money, participants,
expertise of evaluator and context. Some decisions are forced by resource limita-
tions: it is not possible to produce a video protocol without access to a video camera
(and probably editing facilities as well). However, other decisions are not so clear
cut. For example, time and money may be limited, forcing a choice between two pos-
sible evaluations. In these circumstances, the evaluator must decide which evaluation
tactic will produce the most effective and useful information for the system under
consideration. It may be possible to use results from other people’s experiments
to avoid having to conduct new experiments.

Some techniques are more reliant on evaluator expertise than others, for example
the more formal analytic techniques. If evaluator expertise is limited, it may be more
practical to use more simple heuristic methods than methods that require under-
standing of user goal structures and so on.

Finally, the context in which evaluation can occur will influence what can be done.
For practical reasons it may not be possible to gain access to the intended users of
a system (if it is a general system, for example). Or it may not be feasible to test the
system in its intended environment (for example, a system for a space station or a
defence system). In these circumstances simulations must be used.

9.5.2 A classification of evaluation techniques

Using the factors discussed in the previous section we can classify the evaluation
techniques we have considered in this chapter. This allows us to identify the tech-
niques that most closely fit our requirements. Table 9.4 shows the classification for

Table 9.4 Classification of analytic evaluation techniques

Cognitive Heuristic Review Model
walkthrough evaluation based based

Stage Throughout Throughout Design Design
Style Laboratory Laboratory Laboratory Laboratory
Objective? No No As source No
Measure Qualitative Qualitative As source Qualitative
Information Low level High level As source Low level
Immediacy N/A N/A As source N/A
Intrusive? No No No No
Time Medium Low Low–medium Medium
Equipment Low Low Low Low
Expertise High Medium Low High

9.5 Choosing an evaluation method 361

analytic techniques, Table 9.5 for experimental and query techniques, Table 9.6 for
observational and Table 9.7 for monitoring techniques.

The classification is intended as a rough guide only – some of the techniques do
not fit easily into such a classification since their use can vary considerably.

Table 9.5 Classification of experimental and query evaluation techniques

Experiment Interviews Questionnaire

Stage Throughout Throughout Throughout

Style Laboratory Lab/field Lab/field

Objective? Yes No No

Measure Quantitative Qualitative/ Qualitative/
quantitative quantitative

Information Low/high level High level High level

Immediacy Yes No No

Intrusive? Yes No No

Time High Low Low

Equipment Medium Low Low

Expertise Medium Low Low

Table 9.6 Classification of observational evaluation techniques

Think aloud1 Protocol analysis2 Post-task walkthrough

Stage Implementation Implementation Implementation

Style Lab/field Lab/field Lab/field

Objective? No No No

Measure Qualitative Qualitative Qualitative

Information High/low level High/low level High/low level

Immediacy Yes Yes No

Intrusive? Yes Yes3 No

Time High High Medium

Equipment Low High Low

Expertise Medium High Medium

1 Assuming a simple paper and pencil record
2 Including video, audio and system recording
3 Except system logs

362 Chapter 9 n Evaluation techniques

SUMMARY

Evaluation is an integral part of the design process and should take place through-
out the design life cycle. Its aim is to test the functionality and usability of the design
and to identify and rectify any problems. It can also try to determine the user’s
attitude and response to the system. It can take place in a specialist laboratory or in
the user’s workplace, and may or may not involve active participation on the part of
the user.

A design can be evaluated before any implementation work has started, to min-
imize the cost of early design errors. Most techniques for evaluation at this stage
are analytic and involve using an expert to assess the design against cognitive and
usability principles. Previous experimental results and modeling approaches can also
provide insight at this stage. Once an artifact has been developed (whether a pro-
totype or full system), experimental and observational techniques can be used to
get both quantitative and qualitative results. Query techniques provide subjective
information from the user. If more objective information is required, physiological
monitoring can capture the user’s physical responses to the system.

The choice of evaluation method is largely dependent on what is required of the
evaluation. Evaluation methods vary in the stage at which they are commonly used
and where they can be used. Some are more subjective than others and provide
qualitative rather than quantitative measures. Some provide immediate information
while others get feedback after the event. However, the more immediate methods
also tend to intrude most seriously on the interaction. Finally, some require more
resources in terms of time, equipment and expertise than others.

9.6

Table 9.7 Classification of monitoring evaluation techniques

Eye tracking Physiological
measurement

Stage Implementation Implementation
Style Lab Lab
Objective? Yes Yes
Measure Quantitative Quantitative
Information Low level Low level
Immediacy Yes Yes
Intrusive? No1 Yes
Time Medium/high Medium/high
Equipment High High
Expertise High High

1 If the equipment is not head mounted

Exercises 363

EXERCISES

9.1 In groups or pairs, use the cognitive walkthrough example, and what you know about
user psychology (see Chapter 1), to discuss the design of a computer application of your choice
(for example, a word processor or a drawing package). (Hint: Focus your discussion on one or
two specific tasks within the application.)

9.2 What are the benefits and problems of using video in experimentation? If you have access to a
video recorder, attempt to transcribe a piece of action and conversation (it does not have to be
an experiment – a soap opera will do!). What problems did you encounter?

9.3 In Section 9.4.2, we saw that the observed results could be the result of interference. Can you
think of alternative designs that may make this less likely? Remember that individual variation was
very high, so you must retain a within-subjects design, but you may perform more tests on each
participant.

9.4 Choose an appropriate evaluation method for each of the following situations. In each case
identify:

(i) the participants
(ii) the technique used
(iii) representative tasks to be examined
(iv) measurements that would be appropriate
(v) an outline plan for carrying out the evaluation.

(a) You are at an early stage in the design of a spreadsheet package and you wish to test what
type of icons will be easiest to learn.

(b) You have a prototype for a theatre booking system to be used by potential theatre-goers to
reduce queues at the box office.

(c) You have designed and implemented a new game system and want to evaluate it before
release.

(d) You have developed a group decision support system for a solicitor’s office.
(e) You have been asked to develop a system to store and manage student exam results and

would like to test two different designs prior to implementation or prototyping.

9.5 Complete the cognitive walkthrough example for the video remote control design.

9.6 In defining an experimental study, describe:

(a) how you as an experimenter would formulate the hypothesis to be supported or refuted by
your study;

(b) how you would decide between a within-groups or between-groups experimental design with
your subjects.

9.7 What are the factors governing the choice of an appropriate evaluation method for different inter-
active systems? Give brief details.

364 Chapter 9 n Evaluation techniques

RECOMMENDED READING

C. Robson, Experiment, Design and Statistics in Psychology, 3rd edition, Penguin,
1994.
An accessible introduction to statistics and experimental design and analysis for
the uninitiated, using worked examples throughout.

A. Monk, P. Wright, J. Haber and L. Davenport, Improving your Human Computer
Interface: A Practical Approach, Prentice Hall, 1992.
An evaluator’s guide to using the cooperative evaluation approach successfully.

M. Helander, editor, Handbook of Human–Computer Interaction, Part V: Tools for
Design and Evaluation, North-Holland, 1988.
Reviews the major evaluation techniques.

C. Wharton, J. Rieman, C. Lewis and P. Polson, The cognitive walkthrough: a
practitioner’s guide. In J. Nielsen and R. L. Mack, editors, Usability Inspection
Methods, John Wiley, 1994.
Describes the revised version of the cognitive walkthrough method of evaluation.

J. Nielsen, Heuristic evaluation. In J. Nielsen and R. L. Mack, editors, Usability
Inspection Methods, John Wiley, 1994.
Covers the heuristic evaluation method in detail.

Interacting with Computers, Vol. 14, No. 2, special issue on emotion in interaction,
February 2002.
A special journal issue containing several papers on the use of psychophysiology
in studying emotional response to interaction.

A. T. Duchowski, Eye Tracking Methodology: Theory and Practice, Springer-Verlag,
2003.
A recent book providing a detailed introduction to eye-tracking theory, equip-
ment and applications.

UNIVERSAL DESIGN

OV E RV I E W

n Universal design is about designing systems so that they
can be used by anyone in any circumstance.

n Multi-modal systems are those that use more than one
human input channel in the interaction.

n These systems may, for example, use:
– speech
– non-speech sound
– touch
– handwriting
– gestures.

n Universal design means designing for diversity,
including:
– people with sensory, physical or cognitive

impairment
– people of different ages
– people from different cultures and backgrounds.

10

366 Chapter 10 n Universal design

INTRODUCTION

We have already discussed the importance of designing for the user, considering
human abilities and requirements. But is it possible to generalize about people and,
if not, how do we address the issue of human diversity in our designs?

The discussion that we had on human psychology in Chapter 1 talked about gen-
eral human abilities and, in reality, people are much more varied than the discussion
suggests. People have different abilities and weaknesses; they come from different
backgrounds and cultures; they have different interests, viewpoints and experiences;
they are different ages and sizes. All of these things have an impact on the way in
which an individual will use a particular computing application and, indeed, on
whether or not they can use it at all. Given such diversity, we cannot assume a
‘typical’ user or design only for people like ourselves.

Universal design is the process of designing products so that they can be used by
as many people as possible in as many situations as possible. In our case, this means
particularly designing interactive systems that are usable by anyone, with any range
of abilities, using any technology platform. This can be achieved by designing systems
either to have built in redundancy or to be compatible with assistive technologies. An
example of the former might be an interface that has both visual and audio access
to commands; an example of the latter, a website that provides text alternatives
for graphics, so that it can be read using a screen reader.

In this chapter, we will look at universal design in more detail. We will begin by
examining seven principles of universal design. We will then look at multi-modal
technology and how it can help to provide redundancy in interaction. Having
identified some of the available technologies at our disposal, we will look in more
detail at the particular areas of human diversity that we need to address.

UNIVERSAL DESIGN PRINCIPLES

We have defined universal design as ‘the process of designing products so that they
can be used by as many people as possible in as many situations as possible’. But what
does that mean in practice? Is it possible to design anything so that anyone can use
it – and if we could, how practical would it be? Wouldn’t the cost be prohibitive? In
reality, we may not be able to design everything to be accessible to everyone, and we
certainly cannot ensure that everyone has the same experience of using a product,
but we can work toward the aim of universal design and try to provide an equivalent
experience.

Although it may seem like a huge task, universal design does not have to be com-
plex or costly. In fact, if you are observant, you will see many examples of design that
attempt to take account of user diversity. Next time you cross the road, look at the
pavement. The curb may be lowered, to enable people who use wheelchairs to cross
more easily. The paving near the curb may be of a different texture – with raised

10.2

10.1

10.2 Universal design principles 367

bumps or ridges – to enable people who cannot see to find the crossing point. Notice
how many modern buildings have automatic doors that open on approach. Or lifts
that offer both visual and auditory notification of the floor reached. And, whilst these
designs make the crossing, the building and the lift more accessible to people who
have disabilities, notice too how they also help other users. The parent with a child
in a buggy, or the traveller with wheeled luggage, can cross the road more easily; the
shopper with heavy bags, or the small child, can enter the building; and people are
less likely to miss their floor because they weren’t paying attention. Universal design
is primarily about trying to ensure that you do not exclude anyone through the
design choices you make but, by giving thought to these issues, you will invariably
make your design better for everyone.

In the late 1990s a group at North Carolina State University in the USA proposed
seven general principles of universal design [333]. These were intended to cover all
areas of design and are equally applicable to the design of interactive systems. These
principles give us a framework in which to develop universal designs.

Principle one is equitable use: the design is useful to people with a range of abil-
ities and appealing to all. No user is excluded or stigmatized. Wherever possible,
access should be the same for all; where identical use is not possible, equivalent use
should be supported. Where appropriate, security, privacy and safety provision
should be available to all.

Principle two is flexibility in use: the design allows for a range of ability and pref-
erence, through choice of methods of use and adaptivity to the user’s pace, precision
and custom.

Principle three is that the system be simple and intuitive to use, regardless of the
knowledge, experience, language or level of concentration of the user. The design
needs to support the user’s expectations and accommodate different language and
literacy skills. It should not be unnecessarily complex and should be organized
to facilitate access to the most important areas. It should provide prompting and
feedback as far as possible.

Principle four is perceptible information: the design should provide effective
communication of information regardless of the environmental conditions or the
user’s abilities. Redundancy of presentation is important: information should be
represented in different forms or modes (e.g. graphic, verbal, text, touch). Essential
information should be emphasized and differentiated clearly from the peripheral
content. Presentation should support the range of devices and techniques used to
access information by people with different sensory abilities.

Principle five is tolerance for error : minimizing the impact and damage caused
by mistakes or unintended behavior. Potentially dangerous situations should be
removed or made hard to reach. Potential hazards should be shielded by warnings.
Systems should fail safe from the user’s perspective and users should be supported in
tasks that require concentration.

Principle six is low physical effort : systems should be designed to be comfortable
to use, minimizing physical effort and fatigue. The physical design of the system
should allow the user to maintain a natural posture with reasonable operating effort.
Repetitive or sustained actions should be avoided.

368 Chapter 10 n Universal design

Principle seven requires size and space for approach and use: the placement of the
system should be such that it can be reached and used by any user regardless of body
size, posture or mobility. Important elements should be on the line of sight for both
seated and standing users. All physical components should be comfortably reachable
by seated or standing users. Systems should allow for variation in hand size and
provide enough room for assistive devices to be used.

These seven principles give us a good starting point in considering universal
design. They are not all equally applicable to all situations, of course. For example,
principles six and seven would be vital in designing an information booth but less
important in designing word-processing software. But they provide a useful check-
list of considerations for designers, together with guidelines on how each principle
can be achieved. It is interesting to note that these principles are closely related to
the ones we met in Chapter 7, in the context of general user-centered design rules,
indicating again that universal design is fundamentally good design for all.

MULTI-MODAL INTERACTION

As we have seen in the previous section, providing access to information through
more than one mode of interaction is an important principle of universal design.
Such design relies on multi-modal interaction.

As we saw in Chapter 1, there are five senses: sight, sound, touch, taste and smell.
Sight is the predominant sense for the majority of people, and most interactive

systems consequently use the visual channel as their primary means of presentation,
through graphics, text, video and animation.

However, sound is also an important channel, keeping us aware of our surround-
ings, monitoring people and events around us, reacting to sudden noises, providing
clues and cues that switch our attention from one thing to another. It can also have
an emotional effect on us, particularly in the case of music. Music is almost com-
pletely an auditory experience, yet is able to alter moods, conjure up visual images,
evoke atmospheres or scenes in the mind of the listener.

Touch, too, provides important information: tactile feedback forms an intrinsic
part of the operation of many common tools – cars, musical instruments, pens,
anything that requires holding or moving. It can form a sensuous bond between
individuals, communicating a wealth of non-verbal information.

Taste and smell are often less appreciated (until they are absent) but they also
provide useful information in daily life: checking if food is bad, detecting early signs
of fire, noticing that manure has been spread in a field, pleasure.

Examples of the use of sensory information are easy to come by (we looked at
some in Chapter 1), but the important point is that our everyday interaction with
each other and the world around us is multi-sensory, each sense providing differ-
ent information that informs the whole. Since our interaction with the world is
improved by multi-sensory input, it makes sense that interactive systems that utilize

10.3

10.3 Multi-modal interaction 369

more than one sensory channel will also provide a richer interactive experience.
In addition, such multi-sensory or multi-modal systems support the principle of
redundancy required for universal design, enabling users to access the system using
the mode of interaction that is most appropriate to their abilities.

The majority of interactive computer systems are predominantly visual in their
interactive properties; often WIMP based, they usually make use of only rudi-
mentary sounds while adding more and more visual information to the screen. As
systems become more complex, the visual channel may be overloaded if too much
information is presented all at once. This may lead to frustration or errors in use.
By utilizing the other sensory channels, the visual channel can be relieved of the pres-
sure of providing all the information required and so interaction should improve.
The use of multiple sensory channels increases the bandwidth of the interaction
between the human and the computer, and it also makes human–computer inter-
action more like the interaction between humans and their everyday environment,
perhaps making the use of such systems more natural. However, it should always be
remembered that multi-modal interaction is not just about enhancing the richness
of the interaction, but also about redundancy. Redundant systems provide the same
information through a range of channels, so, for example, information presented
graphically is also captioned in readable text or speech, or a verbal narrative is
provided with text captions. The aim is to provide at least an equivalent experience
to all, regardless of their primary channel of interaction.

Usable sensory inputs

In computing, the visual channel is used as the predominant channel for communication, but
if we are to use the other senses we have to consider their suitability and the nature of the
information that they can convey.

The use of sound is an obvious area for further exploitation. There is little doubt that we use hear-
ing a great deal in daily life, and so developing its application to the interface may be beneficial.
Sound is already used, to a limited degree, in many interfaces: beeps are used as warnings and
notification, recorded or synthesized speech and music are also used. Tactile feedback, as we have
already seen, is also important in improving interactivity and so this represents another sense that
we can utilize more effectively. However, taste and smell pose more serious problems for us. They
are the least used of our senses, and are used more for receiving information than for commun-
icating it. There are currently very few ways of implementing devices that can generate tastes and
smells, and so these two areas are not supported. Whether this is a serious omission remains to
be seen, but the tertiary nature of those senses tends to suggest that their incorporation, if it were
possible, would focus on specialist applications, for example, in enhancing virtual reality systems.

Even if we do not use other senses in our systems, it is certainly worth thinking about the nature
of these senses and what we gain from them as this will improve our understanding of the
strengths and weaknesses of visual communication [96].

370 Chapter 10 n Universal design

The next sections of this chapter will look at some of the alternative modes of
human–computer communication, concentrating particularly on sound, touch,
handwriting and gesture. We will consider how each mode can be used to create
richer interaction and provide redundancy.

10.3.1 Sound in the interface

Sound is an important contributor to usability. There is experimental evidence to
suggest that the addition of audio confirmation of modes, in the form of changes in
keyclicks, reduces errors [237]. Video games offer further evidence, since experts
tend to score less well when the sound is turned off than when it is on; they pick up
vital clues and information from the sound while concentrating their visual attention
on different things. The dual presentation of information through sound and vision
supports universal design, by enabling access for users with visual and hearing
impairments respectively. It also enables information to be accessed in poorly lit or
noisy environments. Sound can convey transient information and does not take up
screen space, making it potentially useful for mobile applications.

However, in spite of this, the auditory channel is comparatively little used in
standard interfaces, and where it is used it is often peripheral to the interaction.
Information provision is predominantly visual. There is a danger that this will over-
load the visual channel, demanding that the user attend to too many things at once
and select appropriate information from a mass of detail in the display. Reliance on
visual information forces attention to remain focussed on the screen, and the per-
sistence of visual information means that even detail that is quickly out of date may
remain on display after it is required, cluttering the screen further. It also presents
significant problems for people with visual impairment, whose access to applications
can be severely restricted by solely visual output. More widespread effective use of
sound in the interface would alleviate these problems. There are two types of sound
that we could use: speech and non-speech.

Speech in the interface

Language is rich and complex. We learn speech naturally as children ‘by example’ –
by listening to and mimicking the speech of those around us. This process seems
so effortless that we often do not appreciate its complex structures, and it is not
until we attempt to learn a new language later in life, or to make explicit the rules of
the one we speak, that the difficulties inherent in language understanding become
apparent. This complexity makes speech recognition and synthesis by computer very
difficult.

Structure of speech If we are fully to appreciate the problems involved with the
computer-based recognition and generation of speech, we need first to understand
the basic structure of speech. We will use English to illustrate but most other lan-
guages have similar issues.

10.3 Multi-modal interaction 371

The English language is made up of 40 phonemes, which are the atomic elements
of speech. Each phoneme represents a distinct sound, there being 24 consonants and
16 vowel sounds. Language is more than simple sounds, however. Emphasis, stress,
pauses and pitch can all be used to alter the meaning and nature of an utterance, a
common example being the rise in pitch at the end of a sentence to indicate a ques-
tion in English. This alteration in tone and quality of the phonemes is termed prosody
and is used, in addition to the actual words, to convey a great deal of meaning and
emotion within a sentence. Prosodic information gives language its richness and
texture, but is very difficult to quantify. Owing to the manner in which sound is
produced in the vocal tract, mouth and nose of the speaker, the limitation in
response speed means that phonemes sound differently when preceded by different
phonemes. This is termed co-articulation, and the resulting differences in sound can
be used to construct a set of allophones, which represent all the different sounds
within the language. Ignoring prosodic information, the concatenation of allo-
phones together should produce intelligible, articulate speech. However, depending
on the analysis of language used, and the regional accent studied, there are between
120 and 130 allophones. These, in turn, can be formed into morphemes, which
represent the smallest unit of language that has meaning. They are the basic building
blocks of language rather than of speech. Morphemes can be either parts of words
or whole words, and they are built into sentences using the rules of grammar of the
language.

Even being able to decompose sentences into their basic parts does not mean
that we can then understand them: the syntax (structure) only serves as a stand-
ard foundation upon which the semantics (meaning) is based. We are rarely aware
of the complex structure of speech, and concentrate on extracting the meaning
from the sentences we hear, rather than decomposing the sounds into their con-
stituent parts.

Speech recognition There have been many attempts at developing speech recogni-
tion systems, but, although commercial systems are now commonly and cheaply
available, their success is still limited to single-user systems that require considerable
training.

The complexity of language is one barrier to success, but there are other, more
practical, problems also associated with the automatic recognition of the spoken
word. Background noise can interfere with the input, masking or distorting the
information, while speakers can introduce redundant or meaningless noises into the
information stream by repeating themselves, pausing or using ‘continuation’ noises
such as ‘ummm’ and ‘errr’ to fill in gaps in their usual speech. Variations between
individuals also cause problems; people have unique voices, and systems that are
successful are tuned to be sensitive to minute variations in tone and frequency of
the speaker’s voice – new speakers present different inflections to the system, which
then fails to perform as well. A more serious problem is caused by regional accents,
which vary considerably. This strong variation upsets the trained response of the
recognition system. More serious still is the problem posed by different languages:
everything from phonemes up can be different.

372 Chapter 10 n Universal design

Speech recognition offers another mode of communication that may be used
to supplement existing channels or be the primary one. When a user’s hands are
already occupied, such as in a factory, speech may prove to be the ideal input
medium. Speech input does not require the use of a cumbersome keyboard and
so in lightweight mobile situations there is a potential role for such systems. It also
provides an alternative means of input for users with visual, physical and cognitive
impairment as we will see later. Single-user, limited vocabulary systems can work
satisfactorily, but the current success rate of recognition for general users and uncon-
strained language is still low.

The phonetic typewriter

One early successful speech-based system is the phonetic typewriter. This uses a neural net-
work that clusters similar sounds together (see Figure 10.1).

Designed to produce typed output from speech input in Finnish, it is trained on one particular
speaker, and then generalizes to others. However, its performance with speakers other than the
one on which it was trained is noticeably poorer, and it relies on a large dictionary of minute vari-
ations to supplement its general transcription mechanism. Without the dictionary, it achieves a
significantly lower recognition rate.

One reason that the phonetic typewriter was able to achieve acceptable levels of recognition and
transcription is that Finnish is a phonetic language, that is one which is spelt as it sounds. There
are other phonetic languages, for example Welsh, but most languages do not have such a straight-
forward mapping between sound and text. Think of English words such as ‘wait’ and ‘weight’ or
‘one’ and ‘won’, for example.

Puzzle: How do you pronounce ‘ghuti’? (Answer on the web pages!)

Figure 10.1 The phonetic typewriter

10.3 Multi-modal interaction 373

Despite its limitations there are commercial systems employing speech recogni-
tion. Speech-based word processors are easily available and several computers use
speech input as a marketing feature. Telephone-based systems also use speech, but
they face a more difficult task as they must be speaker independent. At the simplest
end, some systems ask you to speak an extension number, but, as tone dialing
becomes universal, the advantage of this over typing the number is dubious! Other
systems make more active use of voice, including information systems for airline
bookings. These more sophisticated systems work because they are interactive: the
system reflects back to the user its interpretation of the speech input, allowing the
user to enter into a dialog to correct any errors. This is precisely what happens in
normal conversation – we don’t get it right all the time.

Speech synthesis Complementary to speech recognition is speech synthesis. The
notion of being able to converse naturally with a computer is an appealing one for
many users, especially those who do not regard themselves as computer literate, since
it reflects their natural, daily medium of expression and communication. However,
there are as many problems in speech synthesis as there are in recognition. The
most difficult problem is that we are highly sensitive to variations and intonation in
speech, and are therefore intolerant of imperfections in synthesized speech. We are
so used to hearing natural speech that we find it difficult to adjust to the monotonic,
non-prosodic tones that synthesized speech can produce. In fact, most speech syn-
thesizers can deliver a degree of prosody, but in order to decide what intonation to
give to a word, the system must have an understanding of the domain. So an effect-
ive automatic reader would also need to be able to understand natural language,
which is difficult. However, for ‘canned’ messages and responses, the prosody can be
hand coded yielding much more acceptable speech.

Synthesized speech also brings other problems. Being transient, spoken output
cannot be reviewed or browsed easily. It is intrusive, requiring either an increase in
noise in the office environment or the use of headphones, either of which may be too
large a price to pay for the benefits the system may offer.

However, there are some application areas in which speech synthesis has been
successful. For users who are blind or partially sighted, synthesized speech offers an
output medium which they can access. Screen readers are software packages that
read the contents of a computer screen, using synthesized speech. Modern screen
readers read more than simply the text on the screen. They read exactly what they
find including icons, menus, punctuation and controls. They also read events, such
as dialog boxes opening, so that they can be used with graphical interfaces.

Speech synthesis is also useful as a communication tool to assist people with
physical disabilities that affect their speech. Here speech synthesis needs to produce
output that is as natural as possible with as little input effort from the user as pos-
sible, perhaps using a simple switch. Human conversation is rapid and complex,
making this a significant challenge. Most communication tools of this type use
predefined messages, enabling the user to select a message appropriate to the context
quickly and easily.

Used as a supplement to other output channels, speech can also enhance
applications where the user’s visual attention is focussed elsewhere, such as warnings
in aircraft cockpits and, more recently, in cars. We will return to some of these
applications later in the chapter.

Uninterpreted speech Speech does not have to be recognized by a computer to be
useful in the interface. Fixed pre-recorded messages can be used to supplement or

374 Chapter 10 n Universal design

DESIGN FOCUS

Designing websites for screen readers

While screen readers provide users with visual impairments access to standard interfaces and software,
web access can be more problematic. Screen readers can only read textual elements of web pages, so
graphics and scripts cannot be interpreted. It is therefore important that web designers take account
of these limitations and design sites to be accessible to people using screen readers. For example,
HTML ‘alt’ tags should always be used for necessary graphics, and text alternative menus and naviga-
tion controls provided.

In addition, most read text across the page, so text arranged in columns can become garbled. For
example, consider text arranged in two columns, such as the opening lines of these nursery rhymes:

Jack and Jill went up the hill Mary had a little lamb
To fetch a pail of water Its fleece was white as snow

With some screen readers, this text would be read as ‘Jack and Jill went up the hill Mary had a little
lamb To fetch a pail of water Its fleece was white as snow’ – clearly nonsense. Where possible, text
should make sense when read across a page.

Users of screen readers may also find it difficult to follow links embedded in text, particularly where
there are several in a block of text. It can therefore be helpful to provide links to the main sections in
a clear location where they will be read horizontally, such as at the top of the page.

If you want to experience something of what it is like to access the web using a screen reader, try
the simulation produced by the Web Accessibility in Mind project, available at www.webaim.org/
simulations/screenreader (accessed March 2003). Their site also contains a wealth of information about
web accessibility.

Another useful resource to help you design accessible websites is the Web Accessibility Initiative’s
(WAI) checklist for accessibility. This is available on their website www.w3.org (accessed March 2003).

A tool that you can use to test your websites for accessibility is Bobby from Watchfire (bobby.cast.org,
accessed March 2003). Bobby is a web-based accessibility evaluation tool that highlights problem areas
of a given website and encourages accessible solutions. It provides suggestions for improvement using
the guidelines provided by the WAI and the US Government’s Section 508 legislation. Using Bobby,
web designers can test their sites for accessibility and get advice for resolving any problems before the
site goes live.

10.3 Multi-modal interaction 375

replace visual information. Recordings have natural human prosody and pronunci-
ation, although quality is sometimes low. Segments of speech can be used together to
construct messages, for example the announcements in many airports and railway
stations.

Recordings of users’ speech can also be very useful, especially in collaborative
applications, for example many readers will have used voicemail systems. Also,
recordings can be attached to other artifacts as audio annotations in order to com-
municate with others or to remind oneself at a later time. For example, audio
annotations can be attached to Microsoft Word documents.

When recordings are replayed, they can be digitally speeded up. If you simply play
an audio recording faster, the pitch rises – and human speech ends up sounding
rather like Mickey Mouse. However, digital signal-processing techniques can acceler-
ate a recording while keeping the same pitch. Speech can be played back at up to
twice the normal rate without any loss of comprehensibility. This can be used in a
telephone help desk where a pre-recorded message asks the enquirer to state his
problem. The problem can then be replayed at an accelerated rate to the operator,
reducing the operator time per enquiry. The utility of such methods needs careful
analysis, however. The operator may often begin to act on a message while it is still
playing, hence reducing any gain from faster playback. Furthermore, reduced inter-
activity may lead to more misunderstandings, and the enquirer’s waiting time may
be increased.

DESIGN FOCUS

Choosing the right kind of speech

If you include speech input in an interface you must decide what level of speech interaction you wish
to support:

recording simply recording and replaying messages or annotations;

transcription turning speech into text as in a word processor;

control telling the computer what to do: for example, ‘print this file’.

Each level has its own problems and advantages; for example, control only requires a limited vocabu-
lary, but is more dangerous: ‘I said print not delete . . . !’ However, the biggest problem arises if you try
to mix these levels. In text we use quotes to make such distinctions, but they are hard in speech: ‘insert
the word “delete” before the word “before” ’.

In fact, for general interface use, speech is best mixed with other modes of communication as happens
in everyday life. For example, in a word processor you may use a tablet and pen to ring a word and
then say ‘move this word to here’ as you tap the pen at the target location. This is exactly what you
would do when talking through corrections to a document with someone.

376 Chapter 10 n Universal design

Non-speech sound

We have considered the use of speech in the interface, but non-speech sounds can
offer a number of advantages. As speech is serial, we have to listen to most of a
sentence before we understand what is being said. Non-speech sounds can often be
assimilated much more quickly. Speech is language dependent – a speech-based sys-
tem requires translation for it to be used for another language group. The meaning
of non-speech sounds can be learned regardless of language. Speech requires the
user’s attention. Non-speech sound can make use of the phenomenon of auditory
adaptation: background sounds are ignored unless they change or cease. However, a
disadvantage is that non-speech sounds have to be learned, whereas the meaning of
a spoken message is obvious (at least to a user who is familiar with the language
used).

Non-speech sound can be used in a number of ways in interactive systems. It is
often used to provide transitory information, such as indications of network or sys-
tem changes, or of errors. It can also be used to provide status information on back-
ground processes, since we are able to ignore continuous sounds but still respond to
changes in those sounds. Users of early home computers with their noisy power sup-
plies, and computer operators listening to the chatter of the printer and the spinning
of disks and tape drives, both report that they are able to tell what stage a process is
at by the characteristic sounds that are made.

Non-speech sound can also be used to provide a second representation of
actions and objects in the interface to support the visual mode and provide confirma-
tion for the user. It can be used for navigation round a system, either giving redund-
ant supporting information to the sighted user or providing the primary source of
information for the visually impaired. Experiments on auditory navigation [290]
have demonstrated that auditory clues are adequate for a user to locate up to eight
targets on a screen with reasonable speed and accuracy. This suggests that there is
little reason for ignoring the role of sound in interfaces on the grounds that it may
be too vague or inaccurate.

But what kind of non-speech sounds should we use in the interface? There are two
alternatives: using sounds that occur naturally in the world and using more abstract
generated sounds. We will consider an example of each type.

Auditory icons Auditory icons [141] use natural sounds to represent different types
of objects and actions in the interface. The SonicFinder [142] for the Macintosh was
developed from these ideas, to enhance the interface through redundancy. Natural
sounds are used because people recognize the source of a sound and its behavior
rather than timbre and pitch [364]. For example, a noise will be identified as glass
breaking or a hollow pipe being tapped. Such recognition is quite sophisticated: we
can identify not only the source of a sound (e.g. tapping a pipe) but characteristics
of the sound source (e.g. whether the pipe is hollow or solid).

In the SonicFinder, auditory icons are used to represent desktop objects and
actions. So, for example, a folder is represented by a papery noise, and throwing
something in the wastebasket by the sound of smashing. This helps the user to learn

10.3 Multi-modal interaction 377

the sounds since they suggest familiar actions from everyday life. However, this
advantage also creates a problem for auditory icons. Some objects and actions do not
have obvious, naturally occurring sounds that identify them. In these cases a sound
effect can be created to suggest the action or object but this moves away from the
ideal of using familiar everyday sounds that require little learning. For example,
copying has no immediate analog sound and in the SonicFinder it is indicated by the
sound of pouring a liquid into a receptacle, with the pitch rising to indicate the
progress of the copying.

SharedARK and ARKola

Natural sounds have been used to model environments such as a physics laboratory [145],
called SharedARK (Shared Alternate Reality Kit) and a virtual manufacturing plant, ARKola [147].
In SharedARK, multiple users could perform physics experiments in a virtual laboratory. Sound
was used in three different ways: as confirmation of actions, for status information and as aids to
navigation. Confirmatory sounds use similar principles to the SonicFinder, providing redundant
information that increases feedback. Process and state information sounds exist on two levels,
global and local. Global sounds represent the state of the whole system and can be heard any-
where, while local sounds are specific to particular experiments and alter when the user changes
from one experiment to another. Navigational information is provided by soundholders, which are
auditory landmarks. They can be placed anywhere in the system and get louder as the user moves
towards them, decreasing in volume when moving away. This allows the user to wander through
an arena much greater than the size of the screen without getting lost and lets him return to
specific areas very easily by returning to the soundholder.

In ARKola, a soft drinks factory was modeled, with two users attempting to optimize the factory’s
output, working remotely from each other and using an audio/video link. Input machines supplied
raw materials while output machines capped the bottles and shipped them out. Each machine had
an on/off switch and a rate control, with a sound that indicated its status; for example, the bottle
dispenser made the sound of clinking glass, with a rhythm that indicated its operating speed.
Splashing sounds indicated spilled liquids, while breaking glass showed that bottles were being lost.
The users monitored the status of the plant by listening to the auditory clues, and were able
to help each other more effectively, since they found it easier to monitor their own machines
without having to spend time looking at them, and could hear when something had gone wrong
with their partner’s part of the system.

Non-speech sounds such as this can convey a lot of meaning very economically. A
file arrives in a mailbox and, being a large file, it makes a weighty sound. If it is a text
file it makes a rustling noise, whereas a compiled program may make a metallic
clang. The sound can be muffled or clear, indicating whether the mailbox is hidden
by other windows or not, while the direction of the sound would indicate the posi-
tion of the mailbox icon on the screen. If the sound then echoes, as it would in a
large, empty room, the system load is low. All this information can be presented in a
second or so.

378 Chapter 10 n Universal design

Worked exercise Think of a set of naturally occurring sounds to represent the operations in a standard drawing
package (for example, draw, move, copy, delete, rotate).

Answer This can exercise the imagination! Are there natural analogies? For example, does the
physical action, say, of drawing have a sound associated with it? The sound of a pencil
on paper may be appropriate but is it identifiable? Similarly, a photocopier whirring
could represent the copy operation, and tearing paper delete. Rotate and move are
more difficult since the physical operation is not associated with a sound. Perhaps direc-
tion and movement can be indicated by sounds becoming nearer or more distant?

Earcons

An alternative to using natural sounds is to devise synthetic sounds. Earcons [36] use
structured combinations of notes, called motives, to represent actions and objects
(see Figure 10.2). These vary according to rhythm, pitch, timbre, scale and volume.
There are two types of combination of earcon. Compound earcons combine different
motives to build up a specific action, for example combining the motives for ‘create’
and ‘file’. Family earcons represent compound earcons of similar types. As an ex-
ample, operating system errors and syntax errors would be in the ‘error’ family. In
this way, earcons can be hierarchically structured to represent menus. Earcons are
easily grouped and refined owing to their compositional and hierarchical nature, but
they require learning to associate with a specific task in the interface since there is an

Figure 10.2 Earcons (after Blattner [36], reprinted by permission of Lawrence
Erlbaum Associates, Inc.)

10.3 Multi-modal interaction 379

arbitrary mapping. Conversely, auditory icons have a semantic relationship with the
function that they represent, but can suffer from there being no appropriate sound
for some actions.

Earcons provide a structured approach to designing sound for the interface, but
can users learn the sounds adequately, and what factors influence their use? Evidence
suggests that people can learn to recognize earcons, and that the most important
element in distinguishing different sounds is timbre, the characteristic quality of
the sound produced by different instruments and voices [47]. Other factors such as
pitch, rhythm and register should be used to supplement timbre in creating distinct-
ive sets of musical earcons. Interestingly, the user’s musical ability appears to have
little effect on his ability to remember earcons: users were able to identify around
80% of earcons from hierarchically ordered sets of 30 or more, regardless of their
musical background [45]. It is also possible to create compound earcons by playing
sounds in parallel as well as serially. This obviously reduces the time taken to hear
the sound but does not affect the user’s accuracy [45].

10.3.2 Touch in the interface

We have already considered the importance of touch in our interaction with our
environment, in Chapter 1. Touch is the only sense that can be used to both send and
receive information. Although it is not yet widely used in interacting with computers,
there is a significant research effort in this area and commercial applications are
becoming available.

The use of touch in the interface is known as haptic interaction. Haptics is a generic
term relating to touch, but it can be roughly divided into two areas: cutaneous
perception, which is concerned with tactile sensations through the skin; and kin-
esthetics, which is the perception of movement and position. Both are useful in
interaction but they require different technologies.

In Chapter 2, Section 2.6.3, we considered a number of examples of haptic devices,
including some based on vibration against the skin (cutaneous) and others on resist-
ance or force feedback (kinesthethic). They facilitate perception of properties such
as shape, texture, resistance and temperature as well as comparative spatial pro-
perties such as size, height and position. This means haptics can provide information
on the character of objects in the interface, as well as more realistic simulations of
physical activities, either for entertainment or for training.

In this section, we will look in a little more detail at some of the different types of
haptic devices and consider, in particular, the role of haptics in universal design. As
we will see, touch can provide both a primary source of information for users with
visual impairments and a richer multi-modal experience for sighted users.

One example of a tactile device is an electronic – or soft – braille display. Braille
displays are made up of a number of cells (typically between 20 and 80), each con-
taining six or eight electronically controlled pins that move up and down to produce
braille representations of characters displayed on the screen. Whereas printed braille
normally has six dots per cell, electronic braille typically has eight pins, with the extra

380 Chapter 10 n Universal design

Figure 10.3 A PHANTOM Premium 1.5 haptic device. Source: Courtesy of
SensAble Technologies

two representing additional information about that cell, such as cursor position and
character case.

Electronic braille displays benefit from two factors: a well-established tactile nota-
tion (braille) and a user group with expertise in using this notation. But can similar
techniques be used to provide more generic tactile feedback, such as to display
graphics? The problem with using raised pins for this type of display is the resolu-
tion required. Braille requires only six or eight pins; a graphical display would
require many more, which raises the problem of fitting the necessary number of fast
actuators (to move the pins) into a few cubic centimeters. This presents a serious
engineering challenge.

The other main type of haptic device is the force feedback device, which provides
kinesthetic information back to the user, allowing him to feel resistance, textures,
friction and so on. One of the most commonly used examples is the PHANTOM
range, from SensAble Technologies. The PHANTOM provides three-dimensional

10.3 Multi-modal interaction 381

DESIGN FOCUS

Apple Newton

The Apple Newton was the first popular pen-based computer. Other systems, such as the GO Pen-
Point computer, were available earlier, but did not achieve a significant breakthrough. One reason is
that the Newton targeted the organizer market where miniature keyboards were difficult to use (and
anyway managers don’t use them!). Also this niche market did not demand large amounts of text input,
and the graphical interface made it easy to do non-text-based tasks.

force feedback, allowing users to touch virtual objects. As well as offering the func-
tionality of the mouse, in addition, the user’s movement is monitored by optical sen-
sors on the device, and these, together with models of the virtual objects, are used to
calculate the forces applied back to the user. The user therefore can feel the outline
and resistance of objects, their texture and position. This type of device has potential
application for simulations and training situations where touch is important, such as
medicine. It can also be used to provide a haptic ‘image’ of an interface, providing
the user with information about the objects and their functionality based on how
they feel. This offers another channel of information, which enhances the richness of
the interaction and makes the design more universal.

At present, the hardware needed to support haptic interaction is prohibitively
expensive for most users. But this is liable to change as the applications become more
widespread and commercially viable.

10.3.3 Handwriting recognition

Like speech, we consider handwriting to be a very natural form of communication.
The idea of being able to interpret handwritten input is very appealing, and hand-
writing appears to offer both textual and graphical input using the same tools. There
are problems associated with the use of handwriting as an input medium, however,
and in this section we shall consider these. We will first look at the mechanisms for
capturing handwritten information, and then look at the problems of interpreting it.

Technology for handwriting recognition

The major piece of technology used to capture handwriting is the digitizing tablet,
explained in more detail in Chapter 2. Free-flowing strokes made with a pen are
transformed into a series of coordinates, approximately one every 1/50th of a second
(or at the sampling rate of the digitizer). Rapid movements produce widely spaced
dots, in comparison with slow movements: this introduces immediate errors into the
information, since the detail of the stroke between dots is lost, as is the pressure
information.

Digitizing tablets have been refined by incorporating a thin screen on top to
display the information, producing electronic paper. Advances in screen technology
mean that such devices are small and portable enough to be realistically useful
in handheld organizers such as the Apple Newton. Information written onto the
digitizer can simply be redisplayed, or stored and redisplayed for further reference.
However, while this has limited use in itself, systems are most useful when they are
able to interpret the strokes received and produce text. It is this recognition that we
will look at next.

Recognizing handwriting

The variation between the handwriting of individuals is large (see Figure 10.4);
moreover, the handwriting of a single person varies from day to day, and evolves
over the years.

Handwriting recognition was acceptable for a number of reasons: the base algorithm achieved a reason-
able level of writer-independent recognition; the algorithm was adaptive – it learned the characteristics
of the owner during use; and it was word based, so that idiosyncrasies in connected writing could be
learnt for common words. But, most important, it was interactive. After a word was written, the
Newton printed its interpretation of the word; if it was wrong you could try again or correct it letter
by letter. This gave the system a chance to learn and meant that errors were not fatal!

In fact, although it has survived, the Apple Newton, like many devices employing novel input techniques,
did not achieve the level of success one might have envisaged. This may be because it arrived at the
same time as portable computers became really portable, and perhaps because the Apple Newton was
only suitable for large pockets (of both a sartorial and financial nature). Smaller organizers with both
pen-based input and small keyboards are now available, and it remains to be seen whether these achieve
the market breakthrough this technology promises.

382 Chapter 10 n Universal design

Figure 10.4 Handwriting varies considerably

10.3 Multi-modal interaction 383

These problems are reminiscent of those already discussed in speech recognition,
and indeed the recognition problem is not dissimilar. The equivalent of co-articulation
is also prevalent in handwriting, since different letters are written differently accord-
ing to the preceding and successive ones. This causes problems for recognition
systems, which work by trying to identify the lines that contain text, and then to
segment the digitized image into separate characters. This is so difficult to achieve
reliably that there are no systems in use today that are good at general cursive script
recognition. However, when letters are individually written, with a small separation,
the success of systems becomes more respectable, although they have to be trained to
recognize the characteristics of the different users. If tested on an untrained person,
success is limited again. Many of the solutions that are being attempted in speech
recognition are also being tried in handwriting recognition systems, such as whole-
word recognition, the use of context to disambiguate characters, and neural net-
works, which learn by example.

10.3.4 Gesture recognition

Gesture is a component of human–computer interaction that has become the sub-
ject of attention in multi-modal systems. Being able to control the computer with
certain movements of the hand would be advantageous in many situations where
there is no possibility of typing, or when other senses are fully occupied. It could also
support communication for people who have hearing loss, if signing could be ‘trans-
lated’ into speech or vice versa. But, like speech, gesture is user dependent, subject to
variation and co-articulation. The technology for capturing gestures is expensive,
using either computer vision or a special dataglove (see Chapter 2). The dataglove
provides easier access to highly accurate information, but is a relatively intrusive
technology, requiring the user to wear the special Lycra glove. The interpretation of
the sampled data is very difficult, since segmenting the gestures causes problems. A
team from Toronto [131] has produced a gesture recognition system that translates
hand movements into synthesized speech, using five neural networks working in
parallel to learn and then interpret different parts of the inputs.

The Media Room at MIT uses a different approach in order to incorporate ges-
tures into the interaction. The Media Room has one wall that acts as a large screen,
with smaller touchscreens on either side of the user, who sits in a central chair. The
user can navigate through information using the touchscreens, or by joystick, or by
voice. Gestures are incorporated by using a position-sensing cube attached to a
wristband worn by the user. The put that there system uses this gestural information
coupled with speech recognition to allow the user to indicate what should be moved
where by pointing at it. This is a much more natural form of interaction than having
to specify verbally what it is that has to be moved and describing where it has to go,
as well has having the advantage of conciseness. Such a short, simple verbal state-
ment is much more easily interpreted by the speech recognition system than a long
and complex one, with the resolution of ambiguity done by interpreting the other
mode of interaction, the gesture. Each modality supports the other.

384 Chapter 10 n Universal design

DESIGNING FOR DIVERSITY

We noted in Chapter 1 that, although we can make general observations about
human capabilities, users in fact have different needs and limitations. Interfaces are
usually designed to cater for the ‘average’ user, but unfortunately this may exclude
people who are not ‘average’. As we saw in the introduction to this chapter, people
are diverse and there are many factors that must be taken into account if we are to
come close to universal design.

In this section, we will consider briefly some of these factors and the particular
challenges that each raises. We will consider three key areas: disability, age and
culture.

10.4.1 Designing for users with disabilities

It is estimated that at least 10% of the population of every country has a disability
that will affect interaction with computers. Employers and manufacturers of com-
puting equipment have not only a moral responsibility to provide accessible products,
but often also a legal responsibility. In many countries, legislation now demands that
the workplace must be designed to be accessible or at least adaptable to all – the
design of software and hardware should not unnecessarily restrict the job prospects
of people with disabilities.

We will look briefly at sensory, physical and cognitive impairments and the issues
they raise for interface design.

Visual impairment

The sensory impairment that has attracted the most attention from researchers, per-
haps because it is potentially also one of the most debilitating as far as interaction is
concerned, is visual impairment. The rise in the use of graphical interfaces reduces
the possibilities for visually impaired users. In text-based interaction, screen readers
using synthesized speech or braille output devices provided complete access to com-
puters: input relied on touch-typing, with these mechanisms providing the output.
However, today the standard interface is graphical. Screen readers and braille output
are far more restricted in interpreting the graphical interface, as we saw in Section
10.3.1, meaning that access to computers, and therefore work involving computers,
has been reduced rather than expanded for visually impaired people.

There are two key approaches to extending access: the use of sound and the use of
touch. We have already considered these in Section 10.3 so we will summarize only
briefly here.

A number of systems use sound to provide access to graphical interfaces for
people with visual impairment. In Section 10.3.1 we looked at a range of approaches
to the use of sound such as speech, earcons and auditory icons. All of these have been
used in interfaces for blind users.

10.4

10.4 Designing for diversity 385

Soundtrack (see the box above) was an early example of the use of non-speech
sound to provide an auditory interface to a word processor. A major limitation of
this application was the fact that it was a specialized system; it could not be used to
augment commercially available software. Ideally, users with disabilities should have

Soundtrack

Soundtrack is an early example of a word processor with an auditory interface, designed for
users who are blind or partially sighted [118]. The visual items in the display have been given
auditory analogs, made up of tones, with synthesized speech also being used. A two-row grid of
four columns is Soundtrack’s main screen (see Figure 10.5); each cell makes a different tone when
the cursor is in it, and by using these tones the user can navigate around the system. The tones
increase in pitch from left to right, while the two rows have different timbres. Clicking on a
cell makes it speak its name, giving precise information that can reorient a user who is lost or
confused. Double clicking on a cell reveals a submenu of items associated with the main screen
item. Items in the submenu also have tones; moving down the menu causes the tone to fall whilst
moving up makes it rise. A single click causes the cell to speak its name, as before, whilst double
clicking executes the associated action.

Soundtrack allows text entry by speaking the words or characters as they are entered, with the
user having control over the degree of feedback provided. It was found that users tended to count
the different tones in order to locate their position on the screen, rather than just listen to the
tones themselves, although one user with musical training did use the pitch.

Soundtrack provides an auditory solution to representing a visually based word processor, though
the results are not extensible to visual interfaces in general. However, it does show that the human
auditory system is capable of coping with the demands of highly interactive systems, and that the
notion of auditory interfaces is a reasonable one.

Figure 10.5 The screen division in Soundtrack. Source: Courtesy of Alistair D. N. Edwards

386 Chapter 10 n Universal design

DESIGN FOCUS

Mathematics for the blind

Solve the following equation: 3(x − 2) + 4 = 7 − 2(3 − x).

Did you do it in your head or use a piece of paper? When an equation is even slightly complex the
instant response of a sighted person is to reach for paper and pencil. The paper acts as an external mem-
ory, allowing you to record and recall previous steps in a calculation. Blind children learning mathem-
atics have to perform nearly all such calculations in their head, putting them at a severe disadvantage.

Mathtalk is a system developed as part of a European project to create a mathematics workstation
for blind people [330]. It uses speech synthesis to speak formulae, and keyboard input to navigate
and manipulate them. The first stage, simply speaking a formula out loud, is complex in itself. Given the
spoken equation ‘three x plus four equals seven’, how do you know whether this is ‘3x + 4 = 7’ or
‘3(x + 4) = 7’? To make it unambiguous one could say the latter as ‘three open bracket x plus four close
bracket equals seven’, but this soon becomes very tedious. In fact, when reading mathematics people
use several cues in their speech: longer and shorter gaps between terms, and prosody: rising and
falling pitch (see Figure 10.6). The Mathtalk system includes a set of rules for generating such patterns
suitable for most equations.

Figure 10.6 Pausing and pitch help distinguish between two expressions

Visual interaction with paper isn’t just at the level of reading and writing whole equations. Recall from
Chapter 1 that reading usually includes regressions where our eyes move backwards as well as forwards
through text. Also, when seeing graphical material (remember that mathematics makes heavy use
of brackets, symbols, superscripts, etc.), we rely on getting a quick feel for the material at a glance
before examining it in detail. Both of these factors are crucial when reading an equation and so Mathtalk
supports rapid keyboard-based navigation within each equation, and algebra earcons, short motives based
on the rise and fall of the prosody of an equation.

Notice that Mathtalk uses keyboard input combined with speech output. Speech input is slow and
error-prone compared with a keyboard. Braille output can also be used for mathematics, but only a
small percentage of blind people read braille. Choosing the right input and output devices requires a
deep knowledge of the user population and careful analysis of the intended tasks.

10.4 Designing for diversity 387

access to the same applications as anyone else. Outspoken is a Macintosh application
that uses synthetic speech to make other Macintosh applications available to visually
impaired users. A common problem with this and other screen readers and talking
browsers (see Section 10.3.1) is the sheer amount of information represented.
Browsing is difficult and all of the information must be held in the head of the user,
putting a heavy load on memory.

A more recent development is the use of touch in the interface. As we saw in
Section 10.3.2, there are two key approaches to this, both of which can be used to
support people with visual impairment. Tactile interaction is already widely used in
electronic braille displays, which represent what is on the screen through a dynamic
braille output. It could also be used to provide more information about graphics and
shape, if the engineering challenges of building higher resolution tactile devices can
be overcome. Force feedback devices also have the potential to improve accessibility
to users with visual impairment, since elements in the interface can be touched, and
edges, textures and behavior used to indicate objects and actions. A limitation of this
technology at present is that objects must be rendered using specialist software
in order for the devices to calculate the appropriate force to apply back to the user.
This again represents a move away from use of generic applications to specialist
applications. However, it is likely that major applications will become ‘haptic
enabled’ in the near future.

Hearing impairment

Compared with a visual disability where the impact on interacting with a graphical
interface is immediately obvious, a hearing impairment may appear to have little
impact on the use of an interface. After all, it is the visual not the auditory channel
that is predominantly used. To an extent this is true, and computer technology can
actually enhance communication opportunities for people with hearing loss. Email
and instant messaging are great levellers and can be used equally by hearing and deaf
users alike.

Gesture recognition has also been proposed to enable translation of signing to
speech or text, again to improve communication particularly with non-signers.

However, the increase in multimedia and the use of sound in interfaces has,
ironically, created some access difficulties for people with hearing problems. Many
multimedia presentations contain auditory narrative. If this is not supplemented by
textual captions, this information is lost to deaf users. Captioning audio content,
where there is not already a graphical or textual version, also has the advantage of
making audio files easier and more efficient to index and search, which in turn
enhances the experience of all users – a sure sign of good universal design!

Physical impairment

Users with physical disabilities vary in the amount of control and movement that
they have over their hands, but many find the precision required in mouse control
difficult. Speech input and output is an option for those without speech difficulties.

388 Chapter 10 n Universal design

An alternative is the eyegaze system (Chapter 2), which tracks eye movements to
control the cursor, or a keyboard driver that can be attached to the user’s head. If the
user is unable to control head movement, gesture and movement tracking can be
used to allow the user control. If the user has limited use of a keyboard, a predictive
system, such as the Reactive keyboard [157], can help, by anticipating the commands
that are being typed and offering them for execution. This can cut the typing require-
ment considerably. Predictions are based on what the user has typed in the current
session or a previous one. The predictions therefore anticipate within the context
in which the user is currently working (for example, operating system commands,
programming text or free text). Figure 10.7 shows an interaction using the Reactive
keyboard.

Figure 10.7 An interaction using the Reactive keyboard. Source: Courtesy of
Saul Greenberg

10.4 Designing for diversity 389

Speech impairment

For users with speech and hearing impairments, multimedia systems provide a num-
ber of tools for communication, including synthetic speech (see Section 10.3.1) and
text-based communication and conferencing systems (see Chapter 19). Textual
communication is slow, which can lower the effectiveness of the communication.
Predictive algorithms have been used to anticipate the words used and fill them in,
to reduce the amount of typing required. Conventions can help to provide context,
which is lost from face-to-face communication, for example the ‘smilie’ :-), to
indicate a joke. Facilities to allow turn-taking protocols to be established also help
natural communication [256]. Speech synthesis also needs to be rapid to reflect
natural conversational pace, so responses can be pre-programmed and selected using
a single switch.

Dyslexia

Users with cognitive disabilities such as dyslexia can find textual information
difficult. In severe cases, speech input and output can alleviate the need to read and
write and allow more accurate input and output. In cases where the problem is
less severe, spelling correction facilities can help users. However, these need to be
designed carefully: often conventional spelling correction programs are useless for
dyslexic users since the programs do not recognize their idiosyncratic word con-
struction methods. As well as simple transpositions of characters, dyslexic users may
spell phonetically, and correction programs must be able to deal with these errors.

Consistent navigation structure and clear signposting cues are also important to
people with dyslexia. Color coding information can help in some cases and provision
of graphical information to support textual can make the meaning of text easier to
grasp.

Autism

Autism affects a person’s ability to communicate and interact with people around
them and to make sense of their environment. This manifests itself in a range of ways
but is characterized by the triad of impairments:

1. Social interaction – problems in relating to others in a meaningful way or
responding appropriately to social situations.

2. Communication – problems in understanding verbal and textual language
including the use of gestures and expressions.

3. Imagination – problems with rigidity of thought processes, which may lead to
repetitive behavior and inflexibility.

How might universal design of technology assist people with autism? There are two
main areas of interest: communication and education.

Communication and social interaction are major areas of difficulty for people
with autism. Computers, on the other hand, are often motivating, perhaps because

390 Chapter 10 n Universal design

they are relatively consistent, predictable and impersonal in their responses. The
user is in control. Computer-mediated communication and virtual environments
have been suggested as possible ways of enabling people with autism to communic-
ate more easily with others, by giving the user control over the situation. Some
people with autism have difficulties with language and may be helped by graphical
representations of information and graphical input to produce text and speech.
Again this is supported by providing redundancy in the design.

Computers may also have a role to play in education of children with autism,
particularly by enabling them to experience (through virtual environments and
games) social situations and learn appropriate responses. This can again provide
a secure and consistent environment where the child is in control of his own
learning. The use of computers to support people with autism in this way is still
a new research area and it is likely that new software and tools will develop in the
next few years.

10.4.2 Designing for different age groups

We have considered how people differ along a range of sensory, physical and cognit-
ive abilities. However, there are other areas of diversity that impact upon the way we
design interfaces. One of these is age. In particular, older people and children have
specific needs when it comes to interactive technology.

Older people

The proportion of older people in the population is growing steadily. Contrary to
popular stereotyping, there is no evidence that older people are averse to using new
technologies, so this group represents a major and growing market for interactive
applications. People are living longer, have more leisure time and disposable income,
and older people have increased independence. These factors have all led to an
increase in older users.

But the requirements of the older population may differ significantly from other
population groups, and will vary considerably within the population group. The
proportion of disabilities increases with age: more than half of people over 65 have
some kind of disability. Just as in younger people with disabilities, technology can
provide support for failing vision, hearing, speech and mobility. New communica-
tion tools, such as email and instant messaging, can provide social interaction in
cases where lack of mobility or speech difficulties reduce face-to-face possibilities.
Mobile technologies can be used to provide memory aids where there is age-related
memory loss.

Some older users, while not averse to using technology, may lack familiarity with
it and fear learning. They may find the terminology used in manuals and training
books difficult to follow and alien (words like ‘monitor’ and ‘boot’, for example,
may have a completely different meaning to an older person than a young person).
Interests and concerns may also be different from younger users.

10.4 Designing for diversity 391

Once again, basic universal design principles are important here. Access to infor-
mation must make use of redundancy and support the use of access technologies.
Designs must be clear and simple and forgiving of errors. In addition, thought
needs to be given to sympathetic and relevant training aimed at the user’s current
knowledge and skills.

In spite of the potential benefits of interactive technology to older people, very
little attention has been paid to this area until recently. Researchers are now beginning
to address issues such as how technology can best support older people, what the
key design issues are, and how older people can be effectively included in the design
process [46], and this area is likely to grow in importance in the future.

Children

Like older people, children have distinct needs when it comes to technology, and
again, as a population, they are diverse. The requirements of a three year old will be
quite different from those of a 12 year old, as will be the methods that can be used
to uncover them. Children are, however, different from adults, and have their own
goals and likes and dislikes. It is therefore important to involve them in the design of
interactive systems that are for their use, though this in itself can be challenging
as they may not share the designer’s vocabulary or be able to verbalize what they
think. Design approaches have therefore been developed specifically to include
children actively as members of the design team. Alison Druin’s Cooperative Inquiry
approach [110] is based on contextual inquiry and participatory design, which we
will consider in more detail in Chapter 13. Children are included in an intergenera-
tional design team that focusses on understanding and analyzing context. Team
members, including children, use a range of sketching and note-taking techniques
to record their observations. Paper prototyping, using art tools familiar to children,
enables both adults and children to participate in building and refining prototype
designs on an equal footing. The approach has been used effectively to develop a
range of new technologies for children.

As well as their likes and dislikes, children’s abilities will also be different from
those of adults. Younger children may have difficulty using a keyboard for instance,
and may not have well-developed hand–eye coordination. Pen-based interfaces can
be a useful alternative input device [300]. Again, universal design principles guide us
in designing interfaces that children can use. Interfaces that allow multiple modes of
input, including touch or handwriting, may be easier for children than keyboard and
mouse. Redundant displays, where information is presented through text, graphics
and sound will also enhance their experience.

10.4.3 Designing for cultural differences

The final area of diversity we will consider is cultural difference. Cultural difference
is often used synonymously with national differences but this is too simplistic.
Whilst there are clearly important national cultural differences, such as those we saw

392 Chapter 10 n Universal design

in Chapter 5, other factors such as age, gender, race, sexuality, class, religion and
political persuasion, may all influence an individual’s response to a system. This is
particularly the case when considering websites where often the explicit intention is
to design for a particular culture or subculture.

Clearly, while all of these contribute to a person’s cultural identity, they will not
all always be relevant in the design of a given system. However, we can draw out
some key factors that we need to consider carefully if we are to practice universal
design. These include language, cultural symbols, gestures and use of color.

We encountered the problem of localization of software in Chapter 5. While
toolkits, with different language resource databases, facilitate the translation of menu
items, error messages and other text into the local language, this does not fully deal
with the language issue. Layouts and designs may reflect a language read from left
to right and top to bottom, which will be unworkable with languages that do not
follow this pattern.

Similarly, symbols have different meanings in different cultures. As we saw in
Chapter 5, ticks 3 and crosses 7 represent positive and negative respectively in some
cultures, and are interchangeable in others. The rainbow is a symbol of covenant
with God in Judeo–Christian religions, of diversity in the gay community and of
hope and peace in the cooperative movement. We cannot assume that everyone will
interpret symbols in the same way and should ensure that alternative meanings of
symbols will not create problems or confusion for the user. The study of the mean-
ing of symbols is known as semiotics and is a worthwhile diversion for the student of
universal design.

Another area where diversity can cause misunderstanding is in the use of gesture.
Recently, one of the authors was teaching a new class of international students
and was disconcerted to see one sitting in the front row, smiling and shaking his
head. After the lecture this student came and asked a question. Every time the author
asked the student if he understood the explanation, he shook his head, so further
explanation ensued, much to the frustration of the student! It was only after a
few minutes that it became clear: the student was from India and his gestural con-
vention was to shake his head in agreement, the opposite of the European inter-
pretation of the gesture. Use of gesture is quite common in video and animation and
care must be taken with differences such as this. As interactions begin to incorporate
gesture in virtual reality and avatars, issues such as this will become even more
significant.

Finally, colors are often used in interfaces to reflect ‘universal’ conventions, such
as red for danger and green for go. But how universal are these conventions? In fact,
red and green mean many different things in different countries. As well as danger,
red represents life (India), happiness (China) and royalty (France). Green is a
symbol of fertility (Egypt) and youth (China) as well as safety (Anglo-American).
It is difficult to assume any universal interpretation of color but the intended
significance of particular colors can be supported and clarified through redundancy
– providing the same information in another form as well.

Exercises 393

SUMMARY

Universal design is about designing systems that are accessible by all users in all
circumstances, taking account of human diversity in disabilities, age and culture.
Universal design helps everyone – for example, designing a system so that it can be
used by someone who is deaf or hard of hearing will benefit other people working in
noisy environments or without audio facilities. Designing to be accessible to screen-
reading systems will make websites better for mobile users and older browsers.

Multi-modal systems provide access to system information and functionality
through a range of different input and output channels, exploiting redundancy.
Such systems will enable users with sensory, physical or cognitive impairments to
make use of the channels that they can use most effectively. But all users benefit
from multi-modal systems that utilize more of our senses in an involving interactive
experience.

For any design choice we should ask ourselves whether our decision is excluding
someone and whether there are any potential confusions or misunderstandings in
our choice.

10.5

EXERCISES

10.1 Is multi-modality always a good thing? Justify your answer.

10.2 What are (i) auditory icons and (ii) earcons? How can they be used to benefit both visually
impaired and sighted users?

10.3 Research your country’s legislation relating to accessibility of technology for disabled people.
What are the implications of this to your future career in computing?

10.4 Take your university website or another site of your choice and assess it for accessibility using
Bobby. How would you recommend improving the site?

10.5 How could systems be made more accessible to older users?

10.6 Interview either (i) a person you know over 65 or (ii) a child you know under 16 about their
experience, attitude and expectations of computers. What factors would you take into account
if you were designing a website aimed at this person?

10.7 Use the screen reader simulation available at www.webaim.org/simulations/screenreader to
experience something of what it is like to access the web using a screen reader. Can you find
the answers to the test questions on the site?

394 Chapter 10 n Universal design

RECOMMENDED READING

M. F. Story, J. L. Mueller and R. L. Mace, The Universal Design File: Designing
for People of All Ages and Abilities, The Center for Universal Design, NC State
University, USA, 1998. Available at: www.design.ncsu.edu/cud/pubs/center/
books/ud_file/toc3b14.htm (last accessed March 2003).
A full discussion of universal design principles with examples to illustrate.

A. D. N. Edwards, editor, Extra-ordinary Human–Computer Interaction, Cambridge
University Press, 1993.
A collection of papers representing research on interfaces for users with disabil-
ities. The first of its kind.

The Web Accessibility Initiative: www.w3.org/WAI/
The World Wide Web Consortium’s own project to make the web universally
accessible. Contains extensive advice and guidelines.

I. Pitt and A. Edwards, Design of Speech-based Devices: A Practical Guide, Springer,
2002.
Covers the use of speech in the interface, including both the practical and theor-
etical issues.

J. Yunker, Beyond Borders: Web Globalization Strategies, New Riders Publishing,
2002.
A practical guide to internationalization of websites.

D. J. Moore and J. Taylor, Interactive multimedia systems for people with autism,
Journal of Educational Media, Vol. 25, No. 3, pp. 169–77, 2001.
A useful review of the actual and potential uses of interactive media in the educa-
tion of people with autism.

MODELS AND THEORIES

In all engineering disciplines, the designer recruits a selection
of models to contribute to the design process. If we were
building a new office block, for example, then we would use
models of air circulation to design the ventilation system,
structural models for the fabric and possibly social models for
the detailed design of the office layout.

Models are used in other disciplines too. We may analyze
the structure of a piece of music and decide that it is a rondo,
or say that a poem is in sonnet form. Further, we may delib-
erately set out to write a sonnet, thus imposing the model
upon the creative process. Craft is the art of design within con-
straint, and models help to formulate the constraints.

The chapters in Part 3 describe a range of models that can
be used during the interface design process. Just as in the
design of the office block several different types of model are
required for different aspects of the building, so in interface
design we would expect to use a whole selection of comple-
mentary methods.

Chapter 12 considers models with psychological or cognit-
ive origins, where the emphasis is on formulating aspects of
user behavior such as goal formation and problem solving.
Chapter 13 discusses socio-technical models that attempt to
describe the user within a social and organizational context,
while Chapter 14 looks at models of collaboration and group
interaction. Chapter 15 describes task analysis techniques for
determining the relevant actions a user performs in some work
domain. Chapter 16 is concerned with dialog description tech-
niques used to specify and analyze the communication between
user and system. Chapter 17 describes the use of general math-
ematical notations used in software engineering to specify
and analyze abstract descriptions of interactive systems, and
Chapter 18 extends these notations to model rich interactions.

P A R T

3

COGNITIVE MODELS

OV E RV I E W

Cognitive models represent users of interactive systems.

n Hierarchical models represent a user’s task and goal
structure.

n Linguistic models represent the user–system grammar.

n Physical and device models represent human motor
skills.

n Cognitive architectures underlie all of these cognitive
models.

12

420 Chapter 12 n Cognitive models

INTRODUCTION

The techniques and models in this chapter all claim to have some representation of
users as they interact with an interface; that is, they model some aspect of the user’s
understanding, knowledge, intentions or processing. The level of representation dif-
fers from technique to technique – from models of high-level goals and the results of
problem-solving activities, to descriptions of motor-level activity, such as keystrokes
and mouse clicks. The formalisms have largely been developed by psychologists, or
computer scientists, whose interest is in understanding user behavior.

One way to classify the models is in respect to how well they describe features of
the competence and performance of the user. Quoting from Simon [323]:

Competence models tend to be ones that can predict legal behaviour sequences but
generally do this without reference to whether they could actually be executed by users.
In contrast, performance models not only describe what the necessary behaviour
sequences are but usually describe both what the user needs to know and how this is
employed in actual task execution.

Competence models, therefore, represent the kinds of behavior expected of a user,
but they provide little help in analyzing that behavior to determine its demands
on the user. Performance models provide analytical power mainly by focussing on
routine behavior in very limited applications.

Another useful distinction between these models is whether they address the acquisi-
tion or formulation of a plan of activity or the execution of that plan. Referring
back to the interaction framework presented in Chapter 3, this classification would
mean that some models are concerned with understanding the User and his associ-
ated task language while others are concerned with the articulation translation
between that task language and the Input language. The presentation of the cognitive
models in this chapter follows this classification scheme, divided into the following
categories:

n hierarchical representation of the user’s task and goal structure
n linguistic and grammatical models
n physical and device-level models.

The first category deals directly with the issue of formulation of goals and tasks.
The second deals with the grammar of the articulation translation and how it is
understood by the user. The third category again deals with articulation, but at the
human motor level instead of at a higher level of human understanding.

Architectural assumptions about the user are needed in any of the cognitive models
discussed here. Some of the more basic architectural assumptions were covered in
Chapter 1, such as the distinction between long- and short-term memory. After dis-
cussing models in the three categories above, we will describe two additional cognitive
architectures and how they are relevant for analyzing interactive system design.

Many of these nominally cognitive models have a rather computational flavor.
This reflects the way that computational analogies are often used in cognitive

12.1

12.2 Goal and task hierarchies 421

psychology. The similarity between the language describing the user and that
describing the computer has some advantages and some dangers. On the positive
side it makes communication and analysis of the combined human–computer sys-
tem easier. For instance, cognitive complexity theory (described later) produces
models of both user goals and the system grammar, and can reason about their inter-
action. On the other hand, there is a danger that this will encourage a mechanistic
view of the user.

GOAL AND TASK HIERARCHIES

Many models make use of a model of mental processing in which the user achieves
goals by solving subgoals in a divide-and-conquer fashion. We will consider two
models, GOMS and CCT, where this is a central feature. However, we will see sim-
ilar features in other models, such as TAG (Section 12.3.2) and when we consider
task analysis techniques (Chapter 15).

Imagine we want to produce a report on sales of introductory HCI textbooks.
To achieve this goal we divide it into several subgoals, say gathering the data
together, producing the tables and histograms, and writing the descriptive material.
Concentrating on the data gathering, we decide to split this into further subgoals:
find the names of all introductory HCI textbooks and then search the book sales
database for these books. Similarly, each of the other subgoals is divided up into
further subgoals, until some level of detail is found at which we decide to stop. We
thus end up with a hierarchy of goals and subgoals. The example can be laid out
to expose this structure:

produce report

gather data

. find book names

. . do keywords search of names database

<<further subgoals>>

. . sift through names and abstracts by hand

<<further subgoals>>

. search sales database

<<further subgoals>>

layout tables and histograms

<<further subgoals>>

write description

<<further subgoals>>

Various issues arise as one attempts such analyses of computer use.
Where do we stop? We can go on decomposing tasks until we get down to the

individual hand and eye movements of the user, or we can stop at a more abstract
level. Where do we start? In a similar way, we can start our analyses at different

12.2

422 Chapter 12 n Cognitive models

points in the hierarchy of goals. At the extreme we could extend our analysis to larger
and larger goals: ‘light hob’ is a subgoal of ‘boil peas’ and so on to goals such as ‘have
my dinner’, ‘feed’ and ‘stay alive’.

These two questions are issues of granularity, and both of the methods described
below leave this to some extent in the hands of the designer. Different design issues
demand different levels of analysis. However, both methods operate at a relatively
low level; neither would attempt to start with such an abstract goal as ‘produce a
report’ which will involve real creativity and difficult problem solving. Instead they
confine themselves to more routine learned behavior. This most abstract task
is referred to as the unit task. The unit task does not require any problem-solving
skills on the part of the user, though it frequently demands quite sophisticated
problem-solving skills on the part of the designer to determine them.

What do we do when there are several ways of solving a problem, or if the solu-
tions to two subgoals interact? Users will often have more than one way to achieve
a goal and there must be some way of representing how they select between com-
peting solutions.

Another important issue has to do with the treatment of error. Users are not
perfect. A goal hierarchy may show how the perfect user would achieve a goal, but
what can it say about difficulties the user may have along the way? In general, pre-
diction of error behavior is poor amongst these hierarchical modeling techniques,
though some (cognitive complexity theory (CCT), for example) can represent error
behavior.

12.2.1 GOMS

The GOMS model of Card, Moran and Newell is an acronym for Goals, Operators,
Methods and Selection [56]. A GOMS description consists of these four elements:

Goals These are the user’s goals, describing what the user wants to achieve.
Further, in GOMS the goals are taken to represent a ‘memory point’ for the user,
from which he can evaluate what should be done and to which he may return
should any errors occur.

Operators These are the lowest level of analysis. They are the basic actions that
the user must perform in order to use the system. They may affect the system
(for example, press the ‘X’ key) or only the user’s mental state (for example, read
the dialog box). There is still a degree of flexibility about the granularity of
operators; we may take the command level ‘issue the SELECT command’ or be
more primitive: ‘move mouse to menu bar, press center mouse button . . .’.

Methods As we have already noted, there are typically several ways in which a goal
can be split into subgoals. For instance, in a certain window manager a currently
selected window can be closed to an icon either by selecting the ‘CLOSE’ option
from a pop-up menu, or by hitting the ‘L7’ function key. In GOMS these two goal
decompositions are referred to as methods, so we have the CLOSE-METHOD and
the L7-METHOD:

12.2 Goal and task hierarchies 423

GOAL: ICONIZE-WINDOW

. [select GOAL: USE-CLOSE-METHOD

. . MOVE-MOUSE-TO-WINDOW-HEADER

. . POP-UP-MENU

. . CLICK-OVER-CLOSE-OPTION

GOAL: USE-L7-METHOD

. . PRESS-L7-KEY]

The dots are used to indicate the hierarchical level of goals.

Selection From the above snippet we see the use of the word select where the
choice of methods arises. GOMS does not leave this as a random choice, but
attempts to predict which methods will be used. This typically depends both on
the particular user and on the state of the system and details about the goals.
For instance, a user, Sam, never uses the L7-METHOD, except for one game,
‘blocks’, where the mouse needs to be used in the game until the very moment
the key is pressed. GOMS captures this in a selection rule for Sam:

User Sam:
Rule 1: Use the CLOSE-METHOD unless another rule applies.
Rule 2: If the application is ‘blocks’ use the L7-METHOD.

The goal hierarchies described in a GOMS analysis are almost wholly below the level
of the unit task defined earlier. A typical GOMS analysis would therefore consist of
a single high-level goal, which is then decomposed into a sequence of unit tasks, all
of which can be further decomposed down to the level of basic operators:

GOAL: EDIT-MANUSCRIPT

. GOAL: EDIT-UNIT-TASK repeat until no more unit tasks

The goal decomposition between the overall task and the unit tasks would involve
detailed understanding of the user’s problem-solving strategies and of the applica-
tion domain. These are side-stepped entirely by the method as originally proposed.
It would be possible to use the general notation in order to describe this subgoal
structure (as for instance in the book report example above). This form of high-level
goal description is adopted during task analysis which will be discussed in Chap-
ter 15. In particular, the aim of hierarchical task analysis is to produce task decom-
positions, which would be similar (but in a different notation) to that in the book
report example.

Analysis of the GOMS goal structure can yield measures of performance. The
stacking depth of a goal structure can be used to estimate short-term memory
requirements. The model of the users’ mental processes implied by this is, of course,
very idealized. Also, the selection rules can be tested for accuracy against user traces,
and changed in response to discrepancies. In early experiments on the technique, the
inventors were able to achieve on average a 90% correct prediction rate of user com-
mands. Further, a very simple method of predicting times (basically assuming that
each operator takes a constant time) was able to predict actual times with an error
of 33%.

424 Chapter 12 n Cognitive models

The original GOMS model has served as the basis for much of the cognitive model-
ing research in HCI. It was good for describing how experts perform routine tasks.
Coupled with the physical device models discussed later, it can be used to predict the
performance of these users in terms of execution times. It was never intended to pro-
vide the kind of information about the user’s knowledge that could be compared
across different tasks in order to predict things like training or transfer times.

DESIGN FOCUS

GOMS saves money

Some years ago the US telephone company NYNEX were intending to install a new computer system
to support their operators. Before installation a detailed GOMS analysis was performed taking into
account the cognitive and physical processes involved in dealing with a call. The particular technique
was rather different from the original GOMS notation as described here. Because an operator performs
several activities in parallel a PERT-style GOMS description was constructed [192, 154]. The PERT ana-
lysis was used to determine the critical path, and hence the time to complete a typical task. It was
discovered that rather than speeding up operations, the new system would take longer to process each
call. The new system was abandoned before installation, leading to a saving of many millions of dollars.

Worked exercise Create a GOMS description of the task of photocopying an article from a journal. Discuss the
issue of closure (see Chapter 1) in terms of your GOMS description.

Answer One possible GOMS description of the goal hierarchy for this task is given below.
Answers will vary depending on assumptions about the photocopier used as the model
for the exercise. In this example, we will assume that the article is to be copied one
page at a time and that a cover over the imaging surface of the copier has to be in place
before the actual copy can be made.

GOAL: PHOTOCOPY-PAPER

. GOAL: LOCATE-ARTICLE

. GOAL: PHOTOCOPY-PAGE repeat until no more pages

. . GOAL: ORIENT-PAGE

. . . OPEN-COVER

. . . SELECT-PAGE

. . . POSITION-PAGE

. . . CLOSE-COVER

. . GOAL: PRESS-COPY-BUTTON

. . GOAL: VERIFY-COPY

. . . LOCATE-OUT-TRAY

. . . EXAMINE-COPY

. GOAL: COLLECT-COPY

. . LOCATE-OUT-TRAY

12.2 Goal and task hierarchies 425

. . REMOVE-COPY (outer goal satisfied!)

. GOAL: RETRIEVE-JOURNAL

. . OPEN-COVER

. . REMOVE-JOURNAL

. . CLOSE-COVER

The closure problem which appears in this example occurs when the copy of the article
is removed from the photocopier out tray, satisfying the overall goal for the task. In the
above description, however, the original journal article is still on the imaging surface of
the photocopier, and the cover is closed. The user could easily forget to remove the
journal. How could the photocopying procedure be revised to eliminate this prob-
lem? One answer is to force the goal RETRIEVE-JOURNAL to be satisfied before
COLLECT-COPY.

12.2.2 Cognitive complexity theory

Cognitive complexity theory, introduced by Kieras and Polson [199], begins with
the basic premises of goal decomposition from GOMS and enriches the model to
provide more predictive power. CCT has two parallel descriptions: one of the user’s
goals and the other of the computer system (called the device in CCT). The descrip-
tion of the user’s goals is based on a GOMS-like goal hierarchy, but is expressed
primarily using production rules. We introduced production rules in Chapter 1 and
we further describe their use in CCT below. For the system grammar, CCT uses
generalized transition networks, a form of state transition network. This will not be
described here, but state transition networks will be discussed in detail in Chapter 16.

The production rules are a sequence of rules:

if condition then action

where condition is a statement about the contents of working memory. If the condi-
tion is true then the production rule is said to fire. An action may consist of one or
more elementary actions, which may be either changes to the working memory,
or external actions such as keystrokes. The production rule ‘program’ is written in a
LISP-like language.

As an example, we consider an editing task using the UNIX vi text editor. The task
is to insert a space where one has been missed out in the text, for instance if we
noticed that in the above paragraph we had written ‘cognitivecomplexity theory’.
This is a reasonably frequent typing error and so we assume that we have developed
good procedures to perform the task. We consider a fragment of the associated CCT
production rules.

(SELECT-INSERT-SPACE

IF (AND (TEST-GOAL perform unit task)

(TEST-TEXT task is insert space)

(NOT (TEST-GOAL insert space))

(NOT (TEST-NOTE executing insert space)))

426 Chapter 12 n Cognitive models

THEN ((ADD-GOAL insert space)

(ADD-NOTE executing insert space)

(LOOK-TEXT task is at %LINE %COL)))

(INSERT-SPACE-DONE

IF (AND (TEST-GOAL perform unit task)

(TEST-NOTE executing insert space)

(NOT (TEST-GOAL insert space)))

THEN ((DELETE-NOTE executing insert space)

(DELETE-GOAL perform unit task)

(UNBIND %LINE %COL)))

(INSERT-SPACE-1

IF (AND (TEST-GOAL insert space)

(NOT (TEST-GOAL move cursor))

(NOT (TEST-CURSOR %LINE %COL)))

THEN ((ADD-GOAL move cursor to %LINE %COL)))

(INSERT-SPACE-2

IF (AND (TEST-GOAL insert space)

(TEST-CURSOR %LINE %COL))

THEN ((DO-KEYSTROKE ‘I’)

(DO-KEYSTROKE SPACE)

(DO-KEYSTROKE ESC)

(DELETE-GOAL insert space)))

To see how these rules work, imagine that the user has just seen the typing mis-
take and thus the contents of working memory (w.m.) are

(GOAL perform unit task)

(TEXT task is insert space)

(TEXT task is at 5 23)

(CURSOR 8 7)

TEXT refers to the text of the manuscript that is being edited and CURSOR refers to
the insertion cursor on the screen. Of course, these items are not actually located in
working memory – they are external to the user – but we assume that knowledge
from observing them is stored in the user’s working memory.

The location (5,23) is the line and column of the typing mistake where the space
is required. However, the current cursor position is at line 8 and column 7. This is
of course acquired into the user’s working memory by looking at the screen. Look-
ing at the four rules above (SELECT-INSERT-SPACE, INSERT-SPACE-DONE,
INSERT-SPACE-1 and INSERT-SPACE-2), only the first can fire. The condition
for SELECT-INSERT-SPACE is:

(AND (TEST-GOAL perform unit task)

true because (GOAL perform unit task) is in w.m.
(TEST-TEXT task is insert space)

true because (TEXT task is insert space) is in w.m.

12.2 Goal and task hierarchies 427

(NOT (TEST-GOAL insert space))

true because (GOAL insert space) is not in w.m.
(NOT (TEST-NOTE executing insert space)))

true because (NOTE executing insert space)
is not in w.m.

So, the rule fires and its action is performed. This action has no external effect in
terms of keystrokes, but adds extra information to working memory. The (LOOK-
TEXT task is at %LINE %COL) looks for a corresponding entry and binds LINE
and COL to 5 and 23 respectively. These are variables, somewhat as in a normal
programming language, which are referred to again in other rules.

The contents of working memory after the firing of rule SELECT-INSERT-SPACE
are as follows (note that the order of elements of working memory is arbitrary):

(GOAL perform unit task)

(TEXT task is insert space)

(TEXT task is at 5 23)

(NOTE executing insert space)

(GOAL insert space)

(LINE 5)

(COL 23)

(CURSOR 8 7)

At this point neither rule SELECT-INSERT-SPACE nor INSERT-SPACE-DONE
will fire as the entry (GOAL insert space) will make their conditions false. As
LINE is bound to 5 and COL is bound to 23, the condition (TEST-CURSOR %LINE
%COL) will be false also, and hence only rule INSERT-SPACE-1 can fire.

After this rule’s actions have been performed, the working memory will include
the entry (GOAL move cursor to 5 23). The rules for moving the cursor are
not included here, but would be quite extensive, moving up/down and right/left
depending on the relative positions of the cursor and the target location. Eventually,
assuming the cursor movement is successful, the cursor would be at (5,23) whence
rule INSERT-SPACE-2 would be able to fire. This would perform the keystrokes:
I, SPACE and ESC, which in vi puts the editor into insert mode, types the space
and then leaves insert mode. The action also removes the insert space goal from
working memory as this goal has been achieved.

Now the goal has been removed, the second rule INSERT-SPACE-DONE is free to
fire, which ‘tidies up’ working memory. In particular, it ‘unbinds’ the variables LINE
and COL, that is it removes the bindings for them from working memory.

Notice that the rules did not fire in the order they were written. Although they
look somewhat like the if–then–else commands one would get in a standard pro-
gramming language, they behave very differently. The rules are all active and at each
moment any rule that has its conditions true may fire. Some rules may never fire;
for instance, if the cursor is at the correct position the third rule would not fire.
Furthermore, the same rule may fire repeatedly; for example, if we were to write out
the production rules for moving the cursor, one rule may well be

428 Chapter 12 n Cognitive models

(MOVE-UP

IF (AND (TEST-GOAL move-up)

(TEST-CURSOR-BELOW %LINE))

THEN ((DO-KEYSTROKE ‘K’)))

This rule is to type ‘K’ (the vi command to move the cursor up one line) while
the cursor is below the desired line. It will, of course, be constantly refired until the
cursor is at the correct line.

Notice that the keystrokes for actually inserting the space, once you are at the
right position, have been proceduralized. That is, the user does not go through the
subgoals ‘enter insert mode’, ‘type space’, ‘leave insert mode’. For a complex
insertion, it is quite likely that the user will perform exactly these goals. However,
the act of inserting a single space is assumed to be so well rehearsed that it is
stored as a single chunk. That is, the rules above represent expert knowledge of
the vi editor.

Of course, novices may well do exactly the same keystrokes as the experts, but
the way they store the knowledge will be different. To cope with this, CCT has a set
of ‘style’ rules for novices. These limit the form of the conditions and actions in the
production rules. Basically, novices are expected to test constantly all the rules in
their working memory and to check for feedback from the system after every
keystroke. Thus a set of ‘novice’ rules would not include the proceduralized form of
insert space. Bovair, Kieras and Polson provide a list of many style rules which can
be used to embody certain psychological assumptions about the user (novice/expert
distinction is only one) in a CCT description [39].

The rules in CCT need not represent error-free performance. They can be used
to explain error phenomena, though they cannot predict them. For instance, the
rules above for inserting a space are ‘buggy’ – they do not check the editor’s mode.
Imagine you had just been typing the ‘cognitive’ in ‘cognitivecomplexity theory’
(with the space missing), you think for a few minutes and then look again at the
screen and notice that the space is missing. The cursor is at the correct position for
the space, so rule INSERT-SPACE-1 never gets fired and we go directly through
the sequence: SELECT-INSERT-SPACE, INSERT-SPACE-2 then INSERT-
SPACE-DONE. You type ‘i’, a space and then escape. However, the ‘i’ assumes that
you are in vi’s command mode, and is the command to move the editor into insert
mode. If, however, after typing ‘cognitive’ you had not typed escape, to get you back
into command mode, the whole sequence would be done in insert mode. The text
would read: ‘cognitiveI complexity theory’.

The CCT rules are closely related to GOMS-like goal hierarchies; the rules may be
generated from such a hierarchy, or alternatively, we may analyze the production
rules to obtain the goal tree:

GOAL: insert space

. GOAL: move cursor – if not at right position

. PRESS-KEY-I

. PRESS-SPACE

. PRESS-ESCAPE

12.2 Goal and task hierarchies 429

The stacking depth of this goal hierarchy (as described for GOMS) is directly related
to the number of (GOAL ...) terms in working memory.

In fact, the CCT rules can represent more complex plans than the simple sequen-
tial hierarchies of GOMS. The continuous activity of all production rules makes it
possible to represent concurrent plans. For example, one could have one set of pro-
duction rules representing the goal of writing a book, and another set representing
the goal of drinking tea. These rules could both be active simultaneously, thus allow-
ing an author to drink tea whilst typing. Despite this apparent flexibility, CCT is not
normally used in this way. It is not clear why this is, except that CCT, like GOMS,
is aimed at low-level, proceduralized goals – that is, the unit task. It is reasonable
that successive unit tasks be chosen from different activities: the author may delete
a word, have a drink, do a word search, but each time a complete unit task would be
performed – the author does not take a drink of tea in the middle of deleting a word.

We have seen how CCT rules may be informally analyzed to discuss issues of
proceduralization and error behavior, and how we can relate them to GOMS-like
goal hierarchies. However, the main aim of CCT is (as its name suggests) to be able
to measure the complexity of an interface.

Basically, the more production rules in the CCT description the more difficult the
interface is to learn. This claim rests on the assumption that the production rules
represent reasonably accurately the way knowledge is stored and therefore that the
time taken to learn an interface is roughly proportional to the number of rules you
have to learn.

We have only discussed the user side of CCT here. If the cognitive user descrip-
tion is complemented by a description of the system, it is claimed that one can pre-
dict the difficulty of the mapping between the user’s goals and the system model.
The generalized transition networks that describe the system grammar themselves
have a hierarchical structure. Thus both the description of the user and that of
the system can be represented as hierarchies. These can then be compared to find
mismatches and to produce a measure of dissonance.

There are various problems with CCT. As with many ‘rich’ description methods,
the size of description for even a part of an interface can be enormous. Furthermore,
there may be several ways of representing the same user behavior and interface
behavior, yielding different measures of dissonance. To some extent this is catered for
by the novice style rules, but there is no such set of rules for the system description.

Another problem is the particular choice of notations. Production rules are often
suggested as a good model of the way people remember procedural knowledge, but
there are obvious ‘cludges’ in the CCT description given above. In particular, the
working memory entry (NOTE executing insert space) is there purely to allow
the INSERT-SPACE-DONE rule to fire at the appropriate time. It is not at all clear
that it has any real cognitive significance. One may also question whether the particu-
lar notation chosen for the system is critical to the method. One might choose to
represent the system using any one of the dialog description notations in Chapter 16.
Different notations would probably yield slightly different measures of dissonance.

However, one should regard CCT as an engineering tool giving one a rough measure
of learnability and difficulty combined with a detailed description of user behavior.

430 Chapter 12 n Cognitive models

This can then be used by analysts employing their professional expertise. Arguably,
the strength of the central idea of CCT lies beyond the particular notations used.

12.2.3 Problems and extensions of goal hierarchies

The formation of a goal hierarchy is largely a post hoc technique and runs a very real
risk of being defined by the computer dialog rather than the user. One way to rectify
this is to produce a goal structure based on pre-existing manual procedures and thus
obtain a natural hierarchy [201]. To be fair, GOMS defines its domain to be that of
expert use, and thus the goal structures that are important are those which users
develop out of their use of the system. However, such a natural hierarchy may be par-
ticularly useful as part of a CCT analysis, representing a very early state of knowledge.

On the positive side, the conceptual framework of goal hierarchies and user goal
stacks can be used to express interface issues, not directly addressed by the notations
above. For instance, we can use this to examine in more detail the closure problem with
early automated teller machines (ATMs) mentioned in the Design Focus box in Chap-
ter 1, Section 1.3.2. These early ATMs gave the customers the money before returning
their cards. Unfortunately, this led to many customers leaving their cards behind. This
was despite on-screen messages telling them to wait. This is referred to as a problem
of closure. The user’s principal goal is to get money; when that goal is satisfied, the
user does not complete or close the various subtasks which still remain open:

GOAL: GET-MONEY

. GOAL: USE-ATM

. . INSERT-CARD

. . ENTER-PIN

. . ENTER-AMOUNT

. . COLLECT-MONEY

<< outer goal now satisfied goal stack popped >>

. . COLLECT-CARD – subgoal operators missed

Banks (at least some of them) soon changed the dialog order so that the card was
always retrieved before the money was dispensed. A general rule that can be applied
to any goal hierarchy from this is that no higher-level goal should be satisfied until
all subgoals have been satisfied. However, it is not always easy to predict when the
user will consider a goal to have been satisfied. For instance, one of the authors has
been known to collect his card and forget the money!

LINGUISTIC MODELS

The user’s interaction with a computer is often viewed in terms of a language, so it
is not surprising that several modeling formalisms have developed centered around
this concept. Several of the dialog notations described in Chapter 16 are also based

12.3

12.3 Linguistic models 431

on linguistic ideas. Indeed, BNF grammars are frequently used to specify dialogs.
The models here, although similar in form to dialog design notations, have been
proposed with the intention of understanding the user’s behavior and analyzing the
cognitive difficulty of the interface.

12.3.1 BNF

Representative of the linguistic approach is Reisner’s use of Backus–Naur Form (BNF)
rules to describe the dialog grammar [301]. This views the dialog at a purely syntactic
level, ignoring the semantics of the language. BNF has been used widely to specify
the syntax of computer programming languages, and many system dialogs can be
described easily using BNF rules. For example, imagine a graphics system that has a
line-drawing function. To select the function the user must select the ‘line’ menu option.
The line-drawing function allows the user to draw a polyline, that is a sequence of
line arcs between points. The user selects the points by clicking the mouse button in
the drawing area. The user double clicks to indicate the last point of the polyline.

draw-line ::= select-line + choose-points

+ last-point

select-line ::= position-mouse + CLICK-MOUSE

choose-points ::= choose-one

| choose-one + choose-points

choose-one ::= position-mouse + CLICK-MOUSE

last-point ::= position-mouse + DOUBLE-CLICK-MOUSE

position-mouse ::= empty | MOVE-MOUSE + position-mouse

The names in the description are of two types: non-terminals, shown in lower case,
and terminals, shown in upper case. Terminals represent the lowest level of user
behavior, such as pressing a key, clicking a mouse button or moving the mouse.
Non-terminals are higher-level abstractions. The non-terminals are defined in terms
of other non-terminals and terminals by a definition of the form

name ::= expression

The ‘::=’ symbol is read as ‘is defined as’. Only non-terminals may appear on the
left of a definition. The right-hand side is built up using two operators ‘+’ (sequence)
and ‘|’ (choice). For example, the first rule says that the non-terminal draw-line
is defined to be select-line followed by choose-points followed by last-
point. All of these are non-terminals, that is they do not tell us what the basic user
actions are. The second rule says that select-line is defined to be position-
mouse (intended to be over the ‘line’ menu entry) followed by CLICK-MOUSE. This
is our first terminal and represents the actual clicking of a mouse.

To see what position-mouse is, we look at the last rule. This tells us that there
are two possibilities for position-mouse (separated by the ‘|’ symbol). One
option is that position-mouse is empty – a special symbol representing no
action. That is, one option is not to move the mouse at all. The other option is to do

432 Chapter 12 n Cognitive models

a MOVE-MOUSE action followed by position-mouse. This rule is recursive, and
this second position-mouse may itself either be empty or be a MOVE-MOUSE
action followed by position-mouse, and so on. That is, position-mouse may
be any number of MOVE-MOUSE actions whatsoever.

Similarly, choose-points is defined recursively, but this time it does not have
the option of being empty. It may be one or more of the non-terminal choose-one
which is itself defined to be (like select-line) position-mouse followed by
CLICK-MOUSE.

The BNF description of an interface can be analyzed in various ways. One mea-
sure is to count the number of rules. The more rules an interface requires to use it,
the more complicated it is. This measure is rather sensitive to the exact way the inter-
face is described. For example, we could have replaced the rules for choose-
points and choose-one with the single definition

choose-points ::= position-mouse + CLICK-MOUSE

| position-mouse + CLICK-MOUSE + choose-points

A more robust measure also counts the number of ‘+’ and ‘|’ operators. This
would, in effect, penalize the more complex single rule. Another problem arises with
the rule for select-line. This is identical to the choose-one rule. However,
the acts of selecting a menu option and choosing a point on a drawing surface
are obviously so different that they must surely be separated. Decisions like this
about the structure of a BNF description are less of a problem in practice than the
corresponding problems we had with CCT.

In addition to these complexity measures for the language as a whole, we can use
the BNF definition to work out how many basic actions are required for a particular
task, and thus obtain a crude estimate of the difficulty of that task.

The BNF description above only represented the user’s actions, not the user’s
perception of the system’s responses. This input bias is surprisingly common
amongst cognitive models, as we will discuss in Section 12.4. Reisner has developed
extensions to the basic BNF descriptions, which attempt to deal with this by adding
‘information-seeking actions’ to the grammar.

12.3.2 Task–action grammar

Measures based upon BNF have been criticized as not ‘cognitive’ enough. They
ignore the advantages of consistency both in the language’s structure and in its
use of command names and letters. Task–action grammar (TAG) [284] attempts
to deal with some of these problems by including elements such as parametrized
grammar rules to emphasize consistency and encoding the user’s world knowledge
(for example, up is the opposite of down).

To illustrate consistency, we consider the three UNIX commands: cp (for copying
files), mv (for moving files) and ln (for linking files). Each of these has two possible
forms. They either have two arguments, a source and destination filename, or have
any number of source filenames followed by a destination directory:

12.3 Linguistic models 433

copy ::= ‘cp’ + filename + filename

| ‘cp’ + filenames + directory

move ::= ‘mv’ + filename + filename

| ‘mv’ + filenames + directory

link ::= ‘ln’ + filename + filename

| ‘ln’ + filenames + directory

Measures based upon BNF could not distinguish between these consistent com-
mands and an inconsistent alternative – say if ln took its directory argument
first. Task–action grammar was designed to reveal just this sort of consistency. Its
description of the UNIX commands would be

file-op[Op] := command[Op] + filename + filename

| command[Op] + filenames + directory

command[Op=copy] := ‘cp’

command[Op=move] := ‘mv’

command[Op=link] := ‘ln’

This captures the consistency of the commands and closely resembles the original
textual description. One would imagine that a measure of the complexity of the
language based on the TAG description would be better at predicting actual learning
and performance than a simple BNF one.

As well as handling consistency well, TAG has features for talking about ‘world
knowledge’. For example, imagine we have two command line interfaces for moving
a mechanical turtle around the floor.

Command interface 1
movement[Direction]

:= command[Direction] + distance + RETURN

command[Direction=forward] := ‘go 395’

command[Direction=backward] := ‘go 013’

command[Direction=left] := ‘go 712’

command[Direction=right] := ‘go 956’

Command interface 2
movement[Direction]

:= command[Direction] + distance + RETURN

command[Direction=forward] := ‘FORWARD’

command[Direction=backward] := ‘BACKWARD’

command[Direction=left] := ‘LEFT’

command[Direction=right] := ‘RIGHT’

The first interface may not be as silly as it seems; the command ‘go 395’ could
refer to the address of a machine-code routine, which performs the appropriate
movement. However, it is absolutely clear that the second interface is preferable to
the first. TAG includes a special form known-item, which is used to denote infor-
mation that the user will already know, and thus not need to learn in order to use the
system. Using this form, the TAG rules for the second interface are rewritten

434 Chapter 12 n Cognitive models

Command interface 2
movement[Direction]

:= command[Direction] + distance + RETURN

command[Direction]:= known-item[Type=word,Direction]

* command[Direction=forward] := ‘FORWARD’

* command[Direction=backward] := ‘BACKWARD’

* command[Direction=left] := ‘LEFT’

* command[Direction=right] := ‘RIGHT’

The starred rules can be generated from the second rule using the user’s world
knowledge. They are included in any TAG description for completeness, but are not
counted in any measure of complexity.

Sometimes it may not be clear what the appropriate command is, but once we
know one, the rest become obvious. For example, consider a simple database dis-
playing a list of records. We are expecting two commands, one to move up the list to
the previous record, and another to move down the list to the next record. There are
several options for the commands, for instance UP/DOWN, PREVIOUS/NEXT,
possibly in upper or lower case, possibly also just the first letter of the relevant
word. In addition, one might have mixed-up command sets such as UP/NEXT or
N/previous. The fact that any of the former set of commands is easier to learn than
the mixed-up commands is called congruence. TAG has a notation to describe the
congruence of an interface. The notation F(‘next’) is used to denote the feature
set related to the word ‘next’. That is, next/previous. With this notation a congruent
grammar requires only one ‘real’ rule, such as

browse[Direction] := F(‘next’) + return

* browse[Direction=up] := ‘previous’ + return

* browse[Direction=down] := ‘next’ + return

We have seen that the notation allows one to say that the commands RIGHT and
LEFT are consistent for opposite actions. How do we know that the user regards the
opposite of RIGHT to be LEFT rather than WRONG? Obviously, the inclusion of
world knowledge depends upon the user of the system – the above certainly assumes
that the user’s language is English. The designer is responsible for the input of this
world knowledge into the TAG description and its validity will depend on the pro-
fessional judgment of the designer. However, TAG will make these assumptions clear
and thus, by highlighting them, hold them up for inspection.

THE CHALLENGE OF DISPLAY-BASED SYSTEMS

Both goal hierarchical and grammar-based techniques were initially developed when
most interactive systems were command line, or at most, keyboard and cursor based.
There are significant worries, therefore, about how well these approaches can gener-
alize to deal with more modern windowed and mouse-driven interfaces.

12.4

12.4 The challenge of display-based systems 435

Both families of techniques largely ignore system output – what the user sees.
The implicit assumption is that the users know exactly what they want to do and
execute the appropriate command sequences blindly. There are exceptions to this.
We have already mentioned how Reisner’s BNF has been extended to include asser-
tions about output. In addition, TAG has been extended to include information
about how the display can affect the grammar rules [180].

Another problem for grammars is the lowest-level lexical structure. Pressing a
cursor key is a reasonable lexeme, but moving a mouse one pixel is less sensible.
In addition, pointer-based dialogs are more display oriented. Clicking a cursor at a
particular point on the screen has a meaning dependent on the current screen con-
tents. This problem can be partially resolved by regarding operations such as ‘select
region of text’ or ‘click on quit button’ as the terminals of the grammar. If this
approach is taken, the detailed mouse movements and parsing of mouse events in
the context of display information (menus, etc.) are abstracted away.

Goal hierarchy methods have different problems, as more display-oriented
systems encourage less structured methods for goal achievement. Instead of hav-
ing well-defined plans, the user is seen as performing a more exploratory task,
recognizing fruitful directions and backing out of others. Typically, even when this
exploratory style is used at one level, we can see within it and around it more
goal-oriented methods. So, for example, we might consider the high-level goal
structure

WRITE_LETTER

. FIND_SIMILAR_LETTER

. COPY_IT

. EDIT_COPY

However, the task of finding a similar letter would be exploratory, searching through
folders, etc. Such recognition-based searching is extremely difficult to represent
as a goal structure. Similarly, the actual editing would depend very much on
non-planned activities: ‘ah yes, I want to reuse that bit, but I’ll have to change that’.
If we then drop to a lower level again, goal hierarchies become more applicable.
For instance, during the editing stage we might have the ‘delete a word’ subdialog:

DELETE_WORD

. SELECT_WORD

. . MOVE_MOUSE_TO_WORD_START

. . DEPRESS_MOUSE_BUTTON

. . MOVE_MOUSE_TO_WORD_END

. . RELEASE_MOUSE_BUTTON

. CLICK_ON_DELETE

. . MOVE_MOUSE_TO_DELETE_ICON

. . CLICK_MOUSE_BUTTON

Thus goal hierarchies can partially cope with display-oriented systems by an
appropriate choice of level, but the problems do emphasize the rather prescriptive
nature of the cognitive models underlying them.

436 Chapter 12 n Cognitive models

These problems have been one of the factors behind the growing popularity of
situated action [334] and distributed cognition [208, 185] in HCI (see also Chap-
ter 14). Both approaches emphasize the way in which actions are contingent upon
events and determined by context, rather than being pre-planned. At one extreme,
protagonists of these approaches seem to deny any planned actions or long-term
goals. On the other hand, traditional cognitive modelers are modeling display-based
cognition using production rules and similar methods, which include sensory data
within the models.

At a low level, chunked expert behavior is modeled effectively using hierarchical
or linguistic models, and is where the keystroke-level model (discussed in Section
12.5.1 below) has proved effective. In contrast, it is clear that no amount of cognitive
modeling can capture the activity during the writing of a poem. Between these two,
cognitive models will have differing levels of success and utility. Certainly, models at all
but the lowest levels must take into account the user’s reactions to feedback from the
system, otherwise they cannnot address the fundamental issue of interactivity at all.

PHYSICAL AND DEVICE MODELS

12.5.1 Keystroke-level model

Compared with the deep cognitive understanding required to describe problem-
solving activities, the human motor system is well understood. KLM (Keystroke-Level
Model [55]) uses this understanding as a basis for detailed predictions about user
performance. It is aimed at unit tasks within interaction – the execution of simple
command sequences, typically taking no more than 20 seconds. Examples of this
would be using a search and replace feature, or changing the font of a word. It does
not extend to complex actions such as producing a diagram. The assumption is that
these more complex tasks would be split into subtasks (as in GOMS) before the user
attempts to map them into physical actions. The task is split into two phases:

acquisition of the task, when the user builds a mental representation of the task;

execution of the task using the system’s facilities.

KLM only gives predictions for the latter stage of activity. During the acquisition
phase, the user will have decided how to accomplish the task using the primitives of
the system, and thus, during the execution phase, there is no high-level mental activ-
ity – the user is effectively expert. KLM is related to the GOMS model, and can be
thought of as a very low-level GOMS model where the method is given.

The model decomposes the execution phase into five different physical motor
operators, a mental operator and a system response operator:

K Keystroking, actually striking keys, including shifts and other modifier keys.

B Pressing a mouse button.

P Pointing, moving the mouse (or similar device) at a target.

12.5

12.5 Physical and device models 437

H Homing, switching the hand between mouse and keyboard.

D Drawing lines using the mouse.

M Mentally preparing for a physical action.

R System response which may be ignored if the user does not have to wait for it, as
in copy typing.

The execution of a task will involve interleaved occurrences of the various oper-
ators. For instance, imagine we are using a mouse-based editor. If we notice a single
character error we will point at the error, delete the character and retype it, and then
return to our previous typing point. This is decomposed as follows:

1. Move hand to mouse H[mouse]
2. Position mouse after bad character PB[LEFT]
3. Return to keyboard H[keyboard]
4. Delete character MK[DELETE]
5. Type correction K[char]
6. Reposition insertion point H[mouse]MPB[LEFT]

Notice that some operators have descriptions added to them, representing which
device the hand homes to (for example, [mouse]) and what keys are hit (for example,
LEFT – the left mouse button).

The model predicts the total time taken during the execution phase by adding the
component times for each of the above activities. For example, if the time taken for
one keystroke is tK, then the total time doing keystrokes is

TK = 2tK

Similar calculations for the rest of the operators give a total time of

Texecute = TK + TB + TP + TH + TD + TM + TR

= 2tK + 2tB + tP + 3tH + 0 + 2tM + 0

In this example, the system response time was zero. However, if the user had to
wait for the system then the appropriate time would be added. In many typing tasks,
the user can type ahead anyway and thus there is no need to add response times.
Where needed, the response time can be measured by observing the system.

The times for the other operators are obtained from empirical data. The keying
time obviously depends on the typing skill of the user, and different times are thus
used for different users. Pressing a mouse button is usually quicker than typing
(especially for two-finger typists), and a more accurate time prediction can be made
by separating out the button presses B from the rest of the keystrokes K. The point-
ing time can be calculated using Fitts’ law (see Chapter 1), and thus depends on the
size and position of the target.1 Alternatively, a fixed time based on average within

1 The form of Fitts’ law used with the original KLM is K log2(D/S + 0.5), where D is the distance to the
target and S is the target size. We will use this form for calculations in this subsection, but revert to the
form a + b log2(D/S + 1) in the next subsection when we consider Buxton’s three-state model, as this form
was used for these experiments.

438 Chapter 12 n Cognitive models

screen pointing can be used. Drawing time depends on the number and length of the
lines drawn, and is fairly domain specific, but one can easily use empirical data for
more general drawing tasks. Finally, homing time and mental preparation time are
assumed constant. Typical times are summarized in Table 12.1.

The mental operator is probably the most complex part of KLM. Remember that
the user is assumed to have decided what to do, and how to do it. The mental pre-
paration is thus just the slight pauses made as the user recalls what to do next.
There are complicated heuristics for deciding where to put M operators, but they all
boil down to the level of chunking (see Chapter 1 for a discussion of chunking).
If the user types a word, or a well-known command name, this will be one chunk,
and hence only require one mental operator. However, if a command name was an
acronym which the user was recalling letter by letter, then we would place one M
operator per letter.

The physical operator times all depend on the skills of the user. Also, the mental
operator depends on the level of chunking, and hence the expertise of the user. You
must therefore decide before using KLM predictions just what sort of user you are
thinking about. You cannot even work out the operators and then fill in the times
later, as different users may choose different methods and have different placings of
M operators due to chunking. This sounds rather onerous, but the predictions made
by KLM are only meant to be an approximation, and thus reasonable guesses about
levels of expertise are enough.

Individual predictions may be interesting, but the power of KLM lies in compar-
ison. Given several systems, we can work out the methods to perform key tasks, and
then use KLM to tell us which system is fastest. This is considerably cheaper than

Table 12.1 Times for various operators in the keystroke-level model (adapted from
Card, Moran and Newell [56], published and reprinted by permission of Lawrence Erlbaum
Associates, Inc.)

Operator Remarks Time (s)

K Press key
good typist (90 wpm) 0.12
poor typist (40 wpm) 0.28
non-typist 1.20

B Mouse button press
down or up 0.10
click 0.20

P Point with mouse
Fitts’ law 0.1 log2(D/S + 0.5)
average movement 1.10

H Home hands to and from keyboard 0.40
D Drawing – domain dependent –
M Mentally prepare 1.35
R Response from system – measure –

wpm = words per minute

12.5 Physical and device models 439

conducting lengthy experiments (levels of individual variation would demand vast
numbers of trials – see Chapter 9). Furthermore, the systems need not even exist.
From a description of a proposed system, we can predict the times taken for tasks.
As well as comparing systems, we can compare methods within a system. This can be
useful in preparing training materials, as we can choose to teach the faster methods.

Using the keystroke-level model

As an example, we compare the two methods for iconizing a window given in Section
12.2.1. One used the ‘L7’ function key, and the other the ‘CLOSE’ option from the window’s
pop-up menu. The latter is obtained by moving to the window’s title bar, depressing the left mouse
button, dragging the mouse down the pop-up menu to the ‘CLOSE’ option, and then releasing the
mouse button. We assume that the user’s hand is on the mouse to begin with, and hence only the
L7-METHOD will require a homing operator. The operators for the two methods are as follows:

L7-METHOD H[to keyboard] MK[L7 function key]
CLOSE-METHOD P[to menu bar] B[LEFT down] MP[to option] B[LEFT up]

The total times are thus

L7-METHOD = 0.4 + 1.35 + 0.28
= 2.03 seconds

CLOSE-METHOD = 1.1 + 0.1 + 1.35 + 1.1 + 0.1
= 3.75 seconds

The first calculation is quite straightforward, but the second needs a little unpacking. The button
presses are separate down and then up actions and thus each is timed at only 0.1 of a second,
rather than 0.2 for a click, or 0.28 for typing. We have also used the simplified average of 1.1 sec-
onds for the pointing task. From these predictions, we can see that the L7-METHOD is far faster.
In Section 12.2.1, Sam’s selection rule was to use the L7-METHOD when playing blocks. To do so,
he can go on playing the game using the mouse in his right hand whilst moving his left hand over
the key. Thus the real time for Sam, from when he takes his attention from the game to when the
command is given, is less: 2.03 seconds minus the homing time, that is 1.63 seconds. Given the
method is so fast, why does Sam not use it all the time?

Perhaps the average estimates for pointing times have biased our estimate. We can be a little more
precise about the CLOSE-METHOD timing if we use Fitts’ law instead of the average 1.1 seconds.
The mouse will typically be in the middle of a 25 line high window. The title bar is 1.25 lines high.
Thus the distance to target ratio for the first pointing task is 10:1. The ‘CLOSE’ option is four items
down on the pop-up menu; hence the ratio for the second pointing task is 4:1. Thus we can calcu-
late the pointing times:

P[to menu bar] = 0.1 log2(10.5) = 0.339
P[to option] = 0.1 log2(4.5) = 0.217

With these revised timings, KLM predicts the CLOSE-METHOD will take 2.1 seconds. So Sam’s
selection rule is not quite as bad as it initially seemed!

440 Chapter 12 n Cognitive models

Worked exercise Do a keystroke-level analysis for opening up an application in a visual desktop interface using
a mouse as the pointing device, comparing at least two different methods for performing the
task. Repeat the exercise using a trackball. Consider how the analysis would differ for various
positions of the trackball relative to the keyboard and for other pointing devices.

Answer We provide a keystroke-level analysis for three different methods for launching an
application on a visual desktop. These methods are analyzed for a conventional one-
button mouse, a trackball mounted away from the keyboard and one mounted close to
the keyboard. The main distinction between the two trackballs is that the second one
does not require an explicit repositioning of the hands, that is there is no time required
for homing the hands between the pointing device and the keyboard.

Method 1 Double clicking on application icon

Steps Operator Mouse Trackball1 Trackball2

1. Move hand to mouse H[mouse] 0.400 0.400 0.000
2. Mouse to icon P[to icon] 0.664 1.113 1.113
3. Double click 2B[click] 0.400 0.400 0.400
4. Return to keyboard H[kbd] 0.400 0.400 0.000
Total times 1.864 2.313 1.513

Method 2 Using an accelerator key

Steps Operator Mouse Trackball1 Trackball2

1. Move hand to mouse H[mouse] 0.400 0.400 0.000
2. Mouse to icon P[to icon] 0.664 1.113 1.113
3. Click to select B[click] 0.200 0.200 0.200
4. Pause M 1.350 1.350 1.350
5. Return to keyboard H[kbd] 0.400 0.400 0.000
6. Press accelerator K 0.200 0.200 0.200
Total times 3.214 3.663 2.763

Method 3 Using a menu

Steps Operator Mouse Trackball1 Trackball2

1. Move hand to mouse H[mouse] 0.400 0.400 0.000
2. Mouse to icon P[to icon] 0.664 1.113 1.113
3. Click to select B[click] 0.200 0.200 0.200
4. Pause M 1.350 1.350 1.350
5. Mouse to file menu P 0.664 1.113 1.113
6. Pop-up menu B[down] 0.100 0.100 0.100
7. Drag to open P[drag] 0.713 1.248 1.248
8. Release mouse B[up] 0.100 0.100 0.100
9. Return to keyboard H[kbd] 0.400 0.400 0.000
Total times 4.591 6.024 5.224

12.5 Physical and device models 441

Card, Moran and Newell empirically validated KLM against a range of systems,
both keyboard and mouse based, and a wide selection of tasks. The predictions were
found to be remarkably accurate (an error of about 20%). KLM is thus one of the few
models capable of giving accurate quantitative predictions about performance.
However, the range of applications is correspondingly small. It tells us a lot about the
micro-interaction, but not about the larger-scale dialog.

We have seen that you have to be quite careful, as the approximations you make
can radically change the results – KLM is a guide, not an oracle. We should also add
a word of caution about the assumption that fastest is best. There are certainly situ-
ations where this is so, for example highly repetitive tasks such as telephony or data
entry. However, even expert users will often not use the fastest method. For exam-
ple, the expert may have a set of general-purpose, non-optimal methods, rather than
a few task-specific methods.

12.5.2 Three-state model

In Chapter 2, we saw that a range of pointing devices exists in addition to the mouse.
Often these devices are considered logically equivalent, if the same inputs are avail-
able to the application. That is, so long as you can select a point on the screen, they
are all the same. However, these different devices – mouse, trackball, light pen – feel
very different. Although the devices are similar from the application’s viewpoint,
they have very different sensory–motor characteristics.

Buxton has developed a simple model of input devices [53], the three-state model,
which captures some of these crucial distinctions. He begins by looking at a mouse.
If you move it with no buttons pushed, it normally moves the mouse cursor about.
This tracking behavior is termed state 1. Depressing a button over an icon and then
moving the mouse will often result in an object being dragged about. This he calls
state 2 (see Figure 12.1).

If instead we consider a light pen with a button, it behaves just like a mouse when
it is touching the screen. When its button is not depressed, it is in state 1, and when
its button is down, state 2. However, the light pen has a third state, when the light
pen is not touching the screen. In this state the system cannot track the light pen’s
position. This is called state 0 (see Figure 12.2).

A touchscreen is like the light pen with no button. While the user is not touching
the screen, the system cannot track the finger – that is, state 0 again. When the user
touches the screen, the system can begin to track – state 1. So a touchscreen is a state
0–1 device whereas a mouse is a state 1–2 device. As there is no difference between a
state 0–2 and a state 0–1 device, there are only the three possibilities we have seen.

Figure 12.1 Mouse transitions: states 1 and 2

442 Chapter 12 n Cognitive models

The only additional complexity is if the device has several buttons, in which case we
would have one state for each button: 2left, 2middle, 2right.

One use of this classification is to look at different pointing tasks, such as icon
selection or line drawing, and see what state 0–1–2 behavior they require. We can
then see whether a particular device can support the required task. If we have to use
an inadequate device, it is possible to use keyboard keys to add device states. For
example, with a touchscreen, we may nominate the escape key to be the ‘virtual’
mouse button whilst the user’s finger is on the screen. Although the mixing of key-
board and mouse keys is normally a bad habit, it is obviously necessary on occasions.

At first, the model appears to characterize the states of the device by the inputs
available to the system. So, from this perspective, state 0 is clearly different
from states 1 and 2. However, if we look at the state 1–2 transaction, we see that it
is symmetric with respect to the two states. In principle, there is no reason why a
program should not decide to do simple mouse tracking whilst in state 2 and drag
things about in state 1. That is, there is no reason until you want to type something!
The way we can tell state 1 from state 2 is by the activity of the user. State 2 requires
a button to be pressed, whereas state 1 is one of relative relaxation (whilst still requir-
ing hand–eye coordination for mouse movement). There is a similar difference in
tension between state 0 and state 1.

It is well known that Fitts’ law has different timing constants for different devices.
Recall that Fitts’ law says that the time taken to move to a target of size S at a distance
D is:

a + b log2(D/S + 1)

The constants a and b depend on the particular pointing device used and the skill of
the user with that device. However, the insight given by the three-state model is that
these constants also depend on the device state. In addition to the timing, the final
accuracy may be affected.

These observations are fairly obvious for state 0–1 devices. With a touchscreen, or
light pen, a cursor will often appear under the finger or pen when it comes in con-
tact with the screen. The accuracy with which you can move the cursor around will
be far greater than the accuracy with which you can point in the first place. Also it is
reasonable to expect that the Fitts’ law constant will be different, although not so
obvious which will be faster.

There is a similar difference between states 1 and 2. Because the user is holding a
button down, the hand is in a state of tension and thus pointing accuracy and speed
may be different. Experiments to calculate Fitts’ law constants in states 1 and 2 have

Figure 12.2 Light pen transitions: three states

12.6 Cognitive architectures 443

shown that these differences do exist [221]. Table 12.2 shows the results obtained for
a mouse and trackball.

We can recalculate the KLM prediction for the CLOSE-METHOD using these data.
Recall that the method had two pointing operators, one to point to the window’s title
bar (with a distance to target size ratio of 10:1), the second to drag the selection down
to ‘CLOSE’ on the pop-up menu (4:1). Thus the first pointing operator is state 1 and
the second is state 2. The times are thus

Mouse
P[to menu bar] = −107 + 223 log2(11) = 664 ms
P[to option] = 135 + 249 log2(5) = 713 ms

Trackball
P[to menu bar] = 75 + 300 log2(11) = 1113 ms
P[to option] = −349 + 688 log2(5) = 1248 ms

giving a further revised time for the CLOSE-METHOD of 2.93 seconds using a mouse
and 3.91 seconds using a trackball.

COGNITIVE ARCHITECTURES

The formalisms we have seen so far have some implicit or explicit model of how the
user performs the cognitive processing involved in carrying out a task. For instance,
the concept of taking a problem and solving it by divide and conquer using subgoals
is central to GOMS. CCT assumes the distinction between long- and short-term
memory, with production rules being stored in long-term memory and ‘matched’
against the contents of short-term (or working) memory to determine which ‘fire’.
The values for various motor and mental operators in KLM were based on the Model
Human Processor (MHP) architecture of Card, Moran and Newell [56]. Another
common assumption, which we have not discussed in this chapter, is the distinction
between linguistic levels – semantic, syntactic and lexical – as an architectural model
of the user’s understanding.

12.6

Table 12.2 Fitts’ law coefficients (after MacKenzie, Sellen and Buxton [221], © 1991
ACM, Inc. Reprinted by permission)

Device a (ms) b (ms/bit)

Pointing (state 1)
Mouse −107 223
Trackball 75 300

Dragging (state 2)
Mouse 135 249
Trackball −349 688

444 Chapter 12 n Cognitive models

In Chapter 1, we discussed some of these architectural descriptions of the user as
an information-processing machine. Our emphasis in this section will be to describe
a couple more architectural models that are quite distinct from those described in
Chapter 1 and assumed in the earlier parts of this chapter. Here we will see that the
architectural assumptions are central to the description of the cognitive modeling
that these approaches offer.

There are interesting differences of emphasis between these architectural models
and the previous models. The hierarchical and linguistic notations tend to assume
perfect dialog on the user’s part. They may measure the complexity of that perfect
dialog, but tend not to consider diversions from the optimal command sequences.
However, for the architectural models in this section the prediction and under-
standing of error is central to their analyses.

12.6.1 The problem space model

Rational behavior is characterized as behavior that is intended to achieve a specific
goal. This element of rationality is often used to distinguish between intelligent and
machine-like behavior. In the field of artificial intelligence (AI), a system exhibiting
rational behavior is referred to as a knowledge-level system. A knowledge-level system
contains an agent behaving in an environment. The agent has knowledge about
itself and its environment, including its own goals. It can perform certain actions
and sense information about its changing environment. As the agent behaves in its
environment, it changes the environment and its own knowledge. We can view the
overall behavior of the knowledge-level system as a sequence of environment and
agent states as they progress in time. The goal of the agent is characterized as a
preference over all possible sequences of agent/environment states.

Contrast this rational behavior with another general computational model for
a machine, which is not rational. In computer science, it is common to describe a
problem as the search through a set of possible states, from some initial state to
a desired state. The search proceeds by moving from one state to another possible
state by means of operations or actions, the ultimate goal of which is to arrive at one
of the desired states. This very general model of computation is used in the ordinary
task of the programmer. Once she has identified a problem and a means of arriving
at the solution to the problem (the algorithm), the programmer then represents
the problem and algorithm in a programming language, which can be executed on a
machine to reach the desired state. The architecture of the machine only allows the
definition of the search or problem space and the actions that can occur to traverse
that space. Termination is also assumed to happen once the desired state is reached.
Notice that the machine does not have the ability to formulate the problem space
and its solution, mainly because it has no idea of the goal. It is the job of the pro-
grammer to understand the goal and so define the machine to achieve it.

We can adapt the state-based computational model of a machine in order to real-
ize the architecture of a knowledge-level system. The new computational model is

12.6 Cognitive architectures 445

the problem space model, based on the problem-solving work of Newell and Simon
at Carnegie–Mellon University (see Chapter 1). A problem space consists of a set of
states and a set of operations that can be performed on the states. Behavior in a
problem space is a two-step process. First, the current operator is chosen based on
the current state and then it is applied to the current state to achieve the new state.
The problem space must represent rational behavior, and so it must characterize the
goal of the agent. A problem space represents a goal by defining the desired states
as a subset of all possible states. Once the initial state is set, the task within the prob-
lem space is to find a sequence of operations that form a path within the state space
from the initial state to one of the desired states, whereupon successful termination
occurs.

From the above description, we can highlight four different activities that occur
within a problem space: goal formulation, operation selection, operation application
and goal completion. The relationship between these problem space processes and
knowledge-level activity is key. Perception that occurs at the knowledge level is
performed by the goal formulation process, which creates the initial state based on
observations of the external environment. Actions at the knowledge level are opera-
tions in the problem space which are selected and applied. The real knowledge
about the agent and its environment and goals is derived from the state/operator
information in the problem space. Because of the goal formulation process, the set
of desired states indicates the knowledge-level goal within the problem space. The
operation selection process selects the appropriate operation at a given point in time
because it is deemed the most likely to transform the state in the problem space to
one of the desired states; hence rational behavior is implied.

The cycle of activity within the problem space is as follows. Some change in the
external environment, which is relevant to the goal of the agent, is sensed by the
goal formulation process, which in turn defines the set of desired states for the agent
and its initial state for the following task. The operation selection process suggests
an operation that can act on that state and transform it ‘closer’ to a desired state. The
operation application process executes the operation, changing the current state and
surrounding environment. If the new state is a desired state, then the goal has been
achieved and the goal completion process reverts the agent to inactive.

The real power of the problem space architecture is in recursion. The activity of
any of the processes occurs only when the knowledge it needs to complete its chore
is immediately available. For example, to decide which operation is most likely to
lead to a desired state, the problem space will need to know things about its current
state and that of the environment. If that information is not immediately available,
then activity cannot continue. In that case, another problem space is invoked with
the goal of finding out the information that was needed by the parent problem space.
In this way, we can see the evolution of problems spaces as a stack-like structure, new
spaces being invoked and placed on the problem space stack only to be popped off
the stack once they achieve their goal.

Though the problem space model described briefly above is not directly imple-
mentable, it is the basis for at least one executable cognitive architecture, called Soar.

446 Chapter 12 n Cognitive models

We shall not discuss the details of Soar’s implementation here; instead we refer
you to Laird, Newell and Rosenbloom [205]. An interesting application of the
Soar implementation of problem spaces has been done by Young and colleagues on
programmable user models (or PUMs) [386]. Given a designer’s description of an
intended procedure or task that is to be carried out with an interactive system,
an analysis of that procedure produces the knowledge that would be necessary and
available for any user attempting the task. That knowledge is encoded in the prob-
lem space architecture of Soar, producing a ‘programmed’ user model (the PUM)
to accomplish the goal of performing the task. By executing the PUM, the stacking
and unstacking of problem spaces needed to accomplish the goal can be analyzed
to measure the cognitive load of the intended procedure. More importantly, if
the PUM cannot achieve the goal because it cannot find some knowledge necessary
to complete the task, this indicates to the designer that there is a problem with
the intended design. In this way, erroneous behavior can be predicted before
implementation.

12.6.2 Interacting cognitive subsystems

Barnard has proposed a very different cognitive architecture, called interacting cog-
nitive subsystems (ICS) [24, 25, 27]. ICS provides a model of perception, cognition
and action, but unlike other cognitive architectures, it is not intended to produce
a description of the user in terms of sequences of actions that he performs. ICS
provides a more holistic view of the user as an information-processing machine. The
emphasis is on determining how easy particular procedures of action sequences
become as they are made more automatic within the user.

ICS attempts to incorporate two separate psychological traditions within one
cognitive architecture. On the one hand is the architectural and general-purpose
information-processing approach of short-term memory research. On the other
hand is the computational and representational approach characteristic of psycho-
linguistic research and AI problem-solving literature.

The architecture of ICS is built up by the coordinated activity of nine smaller
subsystems: five peripheral subsystems are in contact with the physical world and
four are central, dealing with mental processes. Each subsystem has the same gen-
eric structure. A subsystem is described in terms of its typed inputs and outputs
along with a memory store for holding typed information. It has transformation
functions for processing the input and producing the output and permanently stored
information. Each of the nine subsystems is specialized for handling some aspect of
external or internal processing. For example, one peripheral subsystem is the visual
system for describing what is seen in the world. An example of a central subsystem
is one for the processing of propositional information, capturing the attributes and
identities of entities and their relationships with each other (a particular example is
that propositional information represents ‘“knowing” that a particular word has four
syllables, begins with “P” and refers to an area in central London’ [27]).

12.7 Summary 447

ICS is another example of a general cognitive architecture that can be applied
to interactive design. One of the features of ICS is its ability to explain how a user
proceduralizes action. Remember in the discussion of CCT we distinguished
between novice and expert use of an interactive system. Experts can perform com-
plicated sequences of actions as if without a thought, whereas a novice user must
contemplate each and every move (if you do not believe this distinction is accurate,
observe users at an ATM and see if you can tell the expert from the novice). The
expert recognizes the task situation and recalls a ‘canned’ procedure of actions
which, from experience, results in the desired goal being achieved. They do not have
to think beyond the recognition of the task and consequent invocation of the correct
procedure. Such proceduralized behavior is much less prone to error. A good
designer will aid the user in proceduralizing his interaction with the system and will
attempt to design an interface that suggests to the user a task for which he already
has a proceduralized response. It is for this reason that ICS has been suggested as
a design tool that can act as an expert system to advise a designer in developing
an interface.

SUMMARY

In this chapter, we have discussed a wide selection of cognitive models of the
users of interactive systems. Cognitive models attempt to represent the users as
they interact with a system, modeling aspects of their understanding, knowledge,
intentions or processing. We divided cognitive models into three categories. The
first described the hierarchical structuring of the user’s task and goal structures.
The GOMS model and CCT were examples of cognitive models in this category.
The second category was concerned with linguistic and grammatical models, which
emphasized the user’s understanding of the user–system dialog. BNF and TAG were
described as examples in this category. Most of these cognitive models have focussed
on the execution activity of the user, neglecting his perceptive ability and how
that might affect less planned and natural interaction strategies. The third category
of cognitive models was based on the more solid understanding of the human motor
system, applicable in situations where the user does no planning of behavior and
executes actions automatically. KLM was used to provide rough measures of user
performance in terms of execution times for basic sequences of actions. Buxton’s
three-state model for pointing devices allowed for a finer distinction between execu-
tion times than with KLM. We concluded this chapter with a discussion of cognitive
architectures, the assumptions of which form the foundation for any cognitive
models. In addition to the basic architectural distinction between long- and short-
term memory, we discussed two other cognitive architectures – the problem space
model and ICS – which apply different assumptions to the analysis of interactive
systems.

12.7

448 Chapter 12 n Cognitive models

RECOMMENDED READING

S. K. Card, T. P. Moran and A. Newell, The Psychology of Human Computer
Interaction, Lawrence Erlbaum, 1983.
A classic text in this field of cognitive models, in which the basic architectural
assumptions of the Model Human Processor architecture are explained as well as
the GOMS model and KLM.

S. Bovair, D. E. Kieras and P. G. Polson, The acquisition and performance of
text-editing skill: a cognitive complexity analysis, Human–Computer Interaction,
Vol. 5, No. 1, pp. 1–48, 1990.
This article provides a definitive description of CCT by means of an extended
example. The authors also provide the definition of various style rules for writing
CCT descriptions to distinguish, for example, between novice and expert users.

F. Schiele and T. Green, HCI formalisms and cognitive psychology: the case of
task–action grammars. In M. D. Harrison and H. W. Thimbleby, editors, Formal
Methods in Human–Computer Interaction, Chapter 2, Cambridge University
Press, 1990.

EXERCISES

12.1 Recall the CCT description of the rule INSERT-SPACE-2 discussed in Section 12.2.2:

(INSERT-SPACE-2

IF (AND (TEST-GOAL insert space)

(TEST-CURSOR %LINE %COL))

THEN ((DO-KEYSTROKE ‘I’)

(DO-KEYSTROKE SPACE)

(DO-KEYSTROKE ESC)

(DELETE-GOAL insert space)))

As we discussed, this is already proceduralized; that is, the rule is an expert rule. Write
new ‘novice’ rules where the three keystrokes are not proceduralized. That is, you should have
separate rules for each keystroke and suitable goals (such as GET-INTO-INSERT-MODE) to fire
them.

12.2 One of the assumptions underlying the programmable user model approach is that it is possible
to provide an algorithm to describe the user’s behavior in interacting with a system. Taking
this position to the extreme, choose some common task with a familiar interactive system (for
example, creating a column of numbers in a spreadsheet and calculating their sum, or any other
task you can think of) and describe the algorithm needed by the user to accomplish this task.
Write the description in pseudocode. Does this exercise suggest any improvements in the
system?

Recommended reading 449

A good description of TAG with several extended examples based on the
Macintosh interface. The authors provide a good comparative analysis of TAG
versus other cognitive modeling techniques.

A. Newell, G. Yost, J. E. Laird, P. S. Rosenbloom and E. Altmann, Formulating the
problem-space computational model. In R. F. Rashid, editor, CMU Computer
Science: A 25th Anniversary Commemorative, Chapter 11, ACM Press, 1991.
The description of the problem space cognitive architecture was informed by this
article, which also contains references to essential work on the Soar platform.

J. Carroll, editor, HCI Models, Theories, and Frameworks: Toward an Interdisciplinary
Science, Morgan Kaufmann, 2003.
See chapters by Scott MacKenzie on motor behavior models (Fitts’ law and
beyond), Bonnie John on information processing and skilled behavior (GOMS
and related models) and Stephen Payne on cognitive and mental models.

SOCIO-ORGANIZATIONAL

ISSUES AND STAKEHOLDER

REQUIREMENTS

OV E RV I E W

n There are several organizational issues that affect the
acceptance of technology by users and that must
therefore be considered in system design:
– systems may not take into account conflict and

power relationships
– those who benefit may not do the work
– not everyone may use systems.

n In addition to generic issues, designers must identify
specific stakeholder requirements within their
organizational context.

n Socio-technical models capture both human and
technical requirements.

n Soft systems methodology takes a broader view of
human and organizational issues.

n Participatory design includes the user directly in the
design process.

n Ethnographic methods study users in context,
attempting to take an unbiased perspective.

13

13.2 Organizational issues 451

INTRODUCTION

As we saw in Chapter 3, technology does not exist in a vacuum. It is used within a
specific context, and is influenced by many factors within that context. The different
people affected by the introduction of a system are known as stakeholders and their
needs can be both complex and conflicting. In addition, we need to understand how
the introduction of the system might actually change the organizational and work
practices that are currently in place and what the impact of this might be.

In this chapter we look in more detail at the socio-organizational context of use
and discuss some of the generic issues that can affect the acceptance of technology
in organizations. We then look at a number of approaches to modeling the socio-
organizational context and the requirements of the stakeholders within it.

Requirements capture is an important part of all software engineering methodo-
logies but often this activity focusses primarily on the functional requirements of the
system – what the system must be able to do – with less emphasis on non-functional
human issues such as usability and acceptability. Even where such matters are
considered, they may reflect only the management’s view of the user’s needs rather
than gathering information from the users themselves. Stakeholder requirements
modeling redresses this balance by identifying the needs of all stakeholders, includ-
ing the user and anyone else affected by the system, within the context in which it
will be used.

We will begin this chapter by discussing some of the organizational issues that
arise when new technological solutions are introduced. We then outline a number of
models and methods that can be used to capture this broader view of stakeholder
requirements, including socio-technical models, soft systems methodology, particip-
atory design and the ethnographic approach.

ORGANIZATIONAL ISSUES

In this section, we shall look at some of the organizational issues that affect the
acceptance and relevance of information and communication systems. These factors
often sit ‘outside’ the system as such, and may involve individuals who never use it.
Yet it is often these factors more than any other that determine the success or failure
of computer systems. Many systems supporting work in organizations are support-
ing groups of workers, but this may be through specialist groupware systems (see
Chapter 19) or through shared data or processes.

13.2.1 Cooperation or conflict?

The term ‘computer-supported cooperative work’ (CSCW) seems to assume that
groups will be acting in a cooperative manner. This is obviously true to some extent;

13.2

13.1

452 Chapter 13 n Socio-organizational issues and stakeholder requirements

even opposing football teams cooperate to the extent that they keep (largely) within
the rules of the game, but their cooperation only goes so far. People in organiza-
tions and groups have conflicting goals, and systems that ignore this are likely to fail
spectacularly.

Imagine that an organization is already highly computerized, the different depart-
ments all have their own systems and the board decides that an integrated informa-
tion system is needed. The production manager can now look directly at stocks
when planning the week’s work, and the marketing department can consult the sales
department’s contact list to send out marketing questionnaires. All is rosy and the
company will clearly run more efficiently – or will it?

The storekeeper always used to understate stock levels slightly in order to keep
an emergency supply, or sometimes inflate the quoted levels when a delivery was due
from a reliable supplier. Also, requests for stock information allowed the storekeeper
to keep track of future demands and hence plan future orders. The storekeeper has
now lost a sense of control and important sources of information. Members of the
sales department are also unhappy: their contacts are their livelihood. The last thing
they want is someone from marketing blundering in and spoiling a relationship with
a customer built up over many years. Some of these people may resort to subverting
the system, keeping ‘sanitized’ information online, but the real information in per-
sonal files. The system gradually loses respect as the data it holds is incorrect,
morale in the organization suffers and productivity drops. The board gets worried
and meets to consider upgrading the computer system!

Before installing a new computer system, whether explicitly ‘cooperative’ or not,
one must identify the stakeholders who will be affected by it. These are not just the
immediate users, but anyone whose jobs will be altered, who supplies or gains infor-
mation from it, or whose power or influence within the organization will increase or
decrease. It will frequently be the case that the formal ‘client’ who orders the system
falls very low on the list of those affected. Be very wary of changes that take power,
influence or control from some stakeholders without returning something tangible
in their place.

13.2.2 Changing power structures

The identification of stakeholders will uncover information transfer and power rela-
tionships that cut across the organizational structure. Indeed, all organizations have
these informal networks that support both social and functional contacts. However,
the official lines of authority and information tend to flow up and down through line
management. New communications media may challenge and disrupt these formal
managerial structures.

The physical layout of an organization often reflects the formal hierarchy: each
department is on a different floor, with sections working in the same area of an
office. If someone from sales wants to talk to someone from marketing then one of
them must walk to the other’s office. Their respective supervisors can monitor the
contact. Furthermore, the physical proximity of colleagues can foster a sense of

13.2 Organizational issues 453

departmental loyalty. An email system has no such barriers; it is as easy to ‘chat’ to
someone in another department as in your own. This challenges the mediating and
controlling role of the line managers.

Furthermore, in face-to-face conversation, the manager can easily exert influence
over a subordinate: both know their relative positions and this is reflected in the
patterns of conversation and in other non-verbal cues. Email messages lose much
of this sense of presence and it is more difficult for a manager to exercise authority.
The ‘levelling’ effect even makes it possible for subordinates to direct messages
‘diagonally’ across the hierarchy, to their manager’s peers, or, even worse, to their
manager’s manager!

Many organizations are moving toward flatter management structures anyway, so
from a strategic viewpoint these effects may be acceptable. But can the organization
cope with a disaffected junior management during the transition? For other organ-
izations the effects may be less welcome and the system dropped or heavily regulated.
In one case, an email system was introduced and was agreed to be functioning well,
but the management, feeling a loss of control and suspicion over their subordinates’
communications, introduced logging so that all email messages could be monitored.
The system quickly fell into disuse. Logging of email is becoming more widespread
with employers using it to identify cases of system ‘abuse’ by employees. But such
activity must be handled carefully: it is as likely to backfire on the management by
reducing the productive use of email as it is to have the desired effect.

Technology can be an important vector of social change, but if violent reaction is
to be avoided, the impact of the technology must be assessed before it is introduced.
In the short term, solutions must be carefully matched to the existing social and
organizational structures.

13.2.3 The invisible worker

The ability to work and collaborate at a distance can allow functional groups
to be distributed over different sites. This can take the form of cross-functional
neighbourhood centers, where workers from different departments do their jobs in
electronic contact with their functional colleagues. Alternatively, distributed group-
ware can allow the true home-based teleworker to operate on similar terms to an
office-based equivalent. The ecological and economic advantages of such working
practices are now becoming well established, and it seems that communications and
CSCW technology can overcome many of the traditional barriers.

In fact, a closer examination reveals that the barriers to such working are not
technological but managerial. First of all, management style may make remote
working all but impossible. If the approach in an organization is ‘management by
presence’, that is you know someone is working because they are in the office, then
there is no way a remote worker is going to be trusted. If, on the other hand, the style
is ‘management by objectives’, that is you know your subordinates are working
because they are doing their jobs and producing results, then remote working is
not so problematical. Even where remote working is accepted, the lack of physical

454 Chapter 13 n Socio-organizational issues and stakeholder requirements

presence can be a problem. When the time comes for promotion, the present
employee may seem more worthy than the distant one – not because of any object-
ive criteria, but because presence increases perceived worth.

We can see that, again, social and managerial relationships completely dominate
technological considerations. Many video-based groupware systems are intended to
create a sense of engagement, of active participation and social presence. Whether
this will be sufficient to overcome ingrained attitudes remains to be seen.

13.2.4 Who benefits?

One frequent reason for the failure of information systems is that the people who get
the benefits from the system are not the same as those who do the work. One ex-
ample, which we discuss in more detail in Chapter 19, is structured message systems
such as Lens. In these systems the sender has to do work in putting information into
fields appropriately, but it is the recipient who benefits. Another example is shared
calendars. The beneficiary of the system is a manager who uses the system to arrange
meeting times, but whose personal secretary does the work of keeping the calendar
up to date. Subordinates are less likely to have secretarial support, yet must keep up
the calendar with little perceived benefit. Of course, chaos results when a meeting is
automatically arranged and the subordinates may have to rearrange commitments
that have not been recorded on the system. The manager may force use by edict or
the system may simply fall into disuse. Many such groupware systems are introduced
on a ‘see if it works’ basis, and so the latter option is more likely.

The lesson is that information systems should aim for some level of symmetry.
If you have to do work for the system, you should obtain some benefit from it.
For the shared calendar, this might involve improving the personal user interface, so
that there are definite advantages in using the online system to plan your time rather
than using paper (it could even print out Filofax pages). In addition, if people use
electronic organizers one could consider integrating these into the system.

13.2.5 Free rider problem

Even where there is no bias toward any particular people, a system may still not
function symmetrically, which may be a problem, particularly with shared com-
munication systems. One issue is the free rider problem. Take an electronic con-
ferencing system. If there is plenty of discussion of relevant topics then there are
obvious advantages to subscribing and reading the contributions. However, when
considering writing a contribution, the effort of doing so may outweigh any benefits.
The total benefit of the system for each user outweighs the costs, but for any particu-
lar decision the balance is overturned.

To see this situation in a different context imagine an eccentric philanthropist who
has gathered three strangers into a room. They are invited to throw money into a pot
in the center. When they have done so, the philanthropist will double the money
in the pot and then divide it up between them and send them on their way. Each

13.2 Organizational issues 455

stranger reasons ‘If I put in three pennies, then our benefactor will double this to six.
These will be distributed between three of us, so I will have only two returned to me.’
Clearly, unless the strangers can come to some understanding none of them will put
any money in the pot, and none will benefit.

A few free riders in a conference system are often not a problem, as the danger is
more likely from too much activity. In addition, in electronic conferences the pat-
terns of activity and silence may reflect other factors such as expertise. However, it is
easy for the number of free riders gradually to increase and the system slide into dis-
use. It is hard to enforce equal use, except by restrictive schemes such as round-robin
contributions (everyone contributes something however short). In the real world,
such problems are often solved by social pressure, and the free rider reacts to the col-
lective censure of the group. Increasing the visibility of participants’ contributions
might also help these social mechanisms. For example, one could display an activity
meter showing the number of contributions from each subscriber. Of course, people
may then choose not to subscribe in the first place!

13.2.6 Critical mass

Another issue related to the free rider problem is the need to develop a critical mass.
When telephones were only in public places, their use as a form of pervasive inter-
personal communication was limited. However, once a large number of people
have telephones in their homes it becomes worthwhile paying to have a telephone
installed. In cost/benefit terms, the early subscribers probably have a smaller benefit
than the cost. Only when the number of subscribers increases beyond the critical
mass does the benefit for all dominate the cost (see Figure 13.1). The situation for
conferencing systems and email is, of course, very similar.

We can learn something from the lessons of the telephone system and other
successful technologies (but remember, telephones took the best part of 100 years
to become pervasive in affluent countries). The telephone was useful for sub-
groups before it became beneficial for all. Even when only a small proportion of the

Figure 13.1 Cost/benefit of system use

456 Chapter 13 n Socio-organizational issues and stakeholder requirements

population had personal telephones, they still formed a significant proportion of
their social group, so these cliques of use could grow gradually over time.

The same is true of email. Even a group of two or three people in an organization
can use email effectively between themselves. If an organization consists of widening
circles of highly connected subgroups, then take-up can grow from the core to the
wider group. Of course, the benefits increase as it becomes pervasive, but even a tiny
user group ensures that the benefits outweigh the costs. Clearly, we must design any
new system so that it has benefits even when its user population is small.

13.2.7 Automating processes – workflow and BPR

The major task in many organizations is moving pieces of paper around. An order
is received by phone and an order form filled in by the sales executive. The order
form is passed to accounts who check the credit rating and if all is okay it is passed
on to stores who check availability and collect the order together at the picking line.
When the order is dispatched, a delivery note is packed with the order and a copy is
returned to accounts, who send an invoice to the customer.

Organizations have many such processes, and workflow systems aim to automate
much of the process using electronic forms, which are forwarded to the relevant
person based on pre-coded rules. Some workflow systems are built using special-
purpose groupware, often based on a notation for describing the desired workflow.
Coordinator (see Section 14.3.6) is an example of a workflow system where the rules
are heavily influenced by speech act theory. In addition, workflow systems may be
implemented using more general structured message systems, including Lotus Notes
(see the Design Focus in this section).

The rigid form of a typical workflow system is an example of global structuring
(see Chapter 19 for more details). The danger with any form of global structuring is
that it may conflict with or inhibit more informal and less structured patterns of
activity which also contribute to the organization’s free running.

A more radical approach to organizational processes is found in business process
re-engineering (BPR). Traditionally, organizations have been structured around
functions: sales, accounts, stores, manufacturing. However, the purpose of an organ-
ization can be seen in terms of key business processes. The ordering/delivery pro-
cess described above is a typical and important example. In BPR these processes
are recorded and analyzed. Problems in the current process are noted and the
whole process may be redesigned in order to make the path of the process more
efficient. For example, instead of sending an order to the accounts department to
approve, a list of customer credit limits could be given to the sales executives. They
could then check the credit rating of the customer whilst on the phone and only
forward the order to accounts if there are any unusual problems. Finally, and most
radically, the whole structure of the organization may be modified to reflect and
support the key processes more closely. Typically, this involves stripping layers of
middle management. BPR as an issue engenders zealots and reactionaries in equal
measure.

13.2 Organizational issues 457

13.2.8 Evaluating the benefits

We have seen several problems that can arise from the mismatch between informa-
tion systems and organizational and social factors. Let us assume that we have a sys-
tem in place – and it has not fallen apart at the seams. Everyone seems happy with it
and there are no secret resentments. Now it is time to count the cost – it was an
expensive system to buy and install, but was it worth it?

This is an almost impossible question to answer. The benefits from cooperative
systems, especially organization-wide systems such as email or electronic conferen-
cing, are in terms of job satisfaction or more fluid information flow. Some, such as
the video wall (see Chapter 19), are expected primarily to help social contact within
the organization. It may be possible to measure contentment and job satisfaction

DESIGN FOCUS

Implementing workflow in Lotus Notes

Lotus Notes can be used to implement workflow systems in a straightforward manner. The sales execut-
ive fills in an electronic form which is automatically emailed to the accounts department. When it is
approved the order form is automatically emailed to stores, and so on.

However, interruptions due to email can be disruptive and reduce efficiency. An alternative is actively
not to mail items for action to people, but instead to make them available within their electronic envir-
onment. This is like the difference between having a form for approval pushed in front of you to sign
compared with having a pile of order forms sitting in your in-tray. In the latter case you can organize
your own work, but cannot forget to process the forms as they sit as a permanent reminder – an
environmental cue.

Within the electronic world of Notes such environmental cues can be implemented using its views
mechanism. Each database can have associated several views, lists of items in the database. The
definition of the view specifies which fields of each item should be listed and also which items should
be included in the list, based on various criteria. The simplest filtering criterion is the type of the mes-
sage, but more complex criteria can include the state of various fields.

In the ordering process example, there can be a single database. When an order is received, the sales
executive creates a new order item and fills in the details of the customer and required products.
However, the sales executive does not have write permission for the ‘approved’ field. The accounts
department has a view of the same database. This view lists only those orders which have completed
customer details, but a blank ‘approved’ field. Thus all orders received appear in this listing until they
have the ‘approved’ field completed, at which point they disappear from the view (but not the
database). Similarly, the stores department has a view whose rule only shows orders with a completed
‘approved’ field. Thus the views act as a sort of to-do list.

In the first scenario, the workflow is automated and control rests in the system. In the second scenario,
the workflow is supported leaving control to the users.

458 Chapter 13 n Socio-organizational issues and stakeholder requirements

using attitude questionnaires (see Chapter 9), but any hard economic benefit will
be so diffuse as to be unquantifiable.

However, a similar argument could be (and has been) framed for computer use
in general. The benefits are difficult to quantify, but, over time, it has become clear
that the competitive edge of information technology is necessary for survival in the
modern world. Perhaps the same will be said of cooperative systems in a few years.

CAPTURING REQUIREMENTS

As we have already seen, problems can arise when a system is introduced without
a full understanding of all the people who will be affected by it. But how can we
better understand and support complex organizational structures, workgroups and
potentially conflicting stakeholder needs? We begin by capturing and analyzing
requirements, but we need to do this within the work context, taking account of the
complex mix of concerns felt by different stakeholders and the structures and pro-
cesses operating in the workgroups.

In this section we consider several approaches: socio-technical modeling, soft
systems methodology, participatory design, ethnographic methods and contextual
inquiry. All are aimed at understanding the reality of work contexts and the per-
spectives of different stakeholders. All recognize that technology can be successfully
deployed only if it is done with an understanding of the context of use, but each takes
a slightly different approach to the problem. Before we look in more detail at these
approaches we need to clarify what we mean when we talk about ‘stakeholders’.

13.3.1 Who are the stakeholders?

Understanding stakeholders is key to many of the approaches to requirements cap-
ture, since in an organizational setting it is not simply the end-user who is affected
by the introduction of new technology. Imagine that a new billing system is to be
introduced by a local gas supplier. Who will be affected by this decision? Obviously,
the people who are responsible for producing and sending out bills – they will be
the ones using the system directly. But where do they get the information from
to produce the bills? To whom do they send the bills? Who determines the level
of charging and on what grounds? Who stands to make a profit from increased
revenue? Who will suffer if customers choose to switch supplier due to the improved
service? Meter readers, customers, managers, regulators, shareholders and com-
petitors are all stakeholders in the system. We need approaches that will capture the
complexity of their concerns, which may be in conflict with each other.

A stakeholder, therefore, can be defined as anyone who is affected by the success
or failure of the system. It can be useful to distinguish different categories of stake-
holder, and the following categorization from the CUSTOM approach (see [200]) is
helpful for this:

13.3

13.3 Capturing requirements 459

Primary stakeholders are people who actually use the system – the end-users.

Secondary stakeholders are people who do not directly use the system, but receive
output from it or provide input to it (for example, someone who receives a report
produced by the system).

Tertiary stakeholders are people who do not fall into either of the first two categories
but who are directly affected by the success or failure of the system (for example,
a director whose profits increase or decrease depending on the success of the
system).

Facilitating stakeholders are people who are involved with the design, development
and maintenance of the system.

The aim of the design team is to meet the needs of as many stakeholders as pos-
sible. However, the reality is that usually stakeholder needs are in conflict with each
other. Sometimes this does not matter: a company is unlikely to be too concerned
that its competitors’ requirement to maintain advantage over it is under threat by
the new system (though they need to be aware to monitor how effectively they are
maintaining their advantage). However, sometimes it does matter. In the example
above, the airline booking system must be usable by travel agency staff but must
also fulfill the customer need to find an appropriate ticket at the right price. If it
fails in this, the whole system will fail, as the customer will go elsewhere and business
will be lost.

As a general rule, the priority of stakeholder needs diminishes as you go down the
categories. So primary stakeholders usually take priority over the others. However,
this is not always the case. Imagine designing the control panel of a hospital life sup-
port machine. The primary stakeholders will be medical staff monitoring a patient’s
condition. But who, in fact, has the greatest interest in this system working? Surely it
is the patient, whose life is dependent on the system’s success? In this case the tertiary
stakeholder is of vital importance.

All of the approaches we are considering here are concerned with understanding
stakeholders within their organizational context.

Classifying stakeholders – an airline booking system

An international airline is considering introducing a new booking system for use by associ-
ated travel agents to sell flights directly to the public. The stakeholders can be classified as follows:

n Primary stakeholders: travel agency staff, airline booking staff
n Secondary stakeholders: customers, airline management
n Tertiary stakeholders: competitors, civil aviation authorities, customers’ traveling compan-

ions, airline shareholders
n Facilitating stakeholders: design team, IT department staff

460 Chapter 13 n Socio-organizational issues and stakeholder requirements

13.3.2 Socio-technical models

Early in the twentieth century, studies of work focussed on how humans needed
to adapt to technical innovations. Technological determinism, the view that social
change is primarily dictated by technology, with human and social factors being
secondary concerns, was prevalent. The socio-technical systems view came about
to counter this technology-centric position, by stressing that work systems were
composed of both human and machine elements and that it was the interrelation-
ship between these that should be central.

Socio-technical models for interactive systems are therefore concerned with tech-
nical, social, organizational and human aspects of design. They recognize the fact
that technology is not developed in isolation but as part of a wider organizational
environment. It is important to consider social and technical issues side by side
so that human issues are not overruled by technical considerations.

The key focus of the socio-technical approach is to describe and document the
impact of the introduction of a specific technology into an organization. Methods
vary but most attempt to capture certain common elements:

n The problem being addressed: there is a need to understand why the technology
is being proposed and what problem it is intended to solve.

n The stakeholders affected, including primary, secondary, tertiary and facilitating,
together with their objectives, goals and tasks.

n The workgroups within the organization, both formal and informal.
n The changes or transformations that will be supported.
n The proposed technology and how it will work within the organization.
n External constraints and influences and performance measures.

Information is gathered using methods such as interviews, observation, focus groups
and document analysis. The methods guide this information-gathering process and
help the analyst to make sense of what is discovered. By attempting to understand
these issues, socio-technical approaches aim to provide a detailed view of the role
technology will play and the requirements of successful deployment.

We will compare two approaches to illustrate how this may work in practice.

CUSTOM methodology

CUSTOM is a socio-technical methodology designed to be practical to use in
small organizations [200]. It is based on the User Skills and Task Match (USTM)
approach, developed to allow design teams to understand and fully document user
requirements [219]. CUSTOM focusses on establishing stakeholder requirements:
all stakeholders are considered, not just the end-users.

It is applied at the initial stage of design when a product opportunity has been
identified, so the emphasis is on capturing requirements. It is a forms-based methodo-
logy, providing a set of questions to apply at each of its stages.

There are six key stages to carry out in a CUSTOM analysis:

13.3 Capturing requirements 461

1. Describe the organizational context, including its primary goals, physical charac-
teristics, political and economic background.

2. Identify and describe stakeholders. All stakeholders are named, categorized (as
primary, secondary, tertiary or facilitating) and described with regard to personal
issues, their role in the organization and their job. For example, CUSTOM
addresses issues such as stakeholder motivation, disincentives, knowledge, skills,
power and influence within the organization, daily tasks and so on.

3. Identify and describe work-groups. A work-group is any group of people who work
together on a task, whether formally constituted or not. Again, work-groups are
described in terms of their role within the organization and their characteristics.

4. Identify and describe task–object pairs. These are the tasks that must be performed,
coupled with the objects that are used to perform them or to which they are applied.

5. Identify stakeholder needs. Stages 2–4 are described in terms of both the current
system and the proposed system. Stakeholder needs are identified by considering
the differences between the two. For example, if a stakeholder is identified as cur-
rently lacking a particular skill that is required in the proposed system then a need
for training is identified.

6. Consolidate and check stakeholder requirements. Here the stakeholder needs list
is checked against the criteria determined at earlier stages.

Stages 2 to 4 are described in terms of the current situation (before the new techno-
logy is introduced) and the proposed situation (after deployment). Stakeholders are
asked to express their views not only of their current role and position but of their
expectations in the light of the changes that will be made. In this way, stakeholder
concerns and goals are elaborated. In addition, the impact of the technology on
working practices is considered (Stage 3) and the transformations that will be sup-
ported by the system specified (Stage 4).

A shorter version of CUSTOM stakeholder analysis

CUSTOM questions investigate a range of stakeholder characteristics, such as the following:

n What does the stakeholder have to achieve and how is success measured?
n What are the stakeholder’s sources of job satisfaction? What are the sources of dissatisfaction

and stress?
n What knowledge and skills does the stakeholder have?
n What is the stakeholder’s attitude toward work and computer technology?
n Are there any work-group attributes that will affect the acceptability of the product to the

stakeholder?
n What are the characteristics of the stakeholder’s task in terms of frequency, fragmentation and

choice of actions?
n Does the stakeholder have to consider any particular issues relating to responsibility, security

or privacy?
n What are the physical conditions in which the stakeholder is working?

462 Chapter 13 n Socio-organizational issues and stakeholder requirements

The changes from the current position to the proposed position represent the
issues that need to be addressed to ensure successful deployment, and these are made
explicit during Stages 5 and 6.

CUSTOM provides a useful framework for considering stakeholder requirements
and the use of forms and questions (a ‘manual’ for its use is available [200]) makes
it relatively straightforward, if somewhat time consuming, to apply. For less complex
situations, a shortened version of CUSTOM stakeholder analysis is available (see the
boxed text above). This also provides a checklist for investigations for stages 2–4.

Open System Task Analysis (OSTA)

OSTA [116] is an alternative socio-technical approach, which attempts to describe
what happens when a technical system is introduced into an organizational work
environment. Like CUSTOM, OSTA specifies both social and technical aspects of the
system. However, whereas in CUSTOM these aspects are framed in terms of stake-
holder perspectives, in OSTA they are captured through a focus on tasks.

OSTA has eight main stages:

1. The primary task which the technology must support is identified in terms of
users’ goals.

2. Task inputs to the system are identified. These may have different sources and
forms that may constrain the design.

3. The external environment into which the system will be introduced is described,
including physical, economic and political aspects.

4. The transformation processes within the system are described in terms of actions
performed on or with objects.

5. The social system is analyzed, considering existing work-groups and relationships
within and external to the organization.

6. The technical system is described in terms of its configuration and integration
with other systems.

7. Performance satisfaction criteria are established, indicating the social and tech-
nical requirements of the system.

8. The new technical system is specified.

OSTA uses notations familiar to designers, such as data flow diagrams and textual
descriptions.

13.3.3 Soft systems methodology

The socio-technical models we have looked at focus on identifying requirements
from both human and technical perspectives, but they assume a technological solu-
tion is being proposed. Soft systems methodology (SSM) arises from the same tradi-
tion but takes a view of the organization as a system of which technology and people
are components. There is no assumption of a particular solution: the emphasis is
rather on understanding the situation fully. SSM was developed by Checkland [66]

13.3 Capturing requirements 463

to help designers reach an understanding of the context of technological develop-
ments and the influences and concerns that exist within the system under consider-
ation. SSM has seven stages (see Figure 13.2). A distinction is made between the
‘real-world’ stages (1–2, 5–7) and the systems stages (3–4).

We will outline the stages here but will focus on those that help capture require-
ments. The first stage of SSM is the recognition of the problem and initiation of
analysis. This is followed by a detailed description of the problem situation: develop-
ing a rich picture. This will include all the stakeholders, the tasks they carry out and
the groups they work in, the organizational structure and its processes and the issues
raised by each stakeholder. Any knowledge elicitation techniques can be used to
gather the information to build the rich picture, including observation (and video
and audio recording), structured and unstructured interviews and questionnaires,
and workshops incorporating such activities as role play, simulations and critical
incident analysis. In general, less structured approaches are used initially to avoid
artificially constraining the description. The rich picture can be in any style – there
are no right or wrong answers – but it should be clear and informative to the
designer. Certain conventions are widely accepted, however. Speech balloons are
used to represent stakeholder issues; crossed swords represent conflicts within the
system; and the eye represents external influences or observers. Figure 13.3 shows an
example of a rich picture with all of these elements.

Rich pictures are in themselves useful tools to aid understanding of a situation.
The rich picture is informal and relatively intuitive. It captures succinctly the poten-
tially conflicting interests of the various stakeholders and the other influences on a

Figure 13.2 The seven stages of soft systems methodology. (Adapted from
Checkland [66], p.163)

464 Chapter 13 n Socio-organizational issues and stakeholder requirements

F
ig

ur
e

13
.3

A
 r

ic
h

pi
ct

ur
e

of
 a

 t
ra

ve
l a

ge
nc

y

13.3 Capturing requirements 465

design situation. It provides an understandable summary of the designer’s under-
standing that can be easily checked with stakeholders, and it can even be developed
collaboratively with stakeholders as part of the consultation process – allowing all
parties to contribute to the rich picture sketch. These benefits have led to a number
of researchers in HCI proposing their use (outside the full SSM methodology) to
inform the design process (see, for example, [239]).

At the next stage in SSM we move from the real world to the systems world and
attempt to generate root definitions for the system, which define the essence of what
the system is about. There may be several root definitions of a system, representing
different stakeholder perspectives, for example. Root definitions are described in
terms of specific elements, summarized using the acronym, CATWOE:

Clients – those who receive output or benefit from the system.

Actors – those who perform activities within the system.

Transformations – the changes that are effected by the system. This is a critical part
of the root definition as it leads to the activities that need to be included in the
next stage. These ‘transform’ the inputs of the system into the required outputs.

Weltanschauung – (from the German) meaning world view. This is how the system
is perceived in a particular root definition.

Owner – those to whom the system belongs, to whom it is answerable and who can
authorize changes to it.

Environment – the world in which the system operates and by which it is influenced.

Root definition for airline management:
an airline booking system

Revisiting our earlier example, an international airline is considering introducing a new booking
system for use by associated travel agents to sell flights directly to the public. That is, a system
owned by the airline management; operated by associated travel agency staff; working in associated
travel agency offices worldwide; operating within regulations specified by international civil aviation
authorities and national contract legislation; to sell flights to and reserve seats for customers; and
to generate a profit for the company.

n Client: customer
n Actor: travel agency staff
n Transformation: customer’s intention and request to travel transformed into sale of seat on

flight and profit for organization
n Weltanschauung: profits can be optimized by more efficient sales
n Owner: airline management
n Environment: Regulations of international civil aviation authorities and national contract leg-

islation. Local agency policies worldwide

466 Chapter 13 n Socio-organizational issues and stakeholder requirements

Once the root definitions have been developed, the conceptual model is devised.
The conceptual model defines what the system has to do to fulfill the root
definitions. It includes identifying the transformations and activities in the system
and modeling them hierarchically in terms of what is achieved and how it is
achieved. This process is iterative and is likely to take several cycles before it is
complete and accurate.

Next we return to the real world with our systems descriptions and compare the
actual system with the conceptual model, identifying discrepancies and thereby
highlighting any necessary changes or potential problems. For example, a particular
activity may have more processes in the real world than in the conceptual model,
which may suggest that a reduction of processes for that activity is needed.

In the final stages, we determine which changes are necessary and beneficial to the
system as a whole – changes may be structural, procedural or social, for example –
and decide on the actions required to effect those changes.

SSM is a flexible approach, which supports detailed consideration of the design
context. However, it takes practice to use effectively. There is no single right (or
wrong) answer – the SSM is successful if it aids the designer’s understanding of the
wider system.

13.3.4 Participatory design

Participatory design is a philosophy that encompasses the whole design cycle. It is
design in the workplace, where the user is involved not only as an experimental
subject or as someone to be consulted when necessary but as a member of the
design team. Users are therefore active collaborators in the design process, rather
than passive participants whose involvement is entirely governed by the designer.
The argument is that users are experts in the work context and a design can only
be effective within that context if these experts are allowed to contribute actively
to the design process. In addition, introduction of a new system is liable to change
the work context and organizational processes, and will only be accepted if these
changes are acceptable to the user. Participatory design therefore aims to refine sys-
tem requirements iteratively through a design process in which the user is actively
involved.

Participatory design has three specific characteristics. It aims to improve the work
environment and task by the introduction of the design. This makes design and
evaluation context or work oriented rather than system oriented. Secondly, it is char-
acterized by collaboration: the user is included in the design team and can contribute
to every stage of the design. Finally, the approach is iterative: the design is subject to
evaluation and revision at each stage.

The participatory design process utilizes a range of methods to help convey infor-
mation between the user and designer. They include

Brainstorming This involves all participants in the design pooling ideas. This is
informal and relatively unstructured although the process tends to involve ‘on-
the-fly’ structuring of the ideas as they materialize. All information is recorded

13.3 Capturing requirements 467

without judgment. The session provides a range of ideas from which to work.
These can be filtered using other techniques.

Storyboarding This has been discussed in more detail in Chapter 6. Storyboards
can be used as a means of describing the user’s day-to-day activities as well as the
potential designs and the impact they will have.

Workshops These can be used to fill in the missing knowledge of both user and
designer and provide a more focussed view of the design. They may involve
mutual enquiry in which both parties attempt to understand the context of the
design from each other’s point of view. The designer questions the user about
the work environment in which the design is to be used, and the user can query
the designer on the technology and capabilities that may be available. This estab-
lishes common ground between the user and designer and sets the foundation for
the design that is to be produced. The use of role play can also allow both user and
designer to step briefly into one another’s shoes.

Pencil and paper exercises These allow designs to be talked through and evaluated
with very little commitment in terms of resources. Users can ‘walk through’ typ-
ical tasks using paper mock-ups of the system design. This is intended to show up
discrepancies between the user’s requirements and the actual design as proposed.
Such exercises provide a simple and cheap technique for early assessment of
models. PICTIVE [242] is one such approach to paper prototyping, which includes
representative stakeholders in a video recorded design session. Each participant
prepares ‘homework’ focussing on the requirements of the system from their par-
ticular perspective, which is then used to introduce and orientate the PICTIVE
session. Materials such as sticky notes, highlighters, plastic labels, paper and scis-
sors are used on a shared design surface to produce a low-tech prototype of the
proposed system, which is finally tested by the group against the tasks identified.

Such methods are not exclusively used in participatory design, of course, and can be
used more widely to promote clearer understanding between designer and stakeholders.

Participatory design originated in Scandinavia, where it is now promoted by law
and in accepted work practices, but it has not been widely practiced, at least in its
fullest form, elsewhere. This may be due to the time and cost involved in what is, by
definition, a context-specific design, as well as the organizational implications of
the shift of power and responsibility.

However, principles from the participatory design approach have been incorp-
orated in a number of widely used methodologies. We outline one of them – to
show how a participatory philosophy can be integrated into organizational and
stakeholder analysis.

Effective Technical and Human Implementation of Computer-based Systems
(ETHICS)

ETHICS [243] is a method developed by Enid Mumford within the socio-technical
tradition, but it is distinct in its view of the role of stakeholders in the process. In the

468 Chapter 13 n Socio-organizational issues and stakeholder requirements

DESIGN FOCUS

Tomorrow’s hospital – using participatory design

The nurse walks around the ward to a patient’s bedside. She takes her PDA from her pocket and
enters the patient’s name. Her PDA is connected via a wireless network to the central patient
treatment database and the patient’s information comes on screen including reminders of treatments
needed. First is a blood pressure and heart rate check. She does these checks and enters the results.
A mild painkiller is also prescribed. She gets the tablet, which is individually wrapped in a bar coded
packet. Her PDA has a built-in bar code reader and she scans this across the tablet. The system
registers the drug’s use and removes it from the to-do list as she gives the patient the tablet with a glass
of water.

A picture of tomorrow’s hospital? In fact, this is exactly the day-to-day activity in Hospital da Trofa, just
outside Porto, Portugal. There have been numerous attempts to use PDA-based systems in hospitals.
But most have failed. So why is this one being used? The hospital is part of a European Commission
funded project Team-HOS and the system was designed using a methodology that has a strong particip-
atory focus [316]. From the beginning, nurses, doctors, pharmacologists and dieticians were involved
in and in control of the design. It has benefited from their knowledge and experience, which is why it
does the right things for the context. Furthermore, the pride with which the hospital staff describe the
system shows that they really feel it is their system, not one imposed from above.

See the book website for an extended case study: /e3/casestudy/trofa/

See: www.ieeta.pt/team-hos/ Source: Courtesy of Professor J. Artur Vale Serrano

13.3 Capturing requirements 469

ETHICS methodology, stakeholders are included as participants in the decision-
making process. ETHICS considers the process of system development as one of
managing change: conflicts will occur and must be negotiated to ensure acceptance
and satisfaction with the system. If any party is excluded from the decision-making
process then their knowledge and contribution is not utilized and they are more
likely to be dissatisfied. However, participation is not always complete. Mumford
recognizes three levels of participation:

Consultative – the weakest form of participation where participants are asked for
their opinions but are not decision makers.

Representative – a representative of the participant group is involved in the decision-
making process.

Consensus – all stakeholders are included in the decision-making process.

The usual practice is that design groups are set up to include representatives from
each stakeholder group and these groups make the design decisions, overseen by
a steering committee of management and employee representatives. The design
groups then address the following issues and activities:

1. Make the case for change. Change for its own sake is inappropriate. If a case can-
not be made for changing the current situation then the process ends and the
system remains as it is.

2. Identify system boundaries. This focusses on the context of the current system
and its interactions with other systems, in terms of business, existing techno-
logy, and internal and external organizational elements. How will the change
impact upon each of these?

3. Describe the existing system, including a full analysis of inputs and outputs and the
various other activities supported, such as operations, control and coordination.

4. Define key objectives, identifying the purpose and function of each area of the
organization.

5. Define key tasks: what tasks need to be performed to meet these objectives?
6. Define key information needs, including those identified by analysis of the exist-

ing system and those highlighted by definition of key tasks.
7. Diagnose efficiency needs, those elements in the system that cause it to under-

perform or perform incorrectly. If these are internal they can be redesigned out
of the new system; if they are external then the new system must be designed to
cope with them.

8. Diagnose job satisfaction needs, with a view to increasing job satisfaction where it
is low.

9. Analyze likely future changes, whether in technology, external constraints (such
as legal requirements), economic climate or stakeholder attitudes. This is neces-
sary to ensure that the system is flexible enough to cope with change.

10. Specify and prioritize objectives based on efficiency, job satisfaction and future
needs. All stakeholders should be able to contribute here as it is a critical stage
and conflicting priorities need to be negotiated. Objectives are grouped as either
primary (must be met) or secondary (desirable to meet).

470 Chapter 13 n Socio-organizational issues and stakeholder requirements

The final stages of the ETHICS approach focus on the actual design and evaluation
of the system. Necessary organizational changes are designed alongside the technical
system. These are then specified in detail, implemented and evaluated.

The ETHICS approach attempts to reach a solution that meets both user and task
requirements by having specialist teams negotiate objectives and rank potential solu-
tions. The emphasis is on reaching a solution that ranks highly on job satisfaction to
ensure that the solution is acceptable.

It ensures participation at every stage through representative design teams, but
can be expensive and time consuming to carry out. However, the benefits in terms of
job satisfaction and higher productivity may balance out the initial investment.

13.3.5 Ethnographic methods

All of the approaches considered so far have included some level of consultation
and observation of the stakeholders. However, the focus of this has been on
gathering stakeholder perspectives rather than specifically studying actual work
practice. It can be argued that work can only be understood and studied in context.
This is consonant with the ideas of distributed cognition. Taking a worker away
from the workplace changes the very nature of the worker’s actions. Real action
is situated action; it occurs in interaction with the materials and people of the
workplace [334]. In extremis, it is claimed that an action can only be understood
in the place, in the social situation, and at the time at which it occurred. Such a
level of contextualization is obviously useless for design, and its advocates will
in practice generalize from their observations, even if they ostensibly eschew such
generalization.

Even if one does not wish to take such an extreme view, it is clear that studying
workers in their own situations is extremely worthwhile.

Many branches of sociology and anthropology have long recognized that one
cannot study people divorced from their social and cultural context. In particular,
ethnography has become very influential, particularly in the study of group systems.
We were introduced to ethnography briefly in Chapter 9 but here we will consider
it in a little more detail, and discuss an approach to contextual requirements cap-
ture that reflects the ethnographic tradition but has been developed to be highly
practical.

Ethnography is based on very detailed recording of the interactions between
people and between people and their environment. It has a special focus on social
relationships and how they affect the nature of work. The ethnographer does not
enter actively into the situation, and does not see things from a particular person’s
viewpoint. However, an aim is to be encultured, to understand the situation from
within its own cultural framework. Culture here means that of the particular work-
group or organization, rather than that of society as a whole. Ethnographers try
to take an unbiased and open-ended view of the situation. They report and do not
like to speculate, so it is often unclear how well their approach can contribute to the
design of new systems.

13.3 Capturing requirements 471

We now look briefly at an approach that takes a pragmatic rather than purist
ethnographic perspective, contextual inquiry.

Contextual inquiry

Contextual inquiry has much in common with the ethnographic tradition: it studies
the user in context, trying to capture the reality of his work culture and practice.
However, it is also an approach rooted in practice and it differs in a number of
significant ways from pure ethnographic study: the intention is to understand and to
interpret the data gathered, and rather than attempting to take an open-ended view,
the investigator acknowledges and challenges her particular focus. In addition, the
explicit aim is to design a new system, whereas in a pure ethnographic study, it would
be open ended.

The model of contextual inquiry is of the investigator being apprenticed to the
user to learn about his work. Interviews take place in the workplace so that the
objects, artifacts and relationships of the work can be better understood. Examples
of work are collected and both verbal and non-verbal communication is studied. The
idea is to be as comprehensive in the data gathering as possible and to be concrete.
Another central notion of contextual inquiry is that of partnership: the user is the
expert in the workplace and is therefore encouraged to lead the investigation.
However, the investigator is not a passive observer. Her objective is to gain a shared
understanding of how the work happens and, to do so, she questions meaning and
offers interpretations of what she observes. The aim is to draw out the implications
of comments and actions and understand (rather than assume) what they really
mean. In order to do this honestly and effectively the investigator must know her
focus – her pre-existing beliefs and assumptions about the situation – and be pre-
pared to challenge and adjust them in the face of new information.

Contextual inquiry focusses on a 2–3 hour interview with the user in the work-
place. The idea is to capture and record as much detail as possible, including what
the user says and does (step by step), how he communicates and coordinates with

Ethnography and participatory design

The ethnographic approach differs markedly from the approach of participatory design.
In participatory design the workers come out of their work situation, either physically or mentally,
and share the design task with the professional designers – effectively the workers become
designers. The participatory designer enters into the subjective experience of the workplace.
Ethnographic and other situated approaches take the analyst into the workplace, while retaining a
level of objectivity. The advantage is that the analyst sees the whole group’s perspective, rather
than that of involved individuals, but the analyst, however much in tune with the workers, is still
‘out there’. On the other hand, involving the workers in the design process in itself increases their
motivation and acceptance whether or not the resulting design is ‘optimal’.

472 Chapter 13 n Socio-organizational issues and stakeholder requirements

others, his feelings and responses to the situation, and a shared understanding of the
meaning of actions and artifacts. In addition, objects, examples and artifacts of work
are collected and annotated, and the physical work environment is sketched and
annotated to show how it is used.

A number of models of the work are developed to capture what is important in the
user’s work situation:

n The sequence model elaborates the steps required to complete a specific task, as
well as the triggers that initiate that sequence of steps.

n The physical model maps the physical work environment and how it impacts
upon work practice, for example, an office plan showing where different work
activities happen.

n The flow model shows the lines of coordination and communication between the
user and other participants within and outside the workplace.

n The cultural model reflects the influences of work culture and policy and shows
the scope of these influences. This may include official or unofficial codes of
behavior, common expectations (which may or may not be explicit) and value
systems.

n The artifact model describes the structure and use of a particular artifact within
the work process.

Once the interview is complete, the data must be consolidated with those from
other users and stakeholders. There is not space here to elaborate the whole process
(see [35] for details) but interviews are transcribed and interpreted as soon as pos-
sible after the event by the design team. The team comes together to consider the
interview data and to identify commonalities across stakeholders. Affinity diagrams
are used to group related information by posting notes on the wall representing a
particular comment or observation and grouping these into a hierarchy of related
themes. The themes are not pre-determined but arise from the data as they are
examined.

Each of the models above is also consolidated across users to provide a common
view of the situation. The result is a representation of the required task sequences,
artifacts and communication channels that must be supported in the new system as
well as the physical and cultural constraints that must be taken into account.

SUMMARY

We have seen that organizational factors can make or break the deployment of
information and communications technology. Any computer system may interfere
with the existing authority and social relationships within an organization. There
may be a mismatch between those who benefit, and those who do the work. Even
where there is no in-built bias, the free rider may put in little personal effort,
benefiting from the work of the rest of the group.

13.4

Exercises 473

We need to identify stakeholders who will be affected directly or indirectly. In
particular, junior and middle management may feel they lose control and authority
by the introduction of electronic communications. Another example is teleworking,
which is made easier by advances in telecommunications, but which makes the
worker less visible to management. Even where a system is perceived to be useful, it
is hard to quantify its benefits as they are diffused throughout the organization.

In this chapter, we have discussed a selection of socio-organizational approaches
to capturing stakeholder requirements, including socio-technical models, soft
systems methodology, participatory design and ethnographic approaches. Socio-
technical models focus on representing both the human and technical sides of the
system in parallel to reach a solution that is compatible with each. SSM models
the organization, of which the user is part, as a system. Participatory design sees the
user as active not only in using the technology but in designing it. Ethnography, on
the other hand, views the user in context, attempting to collect an unbiased view of
the user’s work culture and practice.

EXERCISES

13.1 A group of universities has decided to collaborate to produce an information system to
help potential students find appropriate courses. The system will be distributed free to schools
and careers offices on CD-ROM and will provide information about course contents and
requirements, university and local facilities, fees and admissions procedures. Identify the main stake-
holders for this system, categorize them and describe them and their activities, currently and with
regard to the proposed system, using the CUSTOM framework.

13.2 For the scenario proposed above:

(i) Produce a rich picture showing the problem situation (you can use any format that you find
helpful).

(ii) Produce a root definition, using CATWOE, of the system from the viewpoint of the
university.

What transformations or activities are required to make sure that the root definition is
supported?

13.3 The example in Section 13.3.2 (soft systems methodology) provides a root definition for an
airline booking system from the perspective of the airline owner. How would this change if it was
presented from the perspective of the customer?

13.4 Find case studies of participatory design in action and use these to provide a critique of the
approach. What are the benefits and weaknesses of participatory design and how might any weak-
nesses be addressed?

13.5 You are designing a new system to help people manage their ‘to do’ lists. Use the contextual
inquiry approach to interview a colleague to see how they make use of such lists. Make sure you
interview them in context – in their study or workplace for example. Produce sequence, flow,
artifact, cultural and physical models of the activity.

474 Chapter 13 n Socio-organizational issues and stakeholder requirements

RECOMMENDED READING

K. D. Eason, Information Technology and Organizational Change, Taylor and Francis,
1988.
Clear coverage of socio-technical and organizational issues in design.

P. B. Checkland, Systems Thinking, Systems Practice: includes a 30 Year Retrospective,
John Wiley, 1999.
The classic text on soft systems methodology in detail, in a new edition with
reflections on the development and use of the methodology.

J. Greenbaum and M. Kyng, Design at Work: Cooperative Design of Computer Systems,
Lawrence Erlbaum, 1991.
An excellent collection of papers on participatory design philosophy and practice.

E. Mumford, Effective Systems Design and Requirements Analysis: The ETHICS
Approach, Palgrave, 1995.
A book outlining the ETHICS approach by its developer.

H. Beyer and K. Holtzblatt, Contextual Design: Defining Customer Centered Systems,
Morgan Kaufmann, 1998.
A full exposition of the contextual design methodology, of which contextual
inquiry is a part.

COMMUNICATION AND

COLLABORATION MODELS

OV E RV I E W

All computer systems, single-user or multi-user, interact
with the work-groups and organizations in which they are
used.

n We need to understand normal human–human
communication:
– face-to-face communication involves eyes, face and

body
– conversation can be analyzed to establish its detailed

structure.

n This can then be applied to text-based conversation,
which has:
– reduced feedback for confirmation
– less context to disambiguate utterances
– slower pace of interaction
but is more easily reviewed.

n Group working is more complex than that of a single
person:
– it is influenced by the physical environment
– experiments are more difficult to control and record
– field studies must take into account the social

situation.

14

476 Chapter 14 n Communication and collaboration models

INTRODUCTION

No man is an Iland, intire of it selfe; every man is a peece of the Continent, a part of
the maine.

John Donne1

It is clear that groupware systems, such as email or conferencing systems, involve
more than one person. However, to some extent all systems influence and are
influenced by the groups and social situations in which they are placed. The field of
computer-supported cooperative work (CSCW) encompasses both specific group-
ware systems and the effects of computers on cooperative working in general.

We begin this chapter by looking at human communication. Effective commun-
ication clearly underlies much collaborative work and many systems aim to support
communication at a distance. Face-to-face communication is often seen as the ideal
to which computer-mediated communication should aim. Section 14.2 describes
some of its features, and shows how even video-based communications lose many
of the subtle cues. Body language, tone of voice and eye contact are all crucial in
enabling smooth conversation. We then look at a slightly higher level in Section 14.3,
at the structure of conversation. In particular, we will see that typical utterances are
ambiguous and dependent on the context in which they are spoken. This section
concludes by looking at speech act theory and the Coordinator system which has
been both influential and controversial in CSCW. Understanding spoken conversa-
tion gives some clues as to the effective design of text-based communication such
as email systems or electronic conferencing. Section 14.4 discusses text-based com-
munication in this context, including a discussion of the relative merits and features
of linear text and hypertext systems.

In Section 14.5 we move away from computer-mediated communication and look
at the wider issues of group working. Groups are dynamic both in composition and
behavior, and effective group working is dependent on the work environment.
Because of these and other factors, the study of group behavior, and therefore
evaluating groupware, is far more complex than that of single-user systems.

FACE-TO-FACE COMMUNICATION

Face-to-face contact is the most primitive form of communication – primitive, that
is, in terms of technology. If, on the other hand, we consider the style of commun-
ication, the interplay between different channels and productivity, we instead find
that face-to-face is the most sophisticated communication mechanism available.

14.2

14.1

1 Devotions upon Emergent Occasions, XVII, 1624.

14.2 Face-to-face communication 477

The first thing to note is that face-to-face communication involves not just speech
and hearing, but also the subtle use of body language and eyegaze. We will discuss a
range of these phenomena, and how they influence our use of computer-mediated
communications. We will concentrate on two-person conversations as group
dynamics are discussed later in Section 14.5. Also, we will principally compare face-
to-face with video and audio channels and we will address the special problems of
text-based communications in Section 14.4.

14.2.1 Transfer effects and personal space

When we come to use computer-mediated forms of communication, we carry forward
all our expectations and social norms from face-to-face communication. People are
very adaptable and can learn new norms to go with new media (for example, the use
of ‘over’ for turn-taking when using a walkie-talkie). However, success with new
media is often dependent on whether the participants can use their existing norms.
Furthermore, the rules of face-to-face conversation are not conscious, so, when they
are broken, we do not always recognize the true problem. We may just have a
feeling of unease, or we may feel that our colleague has been rude.

An example of these problems concerns personal space. When we converse with
one another we tend to stand with our heads a fairly constant distance apart. If
people start to converse at opposite ends of a room, they will quickly move toward
one another until they are a few feet apart. The exact distance depends somewhat
on context; a high level of noise may make people come closer just to be heard.
However, even in crowded rooms, conversants will dip their heads toward one
another whilst speaking and then straighten up to restore their personal distance.
Direction is also important. We can accept people closer to us if they are at our sides
or behind than if we are facing them. Because of this, passengers on tube trains,
forced to be close, will incline their faces at an angle to one another whilst talking.

Personal space also differs across cultures: North Americans get closer than
Britons, and southern Europeans and Arabs closer still. This can cause considerable
problems during cross-cultural meetings. Imagine a Briton, Eustace Warbuck-
Smyth, and an American, Bud Sterton, conversing. After a few minutes Eustace
is bent backwards over a table, trying to maintain his personal distance, whilst
Bud stands almost knee to knee trying to get close enough. Eustace feels Bud is
either rather aggressive, or possibly over-friendly. Bud, on the other hand, feels
Eustace is rather distant and uninterested. Unless the situation gets extreme, or the
participants are trained in non-verbal skills, they will be unaware of why they feel
uncomfortable.

A similar problem can occur in a video conference. Imagine Eustace and Bud
have monitors with cameras mounted above, so that their offices are connected. The
zoom on each camera is adjustable and Bud’s camera is set with a wide focus, whilst
Eustace’s is set with a high level of zoom. So, if Bud and Eustace are the same dis-
tance from their cameras and monitors, then Bud sees Eustace’s whole face filling the
screen, whereas Eustace sees Bud sat on his chair in the middle of his office. Eustace

478 Chapter 14 n Communication and collaboration models

moves closer to the monitor to see Bud more clearly, while Bud pushes his chair back
to get away from Eustace’s 2 foot (60 cm) high face – touché. Of course, the problem
gets worse if the cameras are positioned in different places relative to the monitors,
or if the monitors are different sizes. Ideally, Bud ought to be able to adjust the zoom
on Eustace’s camera and vice versa. In fact, there is some evidence that the ‘glass wall’
afforded by the video screen makes the precise distance less important, which could
have a positive effect during cross-cultural meetings. However, gross distortions, as
described above, need to be avoided.

14.2.2 Eye contact and gaze

Long-term gazing into one another’s eyes is usually reserved for lovers. However,
normal conversation uses eye contact extensively, if not as intently. Our eyes tell us
whether our colleague is listening or not; they can convey interest, confusion or
boredom. Sporadic direct eye contact (both looking at one another’s eyes) is import-
ant in establishing a sense of engagement and social presence. People who look
away when you look at them may seem shifty and appear to be hiding something.
Furthermore, relative frequency of eye contact and who ‘gives way’ from direct eye
contact is closely linked to authority and power.

Naturally, all these clues are lost if we have no visual contact. However, the mis-
leading clues via a video connection can be worse. In Chapter 19 (Section 19.3.4)
we discuss the problems of obtaining effective eye contact with standard video
equipment. If the camera is strapped to the top of the monitor (a common arrange-
ment) both participants will look as if their eyes are slightly dropped. We will look at
some technical solutions to this in Chapter 19.

Despite these problems with direct eye contact, many signals can be easily read
through a video channel. You can see whether your colleague looks quizzical or
bored, confused or excited. This involves not just the eyes, but the whole facial
expression, and this is apparent even on poor-quality video or very small (pocket-
TV-sized) monitors. Experiments have shown that remotely working participants
experience a greater sense of social presence if video is used in addition to an audio
link.

As well as having a role in establishing rapport between the participants, eyegaze
is useful in establishing the focus of the conversation. If you say ‘now where does this
screw go?’, there may be many screws, but your colleague can see which one you are
looking at. Video connections are unlikely to show enough of your office for your
colleague to be able to interpret such clues, but a focus that just catches the corner of
the monitor and desk can help.

14.2.3 Gestures and body language

In a similar but more direct way, we use our hands to indicate items of interest. This
may be conscious and deliberate as we point to the item, or may be a slight wave of
the hand or alignment of the body. Again, a video connection may not be sufficient

14.2 Face-to-face communication 479

to allow our colleagues to read our movements. This can be a serious problem since
our conversation is full of expressions such as ‘let’s move this one there’, where the
‘this’ and ‘there’ are indicated by gestures (or eyegaze). This is called deictic reference
(see Chapter 19, Sections 19.4 and 19.6 for more details).

Several groupware systems attempt to compensate for these losses. In Section
19.4.2, we discuss the idea of a group pointer, a mouse-controlled icon which can
be used to point to things on a shared screen. Somewhat more esoteric, but more
immediate, are the shared work surfaces (Section 19.4.3) which mix an image of the
participants’ hands with the electronic screen. The participants can then simply
point at the relevant item on the screen, as they would face-to-face.

Of course, the group pointer, although used in remote groupware, is also used in
synchronous co-located groupware such as meeting rooms. That is, even though the
participants can converse face-to-face, they still need deictic aids. One reason for this
is that their electronic screens, although logically shared (they can all see the same
thing), are not physically shared (they are in different places). So, if Jemima points
to her own screen, her colleagues do not know what she is pointing at.

Even when the participants are in the same room, the existence of electronic
equipment can interfere with the body language used in normal face-to-face com-
munication. The fact that attention is focused on keyboard and screen can reduce the
opportunities for eye contact. Also, large monitors may block participants’ views of
one another’s bodies, reducing their ability to interpret gestures and body position.
Most computer-supported meeting rooms recess monitors into the desks to reduce
these problems.

14.2.4 Back channels, confirmation and interruption

It is easy to think of conversation as a sequence of utterances: A says something, then
B says something, then back to A. This process is called turn-taking and is one of the
fundamental structures of conversation. However, each utterance is itself the result
of intricate negotiation and interaction. Consider the following transcript:

Alison: Do you fancy that film . . . er . . . ‘The Green’ um . . . it starts at eight.
Brian: Great!

Alison has asked Brian whether he wants to go to the cinema (or possibly to watch
the television at home). She is a bit vague about the film, but Brian obviously does
not mind! However, if we had listened to the conversation more closely and watched
Alison and Brian we would have seen more exchanges. As Alison says ‘that film
er . . .’, she looks at Brian. From the quizzical look on his face he obviously does not
know which film she is talking about. She begins to expand ‘The Green um . . .’,
and light dawns; she can see it in his eyes and he probably makes a small affirmative
sound ‘uh huh’.

The nods, grimaces, shrugs of the shoulder and small noises are called back
channels. They feed information back from the listener to the speaker at a level below
the turn-taking of the conversation. The existence of back channels means that the

480 Chapter 14 n Communication and collaboration models

speaker can afford to be slightly vague, adding details until it is obvious that the
listener understands. Imagine making no response as someone talks to you, no little
‘yes’es, no nods or raised eyebrows. You could answer questions and speak in turn,
but not use back channels. It is likely that your colleague would soon become very
uncomfortable, possibly rambling on with ever more detailed explanations, looking
for some sign of understanding:2

Do you fancy that film . . . er . . . ‘The Green’ um . . . the one with Charles Dermot in
. . . you know with that song, er and the black cat on the poster . . . uhh

These back channel responses use a range of sensory channels. So, as we restrict
the forms of communication we lose the back channels. Even video communications
tend to use, at most, head and shoulder shots, so we lose some body movement and
gestures. On the other hand, a larger view means reduced detail, so we lose informa-
tion whatever focus we choose. Audio-only links (such as the telephone) have
to rely on purely verbal back channel responses – the little ‘yes’es. Surprisingly,
despite the loss of many back channels, people still cope well with these restricted
media, and communication is still reasonably effective. However, you may have had
the experience, when speaking to someone on the telephone, of suddenly getting
the feeling that they have gone away, or the line has gone dead. This is likely to
be when you have received insufficient back channel responses (and perhaps you
have been going on a bit). Transcontinental telephones are especially problematic
as they are often only half duplex, that is the sound only goes in one direction at a
time. So, while you are speaking, you can hear none of your partner’s back channel
responses.

Text-based communication, in electronic conferencing, usually has no back chan-
nels whatsoever. Any confirmation must be given explicitly in the listener’s next
utterance. This may confuse an analysis of text-based conversation as the utterances
do not correspond simply to utterances in speech.

14.2.5 Turn-taking

As well as giving confirmation to the speaker that you understand, and indications
when you do not, back channels can be used to interrupt politely. Starting to speak
in the middle of someone’s utterance can be rude, but one can say something like
‘well uh’ accompanied by a slight raising of the hands and a general tensing of
the body and screwing of the eyes. This tells the speaker that you would like to inter-
rupt, allowing a graceful transition. In this case, the listener requested the floor.
Turn-taking is the process by which the roles of speaker and listener are exchanged.
Back channels are often a crucial part of this process.

2 Don’t try this as an experiment on your friends, or you may end up without any! Instead try it with a
colleague who knows what is going on. Even when you both know not to expect back channel responses
the experience can be disconcerting. Furthermore, you will both find it very difficult to refrain from back
channel responses.

14.2 Face-to-face communication 481

In other cases, the speaker may explicitly offer the floor to the other participant.
This may be in the form of a direct question, ‘what do you think?’, or simply a very
strong change of tone.

More often the speaker will offer the floor to the listener by leaving a small gap in
speech. These gaps are typically no more than a fraction of a second; indeed gaps
of even a few seconds give completely different signals and interrupt the flow of

DESIGN FOCUS

Looking real – Avatar Conference

Avatars, artificial representations of people, are used in various forms of online communication. Often
these are based on some form of cartoon image, but the Avatar Conference project has produced
a virtual meeting environment with photo-realistic avatars. These are produced by photographing
participants from several angles and then using the photographs to texture map an artificial figure. This
is then rendered in a 3D virtual meeting room.

Participants can use internet phone or simple text chat and the latter has translation options to
aid international meetings. The avatar for the current speaker moves its mouth and makes other
animations, but is not synchronized with the actual speech. The aim is to make the participants more
engaged in the online meeting.

The screen shots show two views of the conference application. One with the virtual meeting room
central (left), the other with the currently displayed presentation materials central (right). People found
the 3D avatars exciting and an initial ‘hook’ – this is very important, remember in the Introduction, the
need for a system to be actually used.

However, the participant response after using the application for even a short time was in favor of the
more presentation-centered rather than avatar-centered view. It may be that current avatars are not
quite realistic enough to warrant the central position, or it may reflect the fact that in a real meeting
the focus is on the presentation rather than on the other participants.

See: www.exodus.gr/Avatar_Conference/ and www.avatame.com/ Screen shot frame reprinted by
permission from Microsoft Corporation. Screen shots courtesy of AVATAR-Conference project team

482 Chapter 14 n Communication and collaboration models

conversation. The gap is often at some point which may require clarification, or
where the listener may want to comment. So, Alison may well have waited for
half a second after saying ‘Do you fancy that film’, in case Brian were to respond
‘Oh you mean the one with the black cat on the poster’. As he did not say anything,
she continued with her turn.

The role of ‘um’s and ‘ah’s is very important. They can be used by either particip-
ant during the gap to claim the turn. So, if Brian wanted to respond in the middle
of the utterance, but had not yet framed his utterance, he might begin ‘um the
one . . .’. As it was, Brian did not respond, so Alison starts ‘er’ which says to Brian
‘I’m going to continue, but I’m thinking’. Alternatively, Alison could have started
to ‘er’ as soon as she had said the word ‘film’. This would have told Brian not to
interrupt.

These turn-offering gaps are just the places where the speaker expects some back
channel response even if no turn exchange takes place. A total lack of response will
be taken, depending on the circumstances, as assent to the speaker, or perhaps as
lack of understanding.

As we can see, turn-offering gaps form a central part in the eliciting of back
channel responses and in negotiating turn-taking. They are obviously connected
principally with the audio channel (although some gestures may be used to maintain
or claim the floor). Half-duplex channels (such as intercontinental phone calls) are
volume sensitive in order to track the speaker. Unfortunately, some of the ‘um’s
and ‘er’s used to maintain or claim the floor may fall below the volume threshold
and thus not be transmitted. This may lead to apparent rude interruptions or snub-
bing of one party by the other.

An even more serious problem is encountered during long-distance, satellite-
based communications due to the time lags. To transmit a signal, it must go up to
the satellite and then back down to the earth. A geostationary satellite is at a height
of approximately 100,000 km above the earth – a quarter of the distance to the
moon. Radio waves will take about 700 milliseconds to go up to the satellite and
back down again. This time, together with the processing delays on the ground and
in the satellite, add up to about a 2 second lag. There is thus a 4 second gap between
one participant doing or saying something and when the effects of that upon the
other participant become evident.

We now imagine Alison and Brian talking via satellite. Alison pauses for half a
second after the words ‘that film’, 2 seconds later Brian hears the end of the word
‘film’, after a few hundred milliseconds he notices the gap and begins to say ‘Oh’;
by this time Alison has waited 21/2 seconds, and the gap is getting embarrassing, so
she continues ‘The Green um . . . the one with Charles Dermot in’. Then, 2 seconds
into this, that is over 4 seconds since she began to pause, she hears Brian try to cut
in (how rude!), but he stops talking again when he hears her continuing.

The above scenario is not contrived. Tapes of video conferences show just this
behavior, with a single speaker going on and on as all her attempts to pass on the
floor fail. There is no obvious solution to this problem, except the technological
one of using high-bandwidth land or sub-ocean lines, when these become available,
rather than satellite.

14.3 Conversation 483

CONVERSATION

We have looked at the low-level issues of speech and gesture during face-to-face
conversation. We now turn to the structure of the conversation itself. Most analysis
of conversation focusses on two-person conversations, but this can range from
informal social chat over the telephone to formal courtroom cross-examination.
As well as the discipline of conversational analysis, there are other sociological and
psychological understandings of conversation. However, the techniques, as ‘bor-
rowed’ and used to study computer-mediated conversation, would not always find
favor with the purist from the discipline from which they originated!

There are three uses for theories of conversation in CSCW. First, they can be used
to analyze transcripts, for example from an electronic conference. This can help us
to understand how well the participants are coping with electronic communication.
Secondly, they can be used as a guide for design decisions – an understanding of
normal human–human conversation can help avoid blunders in the design of elec-
tronic media. Thirdly, and most controversially, they can be used to drive design –
structuring the system around the theory.

We will concentrate mainly on the first goal, although this will have implications
throughout for design. Only when we consider speech act theory and Coordinator in
Section 14.3.6 will we see an example of a theory-driven system.

14.3.1 Basic conversational structure

Imagine we have a transcript of a conversation, recalling from Chapter 9 that the
production of such a transcript is not a simple task. For example, a slightly different
version of Alison and Brian’s conversation may look like this:

Alison: Do you fancy that film?
Brian: The uh (500 ms) with the black cat – ‘The Green whatsit’?
Alison: Yeah, go at uh . . . (looks at watch – 1.2 s) . . . 20 to?
Brian: Sure.

This transcript is quite heavily annotated with the lengths of pauses and even
Alison’s action of looking at her watch. However, it certainly lacks the wealth of
gesture and back channel activity that were present during the actual conversation.
Transcripts may be less well documented, perhaps dropping the pause timings, or
more detailed, adding more actions, where people were looking and some back
channelling. Whilst thinking about the structure of conversation, the transcript
above is sufficient.

As we have noted previously, the most basic conversational structure is turn-
taking. On the whole we have an alternating pattern: Alison says something, then
Brian, then Alison again. The speech within each turn is called an utterance. There
can be exceptions to this turn-taking structure even within two-party conversation.
For example, if there is a gap in the conversation, the same party may pick up the

14.3

484 Chapter 14 n Communication and collaboration models

thread, even if she was the last speaker. However, such gaps are normally of short
duration, enough to allow turn-claiming if required, but short enough to consider
the speech a single utterance.

Often we can group the utterances of the conversation into pairs: a question and
an answer, a statement and an agreement. The answer or response will normally
follow directly after the question or statement and so these are called adjacency pairs.
We can look at Alison and Brian’s conversation above as two adjacency pairs, one
after the other. First, Alison asks Brian whether he knows about the film and he
responds. Second, she suggests a time to go and he agrees. We can codify this struc-
ture as: A-x, B-x, A-y, B-y, where the first letter denotes the speaker (Alison or Brian)
and the second letter labels the adjacency pair.

The requirement of adjacency can be broken if the pair is interposed with other
pairs for clarification, etc.:

Brian: Do you want some gateau?
Alison: Is it very fattening?
Brian: Yes, very.
Alison: And lots of chocolate?
Brian: Masses.
Alison: I’ll have a big slice then.

This conversation can be denoted: B-x, A-y, B-y, A-z, B-z, A-x. Adjacency pair ‘x’
(‘Do you want some gateau?’–‘I’ll have a big slice then’) is split by two other pairs ‘y’
and ‘z’. One would normally expect the interposed pairs to be relevant to the outer
pair, seeking clarification or determining information needed for the response.

Some would say that the adjacency pair is not just a basic structure of conversa-
tion but the fundamental structure. It is clearly true that we normally respond to the
most recent utterance. However, it is less clear whether a simple pairing up of utter-
ances is always possible or useful.

For an example of this difficulty, let us look back to the transcript at the beginning
of the section. We see that the pair structure is not completely clear. Alison’s second
utterance begins a new pair, ‘go at 20 to?’, but it began with ‘yeah’ responding to
Brian’s previous utterance. Indeed, Brian’s first response ‘the uh . . . with the black
cat . . .’ could be seen as a request for clarification. That is, we are now looking at the
conversation as having a structure of A-x, B-y, A-yz, B-z, where Alison’s second
utterance serves as both a response to Brian’s request for clarification (‘y’) and starts
a new pair concerning the time (‘z’). But in this case, what happens to the second half
of the original ‘x’ pair? We are forced to regard it as implicit in one of Brian’s utter-
ances. Alison’s ‘go at 20 to?’ clearly suggests that Brian has committed himself, so
we assume that the tone of Brian’s description of the film suggested acceptance.
So, Brian’s first utterance, like Alison’s second, serves a dual purpose: A-x, B-xy,
A-yz, B-z.

Despite these difficulties, we see that the search for adjacency pairs forces us to
examine closely the structure of the conversation. Whether such structures are really
part of the conversation, or imposed by us upon it, is less clear. Later we shall see far
more complex conversational structures.

14.3 Conversation 485

14.3.2 Context

Take a single utterance from a conversation, and it will usually be highly ambiguous
if not meaningless: ‘the uh with the black cat – “The Green whatsit”’. Each utterance and
each fragment of conversation is heavily dependent on context, which must be used to
disambiguate the utterance. We can identify two types of context within conversation:

internal context – dependence on earlier utterances. For example, when Brian says
‘masses’ in the last transcript, this is meaningful in the light of Alison’s question
‘and lots of chocolate?’. This in turn is interpreted in the context of Brian’s
original offer of gateau.

external context – dependence on the environment. For example, if Brian had said
simply ‘do you want one?’, this could have meant a slice of gateau, or, if he had
been holding a bottle, a glass of wine, or, if accompanied by a clenched fist, a
punch on the nose.

Arguably, even a complete conversation is heavily context dependent – without
knowing the situation and the social relations between the participants, how can
we understand their words? Taking a more pragmatic approach, the importance of
external context has implications for system design and for data collection. From
a design perspective, we will look for groupware which both maximizes shared
context and which makes the level of sharing clear.

Turning to data collection, we can see the importance of annotating transcripts
with gestures, eyegaze and details of the environment. However, if one noted
everything down, 90% would be irrelevant to the conversational level of analysis.
Recording the interesting details without flooding the transcript is clearly a skilled
job. If one has rich recordings, say from several video sources, then a simple verbal
transcript may be sufficient as it will be possible to refer back to the video when
interesting incidents are found in the written transcript.

When collecting data from groupware systems, it is also very important to have
synchronized records of the participants’ conversation (whether audio, video or text
based) and their electronic workspaces. We need to know what the participants
can see on their screens in order to interpret their remarks to one another. In the
case where participants may have different views at the same time, we are likely to see
breakdowns in the conversation, where one participant makes an utterance depend-
ing on his screen, whereas his colleague sees something different on her screen.

A specific form of context dependence is deictic reference (Section 14.2.3). When
accompanied by a pointed finger, an expression like ‘that post is leaning a bit’
is clearly dependent on external context. However, there are very similar uses of
internal context:

Brian: (Points) That post is leaning a bit.
Alison: That’s the one you put in.

Brian’s utterance uses external context, whereas Alison’s very similar utterance uses
internal context. Her ‘that’ refers to the post Brian was talking about, not the one he
is pointing at. To see this, consider the similar fragment:

486 Chapter 14 n Communication and collaboration models

Brian: The corner post is leaning a bit.
Alison: That’s the one you put in.

Real speech, probably more than the written word, is full of indexicals, words like
‘that’, ‘this’, ‘he’, ‘she’ and ‘it’. Obviously when used in written text, like this, words
such as these make use of purely internal context. In spoken speech any of the above
words can be accompanied by gestures or eyegaze for external context, or simply
used, as Alison did, to refer to previous things in the conversation. Some of the
words tend to be more likely to be external (‘that’, ‘this’) than others (‘he’, ‘she’), but
you can easily think of cases of both forms of use. Furthermore, the attachment of
pronouns and other indexicals to the things they denote may depend on the seman-
tics of a sentence: ‘Oh no! Eustace has hit Bud. He’ll kill him, I know he will.’ Does
the speaker mean that Eustace will kill Bud, or vice versa? The answer depends on the
speaker’s knowledge of Eustace and Bud. If Bud is a 22 stone (138 kg) trucker and
Eustace has trouble lifting cans of beans then we interpret the sentence one way. If,
on the other hand, Eustace has a black belt in karate . . .

One consequence of the use of context in speech is the fragmentary nature
of utterances. The example transcripts are, if anything, atypically grammatical.
Although there is evidence of rules of grammar for the spoken word, these are very
different, and much more relaxed, than the written equivalent.

14.3.3 Topics, focus and forms of utterance

Given that conversation is so dependent on context, it is important that the particip-
ants have a shared focus. We have addressed this in terms of the external focus – the
objects that are visible to the participants – but it is also true of the internal focus of
the conversation.

Alison: Oh, look at your roses . . .
Brian: Mmm, but I’ve had trouble with greenfly.
Alison: They’re the symbol of the English summer.
Brian: Greenfly?
Alison: No roses silly!

Alison began the conversation with the topic of roses. Brian shifts to the related, but
distinct, topic of greenfly. However, for some reason Alison has missed this shift in
focus, so when she makes her second utterance, her focus and Brian’s differ, leading
to the breakdown in communication. The last two utterances are a recovery which
re-establishes a shared dialog focus.

In general, we can go through a transcript annotating the utterances by the topics
to which they refer. The identification of topics and assigning utterances to them is
a somewhat subjective affair, and one may want to use several levels of topic categor-
ization. Of course, those points where such a labeling is difficult are interesting in
themselves. They may either represent potential points of breakdown (as above),
or show where external context is needed to disambiguate the conversation. Also
of interest is the way that the participants negotiate changes in dialog focus, either

14.3 Conversation 487

because they recognize a divergence, or because one party wants to shift the focus of
the conversation.

This sort of analysis can be pursued for its own sake, but has a more pragmatic
interest in the analysis of computer-mediated conversation and design of groupware.
We want to know where breakdowns occur in order to see whether these are due
to the electronic medium. We also want to understand the shifts in focus and the
reliance on external context and compare these with the shared objects available
through the computer system.

Another way of classifying utterances is by their relation to the task in hand. At
one extreme the utterance may have no direct relevance at all, either a digression
or purely social. Looking at the task-related conversation, the utterances can be
classified into three kinds [335]:

substantive directly relevant to the development of the topic;

annotative points of clarification, elaborations, etc.;

procedural talking about the process of collaboration itself.

In addition, the procedural utterances may be related to the structure of collabora-
tion itself, or may be about the technology supporting the collaboration. The latter
is usually in response to a breakdown where the technology has intruded into the
communication.

Alison and Brian are now discussing the best way to get to the cinema. Alison is
using a whiteboard to draw a map.

1. Alison: You go along this road until you get to the river.
2. Brian: Do you stop before the river or after you cross it?
3. Alison: Before.
4. Brian: Draw the river in blue and the roads black . . .
5. Alison: So, you turn right beside the river.
6. Brian: Past the pub.
7. Alison: Yeah . . . Is there another black pen, this one’s gone dry?

Alison’s first utterance, turn 1, is substantive. Brian then interrupts with an annotat-
ive utterance, asking a question of clarification, which is answered by Alison at 3.
Brian then makes a procedural point (perhaps prompted by his confusion at 2).
In turns 5 and 6, the conversation again becomes substantive, but then the pen
runs out, and utterance 7 is a procedural remark concerning the communication
technology (pen and whiteboard).

The last form of utterance (procedural technological) is most interesting when
analyzing transcripts of computer-mediated conversation as it represents points
where the system became apparent to the participants. However, it is also interesting
to compare the forms of conversation used in, say, an electronic conference with
those in normal speech. For example, a hypertext-oriented conference will allow
digressions without any danger of losing the flow of the conference, thus encourag-
ing annotative and procedural utterances.

488 Chapter 14 n Communication and collaboration models

14.3.4 Breakdown and repair

We have already seen an example of breakdown in conversation. When Alison and
Brian were talking about Brian’s roses, they failed to maintain a shared focus. Brian
tried to interpret Alison’s utterance in terms of his focus and failed, or rather the
meaning in that focus was unusual – greenfly are the symbol of the English summer?
He then questioned Alison and the confusion was cleared. This correction after
breakdown is called repair.

If we look at transcripts of computer-mediated conversations, and see many
breakdowns, we should not be surprised: face-to-face and spoken conversations are
full of it. We may see breakdowns at many levels. The divergence of topic focus is
a quite high level of breakdown. It often becomes apparent when we find failures
to identify the referrent of an indexical or deictic reference. Alternatively, such a
failure may be due to the speaker using an ambiguous indexical: ‘Eustace has just
hit Bud . . . he’s bleeding’ – that is, Eustace is bleeding, Bud was wearing a crash
helmet.

At a lower level, we may see breakdown due to incorrectly read gestures or eye-
gaze, and through missed or inappropriate back channel responses. For instance,
in Section 14.2.5, we described the problems in turn-taking during satellite-based
video conferences. It may be difficult to interpret just where a breakdown occurred,
as the breakdown may take some time to come to light, and be apparent at a differ-
ent level from which it began. Alison and Brian are enjoying a day out at a country
park:

Alison: Isn’t that beautiful?
She points at a stag standing beside a large tree; Brian sees the tree.

Brian: The symmetry of the branches.
Alison: How some people can dislike them I can’t understand.
Brian: Yes, the rangers ought to cull those deer, they strip the bark terribly

in winter.
Alison: (Silence)

The breakdown began with a confused gesture, but led to a divergence of dialog
focus. Unfortunately, Brian’s remark about the branching (of the tree) could be
interpreted in terms of Alison’s focus (the stag’s antlers) and thus the breakdown did
not become apparent until Brian had well and truly put his foot in it. Happily, most
breakdowns are detected more quickly, but the deeper the breakdown, and the
longer it lasts, the more difficult it is to recover.

Despite the frequency of breakdowns in normal speech, our communication is not
usually significantly affected because we are so efficient at repair. (Although Brian
may have some difficulty.) Redundancy, frequency of turn-taking and back channels,
all contribute to the detection of breakdown and its rapid repair. Electronic com-
munications often reduce redundancy (a single channel), reduce the frequency of
turn-taking and reduce back channels. The problem is thus not so much breakdowns
in communication, but a reduced ability to recover from them.

14.3 Conversation 489

14.3.5 Constructing a shared understanding

We have seen that human conversation is in itself inherently ambiguous, relying on
context and shared understanding between the parties to disambiguate the utter-
ances. In some spheres, such as legal contracts, the precise meaning out of context
becomes very important and thus highly stylized language is used to reduce ambigu-
ity.3 However, even the legal profession depends on a large body of shared knowledge
and understanding about legal terms, case law, etc. Similarly, a book, such as this,
attempts to use less ambiguous language and only commonly available knowledge.

The major difference between a book and conversation is that the latter is inter-
active. The shared knowledge used in a book is static, whereas that used during a
conversation is dynamic, as the participants increase their understanding of one
another and as they shift their focus from topic to topic.

When participants come to a conversation, they may come from different back-
grounds and bring different knowledge. Even close colleagues will have different
recent experiences, and as we have seen in previous examples, have different foci.
The participants do not try to unify their knowledge and background – indeed,
they could not fully do so without living one another’s lives. Instead, they seek to
obtain a common ground, a shared understanding sufficient for the task in hand.
Establishing this common ground will involve negotiating the meanings of words
and constructing shared interpretations of the world. Clark and Schaefer [72] refer
to this process as grounding.

A consequence of this model of conversation is that the participants are aware, at
various levels both conscious and subconscious, that their common ground is
incomplete. Their conversation is not then just an exchange of information about
their task, but involves continual testing and cross-checking of the other party’s
understanding. Consider again a fragment from Alison’s conversation about the way
to the cinema:

Alison: So, you turn right beside the river.
Brian: Past the pub.
Alison: Yeah . . .

Alison makes an utterance concerning the way to the cinema. Brian interprets
this utterance given his current understanding of the conversation and the world.
However, in order to check this understanding he makes the statement ‘past the
pub’. Now this is not a question of clarification like his earlier question about the
bridge; instead it merely echoes back some evidence that he has correctly interpreted
Alison’s utterance. Alison is happy with this and so confirms it ‘yeah’.

Such exchanges can be more protracted: for instance, if Brian’s reply does not
satisfy Alison she may reflect Brian’s evidence back to him: ‘you mean the Black
Bull’, or attempt to re-present her original utterance: ‘along the road on this side of
the river’. Alternatively, the exchange may be much shorter: rather than explicitly
presenting evidence, Brian could have simply continued the conversation, making

3 Or left deliberately ambiguous.

490 Chapter 14 n Communication and collaboration models

his understanding implicit in his future utterances. If these utterances were not com-
patible with Alison’s original utterance, she could then initiate repair. This was the
course adopted in their conversation in the country park, although, in that case, with
unfortunate results. Finally, the evidence of understanding may often be presented
via back channels, little ‘yes’es, or simply a continued look of comprehension.

Common ground is always partial, and thus any utterance will have a different
meaning for the speaker and the listener. The aim of grounding is to construct a
meaning in the conversation which is sufficient for the task. For example, Brian’s
understanding of the Black Bull may be of pleasant evenings sitting on its river ter-
race. Alison may never have visited the pub, but has seen its distinctive sign hanging
over the road. These different understandings are not important: for the purpose of
finding directions the pub is merely a way of identifying the road they are to follow.

In a conversation, we know that our partner does not share our knowledge of the
world. In addition, we know that our partner will attempt to interpret our utterances.
We thus frame our utterances based on this knowledge. Two guiding principles for
our utterances are that they should be relevant and helpful.

To be relevant an utterance should further the current topic. This is because our
partner is expecting an utterance in this context and any sudden shift in our topic
focus will make it more difficult for our partner to make sense of the utterance.
Such shifts happen in a conversation, but require less ambiguous utterances (as the
common ground for that particular utterance is lower).

To be helpful, an utterance should be understandable to the listener and be
sufficiently unambiguous given the listener’s understanding. This requires the
speaker to have a model of the listener’s understanding and vice versa. So assuming
he is being helpful, in saying ‘past the pub’, Brian implicitly assumes that there is a
particular pub, which Alison will recognize as being significant. It is no good the pub
being significant to Brian alone; he must know that it will carry its intended
significance to Alison.

The ability to build such models is part of our social maturing. One of the key
developmental steps for a child is from an egocentric world view, where things are
interpreted in relation to the child, to a social one where the child recognizes others’
viewpoints. At the age of 21/2, one of the authors’ children was interviewed by a lin-
guistics researcher. At one stage the conversation proceeded:

Child: We went to the doctor.
Researcher: Where was the doctor?
Child: Up the steps.

The researcher was clearly (in the context and to an adult) wanting to know whether
the doctor was in a hospital or not. The child’s answer would have been instantly
meaningful to any local parent as the steps to the local doctor were a constant prob-
lem for people with prams. However, the child was at that stage unable to phrase the
utterance in a way suited to her listener’s understanding. At a certain age children
assume you know everything they know.4

4 To be fair, adults often make the same assumption of children!

14.3 Conversation 491

So, we see that conversation is an inherently social activity, based on a constructed
shared understanding, and relying on the participants’ models of one another. In
addition, it depends on continuous interaction to correct misinterpretations and to
confirm understanding.

14.3.6 Speech act theory

A particular form of conversational analysis, speech act theory, has been both influen-
tial and controversial in CSCW. Not only is it an analytic technique, but it has been
used as the guiding force behind the design of a commercial system, Coordinator.
Speech act theory has origins going back over 25 years, but was popularized by
Winograd and Flores in the design of Coordinator [381].

The basic premise of speech act theory is that utterances can be characterized
by what they do. If you say ‘I’m hungry’, this has a certain propositional meaning –
that you are feeling hungry. However, depending on who is talking and to whom,
this may also carry the meaning ‘get me some food’ – the intent of the statement is
to evoke an action on the part of the hearer. Speech act theory concerns itself with
the way utterances interact with the actions of the participants.

Some speech acts actually cause a significant effect by the act of being said. The
classic example is when a minister says ‘I pronounce you husband and wife’. This
is not simply a statement that the minister is making about the couple. The act of
saying the words changes the state of the couple. Other acts include promises by the
speaker to do something and requests that the hearer do something. These basic acts
are called illocutionary points.

Individual speech acts can contribute to a conversation. The basic structure of
conversations can then be seen as instances of generic conversations. One example
of such a generic structure is a conversation for action (CfA). This is shown as a
state diagram in Figure 14.1. It represents the stages two participants go through in

Figure 14.1 Conversation for action. Source: Understanding Computers and
Cognition: A New Foundation for Design by Terry Winograd/Fernando Flores, © 1986.
Reprinted by permission of Pearson Education, Inc., Upper Saddle River, NJ

492 Chapter 14 n Communication and collaboration models

initiating an external action that one of them should perform. There are two
variants, the one shown representing a conversation where the first speaker (A) is
requesting that the other participant (B) does something. The other, similar, variant
is where the first speaker begins with an offer.

The numbered circles in Figure 14.1 are ‘states’ of the conversation, and the
labeled arcs represent the speech acts, which move the conversation from state to
state. Note that the speech acts are named slightly differently in different sources (by
the same author even!), but the structure of a CfA is the same. The simplest route
through the diagram is through states 1–5.

Alison: Have you got the market survey on chocolate mousse?
Brian: Sure.

Rummages in filing cabinet and hands it to Alison
Brian: There you are.
Alison: Thanks.

Alison makes a request for the survey (although it is phrased as a question). Brian
promises to fulfill the request (‘sure’). After he feels he has done so (by handing it to
Alison), Brian asserts that the request has been fulfilled (‘there you are’) and Alison
declares her satisfaction that Brian has completed her request (‘thanks’).

More complex routes may involve some negotiating between the parties. For
example, the conversation might have begun:

Alison: Have you got the market survey on chocolate mousse?
Brian: I’ve only got the summary figures.
Alison: That’ll do.

In this Alison’s request is met by a counter from Brian, that is Brian attempts to
modify Alison’s request. This brings us to state 6 in the diagram. Alison then accepts
Brian’s counter, bringing the conversation back to state 3.

The network has some nodes marked with a double circle. These are the comple-
tion nodes, and at these points neither party expects any more acts by the other as
part of this conversation. So the fragment above which left Alison and Brian in state
3 must continue. Of these completion nodes only state 5 represents conclusions
where the request has been satisfied. For example, Alison’s initial request could have
been answered with ‘it’s confidential’ (meaning ‘you can’t have it’). This is the action
of Brian rejecting Alison’s request, leaving the conversation in state 8 and complete.

Not all speech acts need be spoken! Often a silence or an unspoken action forms
a speech act. For example, let us imagine that the market survey had not been handy
and so Brian answers Alison’s request with ‘sure, I’ll get it later’. Later in the day he
finds an electronic copy of the report and then emails it to Alison. His action will be
interpreted as asserting completion. If Alison does not respond within a short time,
her silence will be read as declaring satisfaction and the conversation will be com-
pleted.

There are other generic conversation forms as well as CfA. These include:

conversation for clarification usually embedded within a CfA to clarify the required
action (different from countering a request);

14.3 Conversation 493

conversation for possibilities looking toward future actions;

conversation for orientation building up a shared understanding.

In addition, the participants may indulge in meta-conversation, discussing the acts
themselves, perhaps questioning the legitimacy of an act: ‘I’m hungry’ . . . ‘well
I’m not your skivvy, get your own food’. Also CfA is the most extensive and well
developed of the conversational forms. For example, the ‘creative’ conversation for
possibilities will have a much less structured form.

The importance of CfA is that actions are central to organizational administration.
In the words of Terry Winograd [380]:

Conversations for action are the central coordinating structure for human
organizations.

This belief in the importance of CfA, together with the assumption that making
speech acts explicit will aid communication, prompted the design of the tool
Coordinator. Coordinator is a form of structured email system. When sending a
message, the participants must say what kind of illocutionary act they are perform-
ing and what part it plays in a conversation. The tool knows about CfA and a few
other conversational forms. In addition, it allows time limits to be put on messages.
Together these facilities allow the participants to keep track of their own commit-
ments and those of others.

As an example, imagine Alison wishes to use Coordinator to request the market
survey from Brian. She selects a menu option saying that she wants to initiate a CfA.
The system then offers her two possibilities, a request or an offer. She chooses
to make a request and from now on the system knows that a CfA is in progress.
She then types ‘have you got the market survey on chocolate mousse’ into the text
area of the message. Note that the system does not try to structure or interpret the
natural language content of the utterance, but only demands that the sender declares
the illocutionary point of it. Brian receives Alison’s message and is told by the system
that it is a request. He is then offered the various conversational moves that can
follow: promise, counter-offer or decline (reject), plus a few more not on Figure 14.1.
If he chooses promise, the system fills the message area with the default words
‘I promise to do as you request’, which can be altered (to ‘sure’) if Brian desires, or
sent as it is. The intention is that many simple acts can be completed by the defaults.

Coordinator, being one of the earlier CSCW systems, has had plenty of criticism.
Indeed, ‘Coordinator bashing’ has become so common in CSCW circles that it (the
bashing) is coming under criticism itself. There are three main problems: reserva-
tions about speech act theory itself and CfA in particular, that people dislike using
Coordinator, and whether the whole concept of making intentions explicit is a
good idea.

The first criticism is that speech acts do not adequately describe conversations. For
example, Alison walks into Brian’s office while he is on the phone, he picks a report
from the table and gives it to her, she walks out. Speech act theory would regard this
as a conversation for action. The request is implicit; presumably Brian knows what
Alison wants from some previous context. Then when Brian hands over the report,

494 Chapter 14 n Communication and collaboration models

he is, by complying with her request, both implicitly promising to fulfill and asserting
completion of the request. Finally, by going out of the office Alison implicitly declares
completion. There seems to be an awful lot of squeezing to get the interchange to fit
the CfA! Indeed, this is recognized in part within Coordinator as a valid response to
a request is a report of completion (assert), that is taking the promise as read.

There have been mixed responses as to the usefulness of Coordinator, but most
(certainly the most vocal) have been negative. The conversational forms basically do
not do what people want. Those users who continued to use it ended up using ‘free-
form’ messages – a non-interpreted action. Effectively, they used Coordinator as a
standard email. It has been claimed that the only organizations that have used
Coordinator successfully are those with strong authoritarian managerial structures
where the employees have been ordered to use it. Coordinator has even been dubbed
‘the world’s first fascist computer system’5 – which was certainly not the intention
of the designers. As you can see, emotions tend to run high when discussing
Coordinator!

The fundamental approach of Coordinator is different from any previous system,
and from most since. Rather than starting with technology – build it and play with
it – Coordinator started with a theory of communication and then used this to
drive design. Such theory-led design is a thoroughly proper design approach. The
debatable issue is the way in which the theory was incorporated into the tool.

Coordinator expects its users to make explicit what is normally implicit in our
utterances. We hope the reader will have realized by now just how rich human
conversation is, and how effective people are at communication. However, one of
the fundamental lessons learnt by the expert systems community is that experts do
things, they do not know how they do them. Forcing expert communicators (people)
to think about their communication is rather like asking a centipede to think about
walking. This all suggests that theory should be used to guide the design, but should
not be embedded explicitly within it.

There is a counter-argument, however. First of all, there is some evidence to sug-
gest that teaching managers to recognize their speech acts improves their commun-
ication. The extrapolation is that making the acts explicit improves communication,
but that is a major extrapolation. A more measured claim would be that explicit
representation is at least a good tool for training communication skills. The second
argument concerns the nature of electronic communication. Although we are all
experts at face-to-face communication with all its subtleties, our expertise is sorely
challenged when faced with a blank screen. We lack the facilities to make our inten-
tions implicit in our communications and thus explicit means will help.

Whatever the rights and wrongs of Coordinator’s design, the evidence is that its
users have largely voted with their feet. More recent systems have included a much
greater level of user control, allowing users to build conversational structures of their
own. Possibly, the structures they build are merely special cases of CfA and other
speech act structures, but users clearly prefer to feel that they have the power over the
system.

5 Even if one agreed with the sentiment, it would certainly not be the first.

14.4 Text-based communication 495

TEXT-BASED COMMUNICATION

For asynchronous groupware (and even some synchronous systems), the major form
of direct communication is text based. There are exceptions to this, for instance voice
messaging systems and answerphones, and other media may be used in addition to
text such as graphics, voice annotation or even video clips. But despite these, text is
still the dominant medium.

Text-based communication is familiar to most people, in that they will have
written and received letters. However, the style of letter writing and that of face-to-
face communication are very different. The text-based communication in groupware
systems is acting as a speech substitute, and, thus, there are some problems adapting
between the two media.

There are four types of textual communication in current groupware:

discrete – directed message as in email. There is no explicit connection between dif-
ferent messages, except in so far as the text of the message refers to a previous one.

linear – participants’ messages are added in (usually temporal) order to the end of a
single transcript.

non-linear – when messages are linked to one another in a hypertext fashion.

spatial – where messages are arranged on a two-dimensional surface.

In addition, the communication may be connected to other shared computer
artefacts, which will be described further in Chapter 19 (Section 19.6). In the case
where the communication is an annotation, the annotation itself may be structured
in any of the ways listed above.

A special case of a linear transcript is structured message systems such as
Coordinator, where not only the order but also the function of each message is deter-
mined. The other extreme is where the transcript is presented as a single stream, with
no special fields except the name of the contributor. Figure 14.2 shows a screen shot
of the York Conferencer system showing such a transcript on the left of the screen.
On the right is an electronic pin-board, an example of spatially organized text.

In this section, we will discuss some of the differences between face-to-face con-
versation and text-based communications. We will use several of the concepts intro-
duced during our discussion of face-to-face communication and conversational
structure in Sections 14.2 and 14.3.

14.4.1 Back channels and affective state

One of the most profound differences between face-to-face and text-based com-
munication is the lack of fine-grained channels. Much of the coordination of
face-to-face conversation depends on back channels and interpretation of the
listener’s expressions. Text-based communication loses these back channels com-
pletely. Consider the effect of this on even a two-party conversation. Where the

14.4

496 Chapter 14 n Communication and collaboration models

speaker would pause to seek back channel confirmation or to offer the floor, the text
‘speaker’ must either continue regardless, or finish the message, effectively passing
the turn. One consequence of the lack of interruptions and more measured pace
of interaction is that the utterances are more grammatical than speech – but still
not Queen’s English!

In addition to this loss of back channels, the speaker’s tone of voice and body
language are of course absent. These normally convey the affective state of the
speaker (happy, sad, angry, humorous) and the illocutionary force of the message (an
important and urgent demand or a deferential request). Email users have developed
explicit tokens of their affective state by the use of ‘flaming’ and ‘smilies’, using
punctuation and acronyms; for example:

:-) – smiling face, happy
:-(– sad face, upset or angry
;-) – winking face, humorous
LOL – laughing out loud.

People tend to use stronger language in email than in face-to-face conversation,
for example they are more likely to be highly and emotively critical. On the other
hand, they are less likely to get emotionally charged themselves. These apparently
contradictory findings make sense when you take into account the lack of implicit
affective communication. The participants have to put this explicitly into their

Figure 14.2 Conferencer screen shot showing text transcript and pin-board

14.4 Text-based communication 497

messages – thus accounting for their stronger language. At the same time, they are
emotionally ‘distanced’ by the text from their conversants and have the conversation
spread out over time. In addition, they do not have to express their affective state by
acting emotionally. Together these factors contribute to a more heated conversation
by calmer conversants!

14.4.2 Grounding constraints

In Section 14.3.5, we discussed the process by which conversants obtain common
ground. This grounding process is linked strongly with the types of channels through
which the conversants communicate. Clark and Brennan [71] describe the proper-
ties of these channels in terms of grounding constraints. These include:

The culture of electronic mail

We use or receive many different kinds of paper messages: formal letters, memos, handwrit-
ten notes, pre-printed letters and postcards. In addition, we communicate by voice: in meetings
and lectures, by telephone and as we pass in the corridor. The same message delivered by differ-
ent media has a different meaning for us. Someone asks us to do something as we pass them in the
corridor, but we forget. We don’t feel too guilty. But if the same request came by formal letter
we would be expected to respond.

These communication mechanisms have been around a long time and we largely understand the
social force of different media. That is, we have a shared culture for paper and voice media. The
situation for electronic media is far less clear.

In the past, email used to be very unreliable. So, if someone sent you a mail and you were slow
to respond or didn’t respond at all, you didn’t feel too guilty. After all, for all the sender knew,
you might never have received the message! That is, the unreliable nature of the medium built up
a culture where the social force of email was weak – rather like the comment while passing in the
corridor.

However, increasingly email is used within organizations for passing critical information or making
important decisions. The expectation is that email will be treated with the same force as a formal
letter or memo.

Imagine what happens when the two cultures meet . . . Sending a message to someone asking them
to come to a meeting in half an hour will obviously only have its intended effect if the sender and
recipient have a shared culture of use.

Often you cannot know when you send a message what the email culture of the recipient is. It
varies between organizations and even between groups and individuals within an organization. The
medium itself gives few clues. Even more frightening, many people do not even realize that there
are such cultural differences.

498 Chapter 14 n Communication and collaboration models

cotemporality – an utterance is heard as soon as it is said (or typed);

simultaneity – the participants can send and receive at the same time;

sequence – the utterances are ordered.

These are all constraints which are weaker in text-based compared with face-to-face
interaction. For example, simultaneity in face-to-face conversation allows back
channel responses. Even where, say, two participants can see each other’s typed mes-
sages as they are produced, the nature of typing makes it all but impossible to type
your message whilst looking for your colleague’s ‘back channel’ response.

In a text-based system, different participants can compose simultaneously, but
they lack cotemporality. As we saw, even if the messages appear as they are pro-
duced, they will not be read in real time. In addition, the messages may only be
delivered when complete and even then may be delayed by slow communications
networks.

Linear transcripts obviously have some idea of sequence, but this is confused by
the overlap and interleaving caused by the lack of cotemporality and simultaneity.
Consider this typical interchange during the use of the York Conferencer system:

1. Bethan: How many should be in the group?
2. Rowena: Maybe this could be one of the four strongest reasons?
3. Rowena: Please clarify what you mean.
4. Bethan: I agree.
5. Rowena: Hang on.
6. Rowena: Bethan what did you mean?

Rowena and Bethan composed their first utterances simultaneously. When Rowena
looks up to the transcript area, she sees Bethan’s message and does not under-
stand it, so she enters the canned phrase ‘Please clarify what you mean’ which is
generated by a button marked ‘Clarify’. Simultaneously, Bethan reads Rowena’s
message (2) and hits her canned phrase button ‘Agree’. Rowena is then confused
about what Bethan means by ‘I agree’ as the preceding message was her request for
clarification.

In a spoken conversation, Rowena and Bethan would have quickly corrected
themselves if they began to speak at once, and the linearity would have reflected a
common experience. The trouble is that the participants in the text-based conference
each experienced the messages in a different order:

Rowena: 2 1 3 4 5 6
Bethan: 1 2 4 3 5 6

We will discuss these problems of interleaving and overlapped messages further in
the following sections.

Altogether, the lack of grounding constraints in text-based communication makes
it more difficult to obtain a common ground. It has also been found that email
and text-based meetings are less effective at resolving conflicts than a face-to-face
meeting.

14.4 Text-based communication 499

14.4.3 Turn-taking

We saw that one of the fundamental structures of conversation was turn-taking
(Section 14.2.5). The last transcript was an example of a breakdown in turn-taking.
In fact, such breakdowns are quite rare in two-party electronic conversations and are
quickly corrected. What is more surprising is that such breakdowns so rarely occur
during letter writing, which is in some ways similar. However, when conversing by
letter, one has an objective timescale with which to work out whether one’s fellow
conversant ought to have replied. One therefore does not send a second letter unless
the conversant is very remiss in replying to the first missive. However, in synchronous
text-based conversation, the time taken to compose a message (from 30 seconds to
several minutes) is far greater than the few seconds which feel ‘immediate’ on a com-
puter system, but is too short to be able to reason about rationally. The replies always
seem a long time coming and hence one is tempted to send a ‘follow-on’ message.

Despite the occasional breakdown, most observers of two-party text-based inter-
action report an overall turn-taking protocol, which exhibits many of the structures
of normal conversation including adjacency pairs. However, when we look at three
or more participants, turn-taking and adjacency pair structure begin to break down
completely.

In a pair of participants, turn-taking is simple; first one person says something,
then the other. The only problem is deciding exactly when the exchange should happen.
With three or more participants, turn-taking is more complex. They must decide
who should have the next turn. This is resolved by face-to-face groups in a number
of ways. First, the conversation may, for a period, be focused on two of the parties,
in which case normal two-party turn-taking holds. Secondly, the speaker may
specifically address another participant as the utterance is finished, either implicitly
by body position, or explicitly: ‘what do you think Alison?’ Finally, the next speaker
may be left open, but the cotemporality of the audio channel allows the other particip-
ants to negotiate the turn. Basically, whoever speaks first, or most strongly, gets in.

These mechanisms are aided by back channels, as one of the listeners may make
it clear that she wants to speak. In this case, either the speaker will explicitly pass the
turn (the second option above), or at least the other listeners are expecting her
to speak. In addition, the movement between effective two-party conversation (the
first option) and open discussion will be mediated by back channel messages from
the other participants.

In an unstructured text-based conversation the third option is not available,
nor, of course, are the back channels. Paired conversation is quite common and the
second option, explicitly naming the next speaker, is possible. However, this naming
is not particularly natural unless a direct question is being asked. In both options,
the absence of back channels makes it difficult for another listener to interrupt the
conversation. Some systems use more structured mechanisms to get round these
problems, perhaps having a round-robin protocol (each participant ‘speaks’ in turn)
or having a queue of turn-requests. Whether the strictures of such mechanisms
are worse than the problems of occasional breakdown depends very much on the
context and is a matter of opinion.

500 Chapter 14 n Communication and collaboration models

14.4.4 Context and deixis

We have seen how important context is in ordinary speech. Utterances are highly
ambiguous and are only meaningful with respect to external context, the state of the
world, and internal context, the state of the conversation. Both of these are problems
in text-based communication.

The very fact that the participants are not co-present makes it more difficult to
use external context to disambiguate utterances. This is why many groupware sys-
tems strive so hard to make the participants’ views the same; that is, to maintain
WYSIWIS (‘what you see is what I see’). In Chapter 19 we will look at an example
that shows that this is an issue even when the participants have audio/video com-
munications or are in the same room!

Whatever the means of direct communication, remote participants have diffi-
culty in using deictic reference. They cannot simply say ‘that one’, but must usu-
ally describe the referrant: ‘the big circle in the corner’. If their displays are not
WYSIWIS then they must also ensure that their colleague’s display includes the object
referred to and that the description is unambiguous. Asynchronous participants
have even more problems with deixis as there is no opportunity for their colleagues
to clarify a reference (without extremely lengthy exchanges). Furthermore, the
objects referred to by a message may have changed by the time someone comes to
read it! Similarly, group pointers are not really an option, but one can use methods
of linking the conversation to its context, either by embedding it within the objects
as annotations or by having hypertext links between the conversation and the object.

The trouble does not end with external context; there are also problems with
deictic reference to internal context. In speech, the context is intimately connected
to linear sequence and adjacency. As we have seen, even in linear text transcripts,
overlap breaks the strict sequentiality of the conversation, and thus causes problems
with indexicals and with context in general.

1. Alison: Brian’s got some lovely roses.
2. Brian: I’m afraid they’re covered in greenfly.
3. Clarise: I’ve seen them, they’re beautiful.

Brian and Clarise both reply to Alison’s message at the same time. However, in
the transcript, where Clarise says ‘they’ this appears, at first, to refer to the greenfly.
Brian is expecting a consoling reply like ‘I’ve seen them. Have you tried companion
planting?’ Of course, the breakdown quickly becomes apparent in this case. The
problem is not so much that people cannot recover from such breakdowns, as in the
extra burden the recovery puts on the participants. If these messages are being sent,
say, between continents, network delays and time differences may limit exchanges
to once a day. Even one or two messages recovering from breakdown are then a
major disaster.

Most email systems and some bulletin boards lack any implied sequentiality
and thus any context to the messages. The users (ever inventive) get round this by
including copies of previous messages in their replies. This is only partially effective
and, of course, incredibly clumsy.

14.4 Text-based communication 501

Hypertext-based systems avoid the implied sequentiality of a linear transcript.
In the above example, both Brian and Clarise replied to Alison’s message at the
same time. In a hypertext these would form parallel conversations. This is shown in
Figure 14.3, where in addition Clarise has sent a second message offering advice on
Brian’s greenfly. The use of ‘they’ in Clarise’s message (3) is now perfectly clear.

14.4.5 Pace and granularity

In a spoken conversation, the turns are often only a few tens of seconds long. If
we take into account minor confirmations and back channels, the pace is still faster,
perhaps a turn or back channel response every few seconds. Compared with this, the
pace of email is very slow: messages can take from a few seconds to hours to deliver.
Even synchronous text-based conversations are limited by the participants’ typing
speed and have a pace of at most one turn every minute or so.

The term pace is being used in a precise sense above. Imagine a message being
composed and sent, the recipient reading (or hearing) the message and then com-
posing and sending a reply. The pace of the conversation is the rate of such a
sequence of connected messages and replies. Clearly, as the pace of a conversation
reduces, there is a tendency for the granularity to increase. To get the same informa-
tion across, you must send more per message. However, it is not as easy as that. We
have seen the importance of feedback from listener to speaker in clarifying meaning
and negotiating common ground. Even most monologs are interactive in the sense
that the speaker is constantly looking for cues of comprehension in the listener.
Reducing the pace of a conversation reduces its interactivity.

As well as at the small scale of clarifying individual utterances, interactivity is im-
portant in determining the direction of a conversation. Imagine that the conversation

Figure 14.3 Hypertext conversation structure

502 Chapter 14 n Communication and collaboration models

is a little like a game, where the participants can make moves. In Figure 14.4, we
can see some of the moves Alison and Brian can make whilst talking in the garden
(Clarise has gone home). At each turn of the conversation, Alison or Brian can
choose to say one thing which continues the discussion. That is, they gradually work
out a path from the top of the tree downwards. A particularly promising conversa-
tion path is shown with bold lines.

In a hypertext-based system one can expand several branches of a conversation
tree, but in speech or in a linear text transcript the conversation follows one branch.
Whatever medium is used, you cannot normally progress down the tree faster than
the pace of the conversation. To overcome these limitations, people adopt several
coping strategies.

The simplest strategy is just to avoid conversation. This can be done by delegating
parts of a task to the different participants. Each participant can then perform much
of the task without communication. They must still communicate for large-scale
strategic decisions, but have significantly reduced the normal communications.
Of course, this approach reduces communication by reducing collaboration.

More interesting in a cooperative work setting are two coping strategies which
increase the chunk size of messages in order to reduce the number of interactions
required to complete a task. These strategies are frequently seen in both text-based
conferences and in letter writing.

The first of these coping strategies is multiplexing. Basically, the conversants hold
several conversations in parallel, each message referring to several topics. In terms of the
conversation tree, this corresponds to going down several branches at once. For an
example, consider the transcript in Figure 14.5 taken during a computer-mediated

Figure 14.4 The conversation ‘game’

14.4 Text-based communication 503

game of Diplomacy as part of the TMPI (theories of multi-party interaction) project
[171]. The turn by England (E) introduces two topics: the forming of an alliance (for
subversive purposes), and a particular line of attack (through Holland).

The second coping strategy for increasing the size of message chunks is eagerness.
The participants can foresee the possible course of the interaction and frame com-
munications which encompass many of the possibilities: for example, ‘If you don’t
pay within seven days we will take you to court’. Thinking of the conversation tree,
eagerness is a sort of depth-first strategy. The participant explores a branch of the
tree guessing the other participant’s responses.

If we compare spoken with written communication we find that letters are far
more eager than speech. When writing a letter, one takes more care that the points
are stated clearly, and one may even consider alternative responses of the recipient
and state one’s position on each. For instance, a letter may say ‘if you marry me I will
be happy for ever, but if not, life will lie like bitter herbs upon my tongue’ (lovers
have a tradition of being overeager). In extremis one frames a communication which
describes one’s reaction in all possible situations.

One can find similar incidents of eagerness in electronic conversations, for ex-
ample the messages in Figure 14.6 from Severinson Eklundh’s corpus [317], quoted
by Bowers and Churcher [42], both exhibit eagerness, the contingent part of each
message being introduced by the key phrase ‘In that case’.

Eagerness is less likely to lead to breakdown, except where the message tries to
foresee too great a breadth of possibilities and becomes confusing. However, there
are various circumstances: for instance, in many process control tasks, where the
number of possibilities at each stage of the tree is large. In this case eagerness cannot
solve the communication problems.

E: I don’t like the other three being in
cahoots – shall I form an alliance with
one to stitch them up? I’ll move to
Holland first.

Figure 14.5 Excerpt of transcript from Hewitt et al. [171]. Source: Courtesy of
Professor Nigel Gilbert

A: Subject: Report C 123660
The above mentioned report is out of stock.
The remaining ones are C 12366 + C 123660.
What to do? Reprint? In that case, do you have
any changes to suggest?

· · · · · ·
A: Subject: SIGSIM meeting

Are you going to Linkoping tomorrow?
In that case when are you leaving?
Does SIGSIM pay for the trip or what?

Figure 14.6 Excerpt from Severinson Eklundh’s corpus [317]. Source: Courtesy of
Kerstin Severinson Eklundh

504 Chapter 14 n Communication and collaboration models

A potential problem of eagerness is that by following a particular branch of the
conversation, other branches, which your colleague would have liked to explore, are
missed. In spoken conversations it is quite difficult to return to a previous point.
It is possible to say ‘going back to . . .’, but this can form a potentially rude break in
the conversation. In text-based communications, the reviewability of the medium
reduces this effect. It is easier to return to a missed point as both participants
can refer to the conversation up to that point. In addition, the break in the line of
conversation is less rude as both participants know that the current topic can itself
be picked up again. Finally, there is even the option of multiplexing the current topic
with the lost point.

Reviewability is another grounding constraint of communication, but this time
one where text-based communication has the advantage over speech. You can of
course tape speech, but it is far from easy to use this as a review mechanism.

14.4.6 Linear text vs. hypertext

Considerations of potential overlap suggest that hypertext-based communica-
tions may be better suited as a text-based communication medium. Similarly, the
problems of pace may be partially solved in a hypertext. Multiplexed messages
can be represented as updates to several parts of the hypertext, thus reducing the
likelihood of breakdown and lost topics. In addition, if the messages themselves can
be mini-hypertexts, then eager messages listing several possible courses of action can
be explicitly represented by the message.

On the other hand, hypertext has its disadvantages. Even static hypertexts, which
have been carefully crafted by their authors, can be difficult to navigate. A hypertext
that is created ‘on the fly’ is unlikely to be comprehensible to any but those involved
in its creation. Conklin and Begeman, themselves associated with the hypertext-
based argumentation tool gIBIS, conclude that ‘traditional linear text provides a
continuous, unwinding thread of context as ideas are proposed and discussed’ [76].
For the asynchronous reader trying to catch up with a conversation, a linear
transcript is clearly easier, but it is precisely in more asynchronous settings where
overlap in linear text is most likely to cause confusion.

We can see that there is no best solution, with possibly the best course in many
situations being linear transcripts arranged by topic, with some automatically gener-
ated indication of overlap.

GROUP WORKING

So far we have been principally looking at the properties of direct communication,
and largely two-party conversations. Group behavior is more complex still as we
have to take into account the dynamic social relationships during group working.
We will begin by looking at several factors which affect group working, and then

14.5

14.5 Group working 505

discuss the problems of studying group working. This section deals with groups that
are actively working together, rather than the organizational issues considered in
the previous chapter, which are primarily concerned with the long-term structures
within which people work.

14.5.1 Group dynamics

Whereas organizational relationships such as supervisor/supervisee are relatively
stable, the roles and relationships within a group may change dramatically within the
lifetime of a task and even within a single work session. For example, studies of joint
authoring have found that roles such as author, co-author and commentator change
throughout the lifetime of a document [254, 295]. This means that systems, such as
co-authoring systems, which use a formal concept of role, must allow these roles to
change together with the socially defined roles.

Even the naming of roles can cause problems. A person may be an author of a
book or paper, but never write the words in it, acting instead as a source of ideas and
comments. A particular case of this is the biographical story where the individual
concerned and a professional writer co-author the book, but only the professional
author writes. A co-authoring system such as Quilt would call the non-writing
author a ‘commentator’ or a ‘reviewer’, but not an ‘author’. One can imagine some
of the social friction such naming will cause.

Within the microcosm of group interaction, authority roles can be entirely
inverted. For example, if the managing director of a coal mining company visits the
coal face, he should act under the authority of the supervisor at the face, for his own
safety and that of the mine. These inversions can cause problems even in computer-
free situations – it is hard for the supervisor to say ‘No’ to the MD. But, if a system
demands an explicit controlling role, it is even harder for the manager to relinquish
this explicit role, even if in the context the subordinate should be in control.

Not only do the social relationships within the group change, but the group
membership and structure can change in time. A member leaving or a new member
joining can cause dramatic changes in the behavior of the group. For example, if a
very dominant member leaves, the group may change from a leader–follower to
a democratic structure. New members have special problems adapting to the par-
ticular group subculture, which can develop very quickly among close colleagues.
In addition to this social adaptation, the new member must ‘catch up’ with the
substantive work of the group. Groupware systems, for example argumentation tools,
can help in that they record the history of the group. Groupware designers should in
general be aware that new members can and will enter the group and should design
their software accordingly. For example, a latecomer to a synchronous conference
should be able to review all past contributions, not just the new ones.

The group may also divide into subgroups for detailed discussion and then
reform. Tools must be able to support this. For example, early versions of CoLab’s
software only catered for a single WYSIWIS screen – that is, they only supported a
single group. Later versions were forced to allow subgroups to work independently

506 Chapter 14 n Communication and collaboration models

and then share results. Note that the CoLab meeting room only has room for six
persons; in larger meeting rooms subgroup working is the norm.

14.5.2 Physical layout

In Section 14.2, we discussed the importance of eyegaze and gesture in face-to-face
communication and how these help to mediate turn-taking. In particular, we noted
in Section 14.2.3 that we must ensure that monitors do not block the participants’
views of one another. In general, the physical layout of a room has a profound effect
upon the working relationship of those in it. This is particularly obvious for meeting
rooms, but should be considered in any group-working environment.

As well as being unobtrusive, the orientation of computing equipment can affect
group working. If we wish to encourage conversation, as we do in a meeting room,
the participants must be encouraged to look toward one another. Meeting rooms
have a natural focus toward the screen at the front of the room, but inward-facing
terminals can counteract this focus and thus encourage eye contact [226].

The designers of Capture Lab, an eight-person meeting room, considered all these
features and many other subtle effects. However, the users still had some difficulty
in adapting to the power positions in the electronic meeting room. At first sight, the
electronic meeting room is not unlike a normal conference room. If the shared
screen is a whiteboard or an overhead projector, then the most powerful position is
toward the front of the room (seats 1 or 6 in Figure 14.7). Managers would normally
take this seat as they can then easily move to the whiteboard or overhead projector
to point out some item and draw the group’s attention.

Unless primed beforehand, managers of groups using Capture Lab took one
of these seats, but quickly became uncomfortable and moved. In the electronic
meeting room, there is no advantage to being at the front, because the screen can be
controlled from any terminal. Instead, the power seat is at the back of the room
(seats 3 or 4), as from here the manager can observe other people whilst still seeing
the screen. Also, the other participants have to turn round when the manager speaks,
adding to the manager’s authority over the meeting.

14.5.3 Distributed cognition

In Chapter 1, we discussed human cognition, but the emphasis was, as in all tradi-
tional psychology, upon the activity within the person’s head. A school of thinking
has recently developed which regards thinking as happening not just within the head,
but in the external relationships with things in the world and with other people. This
viewpoint is called distributed cognition [208, 185].

In fact, this viewpoint is not as radical as it first appears. Traditional views
talk about the movement of information between working memory and long-term
memory: it is not so difficult then to regard bits of paper, books and computer
systems as extensions to these internal memory systems. Similarly, many models of
human cognition regard the mind as a set of interacting subsystems (see Chapter 12):
the step to regarding several people as involved in joint thinking is not difficult.

14.6 Summary 507

Remember that this is a view of cognition, that is thinking; it says nothing about
awareness, personality or individuality.

Distributed cognition has profound effects on the way we look at group working
and even individual work. It emphasizes the importance of mediating representations,
for example the drawings on a whiteboard. These are no longer just a means of
communicating between the parties, but can be a concrete embodiment of group
knowledge. Furthermore, it constantly reminds us that communication is not just
about getting knowledge from one person’s head to another, but about the creation
of new group knowledge, not necessarily grasped in totality by any single member.

The emphasis on external forms is encouraging for a designer. It is not necessary
to understand completely the individual’s cognitive processing in order to design
effective groupware. That is an impossible task. Instead, we can focus our analysis of
existing group situations and design of groupware on the external representations
used by the participants.

SUMMARY

Face-to-face communication is extremely complex. People maintain precise dis-
tances, which can be disrupted through video links. Each utterance is mediated by
subtle back channel responses signifying agreement, or on attempting to interrupt.

14.6

Figure 14.7 Meeting room layout

508 Chapter 14 n Communication and collaboration models

Body movement, facial expression, eye contact and eyegaze are all used for these back
channels and also to establish context.

At a higher level, the structure of conversation can be seen as a sequence of turns,
usually alternating between the participants. Context is important in disambiguat-
ing utterances, especially when deictic reference is also used. This also depends on
the participants establishing a common understanding during the conversation.
Breakdowns do occur in conversation, but conversational repair is very effective.
Speech act theory, a detailed analysis of conversational structure, has been used
to drive the design of Coordinator, a highly controversial, commercial, structured
messaging system.

Text-based communication loses most of the low-level feedback of face-to-face
conversation. This, and the possibility of overlapping turns, makes it more difficult
to establish the context of a textual utterance, and therefore to disambiguate deixis.
The reduced pace of text-based conversation means that participants are forced to
increase the granularity of their messages. They may achieve this by multiplexing
messages or by being eager, predicting their colleagues’ responses.

Group dynamics make it very difficult to predict how a particular group will
behave. In particular, small things, such as the layout of chairs in a room, can have a
major effect. We can see the thinking in a group as being distributed, not locked in
any individual, but being within the whole group and the physical representations
they use.

EXERCISES

14.1 In Section 14.3.2, we discussed the highly contextual nature of the spoken word, includ-
ing the use of deictic reference and indexicals, and the (officially) ungrammatical and fragmentary
use of sentences. Try listening to social chat over cups of tea – collect examples of different forms
of contextual utterance.

14.2 Go into an office or other place where several people are working together. Try to note down
in as much detail as possible what they are doing and when. Do this with different foci: focus on
the direct interpersonal communications, focus on the shared objects such as a calendar or docu-
ment, or focus on one worker at a time. Whilst collecting data and when ordering your notes,
look for breakdowns and misunderstandings, and for implicit communication through objects.
Look also at a particular task over a period of time, and note the number of interruptions as a
worker performs the task, or the way a single task is contributed to by several workers.

14.3 What is speech act theory? Describe positive and negative issues that have arisen when it has been
embodied in a specific system.

14.4 Compare turn-taking, round-robin and free-for-all as floor control mechanisms. When might each
be effective?

Recommended reading 509

RECOMMENDED READING

J. Carroll, editor, HCI Models, Theories, and Frameworks: Toward an Interdisciplinary
Science, Morgan Kaufmann, 2003.
See chapters by Perry on distributed cognition, Monk on common ground and
Kraut on social psychology.

L. A. Suchman, Plans and Situated Actions: The Problem of Human–Machine
Communication, Cambridge University Press, 1987.
This book popularized ethnography within HCI. It puts forward the viewpoint
that most actions are not pre-planned, but situated within the context in which
they occur. The principal domain of the book is the design of help for a photo-
copier. This is itself a single-user task, but the methodology applied is based on
both ethnographic and conversational analysis. The book includes several chap-
ters discussing the contextual nature of language and analysis of conversation
transcripts.

T. Winograd and F. Flores, Understanding Computers and Cognition: A New
Foundation for Design, Addison-Wesley, 1986.
Like Suchman, this book emphasizes the contextual nature of language and the
weakness of traditional artificial intelligence research. It includes an account of
speech act theory as applied to Coordinator. Many people disagree with the
authors’ use of speech act theory, but, whether by application or reaction, this
work has been highly influential.

S. Greenberg, editor, Computer-supported Cooperative Work and Groupware,
Academic Press, 1991.
The contents of this collection originally made up two special issues of the
International Journal of Man–Machine Studies. In addition, the book contains
Greenberg’s extensive annotated bibliography of CSCW, a major entry point for
any research into the field. Updated versions of the bibliography can be obtained
from the Department of Computer Science, University of Calgary, Calgary,
Alberta, Canada.

Communications of the ACM, Vol. 34, No. 12, special issue on ‘collaborative com-
puting’, December 1991.

Several issues of the journal Interacting with Computers from late 1992 through early
1993 have a special emphasis on CSCW.

Computer-Supported Cooperative Work is a journal dedicated to CSCW. See also back
issues of the journal Collaborative Computing. This ran independently for a while,
but has now merged with Computer-Supported Cooperative Work.

See also the recommended reading list for Chapter 19, especially the conference
proceedings.

HYPERTEXT, MULTIMEDIA

AND THE WORLD WIDE WEB

OV E RV I E W

n Hypertext allows documents to be linked in a non-
linear fashion.

n Multimedia incorporates different media: sound, images,
video.

n The world wide web is a global hypermedia system.

n Animation and video can show information that is
difficult to convey statically.

n Applications of hypermedia include online help,
education and e-commerce.

n Design for the world wide web illustrates general
hypermedia design, but also has its own special
problems.

n Dynamic web content can be used for simple online
demonstration or for complete web-based business
applications.

21

21.2 Understanding hypertext 749

INTRODUCTION

Increases in desktop computing power have enabled the rapid growth of the multi-
media industry. CD-ROMs, stereo sound and often video input/output are now part
of the specification of standard personal computers. Furthermore, the dreams of
Vannevar Bush and Ted Nelson (see Chapter 4) have now become reality in the
world wide web, which links computers, information and ultimately people across
the world.

In this chapter we look at the distinctive features of hypertext and multimedia,
where they are used and their potential problems. The world wide web is just one
example, albeit an important one, of a hypertext system. We will first consider some
of the common features of hypermedia including different types of content and
application areas. Diagrams and photographs can enliven text, but some of the most
exciting effects are seen when the computational power of the computer is used to
allow animation, video and interactive features. We will also consider in Section 21.3
the ‘lost in hyperspace’ problem, how to design hypertext that is easy to understand
and to navigate and how features such as bookmarks, the back button and search can
make hypertext and the web accessible. The chapter then focusses on the web. We will
look at the technology that underlies the web and how issues of networking influence
usability. We will then consider static web content including graphics and streamed
media. Finally, we will review ways in which web pages can be made dynamic through
interactive content and through server-side generation of web pages from databases.

UNDERSTANDING HYPERTEXT

21.2.1 Hypertext definition – text, hypertext and multimedia

Although pictures and sculpture came first, it is text – the written word – that is
commonly seen as the defining point of civilization; pre-literate and oral societies
are often regarded as pre-history simply because they have no extant story. Hiero-
glyphics, Babylonian mud tablets, the Book of Kells, the Caxton press: these are the
stepping-stones toward our current information-centric society.

All these traditional texts share a common linear nature. Aristotle in his Poetics
said that a story must have a beginning, a middle and an end, and even postmodern
non-linear narrative is actually written in a linear fashion even though the events
may not be causally connected.

This linearity is partly because of the nature of the media used – papyrus scroll,
painted frieze or paper book – but perhaps more significantly because we are crea-
tures in linear time. We are natural story-tellers and natural story-hearers. This is
why, in Chapter 5, we found that scenarios were so powerful. The skill of the author
is in producing an experience for the reader that introduces new events and new
concepts so that they fit meaningfully into what has gone before.

21.2

21.1

750 Chapter 21 n Hypertext, multimedia and the world wide web

However, there are classes of activities where the reader needs to establish their
own path through a text. For example, in the online documentation or help systems
discussed in Chapter 11, the user wants to know the right thing for him at that
moment, not a full description of the system (although of course tutorials are typic-
ally linear). During some forms of exploratory learning the learners may want to
follow their own paths through material: each one delving into details in different
parts. Experts in a subject, too, may well want to remind themselves of some particu-
lar issue or fact.

For such purposes the linear form of a traditional text is a hindrance. For
example, when using manuals, the user may not understand all the terms used in
the text, and will have to keep going back to a different series of pages to look up
the definitions, returning to the original pages and trying to pick up the thread
of discussion afterwards. Paper books include tables of contents or indexes and
encyclopedias and dictionaries are designed for non-linear reading. However, still
the reader is left physically skipping back and forth.

Hypertext attempts to get around these limitations of text by structuring it into
a mesh rather than a line. This allows a number of different pages to be accessed
from the current one, and, if the hypertext is well designed, the user should find it
easier to follow his own particular idea through the mesh rather than being forced
down one route. Typically, hypertext systems incorporate diagrams, photographs
and other media as well as text. Such systems are often known as multimedia or
hypermedia systems, although the three terms are often used interchangeably.

A hypertext system comprises a number of pages and a set of links that are used to
connect pages together. The links can join any page to any other page, and there can
be more than one link per page. Thus a hypertext document does not simply start a
linear progression and follow it to an end, but goes in lots of different directions,
some of which terminate, while others link back into different parts of the document
(see Figure 21.1, which illustrates the difference between linear text and hypertext).

There are many different ways of traversing the network, and so there are many
different ways of reading a hypertext document – the intention is that the user is able

Figure 21.1 Typical structures of linear text and hypertext

21.2 Understanding hypertext 751

to read it in the way that suits him best. Links can exist at the end of pages, with the
user choosing which one to follow, or can be embedded within the document itself.
For example, in an online manual, all the technical words may be linked directly to
their definitions in the glossary. Simply clicking on an unknown word takes the user
to the relevant place in the glossary. Another unknown word encountered there can
also be traced back to its definition and then the user can easily return to his original
place in the manual. The positions of these links are known as hot-spots since they
respond to mouse clicks. Hot-spots can also be embedded within diagrams, pictures
or maps, allowing the user to focus his attention on aspects that interest him.

21.2.2 Rich content

As well as static material – text and static diagrams and photographs – hypertext sys-
tems may also include more dynamic material such as animation, video and audio
clips, and even full computer applications.

Animation

Animation is the term given to the addition of motion to images, making them
move, alter and change in time. A simple example of animation in an interface is in
the form of a clock. Digital clocks can flick by the seconds, whilst others imitate
Salvador Dali and bend and warp one numeral into the next. Analog clocks have
moving hour and minute hands, with an optional second hand sweeping round the
clock face. Such a desktop accessory is found in a lot of interface setups, and the
additional processing time required to produce such effects is no longer a major
factor.

Another common use for animation in current windowing systems is to animate
the cursor. Instead of simply having a basic pointer always on the screen, many inter-
faces now use the typical 16 × 16 bitmap that makes up the cursor to indicate more
complex information. We saw in Chapter 3 that there are a number of different static
cursors in use, but animation takes this one stage further by adding motion to the
images. This is usually done to indicate that some process is in progress, to confirm
to the user that something is actually happening. Animating the cursor means that
messages do not need to be printed out to a window, making it a neat and concise
way of presenting the desired information. On the Macintosh, work in progress is
indicated by a watch icon, with the hands moving round and round, or by a spinning
disk. One system uses a stick person, apparently doing weightlifting, to show that
heavy work is in progress, whilst another has an hourglass trickling down.

Non-cursor process indicators often take the form of a pop-up box with a moving
slider, or a stick person walking backwards and forwards. These are important to
give the user a sense of progress and to prevent inactivity being interpreted as an
indication of a system fault. In addition, animated icons may be used to show system
state; for example, Netscape Navigator has shooting stars to indicate that it is down-
loading information. Animated icons can also be used to make the meaning of the

752 Chapter 21 n Hypertext, multimedia and the world wide web

icon clearer. This is especially useful for icons representing actions that are not well
represented by static images. However, such animation must be used sparingly to
avoid distraction!

Animation can be used to great effect to show changes in data sets, where slow
fluctuations can be visualized with the help of rippling three-dimensional colored
surfaces, or abrupt changes shown by sudden discontinuities in an otherwise regular
motion.

Animation is also used in a cartoon-like way, where animated objects are used to
perform particular functions for the user. For example, in an animated help system,
a character can appear on the screen and interact with the user, guiding him through
a number of stages of help before being dismissed. Such a guide can be endowed with
a certain character, making the interaction less impersonal and more interesting for
the user, who becomes more involved with the system and is happy to learn more
about it.

Talking heads

One use of animation is to produce talking heads [359]. These are images of human faces
either completely computer generated or derived from photographs of real people. They are
based on models of human anatomy so that realistic lip movement can be synchronized with gen-
erated speech. Surprisingly, this is not just a fun activity but is actually useful! One important use
is for deaf or partially deaf users who can lip read the image. Another application is to synchronize
the lips with telephone speech allowing a form of video phone over low-bandwidth telephone lines.

These faces can also express emotion. Users have imputed personality to computers since they
only had flashing lights. By simulating human expressions the designer can express intended affect-
ive states rather than leaving this to the user. For example, this could be useful in a learning envir-
onment where the students might naturally view the computer as a harsh, unforgiving teacher,
but by means of a suitable face and expressions could be induced to regard it as a colleague or
facilitator in learning.

Video and audio

In a media dominated world, there are strong arguments for using video or audio
material as part of hypertext systems whether for education, entertainment or refer-
ence. Both audio and video material are expensive and time consuming to produce,
but increasingly even home-PC systems include video and audio editing as standard.
For example, the iMac includes a suite for editing video and burning DVDs.
Combined with digital video cameras these bring the production of audio/video
material into the reach of many. Furthermore, standard formats such as QuickTime
allow this material to be embedded in web pages for easy distribution. Of course,
quality video production requires extensive experience, but then so does text!

21.2 Understanding hypertext 753

Perhaps the biggest problem with audio and video is still the memory requirements.
As we saw in Chapter 2, this is becoming more manageable as memory capacities
increase, but it will probably continue to be a major problem, especially for web-
based material, for some time to come.

The most common use of video is as a clip to be embedded within a text or
graphical document or web page. For example, Figure 21.2 shows an example of
a prototype website produced by Glasgow University for the Hunterian Museum
[194] including video clips. (Notice, too, the use of the still picture for each video
clip and the indication of the length of the clip.)

Longer video sequences are, of course, more linear than plain text. This may
be acceptable if the hypertext is acting effectively as an index for video material.
For example, one might have a collection of silent movies online and access them
through a website. However, if the video is regarded as an integrated part of the hyper-
media experience it needs to be active in some way as well. It is possible to have hot-
spots in video images just as in graphics; however, clicking on a gymnastics star to get
information on her recent performance may be difficult if she is in the middle of an
exercise on the asymmetric bars. Interactive television manages this by having a smaller
number of context sensitive options, or images may be frozen to enable exploration.

Figure 21.2 Hunterian Museum – learning about the Romans. Source [194a]
reprinted with permission of Springer-Verlag; Netscape browser window © 2002
Netscape Communications Corporation, used by permission

754 Chapter 21 n Hypertext, multimedia and the world wide web

Perhaps gaming stations best manage this interaction between video and other
material, as clips of live action or pre-recorded high-quality generated images are
interspersed seamlessly with game playing.

Audio material can be used in the same way as ‘clips’ within a document; for
example, in an interactive guide to Beethoven’s music. Because most hypertext
material is visual, audio can also be used for background music or sound effects to
establish mood, or to provide ‘voice-over’ for static graphics or animations.

Audio material may be stored as sound samples, that is digital recordings, which
can include instruments, voice or other sounds. As we are often more sensitive
to poor sound than poor video images, and sounds are, by definition, constantly
changing, it can be harder to compress sound than video. MP3, used for much web
downloadable music, recruits knowledge of the auditory system to achieve its high
compression. For example, if there are two simultaneous sounds, one a lot louder
than the other, the quieter one can be played with less fidelity because its details are
masked by the louder sound. For pure instrumental music, MIDI files simply record
which instrument must play and the duration, pitch and loudness of each note –
basically a digital form of the sheet music.

Any sound in the interface can, of course, be potentially annoying, especially in
open-plan working environments, and so audio should be used with care and it
should be easy to mute. As these words are being written, the current author’s wife
is struggling to turn off an annoying musical backing to a web page she is viewing!

Moving pictures are excellent at conveying information, and exert a quite hyp-
notic hold over us; note the success of television. It is fair to say that many design
practices will have to be updated to make the most of the possibilities that these
techniques offer; moreover, it is also the case that people are unsure how to get the
most out of such technology. The techniques required to gain maximum benefit
from moving images are very different from those that are used for static or minimal
motion displays, and designers do not have enough experience to start applying the
relevant technology at the relevant time. It may well be that computer interface
designers will have to study the techniques of the film makers and cartoonists before
they start to discover the real benefits that these techniques can provide. Indeed,
partly due to Brenda Laurel’s influential book Computers as Theatre [207], drama
theory is now a respectable and popular topic in HCI.

Computation, intelligence and interaction

Of course the good thing about a computer is that not only can it show things that
have previously been prepared, it can also do things. This book has an index, but it
does not contain every word in the text (it may also refer to parts of the text that
do not have a particular word). However, the web search can look through all the
chapters and find any words you want.

More interactive hypermedia may contain embedded games or applications. For
example, Figure 21.3 shows a puzzle from the website of one of the authors (Alan),
a sort of 2D Rubik’s cube that you can play online. Hypermedia running on the
user’s own computer may interact closely with other applications; for example, on a

21.2 Understanding hypertext 755

Macintosh HyperCard stacks can control applications using AppleEvents, or on a
Windows platform hypermedia can include ActiveX components.

Whilst the ‘text’ in hypertext suggests passive content under the user’s control,
some hypermedia may contain more intelligent components or agents actively work-
ing to shape the experience for the user. For example, some educational hypertexts
adapt their content depending on a model of the learner. Similarly e-commerce sites
may suggest additional products to buy depending on your previous purchasing and
browsing behavior.

21.2.3 Delivery technology

On the computer

Some hypertexts, in particular help systems, are downloaded or installed perman-
ently on a computer. This has the advantage of instant access and such applications
need not use a standard viewer but may include their own bespoke browsing soft-
ware. However, with media-rich hypertexts containing substantial graphics, video
and audio clips it may be impractical to store everything on hard disk. Also, for copy-
right protection, some systems will deliberately not allow themselves to be copied
from their original distribution media.

Many hypermedia systems are supplied on CD-ROM. This has the advantage of
reasonably large capacity (650–700 Mbytes), but access is slower than with installed
systems. For highly dynamic material, such as educational media, a special player is
installed; alternatively, material such as software documentation may use a standard
format such as web pages.

Figure 21.3 Interacting with hypertext – Professor Alan’s puzzle square.
Screen shot frame reprinted by permission from Microsoft Corporation

756 Chapter 21 n Hypertext, multimedia and the world wide web

DVD delivered material is interesting as it is not text enriched with video, but
instead a movie that has been ‘made interactive’. As older computers tend to have
only CD-ROM drives, it is not possible yet to supply, for example, tutorial material
on DVD and know that it could be used on any machine.

On the web

Of course, the world wide web is the best-known multimedia hypertext system of all.
The world wide web offers a rich environment for the presentation of information.
Documents can be constructed that are very different from paper versions; basic text
can be augmented through the use of hypertext links to other documents, while
graphics can easily be incorporated as pictures, photographs, icons, page dividing
bars, or backgrounds. Pages can also have hypertext links embedded into different
regions, which take the user to a different page or graphic if they are clicked on;
these are known as active image maps. These features allow web pages to become
interactive, acting as the interface to the information as well as its holder. Dynamic
material in the form of movies and sounds is also available to the designer; all these
features push web page design well away from the conventional paper-based kind.

However, the fact that the web has many more technological features than a book
doesn’t mean that web pages are necessarily better than their paper counterparts.
Also, the fact that a web page is packed full of features doesn’t imply that it gets its
message across effectively. Designing web pages is a developing art, and should be
viewed in much the same way as designing any other interactive system. Good pages
have been developed with the reader as the focus, and act as effective interaction
tools or presentation tools to allow the user to obtain the information he is looking
for most effectively.

The web is an example of the usability of the medium being paramount rather
than the technological supremacy of certain aspects of it. For any single aspect of the
web, there are custom multimedia systems that are far superior in terms of quality,
usability, speed and so on. However, the common availability of web browsers on
multiple platforms and the low-tech and usable nature of the system have ensured
the web’s popularity and made it ubiquitous.

The web allows the user to browse documents and follow links transparently, with
the underlying system taking care of the details of fetching the data from different
parts of the world. Theoretically, as far as the user is concerned, any page can be
reached as easily as any other; geographical location ceases to become important,
whereas linking by content is crucial. The ability for anyone to publish information
on the web is one factor in its success as a multimedia system, but the fact that any-
one can create a page and, by linking it to others already in existence, immediately
integrate their opinions seamlessly into the information space is another.

On the move

Mobile phones, PDAs (personal digital assistants), and notebook computers have
all increased the demand to have hypermedia available on the move. Furthermore,

21.2 Understanding hypertext 757

across many countries governments have sold franchises for high-bandwidth mobile
services. After spending billions on these franchises the telecommunications giants
really want people to use new mobile services!

Notebook computers can use just the same mechanisms as desktop computers,
using CD-ROM or DVD for standalone material, or connecting to the web through
wireless access points or through modems linked to mobile phone networks.
However, the fact that the computer is mobile means that location can be used as
a key into context-aware hypermedia showing different content depending on
location. The ‘stick e note’ system developed by the University of Kent uses a sticky
note metaphor with notes stuck to particular locations [49]. Only when you visit the
location does the note become visible. This is a bit like an image map on a web page,
but rather than clicking a mouse over an image to link to information, here you need
to physically move to a location! Another example is the GUIDE system, which uses
various means to detect location (closest network access point or GPS) and then
delivers appropriate tourist information [69].

PDA access poses different problems. They often have standard web browsers, but
of course on a substantially smaller screen. This may mean designing special pages
or being especially careful to design ones that resize well. Because PDAs are often
not network connected there are also systems to allow access to information when
disconnected. For example, AvantGo (www.avantgo.com) allows users to select
‘channels’ of interest and then, when the PDA is docked, downloads any pages that
have changed, so that users always have the most up-to-date information possible.

By nature, mobile phones are (nearly) always connected to a network. However,
memory and screen size are even more constrained. Some phones allow download-
able applets so that small dynamic applications can be used. More web-like content
can be accessed via WAP (wireless application protocol), which, like HTTP (hyper-
text transfer protocol) for the web, gives access to remote servers. WAP content can
be produced as static or dynamic content using a mark-up language called WML,
which is a simplified version of HTML (hypertext markup language). This allows
hyperlinks like the web and even simple images, but due to the small screen size most
pages consist mainly of small amounts of information or simple lists of links. See the
book WAP site at /e3/wap.wml

21.2.4 Application areas

There are many applications of hypermedia, too many to describe in detail here.
However, it is worth noting the type of domains in which hypermedia systems have
proved successful, looking briefly at some example systems.

Rapid prototyping

Although now lacking the wealth of features expected of a hypermedia system,
HyperCard on Macintosh computers has been very influential as a basis for experi-
mental hypertext systems. HyperCard uses the metaphor of a card index, around
which the user can navigate. Each card can hold text, diagrams, photographs,

758 Chapter 21 n Hypertext, multimedia and the world wide web

bitmaps and so on, and hot-spots on the cards allow movement between cards.
Cards may also contain forward and backward buttons and a home icon, to allow the
user to move sequentially and start from scratch respectively. HyperCard can be used
for a range of applications including information management and teaching.

However, HyperCard’s simple scripting language and easy to produce graphical
interfaces meant it was also used extensively as a rapid prototyping tool for generat-
ing interactive systems. In fact, HyperCard stacks for both single-user and networked
applications are available from the book website.

For similar reasons, other hypermedia tools such as Macromedia Flash and
Director are often used to produce dynamic interface mock-ups or even fully func-
tioning systems. The web, too, is used like this, both to deliver applications and also
as a way of mocking up an application interface as a series of storyboard web pages.

Help and documentation

Hypermedia systems are ideally suited to online manuals and other help system
applications (see Chapter 10). They allow user-oriented access to the information,
and support browsing. In addition the information can be organized hierarchically,
with successive selections providing more detailed information. This supports the
varying needs that users have, such as quick reference, usage information, full details
and so on. Many commercial help systems use hypermedia-style help. Good examples
are the Sun Guide system, HyperCard help and Microsoft Windows help (used by
many Windows applications).

Educational systems are another common application. Hypermedia provides an
environment for the learner to explore, in her own time and at her own pace. The
inclusion of animation and graphics can allow the user to see things happen as well
as read about them. So, for example, animation can be used to simulate an experi-
ment. Educational applications are discussed in more detail in Section 21.6.

Education and e-learning

Hypertext and hypermedia are used extensively in educational settings, as they allow
varied subjects to be related to each other in numerous ways so that the learner can
investigate the links between different areas. In contrast to computer-aided learning
(CAL) packages, hypermedia allows a student-controlled learning process.

An early example of a hypermedia learning environment that inspired many sub-
sequent systems was Intermedia [385]. This is a hypermedia system built and used
at Brown University to support teaching in subjects as varied as English literature
and biology. The system includes text, diagrams, photos and so on. Both learners and
teachers can add information and links, giving students access to each other’s opinions
as well as those of their tutors. A map provides an overall view of the information for
direct access and navigation, with links providing browsing facilities in the normal
way. Intermedia has been successfully used for university-level teaching, and can be
seen as a forerunner of the educational resources now facilitated by the web.

Microcosm is an open hypermedia system, developed in the Electronics and
Computer Science Department at the University of Southampton and shown in

21.2 Understanding hypertext 759

Figure 21.4; it allows users to browse through large amounts of multimedia infor-
mation by following links. Microcosm does not contain links explicitly hardwired
into its structure, but instead holds a database of link sources and destinations. Not
only does this allow processes to examine the links divorced from their surrounding
information, but it allows links to be made to read-only media such as CD-ROM,
video discs and external web pages. Microcosm is able to integrate many different
types of media, including other applications, and provides a set of viewing tools to
look at text, bitmaps, video, audio and other component information media.

Outside organized educational settings, the increasing availability of multimedia
PCs has made the home an attractive marketplace for CD-ROM-based educational
software. One example of this is Dorling Kindersley’s series of CD-ROMs based on
their popular large-format book series.

As in other areas, the web has come to dominate most educational uses of
technology. The term e-learning is sometimes used to refer to all forms of electronic
learning, but is most often used for learning delivered via the web. This may be
distance learning or it may be augmenting classroom teaching using the web.

The eClass project (previously called Classroom 2000) is an example of the latter [4].
It records pen strokes on an electronic whiteboard during a lesson (Figure 21.5)
along with audio and video, and then allows students to review the material later

Figure 21.4 Microcosm: an open hypermedia environment shown running a teaching application entitled
‘The civil war in Yugoslavia 1941–45’ (developed by the Departments of Electronics and Computer Science
and History at the University of Southampton and used by permission)

760 Chapter 21 n Hypertext, multimedia and the world wide web

using a web interface (Figure 21.6). Each slide presentation and pen stroke is time-
stamped so that students can click on a particular pen mark on the web interface and
the audio or video is replayed from that point in the lecture.

Collaboration and community

Although strictly not hypertext, the web has become a central platform for collabor-
ative applications and community. These use the hypertext structure of the web
to structure and access shared resources and message areas. For example Yahoo!
Groups (groups.yahoo.com) allows mailing lists, shared images (such as family photo
albums), web archives of the mailing list and chat, all accessed through a web interface.

Figure 21.5 eClass – recording a lecture

Figure 21.6 eClass – indexed playback on student’s web browser.
Source: Netscape browser window © 2002 Netscape Communications
Corporation, used by permission

21.3 Finding things 761

Establishing a sense of community can be very important on websites as it is one
way to ensure loyalty and get visitors to return. This may involve explicit community
features such as chat areas, or may simply be a matter of using a design, language and
image that suggests a site which is open and listening to ‘readers’ [214].

E-commerce

For some companies the web is simply another sales opportunity. Many readers will
have used online stores such as Amazon or bought from an auction site such as eBay.
Hypertext’s use of hierarchies, links, images and so on, makes it ideal for displaying
certain kinds of product. Actual buying and selling requires not only security at the
level of the networks, websites, etc., but also trust. When you walk into a shop you
can see the person you are dealing with, and the fact that it is physically there today gives
you confidence that it will be there tomorrow if anything goes wrong. How to build
and ensure this trust is an active area in HCI research (see, for example [307]).

FINDING THINGS

21.3.1 Lost in hyperspace

Although the non-linear structure of hypertext is very powerful, it can also be con-
fusing. It is easy to lose track of where you are, a problem that has been called ‘lost
in hyperspace’. There are two elements to this feeling of ‘lostness’.

The first is cognitive and related to content. In a linear text, when a topic is being
described, the writer knows what the reader has already seen. In a hypertext, the
reader can browse the text in any order. Each page or node has to be written virtu-
ally independently, but, of course, in reality it cannot be written entirely without any
assumption of prior knowledge. As the reader encounters fragmentary information,
it cannot be properly integrated, leading to confusion about the topic.

The second is related to navigation and structure. Although the hypertext may
have a hierarchical or other structure, the user may navigate by hyperlinks that move
across this main structure. It is easy to lose track of where you are and where you
have been.

The solution to the former issue is to design the information better. The solution to
the latter is to give users better ways of understanding where they are and of navigat-
ing in the hypertext. To say ‘the solution’ is disingenuous – there is no simple ‘solu-
tion’. If we want to provide information that allows complex, unplanned, non-linear
access, there will probably always be problems. However, good design can help!

21.3.2 Designing structure

We discussed the importance of good structural design in Chapter 5. Some of the task
analysis techniques presented in Chapter 15 may be useful in giving a task-oriented

21.3

762 Chapter 21 n Hypertext, multimedia and the world wide web

or knowledge-orientated breakdown of a hypertext. In some areas there may be pre-
existing understood structures to mirror; for example, the faculty and departmental
structure of a university, or the main disciplines (circulatory, neurological, etc.)
within medicine.

In a paper format one is stuck with a single structure, which can lead to tensions:
for example, the fact that in this book structural design is discussed in several places.
As another example, imagine a car mechanic using a manual. She might want to
use the classical breakdown into transmission, fuel system, etc., while fault finding,
but if she were dismantling the engine it might be more useful to look at the car
components in terms of physical location.

If multiple structures are used, you have to consider what to do about the com-
mon material. For example, if we examine a car hypermedia text under ‘engine
compartment’ and get to the fuel pump, this would also appear in the functional
view under ‘fuel system’. Such common elements may be replicated. This has the
advantage that the material can be presented in ways that make sense given their
context, but it can also lead to inconsistencies.

Alternatively we may make links across the hierarchy at some level; for example,
the engine compartment may have a diagram of the engine with a labeled arrow
saying ‘fuel pump (fuel system)’, which takes you to the description of the pump in
the fuel system part of the hypertext. Notice, too, the importance of making links
that go to different parts of the hypertext very clear, following the ‘knowing where
you are going’ principle from Chapter 5 (Section 5.6.1).

An in-between solution would be to have a small dedicated description of the
fuel pump in the context of the engine compartment: perhaps describing how it is
physically connected to the engine block and how the piping is routed. This could
then be linked to a more extensive explanation of its function in the fuel system
section, using a ‘see also’ link.

In all cases it is important that the structure and the naming of parts is meaning-
ful for the user. In a more detailed and theoretical approach to the ‘knowing where
you are going’ principle, Pirolli and others have developed information foraging
theory [289]. This uses an analogy with foraging animals searching for patches
of food and trying to make decisions about when to move to a different area or stay
with the food available, and, if they move, where to go. This is likened to the way an
information seeker browses, making decisions about whether to stick with the infor-
mation available or spend time looking for more, and, if more is needed, deciding
where to seek it. For animals, the scent of food is very important in deciding where
to go, and information foraging theory suggests that it is crucial that our structures,
access methods and detailed page designs give users some sort of scent – hints about
what they may find – to allow them to make good browsing decisions.

21.3.3 Making navigation easier

No matter how well designed the site structure is, there will still be problems: because
the user does not understand the structure; or because the user has individual needs

21.3 Finding things 763

that the designer has not foreseen; or because even a good structure is not perfect.
However, there are various things that can make it easier for users.

One solution is to provide a map of the hypertext document, identifying the
current position of the reader within it. Links to home or end points can then be
identified and the user is less likely to get lost. This may be a separate part of the
hypertext; for example, some websites have a site map link leading to a special page,
and many help systems have a table of contents view. Alternatively, the site map can
be woven into the layout of the document; for example, some sites have an outliner-
style sidebar listing the main sections and drilling down to the current location.
This acts both as an indication of where you are in the site (like the breadcrumbs
discussed in Chapter 5) and as a constant reminder of the overall site structure.

One way to deal with the differing uses that are envisaged for a hypertext is to pro-
vide the user with ‘recommended routes’ through hypertext documents. If these are
too strongly defined they defeat the objectives of the system. However, successful
applications have been developed that have a guided tour or bus tour metaphor [13].
Users can follow the tour, which takes them through one or more selected routes,
but can deviate from it at interesting points whenever they wish. Users can then
return to the ‘bus stop’ to continue the tour when they have satisfied their interest.

Another type of hypertext takes the form of ‘levels of access’ to a document.
Different levels of access privilege ‘see’ different amounts of information. A docu-
ment structured in this way may provide one level of access that gives only a brief
overview of the topic. The next level of access presents a fuller description of the
system, while the next level may also include information regarding the precise
meaning of technical terms used in the system. The final level of access may add
historical information and suchlike. The user can choose at which level he wants to
read the document, cutting out irrelevant information while obtaining all the neces-
sary details. Such a document tends to be linear in nature, which makes navigating
and printing it easier, but removes the user’s choice in structuring his progress
through it.

Once information has been retrieved, a paper version is often needed. Printing a
document requires the pages to be in a particular order, but hypertext does not
support the concept of one single order. This is against the ethos of hypertext,
which intends the user to structure the information in the way that suits him best.
It can therefore be difficult to get a hard copy of the information that is required.

Although there is no simple way to linearize a hypertext, one can at least make it
possible to print individual linear parts, whether single pages or groups of linearly
linked pages. In general, you should not rely on the print facility of a browser as this
is printing a page designed for on-screen viewing. You may notice websites offering
printer friendly pages. These may be in a different format such as PDF, or may
simply be web pages without sidebar navigation aids, etc.

For both web and non-web hypertext, remember that once the page is printed
someone who hasn’t seen the full hypertext may read it. If they like what they read,
can they find the source? If a web page is likely to be printed, do include the full
URL on the page, perhaps in the footer. On pages from a CD-ROM or similar hyper-
text, include perhaps a copyright notice with details of the original.

764 Chapter 21 n Hypertext, multimedia and the world wide web

21.3.4 History, bookmarks and external links

Hypertext viewers and web browsers usually have some sort of history mechanism
to allow you to see where you have been, and a more stack-based system using the
‘back’ button that allows you to backtrack through previously visited pages. The back
button may be used where a user has followed a hyperlink and then decided it was
to the wrong place, or alternatively, when browsing back and forth from a central
page that contains lots of links. The latter is called hub and spoke browsing. In fact,
in studies of web browsing the back button accounted for 30% of all navigation
actions [63]. Other studies have shown frequent revisiting of pages during a single
browsing session [341].

Although the back button is used extensively, it is used relatively little to go back
more then one step. For error correction this makes sense, but for general revisiting
one might think that moving back several steps would be common. Possibly, one
reason for this is confusion about the meaning of the back button; indeed a formal
comparison of back and history mechanisms in four different hypertext and web
browsers found that the operation of back and history were subtly different in
each [104].

For longer-term revisiting, browsers typically support some form of bookmarking
of favorite pages. Both this and, on the web, external links from other people’s
sites mean that users may enter your hypertext at locations other than the top level
or home page. On the web this is called deep linking. Many websites rely on the user
remembering where they have come from to make sense of a page. If a page does
not adequately show where it fits, then a user coming to it from outside may have no
idea what site it is from, or why they are reading the material. Furthermore, if the
original site depended on the user pressing ‘back’ to return to higher levels of the
site hierarchy it may be impossible for a visitor to find the rest of your site at all!

All pages should therefore make clear where they belong and have links into the
full site structure. For example, the breadcrumbs along the top of a web page func-
tion both to make the context clear and, if they are ‘live’, as navigation back into the
site hierarchy (see Chapter 5, Section 5.6.1).

Framed websites are particularly difficult. The material you want to bookmark or
link to may be one of the frame content pages, but the URL you can see or bookmark
is that of the overall frameset. This may either discourage linking to the site or, if
circumvented, it may mean linking directly to the content of one of the frames,
which is then very likely to lack sufficient context, being designed to be seen within
the frameset. Search engines, too, may generate links to individual frames in a frame-
set. Many web style guides heavily discourage the use of frames for this reason. If the
site is designed using a development tool that supports page templates, or is being
dynamically generated, there is rarely any need for frames as most of the effects can
be obtained using other page formatting.

Very occasionally you may want to discourage deep linking; for example, if the
framed page is more of an interactive application or you know the inner structure
is unlikely to stay constant. In such cases you can include a small piece of script in

21.3 Finding things 765

the inner framed pages that makes them redirect to the outer frame if they are ever
opened ‘bare’ in a window. This means that if a site or a search engine does link into
the inner frames, following the link takes the user to the full, framed site.

For more on usability issues of frames see /e3/online/frames/

21.3.5 Indices, directories and search

As well as a hierarchical table of contents structure, many help systems, hypertexts,
and for that matter paper books, have some kind of index. Note that an index is not
a complete list of all words in a document. If this were the case then the index for this
book would be as big as the rest of the book! The words in an index are chosen
because they are significant key phrases or words with a domain meaning, and not
every occurrence of a word is indexed, only those deemed in some way important.
The main difference between an electronic index and a paper one is that with the
paper index you have to physically look up the page after finding the word in the
index, whereas in an electronic index the links are ‘live’ so you can simply click to
the content.

On the web an index would be very big (!); however, directory services such as
Yahoo! (www.yahoo.com) or the Open Directory Project (ODP) (www.dmoz.org)
can be seen as a form of index. The main difference is that while an index is simply
an alphabetical list of keywords, web directories give a hierarchical categorization to
sites. The categorization is done either by self-submission, or, in the case of quality
directories such as ODP or Yahoo!, by experts in the relevant field.

For exhaustive searching by keywords, some kind of automated search is required.
In the case of a standalone hypertext, the viewer application may do this either by
using a pre-computed electronic index of all word occurrences used by the hypertext,
or by scanning it on demand. The latter will take longer for each search, but may be
more effective if the hypertext is not too big or the material is rapidly changing.
Where the hypertext is generated from a database, the search may be performed on
the underlying data rather than the generated pages.

In the case of the web the content is dynamically changing, but it would be imposs-
ible to scan the whole web every time you wanted to find anything! Search engines
such as Google or AltaVista use web crawling. Starting from an initial collection
of pages they look for all links from these pages. These links are followed and the
new pages reached are scanned, and so on. As pages are visited, an index is built of
which words occur in which pages. The search engines typically do not keep a copy
of every page visited, but may just keep the title and the first hundred or so words on
each page. Even the index is vast and so the most common words are usually not
indexed; these are called stop words. When you do a search, the search engine uses
the index and the summary information to construct the results page with links to
the actual pages. Because it is using the page summaries and not looking at the pages
themselves, it is possible that a page may have been removed or changed since the
index was constructed.

766 Chapter 21 n Hypertext, multimedia and the world wide web

The web is enormous and so the number of pages containing a given word is
enormous. Web search engines allow you to search for several words at once or for
exact phrases, or, with Boolean searches, to specify using logical and/or options what
is required: for example, ‘engine AND NOT car’.

Even when looking for multiple words or Boolean queries, the number of results
may be in the tens or hundreds of thousands. So search engines need some way to
rank pages. Some use simple, content-based measures such as the number of times
the requested words occur, whether they occur in the title or body, whether they
occur near the beginning or end of the page. Some search engines keep track of
how many times users click through for specific pages and so can build up a model
of popularity. In addition, some search engines sell the right to be top, based on
keywords, or have a special advertisers or sponsors links section.

Google gained its reputation for quality based on the way it ranks pages, and
seems almost magically to get just what you want in the first page or so of results,
and often as the very top ranked result. It does this by using the structure of links. It
uses heuristics such as: if a page is linked from lots of places it is likely to be good,
especially if the pages linking to it are already known to be good; and also the
opposite: if a page links to lots of good pages then it is a good page.

Some specialist searches, for example for video, books, etc., and even some more
general-purpose search engines, allow you to rate pages you have visited. Ratings
are then used to rank the more popular pages for future visitors. These are called
recommender systems [304]. As well as explicit recommendations, e-commerce sites
often track your browsing on the site and use this to build a profile of which users
are similar to you. The books or goods they purchased may then be suggested to you.

When designing web pages, it is possible to make them more ‘search engine
friendly’ by adding ‘META’ tags in the head section of the web page, in particular
keywords and description, as well as a relevant ‘TITLE’ tag. In the early days, people
tried to fool search engines by including invisible lines with lots of popular keywords
at the top of their document. Now most search engines are able to detect such sub-
terfuge and discard such pages – so be honest! However, it is worth making sure that
something near the top of your page says what it is about!

Search engines have trouble scanning sites with many generated pages, especially
if they are accessed through a search box only, for example a dictionary or thesaurus.
There are many large data sets available on the web, often public domain or freely
accessible, which contain high-quality information – often better quality than any
old web page – but are not easy to find unless you know the site. This has been
called the hidden web and some estimates say that it is an order of magnitude
larger than the visible web. Currently, there are no accepted ways to link such mater-
ial into broader web searches although some products, such as onCue described
in Chapter 18 (Section 18.4.1) attempt to link into these publicly accessible data
sources.

21.3 Finding things 767

Searching for research literature

When you are asked to do a project or a literature review you will probably reach straight
for Google! You will get many pages that are not relevant and many that appear to be, but how
do you know which are worth reading? Unless, of course, you just assume that Google knows best!

Part of the process by which papers are accepted into a conference or journal is peer review – the
papers are read and judged by other workers in the field. On the web, it is hard to judge the qual-
ity of information you find.

There are some heuristics you can use. Is the online page an electronic version of an article pub-
lished in a refereed paper publication? Where is the page: in a major corporation or university,
or a free home page? This doesn’t mean that you can’t find good pages by unknown people, but
existing position is a heuristic. If the author has a publications page, are other articles published
in good venues? Do other pages that you have judged to be of good quality reference an online
article? And, of course, not to be forgotten . . . does it make sense? No matter who wrote it, if it
is not well argued then don’t believe it!

If you are looking for articles in computing you can also use citeseer (citeseer.jn.nec.com). This is
a search engine for online copies of papers, hosted by NEC Corporation. Unlike standard web
search engines, this only searches for articles, and in particular is able to scan PDF, PostScript and
other electronic formats. Not only does citeseer search by title, author, etc., it is also a citation
index. For each paper, it scans it to find the bibliography at the end. When you look at the entry
for a paper, it shows you what other papers it references (looking back in time) and also which
further papers have cited it (looking forward), as the diagram shows.

768 Chapter 21 n Hypertext, multimedia and the world wide web

WEB TECHNOLOGY AND ISSUES

The web has featured strongly already in this chapter and for the remainder of the
chapter we will focus exclusively on it.

21.4.1 Basics

The web consists of a set of protocols built on top of the internet that, in theory, allow
multimedia documents to be created and read from any connected computer in the
world. The web supports hypertext, graphics, sound and movies, and, to structure
and describe the information, uses a language called HTML (hypertext markup
language) or in some cases, XML (extensible markup language). HTML is a markup
language that allows hypertext links, images, sounds and movies to be embedded
into text, and it provides some facilities for describing how these components are
laid out. HTML documents are interpreted by a viewer, known as a browser; there are
many browsers, and each can interpret HTML in subtly different ways, or support
different levels of functionality, which means that a web page viewed through one
browser can look very different from the same page viewed through another. The
web requires no particular multimedia capabilities from the machines that run
the browsers; for example, if sound is unavailable on a particular machine, then
obviously no sound is heard but the browser still displays the text happily.

The web owes its success to many factors, including the robustness and (relative)
ease of use offered by popular browsers from the very first graphical browser Mosaic,
and continued in commercial browsers such as Netscape Navigator, Microsoft
Internet Explorer and Opera. These offer a graphical interface to the document, con-
trolled by the mouse. Hypertext links are shown by highlighting the text that acts as
the link in an alternative color, and are activated by clicking on the link. A further
color is used to indicate a link that has already been visited. Hypertext links can also
be embedded into regions within an image.

Although the browser contains most of the functionality required to view a web
document, supporting text and graphics in an integrated package, special file formats
and media, including some movie formats, may require additional plug-ins or helper
applications.

As well as publishing personal, corporate and governmental information, the web
is used as a source of entertainment, an advertising medium, a communication envir-
onment, and more. The vast and ever-increasing quantity of information available
on the web certainly exacerbates the user’s ‘lost in hyperspace’ problems (Section
21.3.1). But increased familiarity with hypertext, and better web page design, are aid-
ing the situation at least as much as technological efforts to create maps and indexes
of the data. Another problem is that of information overload: multimedia images,
gigabytes of graphics and mountains of text swamp the reader in a glitzy but unmod-
erated world, in which the fact that almost anyone can make anything available leads
to the gemstones often being lost amongst the slag.

21.4

21.4 Web technology and issues 769

As well as static web content such as text and images, many pages are dynamic: for
example, they may be generated from data held in databases, respond to individual
information entered into forms, or include dynamic elements such as Java applets.
We will discuss this dynamic content further in Section 21.6.

21.4.2 Web servers and web clients

Whereas a conventional PC program runs and is displayed on one computer, the
web is distributed. Different parts of it run on different computers, often in different
countries of the world. They are linked, of course, by the internet, an enormous
global computer network (see also Chapter 2, Section 2.9.3).

The pages are stored on web servers that may be on a company’s own premises
or in special data centers. Because they are networked, the webmaster for a site can
upload pages to the server from wherever she is. For example, the web pages for
www.hcibook.com are stored in a data center several thousand miles from where any
of the authors live!

Your machine, the PC running the web browser, is called a client because it wants
the pages from the servers. When you click on a link your web browser works out
the full URL of the page it needs: say ‘http://www.hcibook.com/e3/authors.html’. It
splits this into parts. The first part is the protocol ‘http’ which says how it talks to the
server (other alternatives include ‘ftp’). The second part ‘www.hcibook.com’ is the
host name, that is the name of the web server containing the requested page. The last
part ‘/e3/authors.html’ gives the particular file on the site. The browser then estab-
lishes a connection to the required web server (in this case ‘www.hcibook.com’),
and sends a message, formatted using the HTTP protocol, to the web server, which
then finds the requested html file (or image, or other file type) and returns it to the
browser, which then displays it to you.

If the page contains images the same process is repeated for each image, and if the
page is a framed one for each frame within the page.

21.4.3 Network issues

The fact that the web is networked raises a series of issues that can impact on
usability.

Network capacity is called bandwidth. This is a measure of the amount of
information that can pass down the channel in a given time. For example, a typical
modem speed is 56 kbs – that is 56 kilobits per second. This equates to about
6000 characters per second. This sounds fine until you realize that images may take
many tens or hundreds of characters (bytes) to encode . . . this is why many have
renamed the web the ‘world wide wait’!

However, bandwidth is not the only important measure. There is also the time it
takes for a message to get across the network from your machine to the web server
and back. This delay is called latency. Latency is caused by several factors – the finite
speed of electrical or optical signals (no faster than the speed of light), and delays

770 Chapter 21 n Hypertext, multimedia and the world wide web

at routers along the way that take messages from one computer network and pass
them on. This latency may not always be the same, varying with the exact route
through the network traveled by a message, the current load on the different routers,
etc. Variability in the latency is called jitter (see Figure 21.7).

As well as the underlying latency and jitter of the network, each layer of network
software adds its own. The underlying internet protocols are lossy, that is messages
can be lost. When this happens, higher level software (the TCP – transmission con-
trol protocol – layer) notices and resends messages to give reliable communication.
These losses mean that the average delays increase, but also that the jitter increases –
a lost and resent message takes more time than one that gets there first time.

There may also be an appreciable amount of time setting up a new connection,
which may outweigh the time taken to actually send data. This is particularly a prob-
lem with sites containing many small images.

Web usability guides will give plenty of advice on ways to minimize web page size,
but one recommendation, which sadly we promulgated too in earlier editions of this
book, should be taken with a pinch of salt. Virtually every guide suggests keeping
pages short – enough to fit within a single screen of a typical web browser. Now there
are arguments for this – some users may not realize there is more content off the
bottom of the screen, the material lower down may be ignored, search engines are
better able to index multiple small pages. However, the reason that is often given,
namely download time, is not a good one. Of course, an enormous page takes a long
time to load, but on the whole interaction is faster if a larger page is downloaded and
then scrolled through than if the user has to click links on many small pages and wait
for each.

This latter point is an example of a broader issue. In general, if you want rapid
feedback, try to make the interaction happen at the web browser end. Feedback
that involves a cycle to the web server and back, except for intranets on fast networks,
will take several seconds, which is too slow for fluid interaction. Unfortunately, for
collaborative applications there is no way to prevent at least some network delays for
feedthrough (see Chapter 19, Section 19.6.3), but even then it is important to prevent
too many cycles of network messages.

Figure 21.7 Bandwidth, latency and jitter

21.5 Static web content 771

STATIC WEB CONTENT

21.5.1 The message and the medium

One thing is often forgotten when web pages are created. It is of vital importance,
and hence will be discussed first.

It is content.
Many people assume that because they can make information available on the

web, they should. Unfortunately, because it is very easy to publish information,
much less care is taken with the actual content. Material may be nonsense, it may be
incorrect, it may not read well, or be incomplete, or inane.

Excellent page design can make useless material look attractive, but it still remains
useless material. On the other hand, poor design can mean that excellent material
is never seen by potential readers, as they have become bored, or intolerant of the
medium, or confused, or for a host of other reasons have aborted their attempts to
download and view the information. Pages do have to look immediately interesting
and attractive if people are to spend time, effort and, because of the communication
costs, money, in viewing them; the user-centered nature of the medium makes this
imperative. This is in marked contrast to television or cinema or other dynamic
media, which are not under any direct user control, where information is presented
to a passive audience. With web documents, people have actually to want to see the
information, and make an effort to retrieve it, which clearly must have an influence
on design.

Whatever is being presented, underlying all the comments made on good and
bad design, the fundamental message is that, for the user group or groups who are
targeted, the content should be worth reading.

When it is likely that a user will require a paper copy of the information made
available over the web, ideally they should be able to download it in one go as a

21.5

Delivering WAP content – balancing usability
and feedback

Because of the tiny screens on phones it is difficult to scroll through a long WAP page. However,
if every link involved going back to the WAP server the feedback would be very slow. For this
reason WML divides WAP content into stacks of notes. For the user browsing the content, the
note is the parallel of the normal web page. A link may be to a note in the same stack or one in a
different stack; the user is largely unaware of which it is. However, when you request a note in a
stack the whole stack is downloaded to the WAP browser on your phone. This means that links
to notes in the same stack have much faster feedback. By carefully arranging content within stacks
and notes, the overall user experience can be improved.

772 Chapter 21 n Hypertext, multimedia and the world wide web

single complete file, with the same information content but possibly a different
layout. Paper does not have the same inbuilt hypertextual and active capabilities as
the web page, and will be accessed in a predominantly linear fashion.

21.5.2 Text

Because web pages are displayed on many different machines, there are only a
small set of fonts that can be guaranteed to be available: a standard font and a type-
writer font (e.g. courier) with bold and italic versions in different sizes. However,
it is possible to specify preferred fonts and many of these such as Arial, Verdana or
Comic Sans are available on most web platforms. The difficult thing is to balance
fine tuning the appearance of the text on one platform with making it readable
on all.

The various structured styles such as headings allow the web designer to create
material that will lay out passably on all platforms. But these offer a fairly coarse level
of control. The size and boldness of the heading should be chosen carefully; for
example, huge dark fonts on a page can look loud and brash.

There is an increasing desire to have fine control. Cascading style sheets (CSS)
allow you to specify fonts, line spacing, size, etc., in a similar way to styles in a word
processor or DTP package. However, care must be taken. For example, many pages
specify fixed point sizes that may not display well on different platforms and can
cause problems for people with visual impairments.

The use of color is of great importance for web pages, but it is often abused. First,
it should be remembered that a significant proportion of the potential viewers of
the page will have problems with color, either because they are using older machines
with a limited color palette, or because they have some form of color blindness.
Color, when used, should not be the only cue available. Users also bring a deep-
rooted emotional interpretation to colors; as we have seen, in some cultures, red is
associated with danger and anger, whilst green is regarded as go, or safe. Blue can be
a cool color, orange a warm one, and so on.

Links usually change color once they have been accessed, providing cues to the
user about what material they have already explored. This means that two distinct
but still suitable colors need to be associated with each link, so that the system is
acceptable whether or not the links have been activated. Note, too, that consistent
use of color can help the user understand the role of particular elements more intuit-
ively, whereas color used for no clear purpose is often distracting.

One common mistake is to put colored text onto a similar colored background
so that it becomes nearly invisible. One of the authors had a student who designed a
beautifully laid out page of text, and decided to add a background to the page just
before demonstrating it to the rest of the group. It was only at the demonstration
that he realized that the cool black background he had added made the black text
impossible to see!

There are only a limited number of text-placing options: text can be left or right
justified, or centered. There are a few predefined formatting styles such as ordered

21.5 Static web content 773

and unordered lists that have additional structure, in the form of indentation from
the left margin, with numbering in the case of ordered lists. Vertical positioning is
even more limited, but tables and (cautious use of) frames allow a greater degree of
horizontal and vertical placement. More precise positioning still can be obtained
using ‘dynamic HTML’ (DHTML), which allows parts of an HTML document
(called layers or ‘div’ sections) to be positioned as if they were separate mini-pages
within the browser window. The word ‘dynamic’ is used because these can then be
controlled using JavaScript to produce various animated effects (those pages where
little stars follow your mouse!).

Remember that monitors are different sizes and that some people use full-screen
windows and others smaller ones. To prevent very long lines, many designers lay out
pages within tables that put maximum widths (in pixels) for columns based on typ-
ical minimum expected monitor sizes (perhaps 800 × 600 or even 640 × 480). If fixed
layouts or large graphics are used then they may either display strangely on smaller
windows or force the user to scroll horizontally, which many users find confusing.
And don’t forget people viewing the page on PDAs!

The lack of explicit textual positioning makes it very difficult to produce com-
plex mathematical equations, and the font set available is not rich enough to provide
a suitable approximation. Developments in the specification are addressing this,
though the intrinsic complexity of typesetting mathematics suggests that it may be
a while before a simple, usable solution is found that is acceptable to readers, page
designers, and implementors of web browsers alike.

21.5.3 Graphics

Obtaining graphics

There are a number of sites on the web that contain archives of graphical images,
icons, backgrounds and so on. There are also paint and image manipulation pack-
ages available on almost all computer systems, and scanners and digital cameras,
where available, enable the input of photographs and diagrams.

Using graphics

While graphics and icons tend to play a significant role in web page design, their use
should be carefully thought out. Graphical images take longer to load than text, and
this may become a problem. Text uses 8 bits to represent a character: some rough
calculations show that approximately 2000 characters represent about a screenful of
information, and so 16,000 bits (2 K) are required. For graphics, one pixel may use
8 bits to represent its color: a page-sized image will be at least 600 by 400 pixels,
which will take 1,920,000 bits (240 K), or 120 times as long to load. Put another way,
while a picture may tell a thousand words, it takes approximately 50 times as long to
appear! Users become bored with operations that take a long time to complete, and
are unlikely to wait for ages while a page appears.

774 Chapter 21 n Hypertext, multimedia and the world wide web

Complex backgrounds are the worst offenders in this area; they offer little in the
way of added value to the information presented on the page, and cause great
frustration for the poor reader. They tend to be designed and tested only on local
machines, with high-bandwidth connections between them, which means that the
time factor is negligible for the designer/user. However, this disregards the fact
that many people accessing the page will be using congested, slow networks, with a
transfer rate sometimes down to a few kilobits per second, rather than fast megabit
links. Fussy backgrounds also have the unfortunate ability to obscure text, making it
very difficult or impossible to read.

Different browsers support different types of functionality, with more recent
versions having features that try to alleviate the usability problems introduced by the
delay involved in downloading graphics. Most browsers support caching, in which
graphics are downloaded once and temporarily stored on the user’s local machine. If
the same image is reused, it is fetched from the local store far more rapidly than if
it were retrieved from the remote site. This clearly has implications for page design:
if graphics are to be used, then their reuse wherever possible speeds up the whole
process of drawing the page. Complex graphics can sometimes be broken down into
a set of items, many of which can be reused and assembled in different ways to add
visual impact to the page without causing large delays. Most browsers also offer the
option of turning off automatic image loading, so that only the text is downloaded.
If a page then appears to be of interest, the graphics can be explicitly requested. It is
sometimes possible to set out a page so that it still looks attractive even without the
graphics, which is necessary if the user has turned off image loading. There are other
browsers that are purely text based and do not support graphics of any sort, and for
these HTML offers an additional image attribute that allows a textual description
of the image to be used as an alternative. The need to support these different user
preferences and browser capabilities provides a great challenge in designing pages
that are acceptable to all.

Some browsers have additional features related to image handling as a techno-
logical response to the problem of page usability. If the designer specifies the size
of the image in advance, the browser can lay out the text on the page first, leaving
spaces for the images. This allows the user to continue to read the page contents
whilst the images are being downloaded into their respective slots. This capabil-
ity improves the usability of the page, and so should be supported by the page
designer whenever possible, by incorporating the necessary information into the
image reference.

Both GIF (graphics interchange format) and JPEG (Joint Photographic Experts
Group), the most widely used web graphic image formats, can be saved in forms
that allow them to be progressively transmitted. This means that images appear
as a whole, but very blurred, version that becomes gradually sharper, rather than
appearing in perfect resolution a line at a time. An overall impression of the page
and the graphic information appearing is thus given to the user, who is then better
informed about whether or not to continue the download.

The JPEG format is optimized for photographic images and makes use of their
properties to offer a higher compression ratio and hence faster loading. However,

21.5 Static web content 775

its compression is lossy, that is the image reproduced is slightly different from the
original, losing certain kinds of visually indistinguishable colors and, more import-
antly, losing high-frequency change. The latter is because photographs tend to have
slowly varying changes with few sharp edges. If sharp-edged images such as diagrams
or text labels are stored as JPEGs, small artifacts are produced such as ripples appear-
ing around letters and lines. In contrast GIF uses a lossless compression so that the
image appears exactly as it started. Although GIFs can be used for photographic
images, the compression is very poor.

The GIF format also allows animated GIFs. These are a sort of mini-slide show
or movie where several images are stored in the same file and play one after another.
These can be used to produce simple and effective animations, but when overused
can lead to very ‘noisy’ pages.

Active image maps are pictures with defined ‘hot’ areas, which, when clicked, exec-
ute a particular script, usually calling another web page or graphic. The careful use
of such maps can transform an interface, but there is an overhead to pay in loading
the map and calling and running the script, and this should be considered carefully
by a page designer. Another characteristic of image maps is that there is rarely any
indication of which areas are active and which are not, and it can be difficult for users
to ensure that they have visited all the active regions. For accessing spatially organ-
ized information, image maps are very suitable (for example, in a tourist informa-
tion system, the area about which information is available can be represented well),
but for information that does not have any clear spatial analog, their use is more
questionable.

Icons

Icons often appear on web pages, and while there are many available to choose from,
they should be used with care. On web pages, icons are typically used in one of two
ways. They are either visual cues, associating some small picture with different parts
of the text (for example, some pages have icon-sized characters that appear next
to instructions). Alternatively, they are used in much the same way as in a standard
WIMP interface to represent aspects of the functionality of the underlying pages.
In this latter case, they must represent their associated functionality in either a con-
crete or an abstract form. This means that the design of the individual icon has to be
carefully thought out, as a lot of information may have to be represented in a small
area of screen estate. However, icons are rarely seen on their own, and when placed
next to their neighbors, the whole effect has to be pleasing rather than disruptive
and garish. Therefore, the group of icons has to be designed together, with a coher-
ent and recognizable style. The picture is broader than this, however: other applica-
tions also use icons, which has its advantages and disadvantages. One advantage is
that certain icons are already associated with specific functionality (for example,
a picture of a floppy disk to represent ‘save’). Disadvantages are that it restricts
the individuality and style icon sets can show, and may mean that icons designed
for one purpose are misunderstood by users because they have seen something
similar in another context. It is therefore vital that time is spent in examining the way

776 Chapter 21 n Hypertext, multimedia and the world wide web

icons are used in other systems, before importing them into web pages or designing
new ones.

Icons sometimes appear for no apparent reason at all, when the
page creator has decided that as graphics are supported, a few should
be used. One interesting example is the icon that is a copy of the
roadworks sign, used in conjunction with text saying something like
‘This page still under construction!’.

This is an interesting social effect brought on by the ease of web publishing –
incomplete (sometimes even non-existent!) information can be made immediately
available. It’s like buying a map of the world nowadays and finding ‘here be dragons’
around the edges because the geographer could not be bothered to draw all the
countries in. Most pages can be designed properly before they are made available,
structured and presented in a complete and coherent way, allowing for extensions
and updates from the beginning.

There are times when the disclaimer ‘under construction’ has its uses: when critic-
ally important information becomes available, publishing it may well be more
important than presenting it (much like older maps with their dragons – if maps had
only been printed once the whole world had been explored, civilization would be
very different today). There is, too, a sense in which web pages can be continually
‘under construction’, changing, evolving and growing, because of their dynamic
nature and the ease with which they can be updated, but this does not obviate the
designer’s responsibility to create pages that have both form and content.

Graphics and color

Using many different colors within graphics may well result in the browsers for older
machines running out of entries in the colormap, with unpredictable consequences.
This is often problematical as the browser may be running in tandem with other
color applications, and only has a restricted range of colors to begin with.

For many consumer markets, for example in the UK and the US, this is unlikely
to be a problem as home machines are often relatively recent. However, many
businesses continue to use older PCs so long as they ‘do the job’ and PDAs may not
have a full color palette. Furthermore, in economically deprived areas, where there is
computer access it may well be through older or second-hand machines.

If universal access is required it is therefore still wise, where possible, to restrict
images to a limited number of colors, taken from the standard 216 color web palette,
and to reduce complex color images to simpler approximations. Reducing the
number of colors used also allows the depth of the images to be reduced; a change
from a default of 8 bits to, say, 4 bits will produce a twofold speedup in image load-
ing. The earlier comments on the use of color obviously apply as much to graphics
as they do to text.

One further point should be made about graphics: computer screens are typically
limited to a resolution of around 72 dpi (dots per inch), and so either high-resolution
images will have to be displayed much larger than actual size, or the increased resolu-
tion will be forfeited.

21.5 Static web content 777

21.5.4 Movies and sound

Movies and sound are both available to users of the web, and hence to page design-
ers. One problem associated with them is actually obtaining appropriate sound and
video clips, as they usually require some sort of multimedia capability on behalf
of the host machine in order to be able to digitize sound and capture and digitize
video. Video suffers from the same problems as graphics, magnified by an order of
magnitude or two; it can take extremely large amounts of time for a video segment
to download. Video is also not well integrated into the web, requiring the creation
of a process to run it that is separate from the page from whence it came. Not all
receiving machines have the capability to play video, or sound, and so it is unwise for
a designer to rely on these dynamic media to convey information without replicat-
ing it elsewhere.

The use of sound and video moves page design further away from the typesetter
and toward the sound engineer and cinematographer; the integration of these
cinematic media with the enhanced textual capabilities offered by the web is a new
domain, in which the techniques that work and those that fail have not yet been fully
explored, let alone understood.

The need to download movies and sound (see Figure 21.8) puts sharp limits on
the length of clip that can be shown. Streaming media over the internet, such as
RealVideo, RealAudio and CuSeeMe, allow potentially unlimited sources. As well
as longer prepared clips, these techniques allow live transmission (e.g. live radio
broadcasts over RealAudio) and long recorded sequences for asynchronous commu-
nication. An excellent use of the latter is the eClass project, introduced in Section
20.2.2, which links recordings of audio and video during a lecture with pen strokes
on an electronic whiteboard, so that students can replay the part of a lecture associ-
ated with any slide or annotation.

Acceptable streaming video and audio is achieved by a combination of high com-
pression and large client-end buffers. The former leads to loss of quality including
blurring and ghosting after rapid changes in screen content. The latter leads to
delays, often of several seconds, which makes it impossible to support video con-
ferencing. The challenges of achieving high quality transmissions (e.g. for video on
demand) and low latency (e.g. for video conferencing) are active research topics in
multimedia technology.

Figure 21.8 Animated GIF or movie needs to download completely

778 Chapter 21 n Hypertext, multimedia and the world wide web

Stepping back a bit to look again at this, note that it is often not raw bandwidth
which is the problem on the internet, but packet losses and jitter. Buffering effect-
ively solves this by trading off quality against delay, which is okay for fixed content,
or low pace change (as in eClass), but is problematic when we require a high pace of
interaction (as in video conferencing). CuSeeMe uses little buffering and hence is more
likely to suffer break-up of video and audio (see box in Chapter 19, Section 19.3.4,
page 675).

DYNAMIC WEB CONTENT

21.6.1 The active web
In the early days, the web was simply a collection of (largely text) pages linked
together. The material was static or slowly changing and much of it authored and
updated by hand. Some pages were generated on the fly, in particular the gateways
into ftp servers and to gophers, which were so important in adding ‘free’ content to
the web [97]. However, even here the user’s model was still of a static repository of
information. Web surfers may not have always known where they were, but they had
a pretty good idea of what they were seeing and that if they came back it would be
the same.

It was a pleasant, if somewhat boring world, but from a usability viewpoint it was
wonderful – a consistent interface to terabytes of information. Who could ask for
more? Indeed, this is one of the key arguments Nielsen brings against frames-rich
sites in his famous alertbox, Why frames suck (most of the time) [263] – frames break
this simple user model and hence cause trouble. Nielsen calls for a new richer model
for the web, which preserves the simplicity of the old model, but which can accom-
modate and guide the development of new features.

Well, if frames cause trouble, what about applets, timed refreshing pages, roll-
overs, dynamic content creation? What are we interacting with – is it information, is
it computer systems? In fact, this was a problem with hypertext interfaces well before
the web existed. Back in 1989, two of the authors, Janet and Alan, wrote about the
potential problems of these shifts between passive and active paradigms within an
interface. Our solution was to accept these differences, but to make them evident to
the user through the design of an effective medium of interaction [103]. Of course
it’s easy to say . . .

As HCI researchers and designers, we can neither ignore nor uncritically accept
new technology in the web. The active web is here, our job is to understand it and to
learn how to use it appropriately.

In previous sections, we have already looked at the simplest form of active web
page, those with movies, animated gifs or streaming audio. These are simplest, not
in the sense that no effort is required – a short video clip may require many days of
production effort – but in the sense that they have least user interaction. In this sec-
tion we’ll look at more complex forms of interaction. First, where the actual content

21.6

21.6 Dynamic web content 779

is fixed, but the user can change the form of presentation; secondly, at the generation
of pages from database content; and finally at the update of database information
through the web.

21.6.2 What happens where

When considering dynamic material on the web we need to take the external, user’s
viewpoint and ask what is changing: media, presentation or actual data; by whom: by
the computer automatically, by the author, by the end-user or by another user; and
how often, the pace of change: seconds, days or months? From a technical standpoint,
we also need to know where ‘computation’ is happening: in the user’s web-browsing
client, in the server, in some other machine or in the human system surrounding it?
The ‘what happens where’ question is the heart of architectural design. It has a major
impact on the pace of interaction, both feedback, how fast users see the effects of their
own actions, and feedthrough, how fast they see the effects of others’ actions. Also,
where the computation happens influences where data has to be moved to with cor-
responding effects on download times and on the security of the data.

The user view

One set of issues is based on what the end-user sees, the end-user here being the web
viewer.

What changes? This may be a media stream (video, audio or animation) which is
changing simply because it is the fundamental nature of the medium. It may be
the presentation or view the user has of the underlying content; for example, sort-
ing by different categories or choosing text-only views for blind users. A special
form of presentation change is when only a selection of the full data set is shown,
and that selection changes. The deepest form of change is when the actual content
changes.

By whom? Who effects the changes? In the case of a media stream or animation,
the changes are largely automatic – made by the computer. The other principal
sources of change are the site author and the user. However, in complex sites users
may see each other’s changes – feedthrough.

How often? Finally, what is the pace of change? Months, days, or while you watch?

We’ll use the ‘what changes?’ categories as we examine alternatives and trade-offs in
more detail below. But first we also need to look at the technological constraints.

Technology and security

The fundamental question here is where ‘computation’ is happening. If pages are
changing, there must be some form of ‘computation’ of those changes. Where does
it happen?

780 Chapter 21 n Hypertext, multimedia and the world wide web

Client One answer is in the user’s web-browsing client enabled by Java applets,
various plug-ins such as Flash, scripting using JavaScript or VBScript with
dynamic HTML layers, CSS and DOM (Domain Object Model).

Server A second possibility is at the web server using CGI scripts (written in Perl,
C, UNIX shell, Java or whatever you like!), Java Servlets, Active Server Pages or
one of the other server-specific scripting languages such as PHP. In addition,
client-side Java applets are only allowed to connect to networked resources on the
same machine as they came from. This means that databases accessed from client-
side JDBC (Java database connectivity) must run on the web server (see below).

Another machine Although the pages are delivered from the web server, they may
be constructed elsewhere. For hand-produced pages, this will usually be on the
page author’s desktop PC. For generated pages, this may be a PC or a central
database server.

People Of course, as noted earlier, the process of production and update may even
involve people!

It is easy to roll out maxims such as ‘users first’, but, in reality, the choice between
these options is not solely a matter of matching the end-user requirements. The best
choice also depends on the expertise of the web developer and external limitations.
If the server runs on a UNIX machine, you can’t expect to use Microsoft Active
Server Pages. On the other hand, if you are designing for an intranet you may even
get to influence the choice of client software and so make it easier to use more
complex client-end solutions.

The choice of technological solution is also heavily influenced by issues of
security. When we do any computation on data the computation and the data must
be in the same place [299]. This apparently simple factor means that if we want to
keep data secure (read ‘on well-protected servers’) then we must also perform the
critical computation on the same servers. For example, imagine a password check.
It would be foolish to send the correct password to a Java applet to check!

21.6.3 Fixed content – local interaction and changing views

Probably the most hyped aspect of the web in recent years has been Java. In fact, Java
can be used to write server-end software and platform independent standalone pro-
grams (not to mention the embedded systems for which it was originally designed!),
but the aspect that most people think of is Java applets.

Applets are just one of the techniques that can be added to give client-end inter-
action (and about the least well integrated into the rest of the page). The most
common alternatives are JavaScript, Flash and if you are prepared to limit yourself
to Windows platforms, ActiveX plug-ins. These techniques share the characteristic
that they are downloaded to the user’s own machine (see Figure 21.9) and thereafter
all interaction happens on the PC, not across the network (with caveats – see below).

The simplest use of this is to add interaction widgets such as roll-over buttons
(usually using JavaScript). More complex pages may add the equivalent of an

21.6 Dynamic web content 781

interactive application on the page. For examples, see Alan’s pages on coin tossing
experiments (Figure 21.10), which use JavaScript to emulate real and biased coins,
and dancing histograms (Figure 21.11), which use a Java applet. See Sun and
JavaSoft’s own sites for many more examples. The addition of DHTML gives even
more opportunities for dynamic pages where parts of the page can move, change
size, or change content all without any interaction with the web server.

Notice how this local interaction confuses the static model of the web. What
should happen when you go back to a previously visited page, or reload it? Do
you get the original state or the last state of your interaction? What happens if you
launch a second window on the same page? The actual behavior tends to be browser
specific and not always what you would expect! In particular, some browsers do
not re-initialize applets on a reload and so if you edit the applet’s parameters and
then reload you may not see the effects of your changes. More of a problem for web
developers than end-users, but very confusing.

Figure 21.10 Simulated coin tossing using JavaScript. Screen shot frame reprinted
by permission from Microsoft Corporation

Figure 21.9 Java applet or JavaScript running locally

782 Chapter 21 n Hypertext, multimedia and the world wide web

21.6.4 Search

Some user-driven interaction can be accommodated at the client end, but not all.
Consider search engines. It would be foolish to download several megabytes of
information so that a Java applet can search it online! Instead, all common web
search pages work by submitting forms to the server where CGI programs perform
the searches and return results. An additional reason for this approach is that
most browsers support forms, but some still do not support Java or scripting in a
consistent manner. The web search engine for this book works in this way. The user’s
keywords are submitted to the server using an HTML form, they are compared
against pre-prepared indexes at the server and all matching paragraphs in the book
are returned (Figure 21.12). This also reminds us of another reason for not down-
loading all the text to the user’s machine – security; we don’t want to distribute the
full electronic text for free!

Notice that, in all the above, the underlying content does not change; the variable
factor is the user’s input. The computation (working out what to show) needs both
the data supplied by the web author (pages, databases, indexes, etc.) and the user’s
input. The result must end up on the user’s screen. Either the data must come to the
user’s machine (as in Alan’s dancing histograms where the histogram data are in
applet parameters); or the user’s input must go to the server (as with the search). We
can see from the examples that the choice between these depends on the required pace
of interaction, the size of the data set required, security and available technology.

Figure 21.11 Dancing histograms using Java applet. Screen shot frame reprinted by
permission from Microsoft Corporation

21.6 Dynamic web content 783

21.6.5 Automatic generation

It was evident in the earliest days of the web that a key problem for the future would
be maintenance. In the first rush of enthusiasm, individuals and organizations
produced extensive and fascinating sites built largely of hand-crafted HTML. Not
surprisingly, vast areas of the web are not just static but in perpetual stasis. Web
surfing sometimes seems not so much a watersport, but an exercise in archaeology.

From the beginning it was clear that websites would eventually need to be created
from databases of content combined with some form of templates or layout descrip-
tion. However, at that stage there were no tools available and those who saw the
database future used a variety of ad hoc methods.

Happily, there are now a (sometimes bewildering) array of products for auto-
mating web production from existing and bespoke databases. These include
vendor-specific products such as Oracle Web Server and Domino (for publishing
Lotus Notes), and also more general techniques such as using SQL (structured query
language) or JDBC to access databases from CGI scripts or even from running Java
applets.

Database-generated websites have many advantages. They make use of existing
data sources. They guarantee consistency of different views of the data within the site
and between the site and the corporate data. They allow easy generation of tables of
contents, indices, and inter-page links. They separate content and layout.

The most dynamic way to get database content on the web is by accessing a
database directly from a running applet. The interface can then have any look-
and-feel that can be programmed in Java and can allow very rapid interaction
with the user. The Java applet can establish an internet connection back to the web
server to access data files using HTTP (as if they were web pages), it can connect
to a bespoke server (e.g. for chat type applications) or it can use standard data-
base access methods. The latter would normally use JDBC, the Java database access
package. Using JDBC the applet can issue complex SQL queries back to the database
meaning that some of the most complex work happens there (Figure 21.13).

In all cases, the Java security model built into most web browsers means that the
applet can only connect back to the machine from which it came. This means that
the database server must run on the same machine as the web server. Think about

Figure 21.12 HCI book search

784 Chapter 21 n Hypertext, multimedia and the world wide web

this. The most insecure part of any system is usually the web server, both because it
is easy to leave loopholes in the many file access permissions and also because it often
sits outside the most secure part of a corporate firewall.

The more common solution is where the user uses a web forms interface (or
special URL) and then a CGI script runs at the server end accessing the database
(Figure 21.14). The CGI script generates a web page, which is then returned to the
user. Some of the vendor-specific solutions use essentially this approach but bypass
the web-server/CGI step by having their own special web server which accesses the
database directly using their own scripting language or templates.

The user interface of such systems is limited to standard HTML features. This is a
limitation, but is at least consistent and means that it will work with virtually any
browser. Java applets can offer more rapid surface interaction, but both have to wait
for the actual data to move between server and client. Of course, the pages generated
by a CGI script can themselves contain JavaScript or Java applets for local inter-
action, so the difference between the two solutions is not so radical as first appears.

From a security angle, the database accessed from the CGI script can run on a sep-
arate machine (using standard database remote access methods or even a Java/JDBC
CGI program), thus making the system more secure. However, the database cannot
be entirely secure – if the web-server machine is compromised the CGI scripts can
be altered to corrupt or modify the database! The special vendor-specific web servers
are probably more secure as they don’t require a standard web server to be running.

Figure 21.13 Java applet accesses database using JDBC

Figure 21.14 CGI script accesses database

21.6 Dynamic web content 785

21.6.6 Batch generation

A low-tech but very secure solution is to generate pages offline from a database
and then upload them to the web server (Figure 21.15). Many of Alan’s earliest web
pages were generated in this way from HyperCard stacks.

This is certainly a simple solution as it separates out the task of page generation
from that of page delivery. Pages can be generated directly using many standard
database packages such as Access or HyperCard. Alternatively, standalone programs
in languages such as Visual Basic, Java or C can access a database and output HTML
pages. These programs can run on a central computer, or on your own PC. The
generating program simply produces a set of HTML pages on your own disk that can
be checked locally and then copied onto the web server using ftp or shared network
disks. Many people think that this will be difficult, but in reality it is remarkably
easy, as you can use the tools you are used to – if you can create a text file you can
create HTML. In fact, the snippet of Visual Basic in Figure 21.16 is a trivial but fully
functioning HTML generator!

Figure 21.15 Batch pre-generation of web pages

Figure 21.16 Visual Basic code to generate a web page

Set db = openDatabase("C:\test.mdb");
sql = "select Name, Address from
Personnel;"
Set query = db.OpenRecordset(sql)
Open "out.html" For Output As #1

Print #1, "<h1>Address List</h1>"
query.MoveFirst
While Not query.EOF
Print #1, "<p>" & query("Name") & " ";

query("Address")
query.MoveNext

Wend

Close #1
query.Close

786 Chapter 21 n Hypertext, multimedia and the world wide web

Some web scripting languages can be used in this mode too. For example PHP
allows you to send the page being generated into a buffer, which can then be saved
to a file. This can be run on a separate machine, or on the web server itself. The
latter sounds unnecessary; however, web servers are more efficient at delivering static
material so this sort of batch generation can be used simply to improve efficiency.

As well as the ease of programming, the offline generation of web pages means that
there is no need for an online connection between the web server and the database,
so a breach in the security of the web server doesn’t compromise your database. In
addition, it may mean that the web server can be configured without CGI scripting
enabled at all, which considerably increases its security.

The downside is that you can only show the indices and pages that you can pre-
compute. So, you could use a product database to produce a pro-forma page for each
stock item, plus alphabetic and categorized lists, but you could not produce a special
list based on a user’s own search criteria.

This low-tech solution is appropriate in many circumstances – whenever the pace
of change is low (e.g. overnight or when periodic updates are acceptable), the vol-
ume of data is not too large and no online searching is required. Even when some of
these conditions don’t hold, it is possible to use the general approach. For example,
searching can often be arranged by having a much cut-down database or index on
the web server with most pages pre-computed.

21.6.7 Dynamic content

The mechanisms we have been discussing manage the feedthrough when the database
is updated by some non-web means. Perhaps the most ‘active’ web pages are those
where the content of the pages reacts to and is updateable by the web user.

If pages are generated from database content using either the Java-applet/JDBC
method or the CGI method, the same mechanisms can as easily be used to update
as to access the database. The feedback of changes to the user is thus effectively
instantaneous – you check for seat availability on the theatre web page, select a seat,
enter your credit card details and not only is the seat booked, but you can see it
change from free to booked on the web page.

This sort of web application opens up many additional problems. You may need
to add some form of login or authentication. If credit card numbers are supplied you
need to ensure that the web server is secure. Also, without care it is easy to design
solutions that accidentally book multiple seats if the user presses the back button and
ends up on what appears to be a simple confirmation screen.

If we consider an estate agent’s web page, with houses for sale and potential
buyers, the situation is rather different. The pace of change is slow; house purchases
take place over days, weeks and months. A solution that automatically marked a
house as sold would neither be necessary nor desirable! In this case a socio-technical
solution using low-tech database generation would probably be sufficient. The web
page can have a contact telephone number, email address or message form. Queries
via these channels (as well as non-web-based queries) come to the estate agent who

21.7 Summary 787

is responsible for deciding when to mark the house ‘sold’. There is a continuous
loop between web user and the database, but it involves human as well as automatic
processes.

Going in the direction of greater complexity, many business applications operate
an n-tier web architecture. This involves multiple layers of software where the outer
layers are concerned more with the user interface and the inner layers more with
business functionality. Figure 21.17 shows this using several web standards. The user
interacts through a web browser with a web server. The pages are generated using
Java Servlet Pages (JSP). To generate the page the servlets connect to Java Enterprise
Beans (JEB) on an enterprise server. These are components that encapsulate ‘busi-
ness logic’. For example, in a banking system this could include rules on whether a
particular transaction is allowed. These Java Enterprise Beans draw their data from
the corporate database using JDBC connections.

SUMMARY

The non-linear nature of hypertext, in conjunction with the use of different
media, can be a powerful combination for education, documentation and market-
ing. Furthermore, the world wide web has made it possible to publish such material
globally at very little cost. However, we saw that users can become confused and
disoriented if the structure of a hypertext document is not clear, becoming ‘lost
in hyperspace’. These problems may become more severe on the web where links
cross between sites, and across national borders. Furthermore, web pages are often
developed incrementally rather than being pre-planned.

Animation can be used within traditional windowing systems, to aid visualization
within special-purpose applications or as part of multimedia systems. The large
storage and performance requirements of digital video are still a problem, but one
that is gradually being overcome by technological progress. However, the problem of
effective use of such technology, beyond the short video clip, may take somewhat
longer to resolve.

Dynamic web content can include interactive pages running on the browser or
pages generated at the web server from a database. They make use of the same web
interface as normal web pages, so in principle they are easy to use. However, they

21.7

Figure 21.17 n-tier architecture

788 Chapter 21 n Hypertext, multimedia and the world wide web

pose additional usability challenges as the user has to understand what is static and
what is changing content. Also, it is important to choose carefully where change is
happening, whether at the client PC or the web server, as this has a major impact
on the nature of interaction, especially the pace of feedback.

The production of multimedia in the form of web pages is now feasible for most
computer users and is a good way of making demonstrations and prototypes pub-
licly available. Have a go!

EXERCISES

21.1 Experiment with HyperCard or another hypertext system if you have access to one. As
you work through the system, draw a map of the links and connections. Is it clear where you are
and where you can get to at any point? If not, how could this be improved?

21.2 Do the same for this book’s website and tell us what you think!

21.3 What factors are likely to delay the widespread use of video in interfaces? What applications could
benefit most from its use?

21.4 Using a graphics package such as Adobe Photoshop or Macromedia Fireworks save different types
of image (photographs, line drawings, text) in different formats (GIF, JPEG, PNG). Compare the
file sizes of the different formats, experimenting with different compression ratios (where appli-
cable), numbers of colors, etc.

RECOMMENDED READING

E. J. Conklin, Hypertext: an introduction and survey, IEEE Computer, Vol. 20,
No. 9, pp. 17–41, September 1987.
A classic review of hypertext.

R. Bentley, U. Busbach, D. Kerr and K. Sikkel, editors, Groupware and the World
Wide Web, Kluwer, 1997.
The web has become perhaps the most common platform for groupware systems.
This collection includes seminal work in this area and covers most of the issues
that are still current.

T. Boyle, Design for Multimedia Learning, Prentice Hall, 1997.
Covers both educational aspects and multimedia design.

P. Greenspun, Philip and Alex’s Guide to Web Publishing, Morgan Kaufmann, 1999.
Lovely photos and a strong focus on database-driven web publishing. (Alex prob-
ably does his web searching using Lycos.)

J. Niederst, Learning Web Design: A Beginner’s Guide to HTML, Graphics, and
Beyond, O’Reilly, 2001.

CHAPTER 2

The Mobile Ecosystem

The Internet has spoiled us. We tend to oversimplify the technology powering the
Internet. The Internet is actually a complex ecosystem made up of many parts that must
all work together seamlessly. When you enter a URL into a web browser, you don’t
think about everything that has to happen to see a web page. When you send an email,
you don’t care about all the servers, switches, and software that separate you from your
recipient. Everything you do on the Internet happens in fractions of a second. And you
have the perception that all of this happens for free.

If you talk to people unfamiliar with mobile, you might find that they quickly assume
that the mobile ecosystem is exactly like the Internet, and that all the same rules apply.
This couldn’t be further from the truth. Mobile is an entirely unique ecosystem and,
like the Internet, it is made up of many different parts that must all work seamlessly
together. However, with mobile technology, the parts are different, and because you
can use mobile devices to access the Internet, that means that not only do you need to
understand the facets of the Internet, but you also need to understand the mobile
ecosystem.

To put it another way, think of the Internet as a great cloud in the sky. When we want
to pull something from it, we use a tool, like a piece of software or device, to interact
with it. This can include mobile devices, which we tend to think of as tools. Although
this image is partially correct, it’s still missing a big piece of the puzzle. To continue
the analogy, if the Internet is a cloud, then the mobile ecosystem would be the atmos-
phere, made up of many clouds, keeping the clouds from drifting off into space; the
Internet is just one of these clouds, albeit a very large one.

In case that isn’t confusing enough, people in mobile tend to refer to everything related
to mobile as “mobile.” This chapter looks at some of the clouds in the sky and how
each part plays into the ecosystem as a whole. It also looks at how you can get started
with mobile.

Think of the mobile ecosystem instead as a system of layers, as shown in Figure 2-1.
Each layer is reliant on the others to create a seamless, end-to-end experience. Although
not every piece of the puzzle is included in every mobile product and service, for the

13

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

majority of the time, they seem to add complexity to our work, regardless of whether
we expressly put them there.

The following sections expand on each of these layers and the roles they play in the
mobile ecosystem.

Operators
The base layer in the mobile ecosystem is the operator. Operators go by many names,
depending on what part of the world you happen to be in or who you are talking to.
Operators can be referred to as Mobile Network Operators (MNOs); mobile service
providers, wireless carriers, or simply carriers; mobile phone operators; or cellular
companies. In the mobile community, we officially refer to them as operators, though
in the United States, there is a tendency to call them carriers.

Operators are what essentially make the entire mobile ecosystem work. They are the
gatekeepers to the kingdom. They install cellular towers, operate the cellular network,
make services (such as the Internet) available for mobile subscribers, and they often
maintain relationships with the subscribers, handling billing and support, and offering
subsidized device sales and a network of retail stores.

The operator’s role in the ecosystem is to create and maintain a specific set of wireless
services over a reliable cellular network. That’s it. However, to grow the mobile market
over the past decade, the operator has been required to take a greater role in the mobile
ecosystem, doing much more than just managing the network. For example, they have
had to establish trust with subscribers to handle the billing relationship and to offer

Figure 2-1. The layers of the mobile ecosystem

14 | Chapter 2: The Mobile Ecosystem

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

devices, content, and services that often compete with their partners, who are people
like us and who want to create content and services for mobile devices.

Unless you work for an operator, you likely curse their names, at least behind their
backs. The operator is viewed as an unfortunate necessity in the mobile world. Often
the mobile startups and companies that succeed are the ones with the best “carrier
relations man,” or person with the best relationship to the operators.

Table 2-1 lists the rank, markets, technologies used, and subscriber numbers for the
world’s largest operators.

Table 2-1. World’s largest mobile operators

Rank Operator Markets Technology Subscribers (in millions)

1. China Mobile China (including Hong Kong) and Pakistan GSM, GPRS,
EDGE, TD-SCDMA

436.12

2. Vodafone United Kingdom, Germany, Italy, France,
Spain, Romania, Greece, Portugal, Nether-
lands, Czech Republic, Hungary, Ireland,
Albania, Malta, Northern Cyprus, Faroe Is-
lands, India, United States, South Africa, Aus-
tralia, New Zealand, Turkey, Egypt, Ghana,
Fiji, Lesotho, and Mozambique

GSM, GPRS,
EDGE, UMTS,
HSDPA

260.5

3. Telefónica Spain, Argentina, Brazil, Chile, Colombia,
Ecuador, El Salvador, Guatemala, Mexico,
Nicaragua, Panama, Peru, Uruguay, Vene-
zuela, Ireland, Germany, United Kingdom,
Czech Republic, Morocco, and Slovakia

CDMA,
CDMA2000 1x,
EV-DO, GSM,
GPRS, EDGE,
UMTS, HSDPA

188.9

4. América Móvil United States, Argentina, Chile, Colombia,
Paraguay, Uruguay, Mexico, Puerto Rico,
Ecuador, Jamaica, Peru, Brazil, Dominican
Republic, Guatemala, Honduras, Nicaragua,
Ecuador, and El Salvador

CDMA,
CDMA2000 1x,
EV-DO, GSM,
GPRS, EDGE,
UMTS, HSDPA

172.5

5. Telenor Norway, Sweden, Denmark, Hungary, Mon-
tenegro, Serbia, Russia, Ukraine, Thailand,
Bangladesh, Pakistan, and Malaysia

GSM, GPRS,
EDGE, UMTS,
HSDPA

143.0

6. China Unicom China GSM, GPRS 127.6

7. T-Mobile Germany, United States, United Kingdom,
Poland, Czech Republic, Netherlands, Hun-
gary, Austria, Croatia, Slovakia, Macedonia,
Montenegro, Puerto Rico, and U.S. Virgin
Islands

GSM, GPRS,
EDGE, UMTS,
HSDPA

126.6

8. TeliaSonera Norway, Sweden, Denmark, Finland, Estonia,
Latvia, Lithuania, Spain, and Central Asia

GSM, GPRS,
EDGE, UMTS,
HSDPA

115.0

Operators | 15

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Rank Operator Markets Technology Subscribers (in millions)

9. Orange France, United Kingdom, Switzerland,
Poland, Spain, Romania, Moldova, Slovakia,
Belgium, Liechtenstein, Israel, Egypt, Ivory
Coast, Jordan, Cameroon, Botswana, Mada-
gascar, Mali, Senegal, Mauritius, Réunion,
Martinique, French Guiana, Saint Kitts and
Nevis, Dominica, and Dominican Republic

GSM, GPRS,
EDGE, UMTS,
HSDPA

111.8

10. MTS Russia, Ukraine, Belarus, Uzbekistan, Turk-
menistan, and Armenia

GSM, GPRS,
EDGE, UMTS

91.7

11. MTN Group Afghanistan, Benin, Botswana, Cameroon,
Republic of Congo, Côte d’Ivoire, Cyprus,
Ghana, Guinea Bissau, Republic of Guinea,
Iran, Liberia, Nigeria, Rwanda, South Africa,
Sudan, Swaziland, Syria, Uganda, Yemen,
and Zambia

GSM, GPRS,
EDGE, UMTS,
HSDPA, HSUPA

80.7

12. AT&T United States, Puerto Rico, and U.S. Virgin
Islands

GSM, GPRS,
EDGE, UMTS,
HSDPA

74.9

13. Bharti Airtel India, Seychelles, Jersey, Guernsey, and Sri
Lanka

GSM, GPRS, EDGE 72.0

14. Verizon Wireless United States CDMA2000 1x,
EV-DO

70.8

15. SingTel Singapore, Australia, India, Indonesia, Thai-
land, Philippines, Bangladesh, and Pakistan

GSM, UMTS,
HSDPA

70.7

16. Telecom Italy, Brazil, San Marino, and Vatican City GSM, GPRS,
EDGE, UMTS,
HSDPA

70.6

17. Etisalat Afghanistan, Benin, Burkina Faso, Central Af-
rican Republic, the Ivory Coast, Egypt, Gabon,
Indonesia, Niger, Nigeria, Pakistan, Saudi
Arabia, Sudan, Tanzania, Togo, and United
Arab Emirates

GSM, GPRS,
EDGE, UMTS,
HSDPA

63.0

18. Orascom Algeria, Bangladesh, Egypt, Pakistan, Tuni-
sia, and Zimbabwe

GSM, GPRS, EDGE 62.9

19. VimpelCom Russia, Kazakhstan, Ukraine, Uzbekistan,
Tajikistan, Georgia, Armenia, Vietnam, and
Cambodia

GSM, GPRS,
UMTS

57.8

20. NTT docomo Japan and Bangladesh GSM, GPRS, PDC
FOMA, HSDPA

53.5

Although most operators are interested in innovation in the wireless marketplace, they
have been known to strangle startups with impossible requirements, such as supporting

16 | Chapter 2: The Mobile Ecosystem

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

too many devices or seemingly ridiculous certification processes and bad pricing
models.

The days of impossible requirements are changing, however. Today’s mobile startups
have learned the lessons of the companies that came before them that tried to dance
with the devil and lost everything. Many look to the successes of Web 2.0–era startups
that were able to start with little infrastructure and quickly grow successful businesses.
These startups figured out how to duplicate the phenomenon of mobile, bypassing the
operators completely (something this book tells you how to do).

You can compare operators to Big Oil. They both have this thing they know everyone
wants, and therefore they can make a lot of money from it. They know they have a
limited amount of time to make it. With oil, it is the depleted resources and competition
of green energy sources; in wireless, it’s the growth of competing wireless technologies,
such as Wi-Fi, WiMAX, ultra-wide broadband, and whitespace frequencies.

As competing technologies become more mature, they can’t charge as much as they
did when they first came out. As consumer options in the market mature, both the oil
industry and operators must realize that they can’t continue to monopolize their mar-
kets. They must realize that they don’t control their industries; they are only a player
in them. Unfortunately, in the meantime, both of these industries will continue to force
us to pay an artificially inflated cost to play.

Networks
Operators operate wireless networks. Remember that cellular technology is just a radio
that receives a signal from an antenna. The type of radio and antenna determines the
capability of the network and the services you can enable on it.

You’ll notice that the vast majority of networks around the world use the GSM standard
(see Table 2-2 for an explanation of these acronyms), using GPRS or GPRS EDGE for
2G data and UMTS or HSDPA for 3G. We also have CDMA (Code Division Multiple
Access) and its 2.5G hybrid CDMA2000, which offers greater coverage than its more
widely adopted rival. So in places like the United States or China, where people are
more spread out, CDMA is a great technology. It uses fewer towers, giving subscribers
fewer options as they roam networks.

Table 2-2. GSM mobile network evolutions

2G Second generation of mobile phone standards and technology Theoretical max data speed

GSM Global System for Mobile communications 12.2 KB/sec

GPRS General Packet Radio Service Max 60 KB/sec

EDGE Enhanced Data rates for GSM Evolution 59.2 KB/sec

HSCSD High-Speed Circuit-Switched Data 57.6 KB/sec

Networks | 17

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3G Third generation of mobile phone standards and technology Theoretical max data speed

W-CDMA Wideband Code Division Multiple Access 14.4 MB/sec

UMTS Universal Mobile Telecommunications System 3.6 MB/sec

UMTS-
TDD

UMTS +Time Division Duplexing 16 MB/sec

TD-CDMA Time Divided Code Division Multiple Access 16 MB/sec

HSPA High-Speed Packet Access 14.4 MB/sec

HSDPA High-Speed Downlink Packet Access 14.4 MB/sec

HSUPA High-Speed Uplink Packet Access 5.76 MB/sec

Like all things in mobile, we like to merge a lot of technology into overly simplistic
terms, which tends to create a lot of confusion. So when we say 3G, for example, we
often aren’t talking about just the capabilities of the network, but the devices that run
on it.

Although the core technology that empowers voice communication has stayed rela-
tively the same, network generations are most often used to describe the data speeds
the network is capable of delivering.

Devices
What you call phones, the mobile industry calls handsets or terminals. These are terms
that I think are becoming outdated with the emergence of wireless devices that rely on
operator networks, but do not make phone calls. The number of these “other” devices
is a small piece of the overall pie right now, but it’s growing rapidly.

Let’s focus on the biggest slice of the device pie—mobile phones. As of 2008, there are
about 3.6 billion mobile phones currently in use around the world; just more than half
the planet’s population has a mobile phone (see Figure 2-2).

Most of these devices are feature phones, making up the majority of the marketplace.
Smartphones make up a small sliver of worldwide market share and maintain a healthy
percentage in the United States and the European Union; smartphone market share is
growing with the introduction of the iPhone and devices based on the Android plat-
form. As next-generation devices become a reality, the distinction between feature
phones and smartphones will go away. In the next few years, feature phones will largely
be located in emerging and developing markets. Figure 2-3 shows a breakdown of
devices.

18 | Chapter 2: The Mobile Ecosystem

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 2-2. Mobile devices around the world

Figure 2-3. Breakdown of devices

Most mobile devices are subsidized in some form or another. Operators sell devices at
a severely discounted price, often one-third or less of the actual cost of the device. This

Devices | 19

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

enables the operators to lock the devices to their networks. They can then preload onto
the device content and services that are beneficial to themselves in exchange for lower
price points, encouraging subscribers to upgrade to new devices with new capabilities.

Subsidization means that devices need to be provisioned (or customized) to operators’
individual requirements. Provisioning dramatically increases the number of devices
released every year, with each device being slightly different from the other.

The sheer number of devices is both a blessing and a curse to the mobile industry. On
the one hand, the magnitude of the mobile market is huge. It is one of the largest digital
mediums mankind has ever seen. On the other hand, so many devices means adapting
to those devices—not to mention painful and costly development cycles.

This brings us to the greatest challenge the mobile ecosystem currently faces: device
fragmentation, a term used to describe how mobile devices interpret industry specifi-
cations differently, causing different mobile devices to display content inconsistently.
Despite what you may know or have heard, you can take a deep breath and relax. Device
fragmentation is a topic we will clear up completely in the following chapters.

Platforms
A mobile platform’s primary duty is to provide access to the devices. To run software
and services on each of these devices, you need a platform, or a core programming
language in which all of your software is written. Like all software platforms, these are
split into three categories: licensed, proprietary, and open source.

Licensed
Licensed platforms are sold to device makers for nonexclusive distribution on devices.
The goal is to create a common platform of development Application Programming
Interfaces (APIs) that work similarly across multiple devices with the least possible
effort required to adapt for device differences, although this is hardly reality. Following
are the licensed platforms:

Java Micro Edition (Java ME)
Formerly known as J2ME, Java ME is by far the most predominant software plat-
form of any kind in the mobile ecosystem. It is a licensed subset of the Java platform
and provides a collection of Java APIs for the development of software for resource-
constrained devices such as phones.

Binary Runtime Environment for Wireless (BREW)
BREW is a licensed platform created by Qualcomm for mobile devices, mostly for
the U.S. market. It is an interface-independent platform that runs a variety of ap-
plication frameworks, such as C/C++, Java, and Flash Lite.

20 | Chapter 2: The Mobile Ecosystem

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Windows Mobile
Windows Mobile is a licensable and compact version of the Windows operating
system, combined with a suite of basic applications for mobile devices that is based
on the Microsoft Win32 API.

LiMo
LiMo is a Linux-based mobile platform created by the LiMo Foundation. Although
Linux is open source, LiMo is a licensed mobile platform used for mobile devices.
LiMo includes SDKs for creating Java, native, or mobile web applications using
the WebKit browser framework.

Proprietary
Proprietary platforms are designed and developed by device makers for use on their
devices. They are not available for use by competing device makers. These include:

Palm
Palm uses three different proprietary platforms. Their first and most recognizable
is the Palm OS platform based on the C/C++ programming language; this was
initially developed for their Palm Pilot line, but is now used in low-end smartphones
such as the Centro line. As Palm moved into higher-end smartphones, they started
using the Windows Mobile-based platform for devices like the Treo line. The most
recent platform is called webOS, is based on the WebKit browser framework, and
is used in the Prē line.

BlackBerry
Research in Motion maintains their own proprietary Java-based platform, used
exclusively by their BlackBerry devices.

iPhone
Apple uses a proprietary version of Mac OS X as a platform for their iPhone and
iPod touch line of devices, which is based on Unix.

Open Source
Open source platforms are mobile platforms that are freely available for users to down-
load, alter, and edit. Open source mobile platforms are newer and slightly controversial,
but they are increasingly gaining traction with device makers and developers. Android
is one of these platforms. It is developed by the Open Handset Alliance, which is spear-
headed by Google. The Alliance seeks to develop an open source mobile platform based
on the Java programming language.

Platforms | 21

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Operating Systems
It used to be that if a mobile device ran an operating system, it was most likely consid-
ered a smartphone. But as technology gets smaller, a broader set of devices supports
operating systems.

Operating systems often have core services or toolkits that enable applications to talk
to each other and share data or services. Mobile devices without operating systems
typically run “walled” applications that do not talk to anything else.

Although not all phones have operating systems, the following are some of the most
common:

Symbian
Symbian OS is a open source operating system designed for mobile devices, with
associated libraries, user interface frameworks, and reference implementations of
common tools.

Windows Mobile
Windows Mobile is the mobile operating system that runs on top of the Windows
Mobile platform.

Palm OS
Palm OS is the operating system used in Palm’s lower-end Centro line of mobile
phones.

Linux
The open source Linux is being increasingly used as an operating system to power
smartphones, including Motorola’s RAZR2.

Mac OS X
A specialized version of Mac OS X is the operating system used in Apple’s iPhone
and iPod touch.

Android
Android runs its own open source operating system, which can be customized by
operators and device manufacturers.

You might notice that many of these operating systems share the same names as the
platforms on which they run. Mobile operating systems are often bundled with the
platform they are designed to run on.

Application Frameworks
Often, the first layer the developer can access is the application framework or API
released by one of the companies mentioned already. The first layer that you have any
control over is the choice of application framework.

22 | Chapter 2: The Mobile Ecosystem

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Application frameworks often run on top of operating systems, sharing core services
such as communications, messaging, graphics, location, security, authentication, and
many others.

Java
Applications written in the Java ME framework can often be deployed across the ma-
jority of Java-based devices, but given the diversity of device screen size and processor
power, cross-device deployment can be a challenge.

Most Java applications are purchased and distributed through the operator, but they
can also be downloaded and installed via cable or over the air.

S60
The S60 platform, formerly known as Series 60, is the application platform for devices
that run the Symbian OS. S60 is often associated with Nokia devices—Nokia owns the
platform—but it also runs on several non-Nokia devices. S60 is an open source frame-
work.

S60 applications can be created in Java, the Symbian C++ framework, or even Flash
Lite.

BREW
Applications written in the BREW application framework can be deployed across the
majority of BREW-based devices, with slightly less cross-device adaption than other
frameworks.

However BREW applications must go through a costly and timely certification process
and can be distributed only through an operator.

Flash Lite
Adobe Flash Lite is an application framework that uses the Flash Lite and ActionScript
frameworks to create vector-based applications. Flash Lite applications can be run
within the Flash Lite Player, which is available in a handful of devices around the world.

Flash Lite is a promising and powerful platform, but there has been some difficulty
getting it on devices. A distribution service for applications written in Flash Lite is long
overdue.

Application Frameworks | 23

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Windows Mobile
Applications written using the Win32 API can be deployed across the majority of Win-
dows Mobile-based devices. Like Java, Windows Mobile applications can be down-
loaded and installed over the air or loaded via a cable-connected computer.

Cocoa Touch
Cocoa Touch is the API used to create native applications for the iPhone and iPod
touch. Cocoa Touch applications must be submitted and certified by Apple before
being included in the App Store. Once in the App Store, applications can be purchased,
downloaded, and installed over the air or via a cable-connected computer.

Android SDK
The Android SDK allows developers to create native applications for any device that
runs the Android platform. By using the Android SDK, developers can write applica-
tions in C/C++ or use a Java virtual machine included in the OS that allows the creation
of applications with Java, which is more common in the mobile ecosystem.

Web Runtimes (WRTs)
Nokia, Opera, and Yahoo! provide various Web Runtimes, or WRTs. These are meant
to be miniframeworks, based on web standards, to create mobile widgets. Both Opera’s
and Nokia’s WRTs meet the W3C-recommended specifications for mobile widgets.

Although WRTs are very interesting and provide access to some device functions using
mobile web principles, I’ve found them to be more complex than just creating a simple
mobile web app, as they force the developer to code within an SDK rather than just
code a simple web app. And based on the number of mobile web apps written for the
iPhone versus the number written for other, more full-featured WRTs, I don’t think
I’m alone in thinking this. Nonetheless, it is a move in the right direction.

WebKit
With Palm’s introduction of webOS, a mobile platform based on WebKit, and given
its predominance as a mobile browser included in mobile platforms like the iPhone,
Android, and S60, and that the vast majority of mobile web apps are written specifically
for WebKit, I believe we can now refer to WebKit as a mobile framework in its own
right.

WebKit is a browser technology, so applications can be created simply by using web
technologies such as HTML, CSS, and JavaScript. WebKit also supports a number of
recommended standards not yet implemented in many desktop browsers.

Applications can be run and tested in any WebKit browser, desktop, or mobile device.

24 | Chapter 2: The Mobile Ecosystem

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The Web
The Web is the only application framework that works across virtually all devices and
all platforms. Although innovation and usage of the Web as an application framework
in mobile has been lacking for many years, increased demand to offer products and
services outside of operator control, together with a desire to support more devices in
shorter development cycles, has made the Web one of the most rapidly growing mobile
application platforms to date.

Applications
Application frameworks are used to create applications, such as a game, a web browser,
a camera, or media player. Although the frameworks are well standardized, the devices
are not. The largest challenge of deploying applications is knowing the specific device
attributes and capabilities. For example, if you are creating an application using the
Java ME application framework, you need to know what version of Java ME the device
supports, the screen dimensions, the processor power, the graphics capabilities, the
number of buttons it has, and how the buttons are oriented. Multiply that by just a few
additional handsets and you have hundreds of variables to consider when building an
application. Multiply it by the most popular handsets in a single market and you can
easily have a thousand variables, quickly dooming your application’s design or
development.

Although mobile applications can typically provide an excellent user experience, it
almost always comes at a fantastic development cost, making it nearly impossible to
create a scalable product that could potentially create a positive return on investment.

A common alternative these days is creating applications for only one platform, such
as the iPhone or Android. By minimizing the number of platforms the developer has to
support and utilizing modern application frameworks, the time and cost of creation go
down significantly. This strategy may be perfectly acceptable to many, but what about
the rest of the market? Surely people without a more costly smartphone should be able
to benefit from mobile applications, too.

Many see the web browser as the solution to this problem and the savior from the
insanity of deploying multidevice applications. The mobile web browser is an applica-
tion that renders content that is device-, platform-, and operating-system-independent.
The web browser knows its limitations, enabling content to scale gracefully across
multiple screen sizes. However, like all applications, mobile web browsers suffer from
many of the same device fragmentation problems.

You could consider the Motorola RAZR to be the epitome of the mobile ecosystem of
yesterday. It’s been provisioned to numerous operators around the world. It’s the per-
fect example not just of how crazy deploying mobile applications to devices can be, but
also of just how bad mobile web browser fragmentation can be. It is a highly prolific

Applications | 25

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

device and one that is often recommended for people to support, due to its market
penetration. But that is much easier said than done.

If you look at the WURFL database (an open source device repository that is discussed
later in this book), you can see that the V3, the real name of the RAZR, has an Openwave
6.2.3.2 web browser. The V3/I/R had the Openwave 6.2.3.4.C.1.109 browser; the
V3M/V9M had the Teleca Obigo 4.0 browser; the V3X had the Openwave 6.2.3.1.C.
1.112 browser; the V3M had the Openwave 6.2.3.1.C.1.115 browser; the V3XXI had
the Opera 8.0 browser; and the V8 had the Opera 8.5 browser. This isn’t even half the
list!

From the consumer and business perspective, these are all Motorola RAZRs. But in
terms of supporting the RAZR, these might as well be seven different devices. Each of
these RAZRs carries very different versions of common applications, each customized
for the operator on which they are intended to work.

When a device is sold to an operator, it is provisioned (customized) to their require-
ments. This means the operators will often put customized applications on each of the
devices sold. With the example of the RAZR, every operator had it and every operator
put a different web browser on it. To make matters worse, the RAZRs, like most phones,
are not field-refreshable, meaning that you can’t update the software, upgrade the ap-
plications, or eliminate bugs.

For example, if a device manufacturer makes a device called the MDv1, they must strike
a deal with an operator if they want to preload an operator store application, a different
web browser, and bowling game. The device is sold as the MDv1.1. The operator sells
the devices, or worse, gives them away for free. A couple hundred thousand of them
go out into the marketplace before a glitch in the hardware is detected, such as dropped
calls. Because the device cannot be upgraded by cable or over the air, the operator stops
selling the MDv1.1, but seeing that they have a hit, they quickly replace it with the
MDv1.1.1. The whole process is repeated as it is provisioned to each operator. Sud-
denly, there is an MDv1.2, an MDv1.3, an MDv1.4, and so on. Then we have the next
generations—the MDv1.2.1, the MDv1.3.1, the MDv1.4.1, and so on, spreading like
a virus. This is essentially what causes device fragmentation, making application de-
velopment a costly and timely endeavor.

Services
Finally, we come to the last layer in the mobile ecosystem: services. Services include
tasks such as accessing the Internet, sending a text message, or being able to get a
location—basically, anything the user is trying to do.

What makes the mobile environment such a complicated space to design and develop
for are these layers, which the user must wade through in order to accomplish a simple
task like “I want to send a text message,” “I want to get on the Web,” and “I want to

26 | Chapter 2: The Mobile Ecosystem

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

access Google.” The user has so many opportunities for failure that creating a valuable
experience is virtually impossible.

How do everyday people use their mobile devices? What are their impressions of the
mobile web? Here is some of the consistent feedback you might hear if you ask these
questions:

“It’s crap.”

“I don’t use the mobile web, just because it’s awful.”

“It costs too much.”

“I don’t know where my browser is.”

“I don’t know how to enter the URL.”

“I want to go to Wikipedia, but I don’t know what to do.”

“How do I check my email?”

That is, of course, only if you are old—past your early 30s. The younger you are, the
more likely you are rely on mobile services for daily information. Earlier generations—
those born since the birth of the Internet—have a unique talent for being able to figure
out complicated informational spaces. They are more patient with technology and more
apt to explore new methods of accomplishing tasks.

And although one day the youth of today will inherit the digital world, for the time
being, the mobile ecosystem is a complicated, fragmented, political nightmare. If I were
an entrepreneur looking to create mobile services, knowing what I know about mobile,
I would run away, fast. I would probably open a restaurant, which would likely have
a higher chance of success.

But we’ve already seen the future of mobile development, in the form of the iPhone.
The iPhone attempts to solve many of the problems facing the mobile ecosystem, from
how people interact with their phones, to where we buy our phones, to what type of
applications we will pay money for, to the level of technology standards we can support
on constrained devices. What makes the iPhone special is how it attempts change on
virtually all fronts, something no other device, or company for that matter, has been
able to do previously.

Now Apple has done it, the gates are wide open for anyone. People in the industry
aren’t as jaded anymore, and there is a feeling of excitement and optimism. Although
many of the problems in the mobile ecosystem are yet to be fixed and we still have
plenty of nonsense to contend with, we can see the light. We can see the path to inno-
vation, to creating applications and services that can quite literally reach the entire
planet and quite possibly change the world.

It begins here, with you, right now. Today is the first day of the future of mobile.

Services | 27

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

CHAPTER 6

Types of Mobile Applications

As we’ve already discussed, the mobile ecosystem is a large and deep pool. In fact, it
probably isn’t a pool, but an ocean—a really, really big ocean. An ocean is a good
metaphor to put the different types of mobile applications in context. You see, in order
to traverse an ocean, you need a sturdy boat. Boats of course come in all sorts of shapes
and sizes, each with their pros and cons. Some are fast and agile, but carry little cargo.
Others are large and lumbering, but can carry tons of people or cargo.

Mobile applications aren’t that much different from boats in this seafaring example.
You have a number of choices in what medium you use to address your goals, each
with their own pros and cons. Some are quick to create but accessible to fewer users.
Others address a larger market, but are far more complex and costly.

Alas, deciding what medium type (or types in some cases) to use gets only you halfway
to your destination. You have to decide in what type of application context you want
to present your content or information. In other words, what type of application is best
suited to your problem or need? Should your app be focused on presenting information?
If so, how concisely should you present it? Or is your app better suited to be an im-
mersive experience? If yes, how immersive should it be, and is it a widget or a game?
You might think it sounds silly to mention making a game, but for the mobile user, a
game can be a great way to get your point across.

Although I’m a big proponent of looking at the mobile web first in the majority of cases,
I find that each time I talk to a new company that wants to start with a mobile strategy,
the company is simply confused about where to start. There isn’t an understanding of
the differences between the mobile web and a downloadable application, not to men-
tion the pros and cons of each. Even within the mobile community, you can’t tell the
difference between a mobile web application and a mobile widget.

This chapter discusses the various types of mobile applications and defines each of
these options. First, mobile options and their pros and cons are discussed. Those op-
tions are then discussed in an application context—how the application is presented
to the user and how to leverage it effectively.

69

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Mobile Application Medium Types
The mobile medium type is the type of application framework or mobile technology that
presents content or information to the user. It is a technical approach regarding which
type of medium to use; this decision is determined by the impact it will have on the
user experience. The technical capabilities and capacity of the publisher also factor into
which approach to take.

Earlier I discussed the common mobile platforms in terms of how they factor in the
larger mobile ecosystem. Now we will look deeper into each of these platforms from a
more tactical perspective, unpacking them, so to speak, to see what is inside.

Figure 6-1 illustrates the spectrum of mobile media; it starts with the basic text-based
experiences and moves on to the more immersive experiences.

Figure 6-1. Multiple mobile application medium types

SMS
The most basic mobile application you can create is an SMS application. Although it
might seem odd to consider text messages applications, they are nonetheless a designed
experience. Given the ubiquity of devices that support SMS, these applications can be
useful tools when integrated with other mobile application types.

Typically, the user sends a single keyword to a five-digit short code in order to return
information or a link to premium content. For example, sending the keyword “freebie”
to a hypothetical short code “12345” might return a text message with a coupon code
that could be redeemed at a retail location, or it could include a link to a free ringtone.

SMS applications can be both “free,” meaning that there is no additional charge beyond
the text message fees an operator charges, or “premium,” meaning that you are charged
an additional fee in exchange for access to premium content.

The most common uses of SMS applications are mobile content, such ringtones and
images, and to interact with actual goods and services. Some vending machines can
dispense beverages when you send them an SMS; SMS messages can also be used to
purchase time at a parking meter or pay lot.

A great example of how SMS adds incredible value would be Twitter, where users can
receive SMS alerts from their friends and post to their timeline from any mobile device,

70 | Chapter 6: Types of Mobile Applications

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

or the SMS-to-Billboard that BBC World News put up in Midtown Manhattan (Fig-
ure 6-2).

Figure 6-2. An SMS application to interact with a billboard in Manhattan

Pros

The pros of SMS applications include:

• They work on any mobile device nearly instantaneously.

• They’re useful for sending timely alerts to the user.

• They can be incorporated into any web or mobile application.

• They can be simple to set up and manage.

Cons

The cons of SMS applications include:

• They’re limited to 160 characters.

• They provide a limited text-based experience.

• They can be very expensive.

Mobile Websites
As you might expect, a mobile website is a website designed specifically for mobile
devices, not to be confused with viewing a site made for desktop browsers on a mobile
browser. Mobile websites are characterized by their simple “drill-down” architecture,
or the simple presentation of navigation links that take you to a page a level deeper, as
shown in Figure 6-3.

Mobile Application Medium Types | 71

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 6-3. An example of a mobile website

Mobile websites often have a simple design and are typically informational in nature,
offering few—if any—of the interactive elements you might expect from a desktop site.
Mobile websites have made up the majority of what we consider the mobile web for
the past decade, starting with the early WML-based sites (not much more than a list of
links) and moving to today’s websites, with a richer experience that more closely re-
sembles the visual aesthetic users have come to expect with web content.

Though mobile websites are fairly easy to create, they fail to display consistently across
multiple mobile browsers—a trait common to all mobile web mediums. The mobile
web has been gradually increasing in usage over the years in most major markets, but

72 | Chapter 6: Types of Mobile Applications

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

the limited experience offered little incentive to the user. Many compare the mobile
web to a 10-year-old version of the Web: slow, expensive to use, and not much to look
at.

As better mobile browsers started being introduced to device platforms like the iPhone
and Android, the quality of mobile websites began to improve dramatically, and with
it, usage improved. For example, in just one year, the U.S. market went from being just
barely in the top five consumers of the mobile web to number one, largely due to the
impact of the iPhone alone.

Pros

The pros of mobile websites are:

• They are easy to create, maintain, and publish.

• They can use all the same tools and techniques you might already use for desktop
sites.

• Nearly all mobile devices can view mobile websites.

Cons

The cons of mobile websites are:

• They can be difficult to support across multiple devices.

• They offer users a limited experience.

• Most mobile websites are simply desktop content reformatted for mobile devices.

• They can load pages slowly, due to network latency.

Mobile Web Widgets
Largely in response to the poor experience provided by the mobile web over the years,
there has been a growing movement to establish mobile widget frameworks and plat-
forms. For years the mobile web user experience was severely underutilized and failed
to gain traction in the market, so several operators, device makers, and publishers began
creating widget platforms (Figure 6-4) to counter the mobile web’s weaknesses.

Trying to define what exactly a mobile web widget is and how it is different from the
other mobile web media is a question for the ages. I initially saw mobile web widgets
as another attempt by the mobile industry to hype a technology that no one wants. I
liked to quiz mobile web widget advocates about what makes mobile web widgets
different than what we can do with the mobile web. I was never able to get a straight
answer. So in order to define a mobile web widget, I followed some advice from my
dad: “When in doubt, look it up in the dictionary.” Here was the answer I found in
Webster’s Dictionary:

A component of a user interface that operates in a particular way.

Mobile Application Medium Types | 73

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The ever-trusty Wikipedia defines a web widget this way:

A portable chunk of code that can be installed and executed within any separate HTML-
based web page by an end user without requiring additional compilation.

Between these two definitions is a better answer:

A mobile web widget is a standalone chunk of HTML-based code that is executed by the
end user in a particular way.

Figure 6-4. An example mobile web widget

Basically, mobile web widgets are small web applications that can’t run by themselves;
they need to be executed on top of something else. I think one reason for all the con-
fusion around what is a mobile web widget is that this definition can also encompass
any web application that runs in a browser. Opera Widgets, Nokia Web RunTime
(WRT), Yahoo! Blueprint, and Adobe Flash Lite are all examples of widget platforms
that work on a number of mobile handsets. Using a basic knowledge of HTML (or
vector graphics in the case of Flash), you can create compelling user experiences that
tap into device features and, in many cases, can run while the device is offline.

Widgets, however, are not to be confused with the utility application context, a user
experience designed around short, task-based operations, which I will explain in depth
later in this chapter.

74 | Chapter 6: Types of Mobile Applications

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Pros

The pros of mobile web widgets are:

• They are easy to create, using basic HTML, CSS, and JavaScript knowledge.

• They can be simple to deploy across multiple handsets.

• They offer an improved user experience and a richer design, tapping into device
features and offline use.

Cons

The cons of mobile web widgets are:

• They typically require a compatible widget platform to be installed on the device.

• They cannot run in any mobile web browser.

• They require learning additional proprietary, non-web-standard techniques.

Mobile Web Applications
Mobile web applications are mobile applications that do not need to be installed or
compiled on the target device. Using XHTML, CSS, and JavaScript, they are able to
provide an application-like experience to the end user while running in any mobile web
browser. By “application-like” experience, I mean that they do not use the drill-down
or page metaphors in which a click equals a refresh of the content in view. Web appli-
cations allow users to interact with content in real time, where a click or touch performs
an action within the current view.

The history of how mobile web applications came to be so commonplace is interesting,
and is one that I think can give us an understanding of how future mobile trends can
be assessed and understood. Shortly after the explosion of Web 2.0, web applications
like Facebook, Flickr, and Google Reader hit desktop browsers, and there was discus-
sion of how to bring those same web applications to mobile devices. The Web 2.0
movement brought user-centered design principles to the desktop web, and those same
principles were sorely needed in the mobile web space as well.

The challenge, as always, was device fragmentation. The mobile browsers were years
behind the desktop browsers, making it nearly impossible for a mobile device to render
a comparable experience. While XHTML support had become fairly commonplace
across devices, the rendering of CSS2 was wildly inconsistent, and support for Java-
Script, necessary or simple DHTML, and Ajax was completely nonexistent.

To make matters worse, the perceived market demand for mobile web applications was
not seen as a priority with many operators and device makers. It was the classic chicken-
or-the-egg scenario. What had to come first, market demand to drive browser innova-
tion or optimized content to drive the market?

Mobile Application Medium Types | 75

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

With the introduction of the first iPhone, we saw a cataclysmic change across the board.
Using WebKit, the iPhone could render web applications not optimized for mobile
devices as perfectly usable, including DHTML- and Ajax-powered content. Developers
quickly got on board, creating mobile web applications optimized mostly for the iPhone
(Figure 6-5). The combination of a high-profile device with an incredibly powerful
mobile web browser and a quickly increasing catalog of nicely optimized experiences
created the perfect storm the community had been waiting for.

Figure 6-5. The Facebook mobile web app

Usage of the mobile web exploded with not just users of the iPhone, but users of other
handsets, too. Because web applications being created for the iPhone were based on
web standards, they actually worked reasonably well on other devices. Operators and
device makers saw that consumers wanted not just the mobile web on their handsets,
but the regular Web, too.

In less than a year, we saw a strong unilateral move by all operators and devices makers
to put better mobile web browsers in their phones that could leverage this new appli-
cation medium. We have not seen such rapid innovation in mobile devices since the
inclusion of cameras.

76 | Chapter 6: Types of Mobile Applications

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The downside, of course, like all things mobile-web-related, is that not all devices sup-
port the capability to render mobile web applications consistently. However, we do see
a prevalent trend that the majority of usage of the mobile web is coming from the devices
with better browsers, in some markets by a factor of 7:1. So although creating a mobile
web application might not reach all devices, it will reach the devices that create the
majority of traffic.

Pros

The pros of mobile web applications are:

• They are easy to create, using basic HTML, CSS, and JavaScript knowledge.

• They are simple to deploy across multiple handsets.

• They offer a better user experience and a rich design, tapping into device features
and offline use.

• Content is accessible on any mobile web browser.

Cons

The cons of mobile web applications are:

• The optimal experience might not be available on all handsets.

• They can be challenging (but not impossible) to support across multiple devices.

• They don’t always support native application features, like offline mode, location
lookup, filesystem access, camera, and so on.

Native Applications
The next mobile application medium is the oldest and the most common; it is referred
to as native applications, which is actually a misnomer because a mobile web app or
mobile web widget can target the native features of the device as well. These applica-
tions actually should be called “platform applications,” as they have to be developed
and compiled for each mobile platform.

These native or platform applications are built specifically for devices that run the plat-
form in question. The most common of all platforms is Java ME (formerly J2ME). In
theory, a device written as a Java ME MIDlet should work on the vast majority of feature
phones sold around the world. The reality is that even an application written as a Java
ME MIDlet still requires some adaptation and testing for each device it is deployed on.

In the smartphone space, the platform SDKs get much more specific. Although many
smartphones are also powered by Java, an operating system layer and APIs added to
allow developers to more easily offload complex tasks to the API instead of writing
methods from scratch. In addition to Java, other smartphone programming languages
include versions of C, C++, and Objective-C (Figure 6-6).

Mobile Application Medium Types | 77

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 6-6. A native application in the iPhone

Creating a platform application means deciding which devices to target, having a means
of testing and certification, and a method to distribute the application to users. The
vast majority of platform applications are certified, sold, and distributed either through
an operator portal or an app store. It is possible to create a Java ME MIDlet application
and publish it for free on the Web, but it is rarely done.

Because platform applications sit on top of the platform layer, they can tap into the
majority of the device features, working online or offline, accessing the location and
the filesystem—and if there’s camera on the device, then you can probably do some-
thing with it as well. Hence the need for certification before the application is distrib-
uted, to ensure that no one distributes an application that steals a user’s personal data
or maliciously uses the device to spread viruses.

However, if you exclude games, the majority (by some estimates, as much as 70 percent)
of native applications in use today could be created with a little bit of XHTML, CSS,
and JavaScript—in other words, a mobile web application, with little or no feature loss
to the user. The advantage is that a mobile application can be developed faster, will
work on more devices, require less testing, and be updated more transparently than a
native application, which requires third-party certification and publishing in order to

78 | Chapter 6: Types of Mobile Applications

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

get on users’ devices. All of these aspects are highly desired in the platform application
space. The downside is that it requires a fast and capable mobile web browser that
supports offline data and access to device features like location.

Pros

The pros of native applications include:

• They offer a best-in-class user experience, offering a rich design and tapping into
device features and offline use.

• They are relatively simple to develop for a single platform.

• You can charge for applications.

Cons

The cons of native applications include:

• They cannot be easily ported to other mobile platforms.

• Developing, testing, and supporting multiple device platforms is incredibly costly.

• They require certification and distribution from a third party that you have no
control over.

• They require you to share revenue with the one or more third parties.

Games
The final mobile medium is games, the most popular of all media available to mobile
devices. Technically games are really just native applications that use the similar plat-
form SDKs to create immersive experiences (Figure 6-7). But I treat them differently
from native applications for two reasons: they cannot be easily duplicated with web
technologies, and porting them to multiple mobile platforms is a bit easier than typical
platform-based applications.

Although you can do many things with a powerful mobile web browser, creating an
immersive gaming experience is not one of them—at least not yet. Seeing as how we
have yet to see these types of gaming experiences appear on the desktop using standard
web technologies, I believe we are still a few years out from seeing them on mobile
devices. Adobe’s Flash and the SVG (scalable vector graphics) standard are the only
way to do it on the Web now, and will likely be how it is done on mobile devices in the
future, the primary obstacle being the performance of the device in dealing with vector
graphics.

The reason games are relatively easy to port (“relatively” being the key word), is that
the bulk of the gaming experience is in the graphics and actually uses very little of the
device APIs. The game mechanics are the only thing that needs to adapted to the various

Mobile Application Medium Types | 79

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

platforms. Like in console gaming, there are a great number of mobile game porting
shops that can quickly take a game written in one language and port it to another.

These differences, in my mind, are what make mobile games stand apart from all other
application genres—their capability to be unique and difficult to duplicate in another
application type, though the game itself is relatively easy to port. Looking at this model
for other application areas—namely, the mobile web—could provide helpful insight
into how we create the future of mobile web applications.

Pros

The pros of game applications are:

• They provide a simple and easy way to create an immersive experience.

• They can be ported to multiple devices relatively easily.

Cons

The cons of game applications are:

• They can be costly to develop as an original game title.

• They cannot easily be ported to the mobile web.

Mobile Application Media Matrix
In summary, to aid in comparing and contrasting which of these mobile application
media is best for your mobile product, I’ve placed them into a matrix (Table 6-1).

Figure 6-7. An example game for the iPhone

80 | Chapter 6: Types of Mobile Applications

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Table 6-1. Mobile application media matrix

 Device support Complexity User experience Language Offline support Device features

SMS All Simple Limited N/A No None

Mobile
websites

All Simple Limited HTML No None

Mobile web
widgets

Some Medium Great HTML Limited Limited

Mobile web
applications

Some Medium Great HTML, CSS,
JavaScript

Limited Limited

Native
applications

All Complex Excellent Various Yes Yes

Games All Complex Excellent Various Yes Yes

Application Context
Once your application medium is decided upon, it is time to look at the application
context, or the appropriate type of application to present to the user in order for the
user to process and understand the information presented and complete her goals.
Where the application medium refers mostly to the technical approach of creating an
application, the application context deals with the user experience. As discussed in
Chapter 4, context is the surroundings in which information is processed, and the
application user experience is no different.

Applications can be presented in a variety of ways, ranging from a simple task-based
utility to an experience meant to consume the user’s focus and attention. There of
course is no right or wrong direction—only what is best for your user. In fact, nothing
says that you can’t use multiple application contexts within the same application—I
just wouldn’t recommend it unless you have really thought out the flow of your appli-
cation, because typically it is best to present only one application context so as to avoid
confusing the user. If you think it best for your app to mix contexts, then give the user
the option to switch between them; for example, some smartphones allow for an ori-
entation change, so if the device is rotated to landscape mode, your app switches from
an informative view to a utility view, or maybe from a locale view to an immersive view.

Utility Context
The most basic application context is the utility, or a simple user experience metaphor
that is meant to address short, task-based scenarios. Information is meant to be pre-
sented in a minimal fashion, often using the least amount of user input as possible. An
example of a utility might be a calculator, weather forecast, unit conversion, stocks,
world clock, and so on. In each of these cases, the user enters a small amount of infor-
mation into the utility, like a simple equation, a city, or a stock symbol, and either by

Mobile Application Medium Types | 81

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

performing a small background task or fetching information online, the utility is able
to present data to the user in the desired context (Figure 6-8).

Figure 6-8. An example utility application

The goal of the utility is to give users at-a-glance information, therefore offering users
a minimal design aesthetic, focusing the design around the content in view, and often
using larger type and a sparse layout.

It would be easy to mistake utilities for widgets, given that widgets are a “component
of a user interface that operates in a particular way.” But utilities can be much more
than widgets; they are not merely an extension of the user experience, but are appli-
cations in their own right that can establish their own look and feel separate from the
established user experience.

Use utilities for short, simple tasks, at-a-glance information, when there is limited con-
tent to display, and when combined with an immersive context to create dual-mode
applications.

82 | Chapter 6: Types of Mobile Applications

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Locale Context
The locale context is a newer application type that is still being defined by the mobile
community, but we are certainly seeing some clear patterns of how to create locale
applications (Figure 6-9). As more location information is being published online, and
more devices add GPS to pinpoint the user’s location, locale is becoming an excellent
data point to pivot information around. For example, I can use location to display the
cafés nearest to my current location. Plus I can layer multiple data sources into the
application, such as: of the cafés nearest to me, which ones have free wireless access?
Or, do I have friends in the general area that can meet me?

Figure 6-9. An example locale application

Mobile Application Medium Types | 83

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Locale applications almost always have at least one thing in common: a map on which
they plot the requested data points visually. At the very least, they list items in order of
distance, with the nearest item first and the farthest last. The user’s goal is to find
information relative to his present location, and content should always be designed
with this in mind. When creating locale apps, it is important to ensure that the user’s
present location is always clearly identified, as well as a means of adding data to it. This
could be another location, in the case of finding point-to-point directions, or it could
be a keyword query to find people, places, or things nearby.

Use locale applications for location-based applications, applications that might contain
a dynamic map, and listing multiple location-based points of interest.

Informative Applications
The informative application is an application context in which the one and only goal
is to provide information, like a news site, an online directory, a marketing site, or even
a mobile commerce site, where the key task of the user is to read and understand and
it is not necessary to interact (Figure 6-10). This isn’t to say that you cannot include
calls to action in the informative context—in fact, you should, but they should be based
around what you can assume about your users in this context.

For example, remember that most mobile tasks are short and are often undertaken
during brief idle periods. The user doesn’t have much extra time and the task can be
interrupted at any moment. In the case of a mobile news site, provide the user with the
option to mark a page or story to be read later. With an online directory, allow the user
to flag favorite entries. With a marketing site, allow users to enter the shortest possible
contact information, like their phone number or email. And with a mobile commerce
site, allow users to save items to a wishlist to review and purchase later.

The theme here is that although reading information is a simple task, it usually creates
a complex chain of events that can be anticipated. With mobile applications, we want
to avoid forcing the users to input too much information with their mobile devices,
which is more difficult and takes more time than it would on another medium such as
a desktop or laptop computers. Instead, we want to look for ways we can interconnect
experiences, having users use the informative context to filter to the most desirable
information when they have a moment, and allowing them to interact with it later,
when they have more time, from the medium of their choice.

Use informative applications when users need information to gain an understanding
or perform a physical task, for applications that can be used in multimedia contexts
such as desktop and mobile, for information-heavy applications, and for marketing or
promotional applications.

84 | Chapter 6: Types of Mobile Applications

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Productivity Application Context
The productivity application context is used for content and services that are heavily
task-based and meant to increase the users’ sense of efficiency. With these types of
applications, we can assume that the users are more committed to accomplishing a
particular goal, like managing content such as messages, contacts, or media, but we
should still assume that they are doing so during idle periods (Figure 6-11). Just because
the application context is meant to make users more productive, we can’t assume that
they are able to make the same time commitment as they would in the desktop context.

Productivity applications are often very structured, presenting information in a defined
hierarchy and often using the folder or group metaphor to define a sense of order to
the user. When designing these types of apps, we need to pay careful consideration to
how the user thinks out the task. People have an uncanny ability to understand and
recall complex hierarchies of tasks—for example, what they need to do first, second,
and third in order for a particular solution to work. We take this for granted and in the
desktop context often show the users the entire hierarchy visually. In the mobile con-
text, we don’t have the screen real estate, and therefore need to help users find their way.

Figure 6-10. An example informative application

Mobile Application Medium Types | 85

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

One method is to focus on prioritization of tasks; productivity applications typically
include some method of direct or indirect prioritization. If we look at a mobile email
client, we see that the app generally focuses around the inbox, which is the top-priority
item, given that all new messages will come there first. All other folders are of a lower
priority, as in order for messages to get there, we will have had to process them previ-
ously. We can use this screen as a central focus point, assuming that users will spend
the majority of their time there, and branching out onto other screens from this central
spot. But we can’t forget other high-priority items, like the ability to send a new message
or create a new item. This is a task that is typically included on every screen within an
email app, and in the same position throughout to ensure that users always have quick
access to create a new item.

The productivity context is one of the hardest application contexts to get right, so do
yourself a favor and start simple. Start with one feature, treat it almost as if it were a
single focus utility, and get it right before you move on to the next. Layer in your features
one at a time until you feel like you have met the users’ goals, and stop the moment
that it becomes it bit overwhelming to manage. You probably won’t be able to include

Figure 6-11. An example productivity application

86 | Chapter 6: Types of Mobile Applications

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

every feature, so you will need to include only the ones that are most important to users,
and lose everything else.

Use the productivity application context for information-heavy applications where the
user will need to manage content from a mobile device and for heavily structured,
hierarchy-based tasks.

Immersive Full-Screen Applications
The final application context is an immersive full-screen application, like a game, a
media player, or possibly even a single-screen utility. These applications are meant to
consume the user’s focus, often doing so by filling the entire screen (Figure 6-12), and
leaving no trace of the device user interface to distract the user. Again, the majority of
mobile engagement occurs when the user has idle periods of time; the immersive con-
text is typical in most entertainment applications, one of the most popular mobile
content areas.

Figure 6-12. An example of an immersive application

The most common use of the immersive context is obviously with a game, for which
you want the user to focus on how to play the game. But this context can also be used

Mobile Application Medium Types | 87

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

with other contexts, presenting a full-screen view of content when the device orienta-
tion changes in many higher-end devices. For example, if we were making a locale-
based application, we could add a feature that changes the user experience to the
immersive context, showing a full-screen map, or point-by-point directions, whenever
the device is held in landscape view. This is not a feature that many applications include,
but I think it is worth considering.

Even with mobile web apps, many devices allow for detection of an orientation change.
Typically, the app just scales to fill the page, actually breaking the intended user expe-
rience, but by adding the orientation-specific styles, the designer could create an im-
mersive version of the application, presenting the app content in a more at-a-glance,
friendly way, helpful for devices placed on automobile dashboards, or held in the hand
to show others.

Use an immersive full-screen application for games, media players, and alternative
views of another application context.

Application Context Matrix
I put each of the application contexts into Table 6-2, comparing and contrasting their
benefits to help you determine what is best for your application.

Table 6-2. Application context matrix

 User experience type Task type Task duration Combine with

Utility At-a-glance Information recall Very short Immersive

Locale Location-based Contextual information Quick Immersive

Informative Content-based Seek information Quick Locale

Productivity Task-based Content management Long Utility

Immersive Full screen Entertainment Long Utility, locale

As you can see, mobile applications can run the gamut from intense experiences to
simple tools. In some cases, they can switch back and forth between the two. Figure
out which type of application is best for your users and in what context.

88 | Chapter 6: Types of Mobile Applications

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

CHAPTER 7

Mobile Information Architecture

Your information architecture (also known as IA), is the foundation of your mobile
product. A well-engineered product with good visual design can still fail because of
poor information architecture. The truly successful mobile products always have a well-
thought-out information architecture.

From a simple mobile website to an iPhone application, the mobile information archi-
tecture defines not just how your information will be structured, but also how people
will interact with it. This is made especially tricky when you consider that different
devices have different capabilities and therefore different interaction models. Take the
way people interact with their devices: for example, a touch device on which the user
literally points and clicks, or a more basic device on which the user uses the directional
pad to navigate to the desired location.

Also, don’t forget that the information architecture emphasizes how you address con-
text. In other words, a good mobile information architecture is based around the var-
ious user contexts that I talked about in Chapter 4. The secret is that mobile information
architecture isn’t all that different from how you might architect software or a website;
it just has a few added challenges.

What Is Information Architecture?
Before we get into the specifics of mobile information architecture, let’s first talk about
exactly what information is. I can think of no better definition than the seminal O’Reilly
book Information Architecture for the World Wide Web (http://oreilly.com/catalog/
9780596527341/) by Morville and Rosenfeld, otherwise known in information archi-
tect circles as the “polar bear” book. This definition outlines the following:

• The structural design of shared information environments

• The combination of organizations, labeling, search, and navigation systems within
websites and intranets

89

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://oreilly.com/catalog/9780596527341/
http://oreilly.com/catalog/9780596527341/

• The art and science of shaping information products and experiences to support
usability and findability

• An emerging discipline and community of practice focused on bringing principles
of design and architecture to the digital landscape

Similar to how mobile technology has many facets, so does information architecture,
as it is often used as an umbrella term to describe several unique disciplines, including
the following:

Information architecture
The organization of data within an informational space. In other words, how the
user will get to information or perform tasks within a website or application.

Interaction design
The design of how the user can participate with the information present, either in
a direct or indirect way, meaning how the user will interact with the website of
application to create a more meaningful experience and accomplish her goals.

Information design
The visual layout of information or how the user will assess meaning and direction
given the information presented to him.

Navigation design
The words used to describe information spaces; the labels or triggers used to tell
the users what something is and to establish the expectation of what they will find.

Interface design
The design of the visual paradigms used to create action or understanding.

In 2000, information architect Jesse James Garrett created the Elements of User Expe-
rience (http://www.jjg.net/elements/pdf/elements.pdf, also seen in Figure 7-1),* to help
show how each of the layers of the user experience come together to create both hy-
pertext experiences and the more software-like application experience.

As you can see, information architecture composes the core of the user experience. The
role of information architecture is played by a variety of people, from product managers
to designers and even developers. To make things more confusing, information archi-
tecture can be called many different things throughout the design and development
process. Words like intuitive, simple, findable, usable, or the executive favorite—easy-
to-use—all describe the role that information architects play in creating digital
experiences.

The visual design of your product, what frameworks you use, and how it is developed
are integral to the success of any product, but the information architecture stands apart
as being the most crucial element of your product. It is the first line of scrimmage—the
user’s first impression of your product. Even if you have the best design, the best code,

* Image used with permission of Jesse James Garrett (http://jjg.net/elements/).

90 | Chapter 7: Mobile Information Architecture

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.jjg.net/elements/pdf/elements.pdf
http://jjg.net/elements/

and the best backend service, if the user cannot figure out how to use it, she will fail—
and so will your product.

Mobile Information Architecture
Although information architecture has become a common discipline in the web indus-
try, unfortunately, the mobile industry—like software—has only a handful of special-
ized mobile information architects. Although mobile information architecture is hardly
a discipline in its own right, it certainly ought to be. This is not because it is so dissimilar
from its desktop cousin, but because of context, added technical constraints, and
needing to display on a smaller screen as much information as we would on a desktop.

For example, if we look at the front page of http://www.nytimes.com as seen from a
desktop web browser compared to how it may render in a mobile browser (Fig-
ure 7-2), we see a content-heavy site that works well on the desktop, and is designed
to present the maximum amount of information above the “fold” or where the screen
cuts off the content. However, in the mobile browser, the text is far too small to be
useful.

Figure 7-1. Jesse James Garrett’s Elements of User Experience

Mobile Information Architecture | 91

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.nytimes.com

The role of a mobile information architect would be to interpret this content to the
mobile context. Do you use the same structure, or sections? Do you present the same
information above the fold? If so, how should that be prioritized? How does the user
navigate to other areas? Do you use the same visual and interaction paradigms, or invent
new ones? And if you do start to invent new paradigms, will you lose the visual char-
acteristics of what users expect?

These are only some of the questions you have to ask yourself when starting to create
a mobile information architecture. As you can see in Figure 7-3 there are several dif-
ferent ways that the New York Times has been interpreted for the mobile context.

Figure 7-2. Comparing the New York Times website in desktop and mobile browsers

92 | Chapter 7: Mobile Information Architecture

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

But we are only beginning to scratch the surface. We also need to design our mobile
information architecture to address the mobile context. Given that many devices can
detect our current location, which is one of the most immediate types of context, how
does the New York Times application address the user’s context? For example, as a
publication that serves both New York City and a larger global audience, if I’m not in
New York, should I still see the local New York headlines? Or should I see the headlines
based on my location?

Keeping It Simple
When thinking about your mobile information architecture, you want to keep it as
simple as possible.

Support your defined goals

If something doesn’t support the defined goals, lose it. Go back to your user goals and
needs, and identify the tasks that map to them. Find those needs and fill them.

Ask yourself: what need does my application fill? What are people trying to do here?
What is their primary goal? Once you understand that, it is a simple process of reverse-
engineering the path from where they want to be to where they are starting. Cut out
everything else—your site or application doesn’t need it. For example, to get some news
and information on a mobile device, you need to first ask what the goal is. What is the
need you are trying to fill? Then you need to apply context. Where are your users? What

Figure 7-3. The many mobile experiences of the New York Times

Mobile Information Architecture | 93

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

are they doing? Are they waiting for the bus? Do they have only a minute to spare? Or,
do they have five minutes to spare? With these answers, you get your information
architecture.

Clear, simple labels

Good trigger labels, the words we use to describe each link or action, are crucial in
Mobile. Words like “products” or “services” aren’t good trigger labels. They don’t tell
us anything about that content or what we can expect. Now, I would argue that good
trigger labels are crucial in the Web as well, that we’ve become lazy and we assume so
much about the user that we ignore the use of good trigger labels. Users have a much
higher threshold of pain when clicking about on a desktop site or application, hunting
and pecking for tasty morsels. Mobile performs short, to-the-point, get-it-quick, and
get-out types of tasks. What is convenient on the desktop might be a deal breaker on
mobile.

Keep all your labels short and descriptive, and never try to be clever with the words
you use to evoke action. The worst sin is to introduce branding or marketing into your
information architecture; this will just serve to confuse and distract your users. Exec-
utives love to use the words they use internally to external communications on websites
and applications, but these words have no meaning outside of your company walls. If
the user is just trying to get music, don’t call it “My Music,” “My MP3s,” or something
made up that only strokes our corporate egos, such as “AudioJams™”—just call it
“Music.”

Don’t try to differentiate your product offering by what you call it. Create something
unique by creating a usable and intuitive experience based on focusing on what users
need and using the same language they use to describe those needs.

Based on what we know from web design, you should use simple, direct terms for
navigating around your pages rather than overly clever terms. That latter typically result
in confused visitors who struggle to find the content they are looking for. When that
happens, they will go elsewhere to look for the information they want. So, if you apply
these same mistakes to a constrained device like mobile, then you end up adding con-
fusion to the user experience at a higher magnitude than the Web.

Site Maps
The first deliverable we use to define mobile information architecture is the site map.
Site maps are a classic information architecture deliverable. They visually represent the
relationship of content to other content and provide a map for how the user will travel
through the informational space, as shown in Figure 7-4.

Mobile site maps aren’t that dissimilar from site maps we might use on the Web. But
there are a few tips specific to mobile that we want to consider.

94 | Chapter 7: Mobile Information Architecture

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Limit opportunities for mistakes

Imagine a road with a fork in it. We can go either left or right. The risk that we will
make the wrong choice is only 50 percent, meaning that we have a better than good
chance that we will get to where we want to go. But imagine three roads. Now our
chances have dropped to 33 percent. Four roads drops your chances to 25 percent, and
five roads takes you down to 20 percent. Now a 20 percent chance isn’t great, but it
isn’t too bad, either.

Now think of your own website. How many primary navigation areas do you have?
Seven? Eight? Ten? Fifteen? What risk is there to the users for making a wrong choice?
If they go down the wrong path, they can immediately click back to where they started
and go down another path, eliminating the wrong choices to find the right ones. The
risks for making the wrong choice are minor.

In Figure 7-5, you can see a poorly designed mobile information architecture that too
closely mimics its desktop cousin; it was not designed with the mobile user in mind.

Figure 7-4. An example mobile site map

Mobile Information Architecture | 95

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 7-5. An example of a bad mobile information architecture that was designed with desktop users
in mind rather than mobile users

But in mobile, we cannot make this assumption. In the mobile context, tasks are short
and users have limited time to perform them. And with mobile websites, we can’t
assume that the users have access to a reliable broadband connection that allows them
to quickly go back to the previous page. In addition, the users more often than not have
to pay for each page view in data charges. So not only do they pay cash for viewing the
wrong page by mistake, they pay to again download the page they started from: we
can’t assume that pages will be cached properly.

96 | Chapter 7: Mobile Information Architecture

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Therefore, my advice is to limit users’ options, those forks in the road, to five or less.
Anything more, and you introduce far too much risk that the user will make a mistake
and head off in the wrong direction.

Confirm the path by teasing content

After the users have selected a path, it isn’t always clear whether they are getting to
where they need to be. Information-heavy sites and applications often employ nested
or drill-down architectures, forcing the user to select category after category to get to
their target. To reduce risking the user’s time and money, we want to make sure we
present enough information for the user to wade through our information architecture
successfully. On the Web, we take these risks very lightly, but with mobile, we must
give our users a helping hand. We do this by teasing content within each category—
that is, providing at least one content item per category.

I’ve done a fair share of mobile sites and applications that sell ringtones, the historical
mobile content motherlode. The challenge with ringtone sites is you have a lot of items,
grouped by artist, album, genre, and so on. The user starts with a goal like “I want a
new ringtone” and finds an item that suits his taste within a catalog of tens of thousands
of items.

In order to make sense of a vast inventory of content, we have to group, subgroup, and
sometimes even subgroup again, creating a drill-down path for the user to browse.
Though on paper this might seem like a decent solution, once you populate an appli-
cation with content, the dreaded “Page 1 of 157” appears. What user would ever sit
there with a mobile device and page through 157 pages of ringtones? What user would
page through five pages of content?

On an early site I worked on, users would flip through a few pages of content, then give
up or go back and visit another area. We could see a direct relationship to the number
of pages viewed to sales—essentially, more pages loaded meant fewer sales. Then we
realized we could take the most popular item based on sales and place it as the first
item in any list, which is teasing the content.

In Figure 7-6, you can see in a constrained screen that teasing the first few items of the
page provides the user with a much more intuitive interface, immediately indicating
what type of content the user can expect.

We immediately saw that users were finding content more quickly, driving up our sales.
It was like night and day. Since those days, I’ve tested this principle on a variety of
mobile sites—not just ringtones, but game catalogs, news sites, and regular old cor-
porate websites. Each time, it has improved the conversion, getting users to the content
they seek with the least amount of backtracking.

Mobile Information Architecture | 97

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Clickstreams
Clickstream is a term used for showing the behavior on websites, displaying the order
in which users travel through a site’s information architecture, usually based on data
gathered from server logs. Clickstreams are usually historical, used to see the flaws in
your information architecture, typically using heat-mapping or simple percentages to
show where your users are going. I’ve always found them to be a useful tool for rear-
chitecting large websites.

Figure 7-6. Teasing content to confirm the user’s expectations of the content within

98 | Chapter 7: Mobile Information Architecture

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

However, information architecture in mobile is more like software than it is the Web,
meaning that you create clickstreams in the beginning, not the end. This maps the ideal
path the user will take to perform common tasks. Being able to visually lay out the path
users will take gives you a holistic or bird’s-eye view of your mobile information ar-
chitecture, just as a road map does. When you can see all the paths next to each other
and take a step back, you start to see shortcuts and how you can get users to their goal
faster or easier, as shown in Figure 7-7.

Figure 7-7. An example clickstream for an iPhone web application

Now the business analyst in you is probably saying, “Just create user or process flows,”
such as the esoteric diagram shown in Figure 7-8, which is made up of boxes and
diamonds that look more like circuit board diagrams than an information architecture.

If that is what your team prefers, then by all means, flow away. Personally, I like to
present all of my information architecture deliverables from the perspective of the user,

Mobile Information Architecture | 99

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

using the same metaphors she will use to make her way through my information ar-
chitecture—in this case, either a screen or page metaphor.

A good architect’s job is to create a map of user goals, not map out every technical
contingency or edge case. Too often, process flows go down a slippery slope of adding
every project requirement, bogging down the user experience with unnecessary dis-
tractions, rather than focusing on streamlining the experience. Remember, in mobile,
our job is to keep it as simple as possible. We need to have an unwavering focus on
defining an excellent user experience first and foremost. Anything that distracts us from
that goal is just a distraction.

Figure 7-8. An example process flow diagram

100 | Chapter 7: Mobile Information Architecture

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Wireframes
The next information architecture tool at our disposal is wireframes. Wireframes are a
way to lay out information on the page, also referred to as information design. Site maps
show how our content is organized in our informational space; wireframes show how
the user will directly interact with it. Wireframes are like the peanut butter to the site
map jelly in our information architecture sandwich. It’s the stuff that sticks. Wireframes
like the one in Figure 7-9 serve to make our information space tangible and useful.

Figure 7-9. An example of an iPhone web application wireframe, intended to be low fidelity to prevent
confusion of visual design concepts with information design concepts

Mobile Information Architecture | 101

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

But the purpose of wireframes is not just to provide a visual for our site map; they also
serve to separate layout from visual design, defining how the user will interact with the
experience. How do we lay out our navigation? What visual or interaction metaphors
will we use to evoke action? What are the best ways to communicate and show infor-
mation in the assumed context of the user? These questions and many more are an-
swered with wireframes.

Although I’ve found wireframes to be one of the most valuable information deliverables
to communicate my vision for how a site or app will work, the challenge is that a
diagram on a piece of paper doesn’t go a long way toward describing how the interac-
tions will work. Most common are what I call “in-place” interactions, or areas where
the user can interact with an element without leaving the page. This can be done with
Ajax or a little show/hide JavaScript. These interactions can include copious amounts
of annotation, describing each content area in as much length as you can fit in the
margins of the page, as shown in Figure 7-10.

At this point, I highly recommend that you get some feedback from either others on
your project or my most trusted reviewer, my wife. Well, not my wife, but someone
you know and trust—and the less technical, the better. Have her review your work as

Figure 7-10. Using annotations to indicate the desired interactions of the site or application

102 | Chapter 7: Mobile Information Architecture

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

you iterate through ideas. Describe what problems you are trying to solve and ask her
what she is thinking. It has been an invaluable process for me over the years, not spe-
cifically for the feedback I receive—though you do get the occasional strokes of
genius—but for forcing me to communicate what I’ve done and verbalize my thoughts.
You’d be surprised how often you get an idea in your head that you think is brilliant,
but once you say it out loud, it just sounds absurd.

In mobile, it is this kind of feedback, using wireframes as your key deliverable, that
turns good ideas into excellent mobile products.

Prototyping
As mentioned before, wireframes lack the capability to communicate more complex,
often in-place, interactions of mobile experiences. This is where prototypes come in.
Prototypes might sound like a scary (or costly) step in the process. Some view them as
redundant or too time-consuming, preferring to jump in and start coding things. But
as with wireframes, I’ve found that each product we’ve built out some sort of prototype
has saved both time and money. The following sections discuss some ways to do some
simple and fast mobile prototyping.

Paper prototypes

The most basic level we have is paper prototyping: taking our printed-out wireframes
or even drawings of our interface, like the one shown in Figure 7-11, and putting them
in front of people.

Figure 7-11. A paper prototype, where the interaction is nothing more than drawings on note cards

Mobile Information Architecture | 103

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Create a basic script of tasks (hopefully based on either context or user input) and ask
users to perform them, pointing to what they would do. You act as the device, changing
the screens for them. For paper prototypes, I don’t recommend using full sheets of
paper; instead try using small blank note cards, and for lower-end devices, use business-
card-sized paper (Figure 7-12). The size matters and you’ll learn as much from how the
user manages working with small media as you will what information is actually on it.

Context prototype

The next step is creating a context prototype (Figure 7-13). Take a higher-end device
that enables you to load full-screen images on it. Take your wireframes or sketches and
load them onto the device, sized to fill the device screen. Leave the office. Go for a walk
down to your nearest café. Or get on a bus or a train. As you are traveling about, pull
out your device and start looking your interface in the various contexts you find yourself
currently in.

Pay particular attention to what you are thinking and your physical behavior while you
are using your interface and then write it down. If you are brave and don’t have strict
nondisclosure issues, ask the people around you to use it, too. I wouldn’t bother with
timing interactions or sessions, but try to keep an eye on a clock to determine how long
the average session is.

Figure 7-12. A touch interface paper prototype next to its smaller sibling

104 | Chapter 7: Mobile Information Architecture

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

HTML prototypes

The third step is creating a lightweight, semifunctional static prototype using XHTML,
CSS, and JavaScript, if available. This is a prototype that you can actually load onto a
device and produce the nearest experience to the final product, but with static dummy
content and data (Figure 7-14). It takes a little extra time, but it is worth the effort.

With a static XHTML prototype, you use all the device metaphors of naviga-
tion, you see how much content will really be displayed on screen (it is always less than
you expect), and you have to deal with slow load times and network latency. In short,
you will feel the same pains your user will go through.

Whatever route you wish to take, building a mobile prototype takes you one very big
leap forward to creating a better mobile experience. I won’t lie: it can feel like a thankless
exercise at times, but your users will thank you in the long run by using your app.

Different Information Architecture for Different Devices
Depending on which devices you need to support, mobile wireframes can range from
the very basic to the complex. On the higher-end devices with larger screens, we might
be inclined to add more interactions, buttons, and other clutter to the screen, but this
would be a mistake. Just because the user might have a more advanced phone, that

Figure 7-13. An example of a context prototype, or taking images loaded onto a device and testing
them in the mobile context

Mobile Information Architecture | 105

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

doesn’t mean that he is giving you license to pack his screen with as much information
as you can muster.

The motivations, goals, and how users will interact with a mobile experience are the
same at the low end as they are on a high-end device. For the latter, you just have better
tools to express the content. You can learn a lot from designing for the lower end first.
The greatest challenge in creating valuable experiences is knowing when to lose what
you don’t need. You don’t have a choice on lower-end devices—it must be simple.
When designing for both, it is best to try and to keep your information architecture as
close to each other as possible without sacrificing the user experience. They say that
simple design is the hardest design, and this principle certainly is true when designing
information architecture for mobile devices.

The Design Myth
A little secret about interactive design is that people don’t respond to the visual aesthetic
as much as you might think. What colors you use, whether you use square or rounded
corners, or, gradients or flat backgrounds, helps build first impressions, but it doesn’t

Figure 7-14. An XHTML prototype that you can actually interact with on real mobile devices

106 | Chapter 7: Mobile Information Architecture

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

do too much to improve the user’s experience. Don’t get me wrong: users appreciate
good design, but they are quickly indifferent about the visual aesthetic and move almost
immediately to the layout (information design), what things are called (taxonomy), the
findability of content, and how intuitive it is to perform tasks. These are all facets of
information architecture.

Just look at one of the top-selling iPhone Twitter applications, Tweetie, shown in
Figure 7-15. Many consider Tweetie to be a “well-designed” application, but because
it is built from the same API as all other iPhone applications, at first glance there is little
that is actually visually distinctive between this and other applications. What makes
this application “well designed” is how the content is applied to the context of the
user—in other words, the mobile information architecture. In this example, the infor-
mation design uses common layout metaphors, highlighted on the righthand side of
Figure 7-15 to provide the user with familiar placement of common tasks, allowing the
user to perform repetitive tasks common with most Twitter applications. The point is
great information design is often mistaken for great visual design.

Figure 7-15. Comparing visual design to information design of the iPhone application Tweetie

The Design Myth | 107

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Most non–information architects almost always do information architecture in some
form or another; often, they don’t even know they are doing it. They might do a few
wireframes, or maybe a site map. Sometimes designers will jump in and incorporate
information architecture deliverables directly into their designs. By not focusing on the
information architecture exclusively from the start, you risk confusing your disciplines,
your deliverables, and ultimately your direction. The more time you spend focusing on
just your information architecture, the faster and less costly your project will be.

108 | Chapter 7: Mobile Information Architecture

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

CHAPTER 8

Mobile Design

When building mobile experiences, it is impossible to create a great experience without
three ingredients: context, information architecture, and visual design. This chapter
focuses on the latter ingredient of the recipe. The visual design of your experience is
the direct representation of everything underneath; it is the first impression the user
will have. A great design gives the user high expectations of your site or application; a
poor design leads to lower expectations.

Users’ expectations translate to value and trust. In the mobile space, where content is
often “free” (they still need to pay for data charges), users often have low expectations,
due to the limitations of the canvas. Confusing site structures and slow download
speeds reinforce those initial low expectations. In the downloadable application space,
where application design can be much more robust, users must purchase applications
almost sight unseen. For example, they may see just a small screenshot of your appli-
cation or game. But if the application doesn’t meet the higher expectations of the design,
your application downloads will drop like a stone. The design, that first impression,
determines right from the start if the user will spend five seconds, five minutes, or five
hours with your product.

This leads us to the most significant challenge in mobile design: creativity. You can’t
always be as creative as you want to be. Many devices just can’t support complex
designs for every channel; for example, on many lower-end devices, the mobile web
experience may just be a list of links. But every device has the capability to create a best-
in-device experience; it just depends on how you take advantage of the application
medium and context that you plan to use.

On computers, there is a strategy called “lowest common denominator”: in order to
reach the widest possible number of platforms, you create a product that works on the
most common architectural components on all platforms (see Figure 8-1). Well, in
computers, where you may have under a dozen different platforms, this is a great con-
cept, but in mobile development, where you might be dealing with hundreds of different
devices, it becomes a necessity.

109

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Typically, mobile design starts with the lowest common denominator. As a designer,
you ask yourself, “How do I visually express this content across the most possible
devices?” You start with the most basic of designs, catering to the limitations of the
device. You try to pepper in some nice-looking elements until you’ve reached the extent
that the device platform can tolerate. You are left with a Frankenstein-like design that
only your mother could love.

Figure 8-1. A lowest-common-denominator design

110 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Interpreting Design
Mobile design reminds me of a 25-year veteran graphic designer friend of mine. His
days were spent creating print designs and advertisements, defining precisely what each
design would be, down to the picas and points. His method of design meant creating
a vision for how to communicate information or ideas in his head, and then duplicating
that on the printed page. In his mind, it wasn’t right unless it was exactly like his original
vision.

I offered to help him with his website; looking back on this, I realize that it probably
was not the wisest decision. He spent months obsessing about exactly how his site
looked. I would try to explain to him that the Web isn’t about creating precise expe-
riences, like you do in print. I explained that my method of communicating information
was to structure it with design, use design elements to enhance the information, and
enable the user to interpret it. It is important to remember that every experience is
unique. That experience depends on the user’s screen size, web browser, text settings,
the speed of his computer, and his connection to the Internet. There are simply too
many variables for us to try to “control” the design completely.

This frustrated the veteran graphic designer. He could not look at my interpreted de-
signs without trying to precisely position every element on the page. And if I resized
the browser window, he would get angry.

I frequently think of this project when working with mobile designs. It isn’t that either
one of us was right or wrong. That is the great thing about design—it is completely
subjective, giving designers plenty of things to argue about. We just had two very dif-
ferent ways of using design to express information, based on the fact that we came from
different media. He wanted it to treat the design precisely, to recreate his vision exactly.
I wanted it to be flexible, catering to the unknown variables of the medium. The reality
is that we probably should have met someplace in the middle.

Mobile design isn’t that different. Precise designs might look better, but they can be
brutal to implement. More flexible designs might not be much to look at, but they work
for the most users, or the lowest common denominator. But more than that, our back-
grounds and our training can actually get in the way of creating the best design for the
medium. We like to apply the same rules to whatever the problem in front of us might
be. In mobile design, you interpret what you know about good design and translate it
to this new medium that is both technologically precise and at times incredibly unfor-
giving, and you provide the design with the flexibility to present information the way
you envision on a number of different devices.

In the end, the graphic designer and I scrapped the work, and he provided me his pica-
perfect designs as giant images, which I turned into a series of massive image maps. To
this day, I do not work with graphic designers on web or mobile projects.

Interpreting Design | 111

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The Mobile Design Tent-Pole
In Hollywood, executives like to use the term “tent-pole” to describe their movies and
television shows. The term has dual meanings: one is business, and the other creative.
The business goal of a tent-pole production is to support or prop up the losses from
other productions. However, to create a tent-pole production, the creators involved
must make an artistic work that they know will appeal to the largest possible audience,
providing something for everyone. You probably know tent-pole movies as “block-
busters”; in television, they are known as “anchor” shows.

Trying to reach the widest possible audience poses a problem. Hollywood is learning
with great pains that with so many entertainment options and with today’s audience
being so hard to reach through traditional advertising channels, tent-pole productions
are failing. As the number of social niches increases, it becomes difficult to satisfy the
specific tastes of each social group. What one group finds hysterically funny, several
other groups might find offensive. Today, tent-pole productions often come off as bland
and half-hearted, failing to appease anyone.

One of the most interesting examples of how the tide turned in entertainment is with
the animated films of Disney versus those of Pixar. For years, Disney produced tent-
pole family fare quite successfully. But as competition increased, notably from Pixar,
Disney films would spend millions to create stale and dated films, losing audiences and
revenue. Meanwhile, Pixar found that their movies could be successful by avoiding the
traditional storytelling formats of animated film, which Disney essentially defined. In-
stead, Pixar based their stories around specific emotional themes and was able to con-
nect with audiences of all ages, in multiple cultures and across multiple niches.

In 2006, Disney acquired Pixar, making its top executives the new leaders of all Disney
creative projects. Although Disney technically acquired Pixar, I’ve always looked at it
as the other way around. Disney realized that it needed to be more Pixar and less Disney
in order to grow and adapt to today’s changing audiences and niches. This is something
that Pixar was doing correctly.

Back in the world of mobile design, the de facto strategy is to create tent-pole products.
Like the old days of Disney, the strategy is to sink millions into creating tent-pole
products, or products that support the largest number of devices that no one will ever
use. They are creatively stale, they lack inspiration, and they simply exist with no
meaningful purpose to the user. They make the same mistake Disney made, thinking
that it could simply put something on the market that might not be the best quality,
but because it carried the Disney name, people would buy it.

To have a successful mobile design, you have to think like Pixar. Find that emotional
connection, that fundamental need that serves many audiences, many cultures, and
many niches and design experiences. Too often, designers simply echo the visual trends
of the day, mimicking the inspiration of others—I’m certainly guilty of it. But with
mobile design, once you find that essential thing, that chewy nougat we call “context”

112 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

that lives at the center of your product, then you will find ample inspiration of your
own to start creating designs that translate not only across multiple devices, but across
multiple media.

Sure, there are countless examples of poorly designed mobile products that are con-
sidered a success. You only need to look as far as the nearest mobile app store to find
them. This is because of the sight unseen nature of mobile commerce. Traditionally,
you couldn’t demo—or in some cases even see—screenshots of a game or mobile ap-
plication before you bought it. You simply had to purchase it and find out if it was any
good.

Apple’s App Store quickly changed that. You can clearly see that the best-selling games
and applications for the iPhone are the ones with the best designs (Figure 8-2).

Figure 8-2. The app icon design greatly influences the user’s expectation of quality

The Mobile Design Tent-Pole | 113

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Users look at multiple screenshots (Figure 8-3), read the user reviews, and judge the
product based on the quality of its icon and of the screenshots before they buy.

Figure 8-3. Users are able to determine the quality of the app, largely influenced by the design, before
they make a purchase

The Apple App Store is proving everyday that mobile design doesn’t have to start with
tent-pole lowest-common-denominator products—it can instead start with providing
the best possible experience and tailoring that experience to the market that wants it
most.

114 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Designing for the Best Possible Experience
When the first iPhone came out, I got in a lot of trouble from my web and mobile peers
for publicly saying, “The iPhone is the only mobile device that matters right now.” They
would argue, “What about ABC or XYZ platforms?” My response was that those are
important, but the iPhone provides the best possible experience and that is where con-
sumers will go. Since those days, we’ve seen the iPhone shatter just about every record
in mobile devices, becoming one of the best-selling phones ever and one of the most
used mobile browsers in the world—two-thirds of mobile browsing in the U.S. comes
from an iPhone or an iPod touch, not to mention that more than a billion mobile
applications have been sold for these devices in under a year.

Recently, I was speaking at a conference where I ran into one of my peers, who ques-
tioned my premise that the iPhone was the most important device in mobile. He came
up to me, and the first thing he said was, “I remember you telling me ages ago that the
iPhone is the only device that mattered, and I didn’t believe you. And here we are today
focusing our business on the iPhone.” It was an odd (and rare) reverse I-told-you-so
moment. Here was this seasoned mobile guy telling me that his instincts had been
wrong and my instincts had been right. I thought it must have been hard for him to go
against his instincts and shift not just his thinking but his entire business toward
supporting one popular device.

The lesson here is that although it may defy your business instincts to focus your prod-
uct on just one device, in mobile development, the risks and costs of creating that tent-
pole product are just too high. This lesson is so easily seen through bad or just plain
uninspired mobile design. Asking creative people to create uninspiring work is a fast
track to mediocrity.

Here is a design solution: design for the best possible experience. Actually, don’t just
design for it: focus on creating the best possible experience with unwavering passion
and commitment. Iterate, tweak, and fine-tune until you get it right. Anything less is
simply unacceptable. Do not get hindered by the constraints of the technology. Phrases
like “lowest common denominator” cannot be part of the designer’s vocabulary.

Your design—no, your work of art—should serve as the shining example of what the
experience should be, not what it can be. Trying to create a mobile design in the context
of the device constraints isn’t where you start; it is where you should end.

I think one of the greatest mistakes we in the mobile community make is being unwilling
to or feeling incapable of thinking forward. The tendency to frame solutions in the past
(past devices, past standards) applies only to those low-quality, something-for-
everyone-but-getting-nothing tent-pole products. Great designs are not unlike great
leaps forward in innovation. They come from shedding the baggage regarding how
things are done and focus on giving people what they want or what they need.

Designing for the Best Possible Experience | 115

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The Elements of Mobile Design
As I wrote this chapter, I struggled with how to describe how to do design. I personally
believe that good design requires three abilities: the first is a natural gift for being able
to see visually how something should look that produces a desired emotion with the
target audience. The second is the ability to manifest that vision into something for
others to see, use, or participate in. The third is knowing how to utilize the medium to
achieve your design goals.

Although I can’t teach you how to remap your brain (at least not in the scope of this
book) to be a designer, I can teach you how to at least think like a designer. Doing this
involves knowing the six elements of mobile design that you need to consider, starting
with the context and layering in visual elements or laying out content to achieve the
design goal. Then, you need to understand how to use the specific tools to create mobile
design, and finally, you need to understand the specific design considerations of the
mobile medium.

Context
I discussed context in Chapter 4. I won’t belabor the point except to say that context
is core to the mobile experience. As the designer, it is your job to make sure that the
user can figure out how to address context using your app. Make sure you do your
homework to answer the following questions:

• Who are the users? What do you know about them? What type of behavior can
you assume or predict about the users?

• What is happening? What are the circumstances in which the users will best absorb
the content you intend to present?

• When will they interact? Are they at home and have large amounts of time? Are
they at work where they have short periods of time? Will they have idle periods of
time while waiting for a train, for example?

• Where are the users? Are they in a public space or a private space? Are they inside
or outside? Is it day or is it night?

• Why will they use your app? What value will they gain from your content or services
in their present situation?

• How are they using their mobile device? Is it held in their hand or in their pocket?
How are they holding it? Open or closed? Portrait or landscape?

The answers to these questions will greatly affect the course of your design. Treat these
questions as a checklist to your design from start to finish. They can provide not only
great inspiration for design challenges, but justification for your design decisions later.

116 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Message
Another design element is your message, or what you are trying to say about your site
or application visually. One might also call it the “branding,” although I see branding
and messaging as two different things. Your message is the overall mental impression
you create explicitly through visual design. I like to think of it as the holistic or at times
instinctual reaction someone will have to your design. If you take a step back, and look
at a design from a distance, what is your impression? Or conversely, look at a design
for 30 seconds, and then put it down. What words would you use to describe the
experience?

Branding shouldn’t be confused with messaging. Branding is the impression your com-
pany name and logo gives—essentially, your reputation. Branding serves to reinforce
the message with authority, not deliver it. In mobile, the opportunities for branding are
limited, but the need for messaging is great. With such limited real estate, the users
don’t care about your brand, but they will care about the messaging, asking themselves
questions like, “What can this do for me?” or “Why is this important to me?”

Your approach to the design will define that message and create expectations. A sparse,
minimalist design with lots of whitespace will tell the user to expect a focus on content.
A “heavy” design with use of dark colors and lots of graphics will tell the user to expect
something more immersive.

For example, hold the book away from you and look at each of the designs in Fig-
ure 8-4; try not to focus too heavily on the content. What do each of these designs “say”
to you?

Figure 8-4. What is the message for each of these designs?

Which of the following designs provide a message? What do they say to you?

Yahoo!
Yahoo! sort of delivers a message. This app provides a clean interface, putting a
focus on search and location, using color to separate it from the news content. But

The Elements of Mobile Design | 117

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

I’m not exactly sure what it is saying. Words you might use to describe the message
are crisp, clean, and sharp.

ESPN
The ESPN site clearly is missing a message. It is heavily text-based, trying to put a
lot of content above the fold, but doesn’t exactly deliver a message of any kind. If
you took out the ESPN logo, you likely would have indifferent expectations of this
site; it could be about anything, as the design doesn’t help set expectations for the
user in any way. Words you might use to describe the message: bold, cluttered,
and content-heavy.

Disney
Disney creates a message with its design. It gives you a lot to look at—probably
too much—but it clearly tries to say that the company is about characters for a
younger audience. Words you might use to describe the message: bold, busy, and
disorienting.

Wikipedia
The Wikipedia design clearly establishes a message. With a prominent search and
text-heavy layout featuring an article, you know what you are getting with this
design. Words you might use to describe the message: clean, minimal,
and text-heavy.

Amazon
Amazon sort of creates a message. Although there are some wasted opportunities
above the fold with the odd ad placement, you can see that it is mostly about
products (which is improved even more if you scroll down). Words you might use
to describe the message: minimal but messy, product-heavy, and disorienting.

The words you might use to describe these designs might be completely different than
mine—thus the beauty and the curse of visual design. The important thing isn’t my
opinion—it is the opinion of your user. Does the design convey the right message to
your user in the right context? If you aren’t sure, it might be a good time to find out.

Look and Feel
The concept of “look and feel” is an odd one, being subjective and hard to define.
Typically, look and feel is used to describe appearance, as in “I want a clean look and
feel” or “I want a usable look and feel.” The problem is: as a mobile designer, what
does it mean? And how is that different than messaging?

I think of look and feel in a literal sense, as something real and tactile that the users can
“look” at, then “feel”—something they can touch or interact with. Look and feel is
used to evoke action—how the user will use an interface. Messaging is holistic, as the
expectation the users will have about how you will address their context. It is easy to
confuse the two, because “feel” can be interpreted to mean our emotional reaction to
design and the role of messaging.

118 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

I prefer to keep the concept of look and feel grounded in a tangible design, something
I can clearly describe and show to users. I often find myself explaining the look and feel
with the word “because,” with a cause-and-effect rationale for design decisions, as in
“The user will press this button because...” or “The user will go to this screen be-
cause…” followed by a reason why a button or control is designed a certain way.

Establishing a look and feel usually comes from wherever design inspiration comes
from. However, your personal inspiration can be a hard thing to justify. Therefore we
have “design patterns,” or documented solutions to design problems, sometimes re-
ferred to as style guides. On large mobile projects or in companies with multiple de-
signers, a style guide or pattern library is crucial, maintaining consistency in the look
and feel and reducing the need for each design decision to be justified. For example, in
Figure 8-5 you can see the site Pattern Tap, which is a visual collection of many user
interface patterns meant for websites and web applications, but there is no reason why
it can’t serve as inspiration for your mobile projects as well.

In Figure 8-6 you can see an example of a mobile design pattern at the Design4Mo
bile pattern library.

Although a lot of elements go into making Apple’s App Store successful, the most
important design element is how it looks and feels. Apple includes a robust user inter-
face tool that enables developers to use prebuilt components, supported with detailed
Human Interface Guidelines (or HIG) of how to use them, similar to a pattern library.
This means that a developer can just sit down and create an iPhone application that
looks like it came from Apple in a matter of minutes. During the App Store submission
process, Apple then ensures that the developer uses these tools correctly according to
the HIG.

The look and feel can either be consistent with the stock user interface elements that
Apple provides; they can be customized, often retaining the “spirit” of Apple’s original
design; or an entirely new look and feel can be defined—this approach is often used
for immersive experiences.

The stock user experience that Apple provides is a great example of how look and feel
works to supporting messaging. For the end user, the design sends a clear message: by
using the same visual interface metaphors that Apple uses throughout the iPhone, I can
expect the action, or how this control will behave, but I can also expect the same level
of quality. This invokes the message of trust and quality in the application and in the
platform as a whole. Apple isn’t the first to use this shared look and feel model in
mobile—in fact, it is incredibly common with most smartphone platforms—but they
are surely making it incredibly successful, with a massive catalog of apps and the sales
to support it.

My advice to would-be mobile designers is be creative and remember the context. Like
in the early days of the Web, people tend to be skeptical about mobile experiences. The
modal context of the user—in this case, what device he is using—should be considered
during the design, as it will help to establish the user’s expectations of the experience.

The Elements of Mobile Design | 119

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://patterntap.com
http://design4mobile.com
http://design4mobile.com

You can leverage this trust to your advantage, or you can strike out on your own and
forge your own metaphors. As long as you know your users and the preferred mode of
context, you can create a look and feel that is right for them.

Figure 8-5. Pattern Tap shows a number of user interface patterns that help to establish look and feel

120 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Layout
Layout is an important design element, because it is how the user will visually process
the page, but the structural and visual components of layout often get merged together,
creating confusion and making your design more difficult to produce.

The first time layout should rear its head is during information architecture. In fact, I
prefer to make about 90 percent of my layout decisions during the information archi-
tecture period. I ask myself questions like: where should the navigation go on the page
or screen? What kind of navigation type should I use? Should I use tabs or a list? What
about a sidebar for larger screens? All of these should be answered when defining the
information architecture and before you begin to design.

Figure 8-6. Design4Mobile provides a list of common mobile design patterns

The Elements of Mobile Design | 121

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Why define the layout before the mobile design? Design is just too subjective of an
issue. If you are creating a design for anyone but yourself, chances are good that there
will be multiple loosely-based-on-experience opinions that will be offered and debated.
There is no right answer—only opinions and gut instincts. Plus, in corporate environ-
ments you have internal politics you have to consider, where the design opinions of the
CEO or Chief Marketing Officer (CMO) might influence a design direction more than,
say, the Creative Director or Design Director.

By defining design elements like layout prior to actually applying the look and feel, you
can separate the discussion. As a self-taught designer, I started out in this business
making designs for my own projects. I could just put pen to paper and tweak it to my
heart’s content. If I wanted to radically change the layout, I could. When I started my
mobile design career with my first mobile company more than a decade ago, I realized
that this approach didn’t work. The majority of comments that reviewers would make
were about the layout. They focused on the headers, the navigation, the footer, or how
content blocks are laid out, and so on. But their feedback got muddied with the “look
and feel, the colors, and other design elements.”

Reviewers do make remarks like “I like the navigation list, but can you make it look
more raised?” Most designers don’t hear that; they hear “The navigation isn’t right, do
it again.” But, with this kind of feedback, there are two important pieces of information
about different types of design. First, there is confirmation that the navigation and
layout are correct. Second, there is a question about the “look and feel.” Because de-
signers hear “Do it again,” they typically redo the layout, even though it was actually
fine.

Creating mobile designs in an environment with multiple reviewers is all about getting
the right feedback at the right time. Your job is to create a manifestation of a shared
vision. Layout is one of the elements you can present early on and discuss in-
dependently. People confuse the quality and fidelity of your deliverables as design. By
keeping it basic, you don’t risk having reviewers confuse professionalism with design.

The irony is that as I become more adept at defining layouts, I make them of increasingly
lower fidelity. For example, when I show my mobile design layouts as wireframes dur-
ing the information architecture phase, I intentionally present them on blueprint paper,
using handwriting fonts for my annotations (Figure 8-7). It also helps to say that this
is not a design, it is a layout, so please give me feedback on the layout.

Different layouts for different devices

The second part of layout design is how to visually represent content. In mobile design,
the primary content element you deal with the is navigation. Whether you are designing
a site or app, you need to provide users with methods of performing tasks, navigating
to other pages, or reading and interacting with content. This can vary, depending on
the devices you support.

122 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

There are two distinct types of navigation layouts for mobile devices: touch and scroll.
With touch, you literally point to where you want to go; therefore, navigation can be
anywhere on the screen. But we tend to see most of the primary actions or navigation

Figure 8-7. Using a low-fidelity wireframe to define the layout design element before visual design
begins

The Elements of Mobile Design | 123

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

areas living at the bottom of the screen and secondary actions living at the top of the
screen, with the area in between serving as the content area, like what is shown in
Figure 8-8.

Figure 8-8. iPhone HIG, showing the layout dimensions of Safari on the iPhone

This is the opposite of the scroll navigation type, where the device’s D-pad is used to
go left, right, up, or down. When designing for this type of device, the primary and
often the secondary actions should live at the top of the screen. This is so the user
doesn’t have to press down dozens of times to get to the important stuff. In Fig-
ure 8-9, you can actually see by the bold outline that the first item selected on the screen
is the link around the logo.

When dealing with scroll navigation, you also have to make the choice of whether to
display navigation horizontally or vertically. Visually, horizontally makes a bit more
sense, but when you consider that it forces the user to awkwardly move left and right,
it can quickly become a bit cumbersome for the user to deal with. There is no right or
wrong way to do it, but my advice is just to try and keep it as simple as possible.

Fixed versus fluid

Another layout consideration is how your design will scale as the device orientation
changes, for example if the device is rotated from portrait mode to landscape and vice
versa. This is typically described as either being fixed (a set number of pixels wide), or
fluid (having the ability to scale to the full width of the screen regardless of the device
orientation).

124 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Orientation switching has become commonplace in mobile devices, and your design
should always provide the user with a means to scale the interface to take full advantage
of screen real estate.

Color
The fifth design element, color, is hard to talk about in a black-and-white book. Maybe
it is fitting, because it wasn’t that long ago that mobile screens were available only in

Figure 8-9. Example layout of a scroll-based application, where the user had to press the D-pad past
each link to scroll the page

The Elements of Mobile Design | 125

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

black and white (well, technically, it was black on a green screen). These days, we have
nearly the entire spectrum of colors to choose from for mobile designs.

The most common obstacle you encounter when dealing with color is mobile screens,
which come in a number of different color or bit depths, meaning the number of bits
(binary digits) used to represent the color of a single pixel in a bitmapped image. When
complex designs are displayed on different mobile devices, the limited color depth on
one device can cause banding, or unwanted posterization in the image.

For an example of posterization, the technical term for when the gradation of tone is
replaced with regions of fewer tones, see in Figure 8-10 how dramatically the color
depth can affect the quality of a photo or gradient, producing banding in several parts
in the image.

Figure 8-10. An example of different levels of posterization that can occur across multiple device color
depths

Different devices have different color depths. In Table 8-1, you can see the supported
colors and a few example devices.

Table 8-1. Supported colors and example devices

Bit depth Supported colors Description Example devices

12-bit 4,096 colors Used with older phones; dithering artifacts in photos can easily
be seen.

Nokia 6800

16-bit 65,536 colors Also known as HighColor; very common in today’s mobile de-
vices. Can cause some banding and dithering artifacts in some
designs.

HTC G1, BlackBerry Bold
9000, Nokia 6620

126 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Bit depth Supported colors Description Example devices

18-bit 262,144 colors Used in mobile devices to offer Truecolor (see following entry)
levels through dithering. Limited banding may be seen.

Samsung Alias, Sony
Ericsson TM506

24-bit 16.7 million colors Also known as Truecolor; supports millions of colors and pro-
duces little banding.

iPhone, Palm Prē, Nokia
N97

The psychology of color

People respond to different colors differently. It is fairly well known that different colors
produce different emotions in people, but surprisingly few talk about it outside of art
school. Thinking about the emotions that colors evoke in people is an important aspect
of mobile design, which is such a personal medium that tends to be used in personal
ways. Using the right colors can be useful for delivering the right message and setting
expectations.

One of the examples I used earlier was the ESPN mobile site, which uses a bold red
header to create a stark and prominent tone to the design. But what does that say about
ESPN? What does it tell the user about the experience?

For the purposes of reference, Table 8-2 provides some of the characteristics of various
colors that naturally evoke certain emotions in people.

Table 8-2. Color characteristics

Color Represents

White Light, reverence, purity, truth, snow, peace, innocence, cleanliness, simplicity, security, humility, sterility, winter,
coldness, surrender, fearfulness, lack of imagination, air, death (in Eastern cultures), life, marriage (in Western
cultures), hope, bland

Black Absence, modernity, power, sophistication, formality, elegance, wealth, mystery, style, evil, death (in Western
cultures), fear, seriousness, conventionality, rebellion, anarchism, unity, sorrow, professionalism

Gray Elegance, humility, respect, reverence, stability, subtlety, wisdom, old age, pessimism, boredom, decay, decrepitude,
dullness, pollution, urban sprawl, strong emotions, balance, neutrality, mourning, formality

Yellow Sunlight, joy, happiness, earth, optimism, intelligence, idealism, wealth (gold), summer, hope, air, liberalism, cow-
ardice, illness (quarantine), fear, hazards, dishonesty, avarice, weakness, greed, decay or aging, femininity, gladness,
sociability, friendship

Green Intelligence, nature, spring, fertility, youth, environment, wealth, money (U.S.), good luck, vigor, generosity, go,
grass, aggression, coldness, jealousy, disgrace (China), illness, greed, drug culture, corruption (North Africa), life
eternal, air, earth (classical element), sincerity, renewal, natural abundance, growth

Blue Seas, men, productiveness, interiors, skies, peace, unity, harmony, tranquility, calmness, trust, coolness, confidence,
conservatism, water, ice, loyalty, dependability, cleanliness, technology, winter, depression, coldness, idealism, air,
wisdom, royalty, nobility, Earth (planet), strength, steadfastness, light, friendliness, peace, truthfulness, love, liber-
alism (U.S. politics), and conservatism (UK, Canadian, and European politics)

Violet Nobility, envy, sensuality, spirituality, creativity, wealth, royalty, ceremony, mystery, wisdom, enlightenment, ar-
rogance, flamboyance, gaudiness, mourning, exaggeration, profanity, bisexuality, confusion, pride

The Elements of Mobile Design | 127

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Color Represents

Red Passion, strength, energy, fire, sex, love, romance, excitement, speed, heat, arrogance, ambition, leadership, mas-
culinity, power, danger, gaudiness, blood, war, anger, revolution, radicalism, aggression, respect, martyrs, conser-
vatism (U.S. politics), Liberalism (Canadian politics), wealth (China), and marriage (India)

Orange Energy, enthusiasm, balance, happiness, heat, fire, flamboyance, playfulness, aggression, arrogance, gaudiness, over-
emotion, warning, danger, autumn, desire

Pink Spring, gratitude, appreciation, admiration, sympathy, socialism, femininity, health, love, romance, marriage, joy,
flirtatiousness, innocence and child-like qualities

Brown Calm, boldness, depth, nature, richness, rustic things, stability, tradition, anachronism, boorishness, dirt, dullness,
heaviness, poverty, roughness, earth

Note what some of the different colors can mean in different cultures. In some cases,
the color you use can have opposing meanings in different cultures. This is something
to consider when thinking of deploying your mobile experience to countries with the
highest number of mobile devices, such as China or India.

Color palettes

Defining color palettes can be useful for maintaining a consistent use of color in your
mobile design. Color palettes typically consist of a predefined number of colors to use
throughout the design. Selecting what colors to use varies from designer to designer,
each having different techniques and strategies for deciding on the colors. I’ve found
that I use three basic ways to define a color palette:

Sequential
In this case, there are primary, secondary, and tertiary colors. Often the primary
color is reserved as the “brand” color or the color that most closely resembles the
brand’s meaning. The secondary and tertiary colors are often complementary col-
ors that I select using a color wheel.

Adaptive
An adaptive palette is one in which you leverage the most common colors present
in a supporting graphic or image. When creating a design that is meant to look
native on the device, I use an adaptive palette to make sure that my colors are
consistent with the target mobile platform.

Inspired
This is a design that is created from the great pieces of design you might see online,
as shown in Figure 8-11, or offline, in which a picture of the design might inspire
you. This could be anything from an old poster in an alley, a business card, or some
packaging. When I sit down with a new design, I thumb through some of materials
to create an inspired palette. Like with the adaptive palette, you actually extract
the colors from the source image, though you should never ever use the source
material in a design.

128 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 8-11. Adobe Kuler, a site that enables designers to share and use different color palettes

Typography
The sixth element of mobile design is typography, which in the past would bring to
mind the famous statement by Henry Ford:

Any customer can have a car painted any color that he wants so long as it is black.

Traditionally in mobile design, you had only one typeface that you could use (Fig-
ure 8-12), and that was the device font. The only control over the presentation was the
size.

Figure 8-12. What most mobile designers think of when it comes to mobile typography

The Elements of Mobile Design | 129

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://kuler.adobe.com

As devices improved, so did their fonts. Higher-resolution screens allowed for a more
robust catalog of fonts than just the device font. First, let’s understand how mobile
screens work.

Subpixels and pixel density

There seem to be two basic approaches to how type is rendered on mobile screens:
using subpixel-based screens or having a greater pixel density or pixels per inch (PPI).

A subpixel is the division of each pixel into a red, green, and blue (or RGB) unit at a
microscopic level, enabling a greater level of antialiasing for each font character or
glyph. The addition of these RGB subpixels enables the eye to see greater variations of
gray, creating sharper antialiasing and crisp text.

In Figure 8-13, you can see three examples of text rendering. The first line shows a
simple black and white example, the second shows text with grayscale antialiasing, and
the third line shows how text on a subpixel display would render.

Figure 8-13. Different ways text can render on mobile screens

The Microsoft Windows Mobile platform uses the subpixel technique with its Clear-
Type technology, as shown in Figure 8-14.

The second approach is to use a great pixel density, or pixels per inch. We often refer
to screens by either their actual physical dimensions (“I have a 15.4-inch laptop screen”)

Figure 8-14. Microsoft ClearType using subpixels to display sharp text

130 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

or their pixel dimensions, or resolution (“The resolution of my laptop is 1440×900
pixels”). The pixel density is determined by dividing the width of the display area in
pixels by the width of the display area in inches. So the pixel density for my 15.4-inch
laptop would be 110 PPI. In comparison, a 1080p HD television has a PPI of 52.

As this applies to mobile devices, the higher the density of pixels, the sharper the screen
appears to the naked eye. This guideline especially applies to type, meaning that as text
is antialiased on a screen with a high density of tiny pixels, the glyph appears sharper
to the eye. Some mobile screens have both a high PPI and subpixel technology, though
these are unnecessary together.

Table 8-3 provides the dimensions and PPI for a few mobile devices.

Table 8-3. Dimensions and PPI for some mobile devices

Mobile device Diagonal Pixels PPI

Nokia N95 2.6" 240×320 153

Apple iPhone 3G 3.5" 320×480 163

Amazon Kindle 6.0" 600×800 167

HTC Dream 3.2" 320×480 181

Sony Ericsson W880i 1.8" 240×320 222

Nokia N80 2.1" 352×416 256

Type options

Fortunately, today’s mobile devices have a few more options than a single typeface, but
the options are still fairly limited. Coming from web design, where we have a dozen or
so type options, the limited choices available in mobile design won’t come as a big
surprise. Essentially, you have a few variations of serif, sans-serif, and monospace fonts,
and depending on the platform, maybe a few custom fonts (Figure 8-15).

The Elements of Mobile Design | 131

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 8-15. Options in typography increase as the devices become more sophisticated

In researching this book, I scoured the Web and tapped my mobile community re-
sources to find a list of the typefaces that are included in each of the major device
platforms, but I could only come up with a few—nothing close to a complete list. This
goes to show how far behind mobile typography is, that designers don’t even have a
basic list to work from.

Therefore, when creating mobile designs for either web or native experiences, my advice
is to stick with either the default device font, or web-safe fonts—your basic serif variants
like Times New Roman and Georgia or sans-serif typefaces like Helvetica, Arial, or
Verdana.

132 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Font replacement

The ability to use typefaces that are not already loaded on the device varies from model
to model and your chosen platform. Some device APIs will allow you to load a typeface
into your native application. Some mobile web browsers support various forms of font
replacement; the two most common are sIFR and Cufon. sIFR uses Flash to replace
HTML text with a Flash representation of the text, but the device of course has to
support Flash. Cufon uses JavaScript and the canvas element draws the glyphs in the
browser, but the device of course needs to support both JavaScript and the canvas
element.

In addition, the @font-face CSS rule allows for a typeface file to be referenced and
loaded into the browser, but a license for web use is usually not granted by type
foundries.

Readability

The most important role of typography in mobile design is to provide the user with
excellent readability, or the ability to clearly follow lines of text with the eye and not
lose one’s place or become disoriented, as shown in Figure 8-16. This can be done by
following these six simple rules:

Use a high-contrast typeface
Remember that mobile devices are usually used outside. Having a high-contrast
typeface with regard to the background will increase visibility and readability.

Use the right typeface
The type of typeface you use tells the user what to expect. For example, a sans-serif
font is common in navigation or compact areas, whereas serif typefaces come in
handy for lengthy or dense content areas.

Provide decent leading (rhymes with “heading”) or line spacing
Mobile screens are often held 10–12" away from the eye, which can make tracking
each line difficult. Increase the leading to avoid having the users lose their place.

Leave space on the right and left of each line; don’t crowd the screen
Most mobile frameworks give you full access to the screen, meaning that you nor-
mally need to provide some spacing between the right and left side of the screen’s
edge and your text—not much, typically about three to four character widths.

Generously utilize headings
Break the content up in the screen, using text-based headings to indicate to the
user what is to come. Using different typefaces, color, and emphasis in headings
can also help create a readable page.

Use short paragraphs
Like on the Web, keep paragraphs short, using no more than two to three sentences
per paragraph.

The Elements of Mobile Design | 133

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Graphics
The final design element is graphics, or the images that are used to establish or aid a
visual experience. Graphics can be used to supplement the look and feel, or as content
displayed inline with the text.

For example, in Figure 8-17, you can see Ribot’s Little Spender application for the
iPhone and the S60 platform. The use of graphical icons in the iPhone experience helps
to establish a visual language for the user to interact with to quickly categorize entries.
On the S60 application, the wallet photo in the upper-right corner helps communicate
the message of the application to the user.

Iconography

The most common form of graphics used in mobile design is icons. Iconography is
useful to communicate ideas and actions to users in a constrained visual space. The
challenge is making sure that the meaning of the icon is clear to the user. For example,
looking at Figure 8-18, you can see some helpful icons that clearly communicate an
idea and some perplexing icons that leave you scratching your head.

Figure 8-16. Classics, an iPhone application designed with readability and typography in mind

134 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 8-17. Ribot’s Little Spender application uses graphics to define the experience

The Elements of Mobile Design | 135

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 8-18. Glyphish provides free iPhone icons

Photos and images

Photos and images are used to add meaning to content, often by showing a visual
display of a concept, or to add meaning to a design. Using photos and images isn’t as
common in mobile design as you might think. Because images have a defined height
and width, they need to be scaled to the appropriate device size, either by the server,
using a content adaptation model, or using the resizing properties of the device. In the
latter approach, this can have a cost in performance. Loading larger images takes longer
and therefore costs the user more.

Using graphics to add meaning to a design can be a useful visual, but you can encounter
issues regarding how that image will display in a flexible UI—for example, when the

136 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://glyphish.com

device orientation is changed. In Figure 8-19, you can see how the pig graphic is de-
signed to be positioned to the right regardless of the device orientation.

Figure 8-19. Using graphics in multiple device orientations

Mobile Design Tools
As I mentioned earlier, mobile design requires understanding the design elements and
specific tools. The closest thing to a common design tool is Adobe Photoshop, though
each framework has a different method of implementing the design into the application.
Some frameworks provide a complete interface toolkit, allowing designers or develop-
ers to simply piece together the interface, while others leave it to the designer to define
from scratch.

In Table 8-4, you can see each of the design tools and what interface toolkits are avail-
able for it.

Table 8-4. Design tools and interface toolkits

Mobile framework Design tool Interface toolkits

Java ME Photoshop, NetBeans JavaFX, Capuchin

BREW Photoshop, Flash BREW UI Toolkit, uiOne, Flash

Flash Lite Flash Flash Lite

iPhone Photoshop, Interface Builder iPhone SDK

Mobile Design Tools | 137

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Mobile framework Design tool Interface toolkits

Android Photoshop, XML-based themes Android SDK

Palm webOS Photoshop, HTML, CSS, and JavaScript Mojo SDK

Mobile web Photoshop, HTML, CSS, and JavaScript W3C Mobile Web Best Practices

Mobile widgets Photoshop, HTML, CSS, and JavaScript Opera Widget SDK, Nokia Web Runtime

Mobile web apps Photoshop, HTML, CSS, and JavaScript iUI, jQTouch, W3C Mobile Web App Best Practices

Designing for the Right Device
With the best possible experience at hand, take a moment to relish it. Remind yourself
that you are working with a rapidly evolving medium and though it might not be pos-
sible for every user to experience things exactly the way you’ve intended, you’ve set the
tone and the vision for how the application should look. The truly skilled designer
doesn’t create just one product—she translates ideas into experiences. The spirit of
your design should be able to be adapted to multiple devices.

Now is the time to ask, “What device suits this design best? What market niche would
appreciate it most? What devices are the most popular within that niche?” The days of
tent-poles are gone. Focus instead on getting your best possible experience to the mar-
ket that will appreciate it most. It might not be the largest or best long-term market,
but what you will learn from the best possible scenario will tell you volumes about your
mobile product’s potential for success or failure. You will learn which devices you need
to design for, what users really want, and how well your design works in the mobile
context.

This knowledge will help you develop your porting and/or adaptation strategy, the
most expensive and riskiest part of the mobile equation. For example, if you know that
30 percent of your users have iPhones, then that is a market you can exploit to your
advantage. iPhone users consume more mobile content and products than the average
mobile user. This platform has an easy-to-learn framework and excellent documenta-
tion, for both web and native products, and an excellent display and performance
means. Although iPhone users might not be the majority of your market, the ability to
create the best possible design and get it in front of those users presents the least ex-
pensive product to produce with the lowest risk.

With a successful single device launch, you can start to adapt designs from the best
possible experience to the second best possible experience, then the third, and fourth,
and so on. The best possible experience is how it should be, so it serves as a reference
point for how we will adapt the experience to suit more devices.

138 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Designing for Different Screen Sizes
Mobile devices come in all shapes and sizes. Choice is great for consumers, but bad for
design. It can be incredibly difficult to create that best possible experience for a plethora
of different screen sizes. For example, your typical feature phone might only be 140
pixels wide, whereas your higher-end smartphone might be three to four times wider.

Landscape or portrait? Fixed width or fluid? Do you use one column or two? These are
common questions that come up when thinking about your design on multiple screen
sizes. The bad news is that there is no simple answer. How you design each screen of
content depends on the scope of devices you look to support, your content, and what
type of experience you are looking to provide. The good news is that the vast majority
of mobile device screens share the same vertical or portrait orientation, even though
they vary greatly in dimension, as shown in Figure 8-20.

Figure 8-20. Comparing the various screen sizes

Of course, there are some devices by default in a horizontal orientation, and many
smartphones that can switch between the two orientations, but most people use their

Designing for Different Screen Sizes | 139

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

mobile devices in portrait mode. This is a big shift in thinking if you are coming from
interactive design, as up to this point, screens have been getting wider, not taller.

For years now, we’ve become used to placing less-crucial information along the sides
of web pages. In software, tasks flow from left to right. With vertical designs, the goal
is to think of your design as a cascade of content from top to bottom (Figure 8-21),
similar to a newspaper. The most contextual information lives at the top, and the con-
tent consumes the majority of the screen. Any exit points live at the bottom. Mobile is
no different.

Figure 8-21. The typical flow of information on mobile devices

The greatest challenge to creating a design that works well on multiple screen sizes is
filling the width. For content-heavy sites and applications, the width of mobile devices
is almost the perfect readability, presenting not too many words per line of text. The
problem is when you have to present a number of tasks or actions. The easiest and most
compatible way is to present a stacked list of links or buttons, basically one action per
line. It isn’t the most effective use of space, but presenting too many actions on the

140 | Chapter 8: Mobile Design

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

horizontal axis quickly clutters the design—not to mention that it is more difficult to
adapt to other devices.

Unfortunately, it isn’t always reasonable to implement fluid or flexible designs that
stretch to fit the width of the screen. Although most mobile web browsers and device
framework APIs enable it in principle, its execution across multiple devices is a little
anticlimatic. Mobile websites usually employ a fixed-width layout for the lowest com-
mon denominator, and native applications are often resized for multiple screen sizes
during development.

As devices get larger, denser screens, you will see an increase in the use of touch, forcing
the size of content to increase to fingertip size—typically 40 pixels wide and 40 pixels
tall (Figure 8-22). This actually solves part of the horizontal axis problem, simply by
making content larger for larger screens. Ironically, you can fit almost the same amount
of usable content in an iPhone as you can a lower-end device.

Figure 8-22. The iPhone calculator application uses common fingertip-size controls

Obviously, you can fit a lot more on screen with more advanced devices, but you want
to avoid forcing the user to zoom in and out of your interfaces.

Designing for Different Screen Sizes | 141

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

CHAPTER 10

Mobile 2.0

You’ve probably heard the term “Web 2.0.” Although it’s a commonly used term, most
people you ask in the web business can’t tell you what it means. To put it simply, it is
just a label for the second generation of the web industry. But more importantly, it is
meant to denote a change in that what we now believe in and stand for, which is not
as it was before. The suffix 2.0 in technology implies that a product is new and im-
proved, reinvented to be better and maybe even more relevant.

In the 1990s, we saw the adoption of the first generation of web technology, allowing
businesses to create websites focused on the consumer market at that time. The “dot-
com boom” was not about the Web; it was actually more of a boom in networking
computers via the Internet, mostly driven by desire to use email as a communication
and productivity tool.

In the early 2000s, the Web found its own voice. Though the technology had only
incrementally evolved, the production costs dropped at the same time the market in-
creased, creating exciting new opportunities to increase communications and produc-
tivity. Personal publishing became simple and easy to do, allowing more people to share
more information and new ideas built on common problems to gain wider traction and
adoption. The result was a fundamental change in how we create products for the Web,
including everything from how we code, to how we design, even down to how we do
business.

A few years ago, the mobile community started to discuss the idea of “Mobile 2.0,”
borrowing from many of the same principles behind Web 2.0. Each of these principles
serves to transform the Web into a more agile and user-centered medium for delivering
information to the masses. Mobile development, under the bottlenecks of device frag-
mentation and operator control, is sorely in need of a little reinvention as well.

153

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Following is a recap of the original seven principles of Web 2.0:

The Web as a platform
For the mobile context, this means “write once, deploy everywhere,” moving away
from the costly native applications deployed over multiple frameworks and
networks.

Harnessing collective intelligence
This isn’t something the mobile community has done much of, but projects like
WURFL—an open source repository of device profiles provided by the
community—is exactly what mobile needs more of.

Data is the next Intel inside
Mobile takes this principle several steps further. It can include the data we seek,
the data we create, and the data about or around our physical locations.

End of the software release cycle
Long development and testing cycles heavily weigh on mobile projects, decreasing
all hopes of profitability. Shorter agile cycles are needed to make mobile develop-
ment work as a business. Releasing for one device, iterating, improving, and then
releasing for another is a great way to ensure profitability in mobile.

Lightweight programming models
Because mobile technology is practically built on enterprise Java, the notion of
using lightweight models is often viewed with some skepticism. But decreasing the
programming overhead required means more innovation occurs faster.

Software above the level of a single device
This effectively means that software isn’t just about computers anymore. We need
to approach new software as though the user will demand it work in multiple
contexts, from mobile phones to portable gaming consoles and e-book readers.

Rich user experiences
A great and rich user experience helps people spend less time with the software
and more time living their lives. Mobile design is about enabling users to live their
lives better.

Although the mobile industry has been through many more evolutions than just two,
the concepts behind Web 2.0 are some of the most important ideas in not just mobile
technology, but the Web as a whole.

What Is Mobile 2.0?
In autumn 2006, I was asked to help design and build a website for the first Mobile 2.0
conference, happening a few days before O’Reilly’s Web 2.0 Summit. The event was
put together by several Mobile Monday organizers. Mobile Monday is a series of mobile
social gatherings that happen all over the world on the first Monday of the month. The

154 | Chapter 10: Mobile 2.0

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

idea was to bring some of the greatest minds in the mobile field together in San Francisco
to attend the Web 2.0 Summit in order to discuss the future of mobile development.

By the time the event arrived, I had become frustrated with the term Web 2.0. By this
time, it had devolved from a great idea to jargon that people would casually toss about.
Everyone wanted “Web 2.0,” but no one understood what it meant. Needless to say,
I was skeptical about anything labeled 2.0. So I went to the first Mobile 2.0, curious
about exactly what my fellow speakers thought Mobile 2.0 actually meant.

By the end of the day, I had a loosely defined picture of what Mobile 2.0 was, and for
the first time in a long time I was excited about the future of mobile development. I
saw a groundswell from the people at the conferences to finally overcome the industry
bureaucracy and technical problems that had gone unsolved for too long. I saw not
only what mobile technology could be, but people willing to make it happen.

In an interesting twist of foreshadowing, the first Mobile 2.0 event occurred only a few
months before the announcement of the first iPhone—a device that would come to
symbolize many of the things we talked about that day.

I took away many principles about Mobile 2.0, and about the future of mobile, which
still hold true today. Like in Web 2.0, these ideas cover the industry from principles to
techniques. The principles of Mobile 2.0 discussed in the following sections try to define
the direction mobile development is headed in, sometimes by calling out the problems
the medium faces still to this day.

Mobile 2.0: The Convergence of the Web and Mobile
It is obvious that in the minds of many, Mobile 2.0 is the Web. At this point, the mobile
web has always been viewed as a second-class citizen within the mobile ecosystem, for
many reasons, as discussed later.

Mobile is already a medium, but the consensus is that by leveraging the power of the
Web, integrating web services into the mobile medium is the future of mobile devel-
opment. When the iPhone exploded onto the scene, it increased the usage of the mobile
web by its users to levels never seen before. The spur of new mobile web apps created
just for the iPhone doubled the number of mobile websites available in under a year.

If Web 2.0 taught us that the Web is the platform, then Mobile 2.0 tells us that mobile
will be the primary context in which we leverage the Web in the future.

The Mobile Web Browser As the Next Killer App
If the future of mobile is the Web, then it only makes sense that the mobile web browser
is the next killer app of mobile. Again, this is something we saw confirmed with WebKit
in the iPhone and later in Android.

However, of particular concern is how device fragmentation factors into mobile brows-
ers. For example, how can we expect developers to support more than 30 different

What Is Mobile 2.0? | 155

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

mobile browsers? A fellow panelist from the Mozilla Minimo project offered a potential
solution in consolidation—that we will see only a few mobile browsers in the future;
specifically, browsers built on Mozilla, Opera, Internet Explorer, and WebKit tech-
nologies. At the time, I thought that prediction was too focused on smartphones, but
in the years since, the line between smartphone and feature phone seems to be going
away, so this prediction is fairly accurate.

But the single biggest challenge in mobile remains device fragmentation. The mobile
browser enables us to penetrate the problem by not having our content locked so spe-
cifically to the device abilities, screen size, and form factor, but device fragmentation
still causes old, outdated browsers to remain in the market long after they should be
put out to pasture.

What appears to be solving browser fragmentation is actually the iPhone. The Mobile
Safari browser included with the iPhone provided such an excellent web experience on
a mobile device that it drove use of the mobile web to huge levels, which means big
profits for the operators. This also means that the mobile web is no longer a second-
class citizen. In the post-iPhone market, all new devices are judged by the quality of
their mobile web browser. Operators know it and therefore are demanding better
browsers from device makers and browser makers.

Mobile Web Applications Are the Future
Creating mobile web applications instead of mobile software applications has remained
an area of significant motivation and interest. The mobile community is looking at the
Web 2.0 revolution for inspiration, being able to create products and get them to market
quickly and at little cost. They see the success of small iterative development cycles and
want to apply this to mobile development, something that is not that feasible in the
traditional mobile ecosystem.

Developers have been keen for years to shift away from the costly mobile applications
that are difficult to publish through the mobile service provider, require massive testing
cycles and costly porting to multiple devices, and can easily miss the mark with users
after loads of money have been dumped into them.

The iPhone App Store and the other mobile device marketplaces have made it far easier
to publish and sell, but developers still have to face difficult approval processes, dealing
with operator and device maker terms and porting challenges.

Mobile software has two fundamental problems that mobile web applications solve.
The first is forcing users through a single marketplace. We know from years of this
model that an app sold through a marketplace can earn huge profits if promoted cor-
rectly. Being promoted correctly is the key phrase. What gets promoted and why is a
nebulous process with no guarantees. One thing is certainly true: the companies that
know how to work the system are the ones that get the big prizes, making it increasingly
hard for the small developer to see any kind of success. But the mobile web provides

156 | Chapter 10: Mobile 2.0

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

any size of developer with the ability to promote and distribute their app on their terms,
building a relationship directly with their customers and not by proxy.

The second problem is the ability to update your application. It is certainly possible on
modern marketplaces like the App Store, but we are still years from that being the norm.
Mobile web apps enable you to make sure that you never ship a broken app, or if your
app breaks in the future due to a new device, to be able to fix it the same day the device
hits the street. This flexibility isn’t possible in the downloaded app market.

JavaScript Is the Next Frontier
If you are going to provide mobile web applications, you have to have a mobile web
browser that supports Ajax, or, as it is technically known, XMLHttpRequest. It makes
a lot of those cool interactions in your web browser work via the capability to load
content asynchronously into your browser view.

But it isn’t just Ajax; it is JavaScript, a web technology that has largely been ignored
with most mobile web browsers. Ajax is great, but just being able to do a little show/
hide or change a style after you click or touch it goes a long way toward improving the
user experience.

This is probably where mobile web browsers fall behind desktop browsers the most.
Because they both support XHTML and CSS relatively well, JavaScript has been a no-
go in mobile for years. In order for mobile web apps to rival native applications, you
have to support some JavaScript.

Modern mobile browsers have made much progress over the last few years, but there
is still plenty of work to be done. For example, accessing the device capabilities like the
phone book or filesystem with JavaScript doesn’t work in a consistent way. These
problems still need to be solved in order to truly reap the benefits of the Web.

Rich interactions kill battery life

JavaScript and Ajax have been ignored because using an Ajax-based web application
on your phone can drain your battery at a rate of four to five times your normal power
consumption. I’ve heard a number of reasons for why this happens from mobile hard-
ware guys much smarter than myself, but to summarize, the two most prevalent are:

• JavaScript consumes more processor power and therefore more battery life.

• Ajax apps fetch more data from the network, meaning more use of the radio and
more battery life.

Unless you are in the habit of carrying around a bunch of extra batteries, expect to
charge your phone every hour or two as a penalty for using the modern mobile web.

Apple and the open source WebKit browser have made huge strides by releasing a
JavaScript engine that is incredibly efficient on mobile devices, though the other big
mobile browser technologies aren’t far behind. This problem is going away quickly as

What Is Mobile 2.0? | 157

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

the mobile browsers get better, batteries improve efficiency, and devices get more
powerful.

The Mobile User Experience Is Awful
Traditionally, the user experience available in the mobile web has been like using a
website from 1995: mostly text-based, difficult to use, and ugly as sin. This isn’t to say
that the user experience of mobile applications has been much better, but it used to be
that if you wanted a good experience, you built a native app.

Descriptions within the industry range from the honest “the mobile user experience is
utterly horrid,” to the sales pitch of “look at these cool things you can do,” to the
optimistic “the mobile user experience is the future!” These polar attitudes toward the
mobile user experience are somewhat ironic, given that the mobile user experience was
largely ignored for close to a decade. People in mobile treat the user experience like a
chicken-and-egg scenario: bad input/output of the user experience prevents adoption,
but designing a shiny user experience with bells and whistles will bring them in droves.

Device APIs usually force you to use their models of user experience, meaning that you
have to work in the constraints of the API. This is good for creating consistent experi-
ences for that platform, but these experiences don’t translate to others. For example,
would you take an iPhone app design and put it on an Android device? The user ex-
perience for these devices is similar but still remains different.

The beauty of the Web, literally, is that you can design whatever experience you want,
for better or worse. You are in control of the presentation and can establish your own
visual metaphors. The problem has been that traditionally complex (which often
equates to good) user experiences haven’t been possible on mobile devices. Modern
mobile web browsers, as they come closer to their desktop counterparts, remove this
distinction, giving us the same canvas on mobile devices that we have for the desktop.
This means that creating mobile experiences just got a whole lot easier. It also means
we can have a consistent user experience across multiple mediums.

Mobile Widgets Are the Next Big Thing
At many Mobile 2.0 events, I’ve heard a lot of buzz about mobile widgets, though no
one can tell me how mobile widgets would define a mobile widget, or how they are
different from mobile web apps. The consensus seems to be that the solution for the
challenges with the mobile web is to create a series of “small webs” targeted at a specific
user or task. Though I couldn’t figure out the problem being solved with these widgets,
I had to admit that they looked pretty cool.

Don’t get me wrong. I believe that the concept of small network-enabled applications
is very promising, but the mobile industry tends to take promising ideas like this, inflate
expectations to unsustainable levels, then abandon them at the first sign of trouble or
sacrifice them for the next big thing, whichever happens first.

158 | Chapter 10: Mobile 2.0

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The mobile web is here: it works, but it just needs some love. It is the long bet. I believe
we should get that sorted out before we try to add widgets on top of it.

Carrier Is the New “C” Word
I noticed a strong tendency over the years for people in the mobile industry to avoid
uttering the word “carrier.” Even the more European equivalent term “operator” seems
to be on the decline. To give you an example of how much carriers are hated: you can
have entire conversations with people who work for the big operators and even they
will avoid using the term in conversation.

It is almost like when you get a bunch of mobile experts in a room for a day: they want
to pretend that operators don’t exist at least for one day. Maybe they prefer to see a
future with no mobile service providers at all. I think more likely the case is that the
industry has finally figured out that very few can make a profit when your business
relies on carriers. Though the “C” word isn’t uttered often, it still is the 800-pound
gorilla in the room.

It is clear that one of the key drivers of Mobile 2.0 and the focus on the mobile web is
to find a way to build a business that doesn’t rely on carrier control.

Mobile Needs to Check Its Ego
For years, I’ve sat on the line between the mobile community and the web community.
They have treated each other almost like rivals. I’ve been frustrated with both sides,
but it is the mobile camp that needs to check their egos at the door and get into the
game, before they learn that all the rules have changed.

On the mobile side, you have some incredibly intelligent people who have been inno-
vating amazing products under insane constraints for years. On the web side, you have
creative amateurs who have helped build a community and ecosystem out of passion
and an openness to share information.

The web guys want to get into the game and move the medium forward, partly out of
desire open up a new market for themselves, but mostly out of passion for all things
interactive. But, to the mobile community, they are seen as a threat to expertise. On
the other hand, to the web community, the mobile guys come off as overly protective,
territorial, selfish, and often snobbish or egotistical, effectively saying, “Go away.”

Don’t get me wrong—I think that the mobile guys are very smart and great people;
some of them I consider to be close friends. They have to deal with really hard problems
that would make a web professional give up to go serve coffee. But I’m a very patient
and tolerant person, and I have to admit that these same people are some of the most
difficult people I’ve ever worked with.

For example, for years I wondered why I, a designer with mobile experience, have been
asked to speak at so many conferences or write so many articles. I would think to myself,

What Is Mobile 2.0? | 159

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

“I can think of 10 guys who know a lot more about mobile than I do. They should be
here, not me.” But then this guy who came up to me after one of my workshops said,
“I’ve been in mobile for a long time, and have been to a lot of mobile events, but no
one has ever spoken about mobile so plainly.” I thanked him for the wonderful com-
ment and replied, “Well, that’s the problem with mobile, isn’t it?”

My point is that unless the mobile community comes together with the web community
by sharing information, experience, and guidance, one day they will find that their
experience has become obsolete. In return, the web guys will share their enthusiasm,
willingness to learn, and passion that many in mobile development have forgot.

It’s that one principle of Web 2.0 that the mobile community has left out: harnessing
collective intelligence. The Web and the mobile community are reaching a point where
the two worlds can no longer afford not to be working together, sharing what they
know and harnessing the collective intelligence of both media.

We Are Creators, Not Consumers
The final principle of Mobile 2.0 is recognizing that we are in a new age of consumerism.
Yesterday’s consumer does not look anything like today’s consumer. The people of
today’s market don’t view themselves as consumers, but rather as creators. But before
we get into that, let’s back up for a minute.

The web is about content. Sure, there are programming languages, APIs, and other
technical underpinnings, but what do you do when you open a web browser? You read.
Our primary task online is to read, to gain information. During the early days of the
Web, it took tools and know-how in order to publish to the Web. But early in the Web
2.0 evolution, we saw a rise in tools that allowed us to publish to the Web easily, giving
individuals a voice online, with a massive audience.

This democratization of the Web took many forms that some call “social media,” like
blogging, social networks, media sharing, microblogging, and lifestreams. Although
social media may have many facets, they all share the same goal: to empower normal,
everyday people to become creators and publishers of content. It started with the writ-
ten word, then music, then photos, and more recently video was added. Entire markets
have been created to provide today’s consumer with gadgets, software, and web services
to record and publish content so that we can share it with our friends and loved ones.

At the center of this revolution in publishing is the mobile device. As networked port-
able devices become more powerful, allowing us to capture, record, and share content
in the moment, we are able to add a new kind of context to content—the likes of which
we haven’t seen since satellite television. Now you can share any moment with any
group of people in real time. Think about how powerful a concept that is! It could
change entire cultures.

160 | Chapter 10: Mobile 2.0

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Tony Fish, coauthor of Mobile Web 2.0 (futuretext), says:

When everyone has the tools to create content, in addition to zero-cost publishing, we
do not consume content, we create it.*

In the early days of the Web, I marveled at how a networked population might change
our society forever. Now I realize that the change occurs wherever the device is, the
context it is within. The early “Web 1.0” days clearly changed how business is done,
because businesses are the primary consumer of desktop computers. It probably is no
coincidence that Web 2.0 occurred around the same time that laptop computers be-
came affordable for the average person, making the Web a more personal medium.

With Mobile 2.0, the personal relevance of the content matches how personal the device
is and how personally it applies to our everyday situations or our context. I see now
that this is the time and medium that delivers on that initial promise of the Web: to
change society forever.

* Sources: http://communities-dominate.blogs.com/brands/2007/02/mobile_the_7th_.html and Mobile as
7th of the Mass Media, by Tomi Ahonen (futuretext).

What Is Mobile 2.0? | 161

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://communities-dominate.blogs.com/brands/2007/02/mobile_the_7th_.html

Download at Boykma.Com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Chapter 1

In-Page Editing

Content on web pages has traditionally been display-only. If something needs editing, a
separate form is presented with a series of input fields and a button to submit the change.
Letting the user directly edit content on the page follows the principle of Make It Direct.

This chapter describes a family of design patterns* for directly editing content in a web
page. There are six patterns that define the most common in-page editing techniques:

Single-Field Inline Edit
Editing a single line of text.

Multi-Field Inline Edit
Editing more complex information.

Overlay Edit
Editing in an overlay panel.

Table Edit
Editing items in a grid.

Group Edit
Changing a group of items directly.

Module Configuration
Configuring settings on a page directly.

The most direct form of In-Page Editing is to edit within the context of the page. First, it
means we don’t leave the page. Second, we do the editing directly in the page.

* We use the term “design patterns” to denote common solutions to common problems. Design patterns origi-
nate from Christopher Alexander’s book A Pattern Language (Oxford University Press). You can read a series
of essays from me (Bill) and others on design patterns at http://www.lukew.com/ff/entry.asp?347.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.lukew.com/ff/entry.asp?347

4 Chapter 1: In-Page Editing

The advantage of Inline Edit is the power of context. It is often necessary for users to
continue to see the rest of the information on the page while editing. For example, it is
helpful to see the photo while editing the photo’s title, as explained in the next section,
“Single-Field Inline Edit.”

It is also useful when editing an element that is part of a larger set. Disqus, a global com-
ment service, provides inline editing for comments (Figure 1-1). After posting a comment
and before anyone replies to the comment, an edit link is provided. The editing occurs
within the context of the rest of the comments shown on the page.

Tip
If editing needs the context of the page, perform the editing inline.

Disqus allows comments to editing inline within the context of other commentsFigure 1-1.

The first two patterns, Single-Field Inline Edit and Multi-Field Inline Edit, describe
techniques for bringing direct inline editing into the page.

Single-Field Inline Edit
The simplest type of In-Page Editing is when editing a single field of text inline. The edit-
ing happens in place instead of in a separate window or on a separate page. Flickr provides
us a canonical example of Single-Field Inline Edit (Figure 1-2).

Non-editing state

Flickr chose to keep the title clear of any edit
 actions.

The title looks like a title. This provides the highest
readability by not cluttering the interface with edit
actions or an editable style.

This will lead to discoverability issues. An alternate
approach is to place an “edit” link somewhere in line
with the title that would start the editing process.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Single-Field Inline Edit 5

Invitation to edit

On mouse hover, the background is backlit with
yellow. A tool tip invites the user to “Click to edit”.

Invitations attempt to lead the user to the next
level of interaction (from mouse hover to mouse
click).

Invitations have to be discovered to be useful.
Flickr’s bet is that the user will drift his mouse over
the title (of his own photo).

Editing

Once the user clicks on the title, it is placed into an
edit mode. An edit box is switched into view im-
mediately under the title text.

The “Save” and “Cancel” buttons make it clear we are
editing the title by providing a familiar interface—
the user input form.

A disadvantage to this approach is that the picture
gets pushed down to make way for the additional
interface elements.

Completion

There are a number of ways to signify that the
text is being saved. In this example, the title text
is temporarily replaced with the text “saving…”.
Upon completion, the new title is shown in the
non-editing style.

An alternative approach is to show a busy progress
indicator while the change is being made.

Figure 1-2. Flickr provides a straightforward way to edit a photo’s title directly inline

Considerations
The flow is simple. Click on the title to start editing. When you are done, hit the “Save”
button, and the title is saved in place. Flickr was one of the first sites to employ this type
of in-page editing. As a testament to its usefulness, the interaction style first designed has
not changed much over the last few years.

But there are some challenges to consider.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6 Chapter 1: In-Page Editing

Discoverability
Just how discoverable is this feature? In this example, there are a number of cues that in-
vite the user to edit. The invitations include:

Showing a tool tip (“Click to edit”)•	

Highlighting the background of the editable area in yellow•	

Changing the cursor to an edit cursor (I-beam) •	

But all these cues display after the user pauses the mouse over the title (mouse hover).
Discoverability depends on the user hovering over the title and then noticing these
invitations.*

To make the feature more discoverable, invitational cues could be included directly in the
page. For example, an “edit” link could be shown along with the title. Clicking the link
would trigger editing. By showing the link at all times, the edit feature would be made
more discoverable.

But this has to be balanced with how much visual noise the page can accommodate. Each
additional link or button makes the page harder to process and can lead to a feature not
being utilized due to the sheer volume of features and their hints shown on the page.

Tip
If readability is more important than editability, keep the editing action hidden until
the user interacts with the content.

Yahoo! Photos† took this approach for editing titles (Figure 1-3). When showing a group
of photos, it would be visually noisy to display edit links beside each title. Instead, the
titles are shown without any editing adornment. As the mouse hovers over a photo title,
the text background highlights. Clicking on the title reveals an edit box. Clicking outside
of the edit field or tabbing to another title automatically saves the change. This approach
reduces the visual noise both during invitation and during editing. The result is a visually
uncluttered gallery of photos.

* While the Yahoo! Design Pattern Library (http://developer.yahoo.com/ypatterns/) was being launched, this
pattern was not included in the initial set of patterns due to an internal debate over this issue of discoverability.
In fact, one of the reviewers, a senior designer and frequent user of Flickr, had only recently discovered the
feature. As a result, we withheld the pattern from the public launch.

† Yahoo! Photos was replaced in 2007 with Flickr.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://developer.yahoo.com/ypatterns/

Single-Field Inline Edit 7

Editing titles in Yahoo! Photos keeps visual clutter to a minimum; it simply turns on a Figure 1-3.

visible edit area during editing

Accessibility
Another concern that arises from inline editing is the lack of accessibility. Accessibility
affects a wider range of users than you might first consider. Assistive technologies help
those with physical impairments, medical conditions, problems with sight, and many
other conditions.

Assistive technologies generally parse the page’s markup to find content, anchors, alter-
nate titles for images, and other page structure. If the inline edit feature does not contain
explicit markup built into the page (such as an explicit, visible edit link), assistive tech-
nologies cannot easily discover the inline edit feature.

In a sense, relying on the mouse to discover features will prevent some users from being
able to edit inline. As mentioned before, providing an explicit edit link helps with discov-
erability (as shown previously in Figure 1-1). But as a by-product it also makes the feature
more accessible.

Tip
Providing an alternative to inline editing by allowing editing on a separate page can
improve accessibility.

There is a natural tension between direct interaction and a more indirect, easily accessible
flow. It is possible to relieve this tension by providing both approaches in the same inter-
face. Flickr actually does this by offering an alternate, separate page for editing (Figure
1-4).

Edit link

Flickr provides a separate “Edit” link for editing the
title, description, and tags for the photo. Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

8 Chapter 1: In-Page Editing

Separate page for editing

The “Edit your photo” page provides a standard,
form-based interface for editing. Assistive technolo-
gies work easily with static pages like this.

Flickr allows you to also Figure 1-4. edit a photo’s title, description, and tags in a separate page

Multi-Field Inline Edit
In our previous example, a single value was being edited inline. What happens if there are
multiple values, or the item being edited is more complex than a string of text and you still
would like to edit the values inline?

The pattern Multi-Field Inline Edit describes this approach: editing multiple values inline.

37 Signal’s Backpackit application uses this pattern for editing a note (Figure 1-5). A note
consists of a title and its body. For readability, the title is displayed as a header and the
body as normal text. During editing, the two values are shown in a form as input text
fields with labeled prompts.

Invitation to edit

On mouse hover two actions are revealed: edit and
delete. The “Edit” link serves as the invitation to edit
the note.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Multi-Field Inline Edit 9

Transition to edit

Once you click the “Edit” link, a busy indicator is
animated while an edit form for the title and body
replaces the textual display of the note.

A slight cross-fade transition and a progress indica-
tor are used to cue the user to this switch of con-
text. This ties the textual display and the edit form
together.

Editing

Editing is very straightforward since it uses a form.
It provides the flexibility for other options to be
placed in the editing form.

The “Save note” button completes the edit.

Completion

The edit form is replaced with the new title and
body. To make it clear that a change occurred, the
background is highlighted in yellow. After a few
seconds the yellow is faded back down to the nor-
mal background color.

Contrast this with Flickr’s technique of showing sta-
tus while saving instead of after completion.

Figure 1-5. Backpackit reveals a multi-field form for editing a note’s title and body

Considerations
In Single-Field Inline Edit the difference between display mode and edit mode can be
more easily minimized, making the transition less disruptive. But when editing multiple
fields, there is a bigger difference between what is shown in display mode and what is
needed to support editing.
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

10 Chapter 1: In-Page Editing

Readability versus editability
Readability is a primary concern during display. But the best way to present editing is with
the common input form. The user will need some or all of the following:

Edit controls•	

Field prompts•	

Help text for user input•	

Error handling•	

Assistive input (e.g., calendar pop up or drop-down selection field)•	

Editing styles (e.g., edit fields with 3D sunken style)•	

The edit mode will need to be different in size and layout, as well as in the number and
type of components used. This means that moving between modes has the potential to be
a disruptive experience.

In our example, the form for editing the note takes up a larger space on the page than
when just displaying the note.

Blending display and edit modes
Ideally you would like the two modes to blend together in a seamless manner. Bringing
the edit form into the page flow will have an effect on the rest of the page content. One
way to smooth out the transition is by a subtle use of animation. Backpackit does this by
fading out the display view and fading in the edit view at the same time (see the cross-fade
in Figure 1-5).

Another approach is to use the same amount of space for both display and edit modes.
In Yahoo! 360, you can set a status message for yourself. Your current status shows up on
your 360 home page as a “blast,” represented as a comic book-style word bubble. Visually
it looks like a single value, but there are actually three fields to edit: the blast style, the sta-
tus, and any web page link you want to provide when the user clicks on your blast. Figure
1-6 shows the blast as it appears before editing.

Yahoo! 360 shows an “Edit Blast” link to invite editingFigure 1-6.

Figure 1-7 shows how the blast appears during editing. Notice that the edit form is de-
signed to show both modes (display and editing) in the same visual space.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Overlay Edit 11

Figure 1-7. Yahoo! 360 brings the editing into the displayed blast; the difference between display and
edit modes is minimized

The size similarity was not an accident. During design there was a concerted effort to
make the display mode slightly larger without losing visual integrity, while accommodat-
ing the editing tools in the space of the bubble.

WYSIWYG*

If the two modes (display and editing) are in completely separate spaces, the user may lose
a sense of what effect the change will have during display. In Yahoo! 360, you can change
the type of bubble and immediately see what it will look like. Switching from a “quote”
bubble to a “thought” bubble is reflected while still in editing mode (Figure 1-8). This
would not be possible if editing happened in a separate edit form.

Yahoo! 360 immediately displays the new blast type while still in edit modeFigure 1-8.

Overlay Edit
The previous two patterns brought editing inline to the flow of the page. Inline editing
keeps the editing in context with the rest of the elements on the page.

Overlay Edit patterns bring the editing form just a layer above the page. While still not
leaving the page for editing, it does not attempt to do the editing directly in the flow of the
page. Instead a lightweight pop-up layer (e.g., dialog) is used for the editing pane.

There are several reasons for choosing Overlay Edit instead of Inline Edit.

Sometimes you can’t fit a complex edit into the flow of the page. If the editing area is just
too large, bringing editing inline can shuffle content around on the page, detracting from
the overall experience. A noisy transition from display to edit mode is not desirable.

* What You See Is What You Get: an interface where content displayed during editing appears very similar to the
final output.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

12 Chapter 1: In-Page Editing

At other times you might choose to interrupt the flow, especially if the information be-
ing edited is important in its own right. Overlays give the user a definite editing space. A
lightweight overlay does this job nicely.*

Tip
An Overlay Edit is a good choice if the editing pane needs dedicated screen space
and the context of the page is not important to the editing task.

Yahoo! Trip Planner is an online place for creating and sharing trip plans. Trips contain
itinerary items that can be scheduled. When scheduled, the itinerary contains the dates
the item is scheduled. Each item can be edited in an overlay (Figure 1-9).

Non-editing state

Each itinerary item in Yahoo! Trip Planner can be
scheduled.

You can add dates or edit an existing one. The
dates scheduled are displayed in a simple read-
able format.

Invitation to edit

The “[Edit]” link is the invitation to edit.

It is shown at all times.

* In the past, separate browser windows were used for secondary windows. Lightweight overlays simply map the
secondary content into a floating layer on the page. The resulting overlay feels more lightweight. See Chapter 5.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Overlay Edit 13

Editing

The edit form is shown in an overlay.

Since scheduling an itinerary item requires several
fields of input, the overlay provides a nice place to
contain this editing.

Completion

The itinerary item is scheduled after pressing the
Update button.

No transitions are used. The presence of the sched-
uled date signifies that it has been added.

Yahoo! Trip Planner provides a complex editor in an overlay for scheduling an itinerary Figure 1-9.
item

Considerations
“Sun Jun 4 12:00am—Mon Jun 5 12:00am” is easier to read than a format appropriate for
editing (Figure 1-10). Using an editor prevents errors when entering the start and end
dates for a specific itinerary item.

Yahoo! Trip Planner provides an overlay editor for adjusting itinerary timesFigure 1-10.

Since the range of dates is known, Trip Planner uses a series of drop-downs to pick the
start and end dates along with the time.

It should be noted that using multiple drop-downs for choosing the hour and minute is not
the best experience. Although not in the context of an overlay, a better example of choosing
an event time when creating an event can be found at Upcoming.org (Figure 1-11).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

14 Chapter 1: In-Page Editing

Upcoming provides a better experience for choosing time of day Figure 1-11.

The experience of picking a time from a single list (or typing the time in) is more direct
than navigating multiple drop-downs.

Why an overlay?
An overlay should be considered when:

The editing module is considerably larger than the display values.•	

Opening an area on the page for the editing module would be distracting or push •	
important information down the page.

There is concern that the opened information might go partially below the fold. An •	
overlay can be positioned to always be visible in the page.

You want to create a clear editing area for the user.•	

What you are editing is not frequently edited. Having to click on an edit link, adjust to •	
the pop-up location, perform your edit, and close the dialog is a tedious way to edit a
series of items. In such cases, opt to either dedicate a space on the page for each item
as it is selected, or allow the editing to occur in context to remove some of the time
required to deal with an overlay.

What you are editing is a single entity. If you have a series of items, you should not •	
obscure the other similar items with an overlay. By allowing the edit to occur in con-
text, you can see what the other item’s values are while editing.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Table Edit 15

Best Practices for Inline Edit and Overlay Edit

In-Page Editing provides a nice way to change displayed content and observe the change in
context. Here are some best practices to consider:

Keep the editing inline for single fields.•	
Use inline when editing one of many in a set. This keeps the context in view.•	
Keep the display and editing modes the same size when possible. This will avoid page •	
jitter and reduce distraction when moving between the two modes.
Make the transition between display and editing as smooth as possible.•	
Use mouse hover invitations to indicate editing when readability is primary. •	
Avoid using double-click to activate editing.•	
Place a bracketed “[edit]” link near the item to be edited if editability is equally important •	
or if the quantity of items that can be edited is small. This is a nice way to separate the link
from the displayed text without creating visual distractions.
Show the edit in place when editing one item in a series (to preserve context).•	
Use an overlay when what is being edited needs careful attention. This removes the likeli-•	
hood of accidentally changing a critical value.
Do not use multiple overlays for additional fields. If you have a complex edit for a series of •	
elements, use one overlay for all.
When providing an overlay, use the most lightweight style available to reduce the disrup-•	
tiveness of the context switch between render and editing state.
Use buttons when it might be too subtle to trigger completion implicitly.•	
Use explicit buttons for saving and canceling when there is room.•	
Whenever possible, allow the overlay to be draggable so that obscured content can be •	
revealed as needed.

Table Edit
Editing tables of data is less common in consumer web applications. In enterprise web
applications, however, tables reign supreme. The most common request is for the table
editing to work like Microsoft Excel, which long ago set the standard for editing data in
a grid.

A good example of Table Edit is a Google Docs Spreadsheet (Figure 1-12). Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

16 Chapter 1: In-Page Editing

Non-editing state

Each cell is tuned toward readability. There are no
editing clues while in this state.

Invitation to edit

The invitation to edit comes after the cell is
clicked.

Editing

An edit box is overlaid on top of the cell being ed-
ited. This invites the user to actually type as much
text as she needs into the cell.

Completion

Completion occurs when the user tabs, clicks out-
side the cell, or presses Enter.

Editing a spreadsheet in Google Docs is very similar to editing a spreadsheet in Microsoft Figure 1-12.
Excel

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Table Edit 17

Considerations
Presentation is the primary consideration when displaying a table of data. Editing is sec-
ondary. As a result, the editing scaffolding is hidden and only revealed when it’s clear the
user wants to edit a cell.

Activation
A single mouse click is required to start editing a cell instead of a mouse hover. This
is consistent with keeping the display of the grid uncluttered. Imagine how irritating it
would be if every mouse motion revealed an edit box.

Tip
You should generally avoid double-click in web applications. However, when web ap-
plications look and behave like desktop applications, double-click can be appropriate.

Rendering versus editing. Google Spreadsheet displays the edit box slightly larger than the cell.
This clearly indicates editability and lets the user know that input is not limited to the size
of the cell (the edit box actually dynamically resizes as the user types into it). The only is-
sue to consider is that the larger edit area covers other table cells. However, this works well
in this case since editing is explicitly triggered by a mouse click. If activation had occurred
on a mouse hover, the edit mode would have interfered with cell-to-cell navigation.

Best Practices for Table Edit

Here are some best practices for Table Edit:

Bias the display toward readability of the table data.•	
Avoid mouse hover for activating cell editing. It makes for the feeling of “mouse traps” and •	
makes the interaction noisy.
Activate edit with a single click. While using a double-click may not be totally unexpected •	
(since it looks like an Excel spreadsheet), a single click is easier to perform.
Consider allowing extra space during editing either through a drop-down editor or by •	
slightly enlarging the edit cell.
As much as possible, mimic the normal conventions of cell navigation that users will al-•	
ready be familiar with (e.g., in Microsoft Excel).Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

18 Chapter 1: In-Page Editing

Group Edit
As mentioned before, it is a good idea to keep the differences between the edit mode and
the display mode as minimal as possible. In fact, it is a good idea to minimize modes
where possible. In honor of this principle, a former manager of mine sported a vanity
plate with the phrase “NOMODES”. However, modes cannot be avoided altogether, as
they do provide necessary context for completing specific tasks.

If you want to keep the display of items on the page as uncluttered as possible while still
supporting editing, consider using a single mechanism to enter a special editing mode:
Group Edit.

On the iPhone’s home screen, the icons are normally locked down. However, there is a
way to switch into a special Group Edit mode that allows you to rearrange the icon’s posi-
tions by drag and drop. You enter the mode by pressing down continuously on an icon
until the editing mode is turned on (Figure 1-13).

Non-editing state

Tapping icons on the iPhone launches an
 application.

What we would like is to switch into a mode where
we can move the icons around.

Holding down on an icon activates the rearrange
mode.

Invitation to rearrange

When the mode is activated, all of the icons begin
to wiggle.

This gives the clue that the icons are “loose” and
may be rearranged.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Group Edit 19

Rearranging

Tapping an icon no longer launches an applica-
tion. Instead, you can drag and drop icons into
new positions.

Completion

Pressing the “Home” button returns you to the
normal Home screen functionality (exiting the re-
arranging mode).

The iPhone has a special mode for rearranging applications on the home page—pressing Figure 1-13.
and holding down on an icon places all the applications in “wiggly mode”

Considerations
The Apple technique signifies that we have entered a special editing mode. When the
icons become “wiggly,” it is not a large intuitive leap that the icons have become loose and
thus we can rearrange them.

Discoverability
Admittedly, the feature is not very discoverable. But it can be argued that it is straight-
forward once discovered. However, pressing the home button deactivates the rearranging
mode. This really should operate more like a toggle. A better way to exit the “wiggly”
mode would be to press and hold down on a wiggly icon. It follows the idea that you are
pushing the icon back into its fixed place. Since deactivation is not the same mechanism
as activation, it is a little hard to figure out how to go back into the normal display mode. Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

20 Chapter 1: In-Page Editing

Tip
Activation and deactivation should normally follow the same interaction style. This
makes it easy to discover the inverse action. This is a principle we call Symmetry of
Interaction.

Another example of group editing is in the 37 Signals product, Basecamp (Figure 1-14).
When sharing files with Basecamp, you can organize them into various categories. The
categories are like folders. Clicking on a category link shows all the files in that “folder.”
What if you want to delete a category? Or rename it? At the top of the category section
there is a single “Edit” link that turns on editing for the whole area.

37 Signals Basecamp provides a way to toggle a set of items into edit modeFigure 1-14.

Once the Group Edit mode is entered, you can add another category, rename an existing
category, or delete empty categories. Notice the “Edit” link toggled to read “Done Editing”.
Clicking this link exits the group-editing mode.

Tip
Switching between edit modes should happen instantaneously. There is no point in
making the user wait on an animation to finish before he can start editing.

Discoverability versus readability
The advantage of providing a toggling edit mode is that it keeps the display uncluttered
with the editing scaffolding. The disadvantage is that it is less discoverable. This tension
between discoverability versus readability is common and must be balanced by the needs
of the user.

Symmetry of Interaction
Unlike the iPhone example, you turn off editing in the same manner and location that
you switched it on. The “Done Editing” link is in the same spot as the “Edit” link was.
Since both are hyperlinks, they have the same interaction style. Interactions should be
symmetrical wherever possible.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Module Configuration 21

Module Configuration
Popular portal sites like Yahoo! and Google’s interactive home page display specific con-
tent modules (e.g., Top Stories).

Module Configuration is a common pattern on these types of sites. Instead of modifying
modules on a separate page, the sites provide ways to directly configure the amount and
type of content that shows in each module. The My Yahoo! home page provides an “Edit”
link that allows for Module Configuration (Figure 1-15).

Non-configuration state

A news module contains top news stories. Each mod-
ule also has an “Edit” link.

Invitation to configure

The “Edit” link is the invitation to edit.

Activating edit slides in a mini-configuration panel in
context with the news stories.

Configuration

The mini-form allows you to change the title and the
number of stories that show. You can save the chang-
es with the “Save” button. The “Close Edit” link forms
a symmetrical interaction for edit activation and de-
activation. However, there is ambiguity: does “Close
Edit” do the same operation as “Save”?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

22 Chapter 1: In-Page Editing

Completion

The number of news stories changes and the mini-
configuration panel slides back out of the way.

Configuring modules on the Figure 1-15. My Yahoo! page can be done directly in place

Considerations
There are some issues to consider when using Module Configuration.

Visual noise
Putting edit links on each module can be visually noisy. An alternative approach is to
use the Group Edit pattern (as we saw in Figure 1-14) to place an edit link at the page
level that turns on edit links for each module. When the “Done Editing” link is clicked,
the links for each module are hidden. Again the trade-off is between visual noise and
discoverability.

Best Practices for Group Edit and Module Configuration

Here are some best practices to keep in mind:

Use an edit toggle when there are a number of items to edit and showing edit scaffolding •	
would make the display visually noisy.
Make activation and deactivation as similar as possible (Symmetry of Interaction). Switch-•	
ing in and out of an editing mode should operate more like a toggle.
Provide inline edit configuration for modules when configuration is an important feature. •	
Provide a way to turn configuration on/off globally for module configuration when this is •	
secondary to content display.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Guidelines for Choosing Specific Editing Patterns 23

Guidelines for Choosing Specific Editing
Patterns
In-Page Edit provides a powerful way to make interfaces direct. Here are some general
guidelines to think about when choosing an editing pattern:

Whenever you have a single field on the page that needs editing, consider using the •	
Single-Field Inline Edit.

For multiple fields or more •	 complex editing, use the Multi-Field Inline Edit.

If you don’t need inline context while editing, or the editing is something that de-•	
mands the user’s full attention, use Overlay Edit.

For •	 grid editing, follow the pattern Table Edit.

When dealing with •	 multiple items on a page, Group Edit provides a way to balance
between visual noise and discoverability.

When providing •	 direct configuring to modules, use the Module Configuration
pattern.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Chapter 2

Drag and Drop

One of the great innovations that the Macintosh brought to the world in 1984 was Drag
and Drop. Influenced by the graphical user interface work on Xerox PARC’s Star In-
formation System and subsequent lessons learned from the Apple Lisa, the Macintosh
team invented drag and drop as an easy way to move, copy, and delete files on the user’s
desktop.

It was quite a while before drag and drop made its way to the Web in any serious applica-
tion. In 2000, a small startup, HalfBrain,* launched a web-based presentation application,
BrainMatter. It was written entirely in DHTML and used drag and drop as an integral part
of its interface.

Drag and drop showed up again with another small startup, Oddpost,† when it launched
a web-based mail application (Figure 2-1) that allowed users to drag and drop messages
between folders.

* HalfBrain also created a full spreadsheet application written in DHTML prior to this. It included many of the
features of Microsoft Excel.

† Some of the developers at Oddpost actually came from HalfBrain. Yahoo! later purchased Oddpost’s mail ap-
plication to form the basis for the current Yahoo! Mail product.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

26 Chapter 2: Drag and Drop

TheFigure 2-1. Oddpost web mail client performed like a desktop mail application and included drag
and drop as a key feature

The biggest hindrance was the difficulty in saving the user’s state after a drag was com-
pleted without refreshing the page. It was possible, but the underlying technology was not
consistent across all browsers. Now that the technologies underlying Ajax* have become
widely known and a full complement of browsers support these techniques, Drag and
Drop has become a more familiar idiom on the Web.

Interesting Moments
At first blush, drag and drop seems simple. Just grab an object and drop it somewhere.
But, as always, the devil is in the details. There are a number of individual states at which
interaction is possible. We call these microstates interesting moments:†

How will users know what is draggable? •	

What does it mean to drag and drop an object? •	

Where can you drop an object, and where is it not valid to drop an object? •	

What visual affordance will be used to indicate draggability? •	

* Jesse James Garrett, founder of Adaptive Path, originally defined the term Ajax as “Asynchronous JavaScript
and XML.” However, it generally means being able to retrieve information or save state without refreshing the
page—an integral ability for any rich interaction.

† Bill Scott, author of this book, originally called these interaction events. Eric Miraglia, a former colleague of his
at Yahoo!, coined the more colorful term interesting moments.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Interesting Moments 27

During drag, how will valid and invalid drop targets be signified? •	

Do you drag the actual object? •	

Or do you drag just a ghost of the object? •	

Or is it a thumbnail representation that gets dragged? •	

What visual feedback should be used during the drag and drop interaction?•	

What makes it challenging is that there are a lot of events during drag and drop that can
be used as opportunities for feedback to the user. Additionally, there are a number of ele-
ments on the page that can participate as actors in this feedback loop.

The Events
There are at least 15 events available for cueing the user during a drag and drop interaction:

Page Load
Before any interaction occurs, you can pre-signify the availability of drag and drop.
For example, you could display a tip on the page to indicate draggability.

Mouse Hover
The mouse pointer hovers over an object that is draggable.

Mouse Down
The user holds down the mouse button on the draggable object.

Drag Initiated
After the mouse drag starts (usually some threshold—3 pixels).

Drag Leaves Original Location
After the drag object is pulled from its location or object that contains it.

Drag Re-Enters Original Location
When the object re-enters the original location.

Drag Enters Valid Target
Dragging over a valid drop target.

Drag Exits Valid Target
Dragging back out of a valid drop target.

Drag Enters Specific Invalid Target
Dragging over an invalid drop target.

Drag Is Over No Specific Target
Dragging over neither a valid or invalid target. Do you treat all areas outside of valid
targets as invalid?

Drag Hovers Over Valid Target
User pauses over the valid target without dropping the object. This is usually when a
spring loaded drop target can open up. For example, drag over a folder and pause, the
folder opens revealing a new area to drag into.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

28 Chapter 2: Drag and Drop

Drag Hovers Over Invalid Target
User pauses over an invalid target without dropping the object. Do you care? Will you
want additional feedback as to why it is not a valid target?

Drop Accepted
Drop occurs over a valid target and drop has been accepted.

Drop Rejected
Drop occurs over an invalid target and drop has been rejected. Do you zoom back
the dropped object?

Drop on Parent Container
Is the place where the object was dragged from special? Usually this is not the case,
but it may carry special meaning in some contexts.

The Actors
During each event you can visually manipulate a number of actors. The page elements
available include:

•	 Page (e.g., static messaging on the page)

Cursor•	

Tool Tip•	

Drag Object (or some portion of the drag object, e.g., title area of a module)•	

Drag Object’s Parent Container•	

Drop Target•	

Interesting Moments Grid
That’s 15 events times 6 actors. That means there are 90 possible interesting moments—each
requiring a decision involving an almost unlimited number of style and timing choices.

You can pull all this together into a simple interesting moments grid for Drag and Drop.
Figure 2-2 shows an interesting moments grid for My Yahoo!.

Tip
You can use an interesting moments grid to capture any complex interaction.

The grid is a handy tool for planning out interesting moments during a drag and drop
interaction. It serves as a checklist to make sure there are no “holes” in the interaction.
Just place the actors along the lefthand side and the moments along the top. In the grid
intersections, place the desired behaviors.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Purpose of Drag and Drop 29

A simplified interesting moments grid for the original My Yahoo! drag and drop design;Figure 2-2. * it
provided a way to capture the complexities of drag and drop into a single page

Purpose of Drag and Drop
Drag and drop can be a powerful idiom if used correctly. Specifically it is useful for:

Drag and Drop Module
Rearranging modules on a page.

Drag and Drop List
Rearranging lists.

Drag and Drop Object
Changing relationships between objects.

Drag and Drop Action
Invoking actions on a dropped object.

Drag and Drop Collection
Maintaining collections through drag and drop.

* A template for the interesting moments grid can be found at http://designingwebinterfaces.com/resources/
interestingmomentsgrid.xls.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://designingwebinterfaces.com/resources/

30 Chapter 2: Drag and Drop

Drag and Drop Module
One of the most useful purposes of drag and drop is to allow the user to directly place
objects where she wants them on the page. A typical pattern is Drag and Drop Modules
on a page. Netvibes provides a good example of this interaction pattern (Figure 2-3).

Normal display style

Modules are displayed without an explicit cue for
drag and drop.

Invitation to drag

Moving the mouse to a module’s header changes
the cursor to indicate that the item is draggable.

Dragging

The module being moved is dragged directly. A
ripped-out “hole” is exposed where the module
was dragged from.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Drag and Drop Module 31

Invitation to drop

Dragging the module opens up a new hole indi-
cating where the object will be dropped.

The hole always indicates where the object will go
when dropped.

Netvibes allows modules to be arranged directly via drag and drop; the hole cues what will Figure 2-3.
happen when a module is dropped

Considerations
Netvibes allows its modules to be rearranged with drag and drop. A number of interesting
moments decide the specific interaction style for this site. Figure 2-4 shows the interesting
moments grid for Netvibes.

Interesting moments grid for Netvibes: there are 20 possible moments of interaction; Figure 2-4.
Netvibes specifically handles 9 of these moments

While dragging, it is important to make it clear what will happen when the user drops the
dragged object. There are two common approaches to targeting a drop:

Placeholder target•	

Insertion target •	

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

32 Chapter 2: Drag and Drop

Placeholder target
Netvibes uses a placeholder (hole with dashed outline) as the drop target. The idea (il-
lustrated in Figure 2-5) is to always position a hole in the spot where the drop would
occur. When module 1 starts dragging, it gets “ripped” out of the spot. In its place is the
placeholder target (dashed outline). As 1 gets dragged to the spot between 3 and 4, the
placeholder target jumps to fill in this spot as 4 moves out of the way.

A placeholder target always shows where the dragged module will end after the drop; Figure 2-5.
module 1 is being dragged from the upper right to the position between modules 3 and 4

The hole serves as a placeholder and always marks the spot that the dragged module will
land when dropped. It also previews what the page will look like (in relation to the other
modules) if the drop occurs there. For module drag and drop, the other modules only
slide up or down within a vertical column to make room for the dragged module.

One complaint with using placeholder targets is that the page content jumps around a lot
during the drag. This makes the interaction noisier and can make it harder to understand
what is actually happening. This issue is compounded when modules look similar. The
user starts dragging the modules around and quickly gets confused about what just got
moved. One way to resolve this is to provide a quick animated transition as the modules
move. It is important, however, that any animated transitions not get in the way of the
normal interaction. In Chapter 11, we will discuss timing of transitions in detail.

There is a point in Figure 2-5 where the placeholder shifts to a new location. What deter-
mines placeholder targeting? In other words, what determines where the user is intending
to place the dragged object? The position of the mouse, the boundary of the dragged ob-
ject, and the boundary of the dragged-over object can all be used to choose the module’s
new location.

Boundary-based placement. Since most sites that use placeholder targeting drag the module
in its original size, targeting is determined by the boundaries of the dragged object and
the boundaries of the dragged-over object. The mouse position is usually ignored be-
cause modules are only draggable in the title (a small region). Both Netvibes and iGoogle
take the boundary-based approach. But, interestingly, they calculate the position of their
placeholders differently.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Drag and Drop Module 33

In Netvibes, the placeholder changes position only after the dragged module’s title bar has
moved beyond the dragged-over module’s title bar. In practice, this means if you are moving
a small module to be positioned above a large module, you have to move it to the very top of
the large module. In Figure 2-6 you have to drag the small “To Do List” module all the way
to the top of the “Blog Directory” module before the placeholder changes position.

In Netvibes, dragging a small module to be placed above a large module requires dragging a Figure 2-6.

large distance; the “To Do List” has to be dragged to the top of the “Blog Directory” module

In contrast, moving the small module below the large module actually requires less drag
distance since you only have to get the title bar of the small module below the title bar of
the large module (Figure 2-7).

Dragging a small module below a large module requires a smaller drag distance; since the Figure 2-7.

targeting is based on the header of the dragged-over module, the drag distance in this scenario is less
than in the previous figure

This approach to boundary-based drop targeting is non-symmetrical in the drag distance
when dragging modules up versus dragging modules down (Figure 2-8).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

34 Chapter 2: Drag and Drop

The Netvibes approach requires the dragged object’s title to be placed above or below a Figure 2-8.
module before the placement position changes; this results in inconsistent drag distances

A more desirable approach is that taken by iGoogle. Instead of basing the drag on the title
bar, iGoogle calculates the placeholder targeting on the dragged-over object’s midpoint.
In Figure 2-9, the stock market module is very large (the module just above the moon
phase module).

When dragging a module downward, iGoogle moves the placeholder when the bottom of Figure 2-9.

the dragged module crosses the midpoint of the object being dragged over; the distance to accomplish a
move is less than in the Netvibes approach

With the Netvibes approach, you would have to drag the stock module’s title below the
moon phase module’s title. iGoogle instead moves the placeholder when the bottom of the
dragged module (stock module) crosses the midpoint of the dragged over module (moon
phase module).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Drag and Drop Module 35

What happens when we head the other way? When we drag the stock module up to place
it above the moon phase module, iGoogle moves the placeholder when the top of the
stock module crosses the midpoint of the moon phase module (Figure 2-10).

When dragging a module upward, iGoogle moves the placeholder when the top of the Figure 2-10.

dragged module crosses the midpoint of the object being dragged over; dragging modules up or down
requires the same effort, unlike in the Netvibes example

As Figure 2-11 illustrates, module 1 is dragged from the first column to the second col-
umn, the placeholder moves above module 3. As module 1 is dragged downward, the
placeholder moves below 3 and 4 as the bottom of module 1 crosses their midpoints.

To create the best drag experience, use the original midpoint location of the module being Figure 2-11.
dragged over to determine where to drop the dragged module: module 1 is being dragged into the
position just below module 4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

36 Chapter 2: Drag and Drop

The net result is that the iGoogle approach feels more responsive and requires less mouse
movement to position modules. Figure 2-12 shows the interesting moments grid for the
iGoogle drag and drop interaction.

Figure 2-12. Interesting moments grid for iGoogle: as in the Netvibes grid, there are 20 possible
moments of interaction; iGoogle specifically handles 8 of these moments

Insertion target
Placeholder positioning is a common approach, but it is not the only way to indicate drop
targeting. An alternate approach is to keep the page as stable as possible and only move
around an insertion target (usually an insertion bar). A previous version of My Yahoo! used
the insertion bar approach as the dragged module was moved around (see Figure 2-13).

Figure 2-13. My Yahoo! uses the insertion bar approach

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Drag and Drop Module 37

While the module is dragged, the page remains stable. No modules move around. Instead
an insertion bar marks where the module will be placed when dropped.

This technique is illustrated in Figure 2-14. When module 1 is dragged to the position
between 3 and 4, an insertion bar is placed there. This indicates that if 1 is dropped,
then 4 will slide down to open up the drop spot.

Using an insertion bar keeps the page stable during dragging and makes it clear how Figure 2-14.
things get rearranged when the module is dropped

Unlike with the placeholder target, the dragged module 1 is usually represented with a
slightly transparent version of the module (also known as ghosting). This is the approach
shown in Figure 2-13 in an earlier version of My Yahoo!. In the most current version, full-
size module dragging has been replaced with a thumbnail representation (the small gray
outline being dragged in Figure 2-15). This is somewhat unfortunate since the small gray
outline is not very visible.

Dragging a module down

Note the gray outline being dragged. The small
gray rectangle represents the dragged module
(the Facebook module).

Since the drag representation is above the mid-
point of the Yahoo! Mail Preview module, no
change is indicated for a drop.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

38 Chapter 2: Drag and Drop

Insertion bar appears

The dragged module representation is now be-
low the Yahoo! Mail Preview module’s midpoint.

The insertion bar is rendered to show that the
Facebook module will be placed just below the
Mail Preview module if dropped.

My Yahoo! uses a small gray rectangle to represent the dragged moduleFigure 2-15.

As you can see in Figure 2-16, the My Yahoo! page makes different decisions about how
drag and drop modules are implemented as compared to Netvibes (Figure 2-4) and
iGoogle (Figure 2-12).

Figure 2-16. My Yahoo! uses 15 of the possible 32 moments to interact with the user during drag and
drop; the biggest difference between My Yahoo!, Netvibes, and iGoogle is the insertion bar placement—
another subtle difference is how drag gets initiatedAru

na
i E

ng
in

ee
rin

g
Col

le
ge

Drag and Drop Module 39

Drag distance
Dragging the thumbnail around does have other issues. Since the object being dragged is
small, it does not intersect a large area. It requires moving the small thumbnail directly
to the place it will be dropped. With iGoogle, the complete module is dragged. Since the
module will always be larger than the thumbnail, it intersects a drop target with much less
movement. The result is a shorter drag distance to accomplish a move.

Tip
Keep in mind that Drag and Drop takes additional mouse dexterity. If possible,
shorten the necessary drag distance to target a drop.

Drag rendering
How should the dragged object be represented? Should it be rendered with a slight trans-
parency (ghost)? Or should it be shown fully opaque? Should a thumbnail representation
be used instead?

As shown earlier, My Yahoo! uses a small gray rectangle to represent a module (Figure 2-15).
Netvibes represents the dragged module in full size as opaque (shown back in Figure 2-3),
while iGoogle uses partial transparency (Figure 2-17). The transparency (ghosting) ef-
fect communicates that the object being dragged is actually a representation of the dragged
object. It also keeps more of the page visible, thus giving a clearer picture of the final result
of a drop.

On Figure 2-17. iGoogle the dragged module Top Stories is given transparency to make it easier to see
the page and to indicate that we are in a placement mode

Ghosting the module also indicates that the module is in a special mode. It signals that the
module has not been positioned; instead, it is in a transitional state.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

40 Chapter 2: Drag and Drop

Tip
For Drag and Drop Modules, use the module’s midpoint to control the drop targeting.

Of the various approaches for Drag and Drop Modules, iGoogle combines the best ap-
proaches into a single interface:

Placeholder targeting
Most explicit way to preview the effect.

Midpoint boundary
Requires the least drag effort to move modules around.

Full-size module dragging
Coupled with placeholder targeting and midpoint boundary detection, it means drag
distances to complete a move are shorter.

Ghost rendering
Emphasizes the page rather than the dragged object. Keeps the preview clear.

Best Practices for Drag and Drop Module

Here are some best practices to keep in mind:

Use the placeholder approach when showing a clear preview during drag is important.•	
Use the insertion bar approach when you want to avoid page jitter.•	
Use the midpoint of the dragged object to determine drag position.•	
Use a slightly transparent version of the object being dragged (ghost) instead of an •	
opaque version.
If you drag thumbnail representations, use the insertion bar targeting approach.•	

Drag and Drop List
Rearranging lists is very similar to rearranging modules on the page but with the added
constraint of being in a single dimension (up/down or left/right). The Drag and Drop
List pattern defines interactions for rearranging items in a list.

37 Signal’s Backpackit allows to-do items to be rearranged with Drag and Drop List (Fig-
ure 2-18).Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Drag and Drop List 41

Normal display state

List items are displayed without any indication that
the items can be rearranged.

Invitation to drag

One of the in-context tools revealed during mouse
hover shows a four-way arrow indicating that the
object can be moved.

Dragging this object allows the list item to be
moved.

Dragging

Rearranging occurs in real time. An empty slot is
exposed where the dragged item will fit.

Dropped

The item snaps into the new location (where the
hole was opened up).

Backpackit allows to-do lists to be rearranged directly via drag and dropFigure 2-18.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

42 Chapter 2: Drag and Drop

Considerations
Backpackit takes a real-time approach to dragging items. Since the list is constrained, this
is a natural approach to moving objects around in a list. You immediately see the result
of the drag.

Placeholder target
This is essentially the same placeholder target approach we discussed earlier for drag-
ging and dropping modules. The difference is that when moving an item in a list, we are
constrained to a single dimension. Less feedback is needed. Instead of a “ripped-out” area
(represented earlier with a dotted rectangle), a simple hole can be exposed where the ob-
ject will be placed when dropped.

A good example from the desktop world is Apple’s iPhoto. In a slideshow, you can easily
rearrange the order of photos with drag and drop. Dragging the photo left or right causes
the other photos to shuffle open a drop spot (Figure 2-19).

iPhoto uses cursor position: when the cursor crosses a threshold (the edge of the next Figure 2-19.

photo), a new position is opened up

The difference between iPhoto and Backpackit is that instead of using the dragged photo’s
boundary as the trigger for crossing a threshold, iPhoto uses the mouse cursor position.
In the top row of Figure 2-19, the user clicked on the right side of the photo. When the
cursor crosses into the left edge of the next photo, a new space is opened. In the bottom
row, the user clicked on the top left side of the photo. Notice in both cases it is the mouse
position that determines when a dragged photo has moved into the space of another pho-
to, not the dragged photo’s boundary.

Tip
In a Drag and Drop List, use the mouse position to control where the item will be
dropped.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Drag and Drop List 43

Insertion target
Just as with Drag and Drop Modules, placeholder targeting is not the only game in town.
You can also use an insertion bar within a list to indicate where a dropped item will land.
Netflix uses an insertion target when movies are dragged to a new location in a user’s
movie queue (Figure 2-20).

Normal display state

List items are displayed with-
out any indication that the
items can be rearranged.

Invitation to drag

The cursor changes to indi-
cate draggability.

Dragging

A hole is marked where
the item is pulled from. The
dragged item’s index num-
ber changes and an insertion
bar indicates where it will be
moved to.

Dropped

The item is moved immedi-
ately into the spot marked
by the insertion bar.

A Figure 2-20. Netflix queue can be rearranged via drag and drop

The upside to this approach is that the list doesn’t have to shuffle around during drag. The
resulting experience is smoother than the Backpackit approach. The downside is that it is
not as obvious where the movie is being positioned. The insertion bar appears under the
ghosted item. The addition of the brackets on the left and right of the insertion bar is an
attempt to make the targeting clearer.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

44 Chapter 2: Drag and Drop

Non–drag and drop alternative
Besides drag and drop, the Netflix queue actually supports two other ways to move ob-
jects around:

Edit the row number and then press the “Update DVD Queue” button.•	

Click the “Move to Top” icon to pop a movie to the top.•	

Modifying the row number is straightforward. It’s a way to rearrange items without drag
and drop. The “Move to Top” button is a little more direct and fairly straightforward (if
the user really understands that this icon means “move to top”). Drag and drop is the least
discoverable of the three, but it is the most direct, visual way to rearrange the list. Since
rearranging the queue is central to the Netflix customer’s satisfaction, it is appropriate to
allow multiple ways to do so.

Hinting at drag and drop
When the user clicks the “Move to Top” button, Netflix animates the movie as it moves
up. But first, the movie is jerked downward slightly and then spring-loaded to the top
(Figure 2-21).

Click “Move to Top”

Clicking the “Move to Top”
button starts the movie mov-
ing to the top.

Spring loaded

The movie does not imme-
diately start moving up. In-
stead, it drops down and to
the right slightly. This gives
the feeling that the movie is
being launched to the top.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Drag and Drop List 45

Animated move to top

The movie then animates very
quickly to show it is moving
to the top.

When a movie is moved to the top with the “Move to Top” button, the movie jerks down Figure 2-21.
slightly, then springs to the top

The combination of the downward jerk and then the quick animation to the top gives a
subtle clue that the object is draggable. This is also an interesting moment to advertise
drag and drop. After the move to top completes, a simple tip could appear to invite users
to drag and drop. The tip should probably be shown only once, or there should be a way
to turn it off. Providing an invitation within a familiar idiom is a good way to lead users
to the new idiom.

Tip
If drag and drop is a secondary way to perform a task, use the completion of the famil-
iar task as an opportunity invite the user to drag and drop the next time.

Drag lens
Drag and drop works well when a list is short or the items are all visible on the page.
But when the list is long, drag and drop becomes painful. Providing alternative ways
to rearrange is one way to get around this issue. Another is to provide a drag lens while
dragging.

A drag lens provides a view into a different part of the list that can serve as a shortcut
target. It could be a fixed area that is always visible, or it could be a miniature view of
the list that provides more rows for targeting. The lens will be made visible only during
dragging. A good example of this is dragging the insertion bar while editing text on the
iPhone (Figure 2-22).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

46 Chapter 2: Drag and Drop

The iPhone provides a drag magnifier lens that makes it easier to position the cursorFigure 2-22.

Best Practices for Drag and Drop List

Here are some best practices to keep in mind:

If possible, drag the items in a list in real time using the placeholder target approach.•	
Use the mouse position for drag target positioning.•	
If the goal is speed of dragging or if dragged items are large, consider using the insertion •	
target approach, as rendering an insertion bar is inexpensive compared to dynamically
rearranging the list.
Since drag and drop in lists is not easily discoverable, consider providing an alternate way •	
to rearrange the list.
When the user rearranges the list with an alternate method, use that moment for a one-•	
time advertisement for drag and drop.

Drag and Drop Object
Another common use for drag and drop is to change relationships between objects. This
is appropriate when the relationships can be represented visually. Drag and drop as a
means of visually manipulating relationships is a powerful tool.

Cogmap is a wiki for organizational charts. Drag and Drop Object is used to rearrange
members of the organization (Figure 2-23).
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Drag and Drop Object 47

Normal display state

An organizational chart visually represents
 relationships.

Invitation to drag

When the mouse hovers over a member of the
organization, the cursor changes to show dragga-
bility. In addition, the texture in the top-left corner
changes to represent a dimpled surface. This hints
at draggability.

Dragging

An insertion bar is used to indicate where the
member will be inserted when dropped.

Dropped

When the dragged member is dropped, the chart
is rearranged to accommodate the new location.

Cogmap allows organizational charts to be rearranged on the fly with drag and dropFigure 2-23.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

48 Chapter 2: Drag and Drop

Considerations
When object relationships can be clearly represented visually, drag and drop is a natural
choice to make these type of changes. Cogmap uses the target insertion approach. This
allows the dragging to be nondistracting, since the chart does not have to be disturbed
during targeting.

Drag feedback: Highlighting
Bubbl.us, an online mind-mapping tool, simply highlights the node that will be the new
parent (Figure 2-24).

Bubbl.us provides a visual indication of which node the dropped node will attach itself toFigure 2-24.

In both cases, immediate preview is avoided since it is difficult to render the relationships
in real time without becoming unnecessarily distracting.

Looking outside the world of the Web, the desktop application Mind Manager also uses
highlighting to indicate the parent in which insertion will occur. In addition, it provides
insertion targeting to give a preview of where the employee will be positioned once
dropped (Figure 2-25).

Figure 2-25. Mind Manager is a desktop tool that uses a combination of insertion targeting plus a clear
preview of the drop

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Drag and Drop Object 49

Drag feedback: Dragged object versus drop target
As we mentioned at the beginning of this chapter, one of the first serious uses for drag
and drop was in the Oddpost web mail application. Oddpost was eventually acquired by
Yahoo! and is now the Yahoo! Mail application.

Yahoo! Mail uses drag and drop objects for organizing email messages into folders (Figure
2-26).

Drag initiated

When a message drag is ini-
tiated, a snippet of the mes-
sage is shown, along with
an icon denoting whether a
drop can be made.

Valid drop target

When the dragged mes-
sage may be dropped, the
icon portion of the dragged
object changes from a
red invalid sign to a green
checkmark.

Yahoo! Mail allows messages to be dragged to foldersFigure 2-26.

Instead of signaling that a drop is valid or invalid by changing the visual appearance of the
area dragged over, Yahoo! Mail shows validity through the dragged object. When a drop
will be invalid (Figure 2-27, left):

The dragged object’s icon becomes a red invalid sign.•	

If over an invalid folder, the folder is highlighted as well.•	

When a drop will be valid (Figure 2-27, right):

The dragged object’s icon changes to a green checkmark.•	

The drop target highlights. •	

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

50 Chapter 2: Drag and Drop

Another approach is to signal both validity and location in the drop target itself. In this
case you would highlight the valid drop target when it is dragged over and not highlight
the drop target if it is invalid. In Yahoo! Mail’s interaction, the signaling of validity and
where it can be dropped are kept separate. This allows a drag to indicate that a target is a
drop target, just not valid for the current object being dragged.*

Yahoo! Mail mistakenly shows a valid indicator instead of an invalid indicator for a Figure 2-27.

message when it is dragged back over the inbox

One odd situation occurs when you first start dragging a message and then later drag it
back into the inbox area (Figure 2-27). At first it shows the inbox as an invalid drop area.
Then it shows it as a valid drop area. Recall in our discussion on the various interesting
events that initially dragging over your “home area” and then later dragging back into it
are all events that should be considered during drag and drop. Here the interface needs to
display the same indicator in both cases.

Tip
Feedback during dragging is key to providing a clear Drag and Drop Object interaction.

Drag feedback: Drag positioning
Another slightly troublesome approach is positioning the dragged object some distance
away from the mouse (Figure 2-28). The reason the object is positioned in this manner is
to avoid obscuring dragged-over folders. While this may alleviate that problem, it intro-
duces a second problem: when you initiate the drag, the dragged message jumps into the
offset position. Instead of conveying that the first message in the list is being dragged, it
feels like the second message in the list is being dragged (Figure 2-28, bottom).

Before drag initiated

The user is about to drag the first message in the list.

* For example, while a contact may be dragged into the Contacts folder, a message may not. In either situa-
tion, the Contacts folder will highlight. However, the dragged contact will show a green checkmark, while the
dragged message will show a red invalid sign.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Drag and Drop Object 51

Offset drop object

The dragged object appears below the midpoint of
the second message after drag is initiated. Targeting
is confusing—is it the mouse or the object that de-
termines targeting?

By offsetting the drag object a large distance from the cursor, the message feels disjointed Figure 2-28.
from the actual object being dragged; in fact, it looks like it is closer to the second message in the list
instead of the first message actually being dragged

Drag feedback: Drag start
In Yahoo! Mail, message dragging is initiated when the mouse is dragged about four or
five pixels (Figure 2-29).

Yahoo! Mail requires the user to drag four or five pixels to initiate a drag (notice the cursor Figure 2-29.

is at the top of the “B” and has to be dragged 2/3 of the way down to start the drag); this gives the
impression that the message is stuck and not easy to drag. Reducing this value will make messages feel
easier to drag

A good rule of thumb on drag initiation comes from the Apple Human Interface
 Guidelines:

Your application should provide drag feedback as soon as the user drags an item at
least three pixels. If a user holds the mouse button down on an object or selected text,
it should become draggable immediately and stay draggable as long as the mouse
remains down.*

It might seem like a small nit, but there is quite a difference between starting a drag after
three pixels of movement versus four or five pixels. The larger value makes the object feel
hard to pull out of its slot to start dragging. On the flip side, starting a drag with too small
a value can cause drag to initiate accidentally, usually resulting in the interface feeling too
finicky.

Tip
Start a drag when the object is dragged three pixels or the mouse is held down for half
a second.

* See http://tinyurl.com/5aqd4k for the Apple Human Interface Guideline on drag feedback.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://tinyurl.com/5aqd4k

52 Chapter 2: Drag and Drop

The only part of the Apple guideline that could be quibbled with is whether to start drag
mode immediately on mouse down or wait about a half-second to start. Why not initiate
the drag immediately? Certain devices, like pen input, are not as precise as mouse input. If
you allow an object to be dragged and that object has other controls (like hyperlinks), you
will want to allow the user to start a drag even if he clicks down over some element within
the object (like a hyperlink). You will also want to allow him to just click the hyperlink and
not have a drag accidentally initiate. Moving into drag mode immediately will preclude
the ability to disambiguate between a click on an item within the object versus a drag start
on the object itself.

Best Practices for Drag and Drop Object

Here are some best practices to keep in mind:

If objects are represented in a complex visual relationship, use insertion targeting to indi-•	
cate drop location (minimizes disturbing the page during drag).
For parent/child relationships, highlight the parent as well to indicate drop location.•	
If possible, reveal drag affordances on mouse hover to indicate draggability.•	
Initiate drag when the mouse is dragged three pixels or if the mouse is held down for at •	
least half a second.
Position dragged objects directly in sync with the cursor. Offsetting will make the drag •	
feel disjointed.
When hovering over a draggable object, change the cursor to indicate draggability.•	

Drag and Drop Action
Drag and drop is also useful for invoking an action or actions on a dropped object. The
Drag and Drop Action is a common pattern. Its most familiar example is dropping an
item in the trash to perform the delete action.

Normally uploading files to a web application includes pressing the upload button and
browsing for a photo. This process is repeated for each photo.

When Yahoo! Photos was relaunched in 2006, it included a drag and drop upload feature.
It allowed the user to drag photos directly into the upload page. The drop signified the
upload action (Figure 2-30).Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Drag and Drop Action 53

Normal display state

“Add Photos” allows either browsing
for photos or simply dragging and
dropping them into the target zone
below.

Invitation to drag

The invitation is clear. By using the
drop target area as an advertisement
for the drag feature, the process is dis-
coverable (as well as natural).

Dropped

Photos dropped are collected into an
upload area. Pressing “Start Upload”
starts the uploading process.

Completed

All items are marked Complete when
finished.

Yahoo! Photos provided a way to upload files directly to the site via drag and drop from Figure 2-30.
the user’s filesystem into the web page

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

54 Chapter 2: Drag and Drop

Considerations
This is not a trivial implementation. But it does clearly illustrate the benefit of drag and
drop for operating on a set of files. The traditional model requires each photo to be se-
lected individually for upload. Drag and drop frees you to use whatever browsing method
is available on your system and then drop those photos for upload.

Anti-pattern: Artificial Visual Construct
Unfortunately, drag and drop can sometimes drive the design of an interface instead of
being an extension of a natural interface. These interactions are almost always doomed,
as they are the tail wagging the proverbial dog. Rating movies, books, and music is a com-
mon feature found on many sites. But what happens if you try to use drag and drop to
rate movies?

In Figure 2-31 you can rate movies by dragging them into three buckets: “Loved It”,
“Haven’t Seen It”, or “Loathed It”.

Drag and drop recommendations: the hard way to do ratingsFigure 2-31.

While this certainly would work, it is wrong for several reasons:

Non-obvious
Requires some additional instructions to “Drag the DVDs into the boxes below” in
order for the user to know how to rate the movies.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Drag and Drop Action 55

Too much effort
Requires too much user effort for a simple task. The user needs to employ mouse
gymnastics to simply rate a movie. Drag and drop involves these discrete steps: target,
then drag, then target, and then drop. The user has to carefully pick the movie, drag
it to the right bucket, and release.

Too much space
Requires a lot of visual space on the page to support the idiom. Is it worth this amount
of screen real estate?

Direct rating systems (thumbs up/down, star ratings, etc.) are a much simpler way to rate
a movie than using an Artificial Visual Construct. A set of stars is an intuitive, compact,
and simple way to rate a movie (Figure 2-32).

Instead of drag and drop, Figure 2-32. Netflix uses a simple set of stars to rate a movie

You might still be tempted to take this approach if you have a lot of objects that you want
to add as favorites or set an attribute on. Don’t give in. This method still falls way short
since the amount of space needed for this far outweighs simpler approaches such as pro-
viding an action button for the selected objects.

Tip
Drag and drop should never be forced. Don’t create an artificial visual construct to
support it.

Natural Visual Construct
Another example of Drag and Drop Action is demonstrated in Google Maps. A route is
visually represented on the map with a dark purple line. Dragging an arbitrary route point
to a new location changes the route in real time (Figure 2-33).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

56 Chapter 2: Drag and Drop

Normal display state

Route is shown in dark purple.

Invitation to drag

Hovering over any part of the route provides a
draggable circle (route point) with a tool tip saying
“Drag to change route”.

Dragging

We want to stay on the east side of the bay and
cross the San Mateo bridge. Dragging the route
bubble back over the bridge will reroute our trip.

Dropped

The route changes as we drag. Dropping com-
pletes the rerouting action.

Rerouting in Google Maps is as simple as drag and dropFigure 2-33.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Drag and Drop Collection 57

This is the opposite of the Artificial Visual Construct anti-pattern. The route is a Natural
Visual Construct. Since anywhere along the route is draggable, there are a lot of opportu-
nities to discover the rerouting bubble. When the route is being dragged, Google dynami-
cally updates it. The constant feedback forms the basis of a Live Preview (which we will
discuss in Chapter 13).

Best Practices for Drag and Drop Action

Here are some best practices to keep in mind:

Use •	 Drag and Drop Actions sparingly in web interfaces, as they are not as discoverable
or expected.
Provide alternate ways to accomplish the action. Use the •	 Drag and Drop Action as a
shortcut mechanism.
Don’t use drag and drop for setting simple attributes. Instead use a more direct approach •	
to setting attributes on the object.
Don’t construct an artificial visual representation for the sole purpose of implementing •	
drag and drop. Drag and drop should follow the natural representation of the objects in
the interface.
Provide clear invitations on hover to indicate the associated action.•	

Drag and Drop Collection
A variation on dragging objects is collecting objects for purchase, bookmarking, or saving
into a temporary area. This type of interaction is called Drag and Drop Collection. Drag
and drop is a nice way to grab items of interest and save them to a list. The Laszlo shop-
ping cart example illustrates this nicely (Figure 2-34).

Normal display state

The shopping cart is docked on the right part of the
screen.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

58 Chapter 2: Drag and Drop

Invitation to drag

You can add to the cart with the “+ cart” button or
you can drag the item to the shopping cart. If you
use the button, the item flies to the cart; the cart
bumps open and closed briefly to indicate that the
item has been entered.

Dragging

The item gets a dragging treatment.

Dropped

The cart is populated with the new item.

This Laszlo shopping cart demo uses both drag and drop and a button action to add items Figure 2-34.
to its shopping cart

Considerations
There are a few issues to consider in this example.

Discoverability
Drag and drop is a natural way collect items for purchase. It mimics the shopping experi-
ence in the real world. Grab an item. Drop it in your basket. This is fast and convenient
once you know about the feature. However, as a general rule, you should never rely solely
on drag and drop for remembering items.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The Challenges of Drag and Drop 59

Parallel, more explicit ways to do the same action should be provided. In this example,
Laszlo provides an alternative to dragging items in the cart. Notice the “+ cart” button in
Figure 2-34. Clicking this button adds the item to the shopping cart.

Best Practices for Drag and Drop Collection

Here are some best practices to keep in mind:

Use as an alternate way to collect items (e.g., a shopping cart).•	
When a drag gets initiated, highlight the valid drop area to hint where drop is available.•	
Provide alternate cues that drag and drop into collections as available.•	

Teachable moment
When providing alternates to drag and drop, it is a good idea to hint that dragging is an
option. In the Laszlo example, clicking the “+ cart” button causes the shopping cart tray
to bump slightly open and then closed again. This points to the physicality of the cart. Us-
ing another interaction as a teachable moment to guide the user to richer interactions is a
good way to solve discoverability issues.

Tip
Look for opportunities for teachable moments in the interface leading users to ad-
vanced features.

The Challenges of Drag and Drop
As you can see from the discussion in this chapter, Drag and Drop is complex. There are
four broad areas where Drag and Drop may be employed: Drag and Drop Module, Drag
and Drop List, Drag and Drop Object, and Drag and Drop Action. And in each area,
there are a large number of interesting moments that may be handled in numerous ways.
Being consistent in visual and interaction styles across all of these moments for all of these
types of interactions is a challenge in itself. And keeping the user informed throughout
the process with just the right amount of hints requires design finesse. In Chapter 10, we
explore some ways to bring this finesse into Drag and Drop. Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

60 Chapter 2: Drag and Drop

General Best Practices for Drag and Drop

Keep page jitter to a•	 minimum while dragging objects.
Initiate dragging if the user presses the mouse down and moves the mouse three pixels, •	
or if she holds the mouse down for at least half a second.
Use drag and drop for performing direct actions as an alternate method to more direct •	
mechanisms in the interface.
Hint at the availability of drag and drop when using alternatives to drag and drop.•	
Pay attention to all of the interesting moments during drag and drop. Remember, you •	
must keep the user informed throughout the process.
Use •	 Invitations (discussed more in Chapters 9 and 10) to cue the user that drag and drop
is available.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Chapter 3

Direct Selection

When the Macintosh was introduced, it ushered into the popular mainstream the ability
to directly select objects and apply actions to them. Folders and files became first-class
citizens. Instead of a command line to delete a file, you simply dragged a file to the trash-
can (Figure 3-1).

Figure 3-1. DOS command line for deleting a file versus dragging a file to the trash on the Macintosh

Treating elements in the interface as directly selectable is a clear application of the Make
It Direct principle. On the desktop, the most common approach is to initiate a selection
by directly clicking on the object itself. We call this selection pattern Object Selection
(Figure 3-2).

Files can be selected directly on the Macintosh; Figure 3-2. Object Selection is the most common
pattern used in desktop applications

In this chapter we will look at the following types of selection patterns:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

62 Chapter 3: Direct Selection

Toggle Selection
Checkbox or control-based selection.

Collected Selection
Selection that spans multiple pages.

Object Selection
Direct object selection.

Hybrid Selection
Combination of Toggle Selection and Object Selection.

Toggle Selection
The most common form of selection on the Web is Toggle Selection. Checkboxes and
toggle buttons are the familiar interface for selecting elements on most web pages. An
example of this can be seen in Figure 3-3 with Yahoo! Mail Classic.

In Figure 3-3. Yahoo! Mail Classic a mail message can be selected by clicking on the corresponding row’s
checkbox

The way to select an individual mail message is through the row’s checkbox. Clicking on
the row itself does not select the message. We call this pattern of selection Toggle Selec-
tion since toggle-style controls are typically used for selecting items.

Tip
Toggle Selection is the easiest way to allow discontinuous selection.

Once items have been check-selected, actions can be performed on them. Usually these
actions are performed on the selection by clicking on a separate button (e.g., the Delete
button). Gmail is a good example of actions in concert with Toggle Selection (Figure
3-4).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Toggle Selection 63

Unselected state

Each mail message has a checkbox that controls
whether it is selected or not.

Selected items

Two mail messages have been selected. In addition
to the checkbox selection, the selected items are
highlighted in light yellow.

Action triggered

Delete will operate on the selected items.

Action completed

The two selected email messages have been
 deleted.

Gmail uses checkbox selection to operate on messagesFigure 3-4.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

64 Chapter 3: Direct Selection

Considerations
Toggle Selection with checkboxes has some nice attributes:

Clear targeting, with no ambiguity about how to select the item or deselect it.•	

Straightforward discontinuous selection, and no need to know about Shift or Control-•	
key ways to extend a selection. Just click the checkboxes in any order, either in a
continuous or discontinuous manner.

Clear indication of what has been selected.•	

Scrolling versus paging
The previous examples were with paged lists. But what about a scrolled list? Yahoo! Mail
uses a scrolled list to show all of its mail messages (Figure 3-5). While not all messages
are visible at a time, the user knows that scrolling through the list retains the currently
selected items. Since the user understands that all the messages not visible are still on the
same continuous pane, there is no confusion about what an action will operate on—it will
affect all selected items in the list. Sometimes the need for clarity of selection will drive the
choice between scrolling and paging.

Tip
Toggle Selection is the normal pattern used when content is paged. Actions normally
apply only to the selected items on the visible page.

Yahoo! Mail uses a scrolled list for its messages; selection includes what is in the visible part Figure 3-5.
of the list as well as what is scrolled out of view

Making selection explicit
With Yahoo! Bookmarks you can manage your bookmarks by selecting bookmarked pag-
es and then acting on them. The selection model is visually explicit (Figure 3-6).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Toggle Selection 65

Selected items

When items get selected, a status
bar appears that keeps a tally of the
number of items selected. The close
button (x) is an alternate way to de-
select the selected items.

Tools act on selection

When a tool is activated (“Edit Tags”)
a command area slides into place.

The status area becomes the title
bar for the command area.

Select all

A “select all” checkbox selects all
items on the page. The selection
status then shows the current num-
ber of items selected.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

66 Chapter 3: Direct Selection

No selection

If a tool is chosen and there is noth-
ing selected, a message appears
explaining why the action could not
take place.

This is opposite of the normal error-
prevention technique of disabling
the tool when nothing is selected.

Yahoo! Bookmarks explicitly displays the state of the selectionFigure 3-6.

The advantage of this method is that it is always clear how many items have been selected.
Visualizing the underlying selection model is generally a good approach. This direct ap-
proach to selection and acting on bookmarks creates a straightforward interface.

One interesting question: what happens when nothing is selected? One approach is to dis-
able any actions that require at least one selected item. Yahoo! Bookmarks takes a different
approach. Since buttons on the Web do not follow a standard convention, you often can’t
rely on a color change to let you know something is not clickable. Yahoo! Bookmarks chose
to make selection very explicit and make it clear when a command is invalid because noth-
ing is selected (“No selection” in Figure 3-6). This is not normally the optimal way to handle
errors. Generally, the earlier you can prevent errors, the better the user experience.

Netflix disables the “Update DVD Queue” button when nothing is selected and enables it
when a movie gets selected (Figure 3-7).

When nothing is selected, Netflix disables the “Update DVD Queue” button to prevent errors Figure 3-7.
early

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Collected Selection 67

Best Practices for Toggle Selection

Here are some best practices to keep in mind:

Use •	 Toggle Selection for selecting elements in a row.
Use •	 Toggle Selection to make it easy to select discontinuous elements.
In a list, highlight the row in addition to the checkbox to make the selection explicit.•	
When moving from page to page, actions should only operate on the items selected on •	
that page.
If offering a “select all” option, consider providing a way to select all elements across all •	
pages.
Provide clear feedback for the number of elements selected.•	
If possible, disable unavailable actions when nothing is selected. If you keep the action •	
enabled, you will need additional interface elements to signal that it can’t be completed.

Collected Selection
Toggle Selection is great for showing a list of items on a single page. But what happens if
you want to collect selected items across multiple pages? Collected Selection is a pattern
for keeping track of selection as it spans multiple pages.

In Gmail, you can select items as you move from page to page. The selections are re-
membered for each page. If you select two items on page one, then move to page two and
select three items, there are only three items selected. This is because actions only operate
on a single page. This makes sense, as users do not normally expect selected items to be
remembered across different pages.

Considerations
Gmail does provide a way to select all items across different pages. When selecting all
items on a individual page (with the “All” link), a prompt appears inviting the user to
“Select all 2785 conversations in Spam”. Clicking that will select all items across all pages
(Figure 3-8). The “Delete Forever” action will operate on all 2785 conversations, not just
the 25 selected on the page.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

68 Chapter 3: Direct Selection

Figure 3-8. Gmail provides a way to select all items across all pages, allowing the user to delete all items
in a folder without having to delete all items on each page individually

Keeping the selection visible
The real challenge for multi-page selection is finding a way to show selections gathered
across multiple pages. You need a way to collect and show the selection as it is being cre-
ated. Here is one way that Collected Selection comes into play.

LinkedIn uses Collected Selection to add potential contacts to an invite list (Figure 3-9).

Figure 3-9. LinkedIn provides a holding place for saving selections across multiple pages

The list of potential invitees is shown in a paginated list on the lefthand side. Clicking the
checkbox adds them to the invite list. The invite list becomes the place where selected
contacts across multiple pages are remembered. Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Collected Selection 69

Any name in the invite list can be removed by clicking the “X” button beside it. Once
the complete list of invitees is selected, clicking the “Invite selected contacts” sends each
selected contact a LinkedIn invitation.

Collected Selection and actions
When Yahoo! Photos was working its way through an early design of its Photo Gallery
(see Figure 3-13, later in this chapter), the plan was to show all photos in a single, con-
tinuous scrolling page (we discuss virtual scrolling in Chapter 7). In a long virtual list,
the selection model is simple. Photos are shown in a single page and selection is easily
understood in the context of this single page.

However, due to performance issues, the design was changed. Instead of a virtual page,
photos had to be chunked into pages. In order to support Collected Selection, Yahoo!
Photos introduced the concept of a “tray” into the interface (Figure 3-10). On any page,
photos can be dragged into the tray. The tray keeps its contents as the user moves from
page to page. So, adding a photo from page one and three more from page four would
yield four items in the tray. As a nice touch, the tray would make itself visible (by sliding
into view) even when the user was scrolled down below the fold.

Yahoo! Photos used a “tray” to implement a form of Collected Selection; the confusing Figure 3-10.
aspect was which actions in the menu operated on the tray versus the photos selected on the page

There was a problem with the design, however. In the menu system it was hard to discern
whether the user meant to operate on the selection (photos on the page could be selected
through an Object Selection model) or on the collected items in the tray. To resolve this am-
biguity, the drop-down menus contained two identical sets of commands. The first group of
commands in the menu operated on the collected items in the tray. The second set of com-
mands operated on the selected objects. Needless to say, this was confusing since it required
the user to be fully aware of these two selection models when initiating a command.

One way to remove this ambiguity would have been to have a single set of commands
that operated on either the tray or the photos—depending on which had the focus. This
would require a way to select the tray and a way to deselect it (by clicking outside the tray).
A possible approach would be to slightly dim the photo gallery when the tray is selected
(causing it to clearly have the focus), and do the opposite when the tray is not the focus. Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

70 Chapter 3: Direct Selection

Best Practices for Collected Selection

Here are some best practices to keep in mind:

If you allow selection across page boundaries, accumulate the selected items (from each •	
page) into a separate area. This makes the selection explicit even when moving from page
to page.
Use •	 Collected Selection to blend Toggle Selection and Object Selection in the same
interface.
Watch out for ambiguity between items selected with •	 Collected Selection and any items
or objects that can be normally selected on the page.

Object Selection
As we mentioned earlier, Toggle Selection is the most common type of selection on the
Web. The other type of selection, Object Selection, is when selection is made directly on
objects within the interface.

Sometimes using a checkbox does not fit in with the style of interaction desired. Laszlo’s
WebTop mail allows the user to select messages by clicking anywhere in the row. The re-
sult is that the whole row gets highlighted to indicate selection (Figure 3-11).

Nothing selected

Normal view when nothing is selected and the
mouse is not over a message.

Hovered state

When the mouse hovers over a row, the row is sub-
tly highlighted to indicate focus and what will be
selected if the user clicks.Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Object Selection 71

Selected state

When the user clicks on a message, the whole row
gets selected.

Laszlo WebTop Mail uses highlighting to indicate row selectionFigure 3-11.

Considerations
Desktop applications tend to use Object Selection. It is also natural that web-based mail
applications that mimic desktop interactions employ this same style of selection. Instead of
showing a control (like a checkbox), the object itself can be selected and acted on directly.

Object Selection can be extended by holding down the Shift key while clicking on a dif-
ferent item. The Command key (Macintosh) or Control key (Windows) can be used to
individually add items in a discontinuous manner. The downside to this approach is that
it is not obvious to use the modifier keys for extending the selection. Toggle Selection’s
use of toggle buttons makes the selection extension model completely obvious.

Flickr is a simple example of the keyboard being used to extend the selection in a web ap-
plication. In the Organizr tool, multiple photos can be selected by using modifier keys to
extend the selection (Figure 3-12).

Flickr allows for discontinuous selection by using the Command/Control key to extend Figure 3-12.
selection

Desktop-style selection
For now Object Selection is not as common on the Web. Given that most sites have been
content-oriented, there have been few objects to select. Also, with the Web’s simple event
model, Object Selection was not easy to implement. In typical web pages, keyboard events
have rarely made sense since they are also shared with the browser. However, all of this is
changing as the capabilities of web technologies continue to improve.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

72 Chapter 3: Direct Selection

Most desktop Object Selection interactions include ways to use the mouse to drag-select
objects. Yahoo! Photos introduced this same type of object selection to its photo gallery
(Figure 3-13). Individually clicking on a photo selects it. Using the Shift key and clicking
also extends the selection. In addition, using the Control key and clicking discontinuously
selects photos. And like most desktop applications, you can drag a selection box around a
group of items to add them to the selected set (in this case, photos).

Figure 3-13. Yahoo! Photos 3.0 created a rich drag selection mechanism for selecting photos

Best Practices for Object Selection

Here are some best practices to keep in mind:

Use •	 Object Selection when selectable elements can be dragged.
Use •	 Object Selection when the application will simulate desktop style interactions.
Allow standard modifier key extensions (Shift to extend selection; Ctrl for discontinuous •	
selection).
If possible, degrade •	 Object Selection to Toggle Selection when browser capabilities
are limited.

Hybrid Selection
Mixing Toggle Selection and Object Selection in the same interface can lead to a confus-
ing interface. Referring back to Yahoo! Bookmarks, you’ll see an odd situation arise during
drag and drop (Figure 3-14).

In Yahoo! Bookmarks, one item is selected, but two items can be dragged by dragging on Figure 3-14.

the unselected item

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Hybrid Selection 73

Considerations
There are a few important issues to consider when using Hybrid Selection.

Confusing two models
In the left panel of Figure 3-14, one bookmark element is selected (notice the checkbox
Toggle Selection). The second bookmark element (“Dr. Dobb’s”) is unselected (the check-
box is clear). In the right panel of Figure 3-14, clicking and dragging on the unselected
bookmark element initiates a drag. The drag includes both the selected element and the
unselected element. Since only one is shown as selected, this creates a confusing situation.

This occurs because three things are happening in the same space:

Toggle Selection•	 is used for selecting bookmarks for editing, deleting, etc.

Object Selection•	 is used for initiating a drag drop.

Mouse click is used to open the bookmark on a separate page.•	

The problem is that more than one interaction idiom is applied to the same place on the
same page. In this case, if you happen to try to drag, but instead click, you will be taken to
a new page. And if you drag an unselected item, you now have two items selected for drag
but only one shown as selected for other operations (Figure 3-14, right). This is definitely
confusing. Simply selecting the item (automatically checking the box) when the drag starts
would keep the selection model consistent in the interface. However, it might lead the user
to expect a single click to also do the same (which it cannot since it opens the bookmark).

So, mixing the two selection models together can be problematic. However, there is a way
to integrate the Toggle Selection and Object Selection and have them coexist peacefully
as well as create an improved user experience.

Blending two models
Yahoo! Mail originally started with the Toggle Selection model (Figure 3-15). When the
new Yahoo! Mail Beta was released, it used Object Selection exclusively (Figure 3-16).
But since there are advantages to both approaches, the most recent version of Yahoo! Mail
incorporates both approaches in a Hybrid Selection (Figure 3-17).

Yahoo! Mail Classic uses Toggle Selection; it also highlights selected rows, but rows can Figure 3-15.
only be selected by clicking the message’s checkbox

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

74 Chapter 3: Direct Selection

Figure 3-16. Yahoo! Mail Beta launched with Object Selection: no checkboxes were provided, and
discontiguous selection could only be done by using keyboard modifiers

Figure 3-17. Yahoo! Mail now uses a hybrid approach: it incorporates both the Toggle Selection and the
Object Selection patterns (messages can be selected with checkboxes or by clicking on the row); Toggle
Selection selects the message without loading the message in the viewing pane

Hybrid Selection brings with it the best of both worlds. You can use the checkbox selec-
tion model as well as normal row selection. You get the benefit of explicit selection and
simplified multiple selection that Toggle Selection brings. And you get the benefit of
interacting with the message itself and direct object highlighting.

Tip
Combining Toggle Selection and Object Selection is a nice way to bridge a common
web idiom with a common desktop idiom.

There is an additional meaning applied to Toggle Selection versus Object Selection.
Clicking on a row with the checkbox has the benefit of selecting the message without
loading its contents in the message pane (think spam!). Clicking on a message itself will
load the contents in the message pane.

Best Practices for Hybrid Selection

Here are some best practices to keep in mind:

Use checkbox selection to select an object without opening it.•	
Use object selection to select and open an object.•	

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Principle Two

Keep It Lightweight

Digg is a popular news site where the community votes on its favorite stories. If you see a
story on Digg that you like you can vote your approval with a simple click action on the
“digg it” button (Figure P2-1).

Digg makes it easy to vote to digg articles with the “digg it” button next to each articleFigure P2-1.

It wasn’t always this simple. Kevin Rose founded Digg to democratize the finding of tech
articles. In the earliest versions of Digg, the user had to complete a two-step process to
digg a story (Figure P2-2).

The first version of Digg required a two-page process to “digg” a storyFigure P2-2.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

In the current version of Digg it’s much simpler—just click the “digg it” button, and the
vote is immediately recorded (Figure P2-3).

Digg now uses a “digg it” button to immediately record a “digg” within the same pageFigure P2-3.

Kevin Rose has noted that changing to a one-step process had a huge impact on the num-
ber of stories being dug and thus on the success of his site. Here is his view on what
transpired:

There was a huge shift in activity on Digg when we made the move to the one-click
digg in November 2005. Once we added Ajax, activity went through the roof on [the
number of] diggs. It was just insane. Just the ease of the “one-click and you’re done”
made all the difference in the world. Once the users grasped that the content is syndi-
cated to friends, friends’ activities then went through the roof. These small incremen-
tal steps in feature additions drove the growth.*

Did you get that? Changing to a one-click digg was not technically difficult. Yet it made
a significant impact on Digg’s success. It not only increased the ease of digging stories,
but it also had an impact on other site activities. This is the power of making interactions
lightweight.

Next, in Chapter 4, we look at a set of patterns that can make our interactions lightweight:

Contextual Tools
Tools placed in context within the page content.

* From Rose’s talk at the San Francisco Bay Area Chapter of ACM SIGCHI (BayCHI), April 11, 2006. See http://
www.baychi.org/calendar/20060411/.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.baychi.org/calendar/20060411/
http://www.baychi.org/calendar/20060411/

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Chapter 4

Contextual Tools

Interaction in Context
Most desktop applications separate functionality from data. Menu bars, toolbars, and pal-
ettes form islands of application functionality. Either the user chooses a tool to use on the
data or makes a selection and then applies the tool.

Early websites were just the opposite. They were completely content-oriented. Rich tool
sets were not needed for simply viewing and linking to content pages. Even in e-commerce
sites like Amazon or eBay, the most functionality needed was the hyperlink and “Submit”
button.

However, this simplistic approach no longer exists in the current web application land-
scape. As the Web has matured, a wide variety of application styles has emerged.

On one end of the spectrum there are simple sites that need no more functionality than
the hyperlink and a “Submit” button. On the other end of the spectrum there are full ap-
plications hosted as a website. Google Search and Yahoo! Mail are two typical applications
that illustrate this variation (Figure 4-1).

Google Search needs only hyperlinks and a search button; Yahoo! Mail, on the other hand, Figure 4-1.

is a full-featured application with toolbars and menus

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

80 Chapter 4: Contextual Tools

Between these two opposites are a lot of sites that need to mix content and functionality.
It is to this intersection that we turn our attention in this chapter.

Think for a moment where user interfaces are headed.

Touch-based interfaces were the stuff of research labs and, more recently, interesting You-
Tube videos. But now they’re as close as our phones. Most notably, the Apple iPhone
brought touch to the masses (Figure 4-2). Gesture-based interfaces seemed even further
out. Yet these became reality with the Nintendo Wii.

The Apple Figure 4-2. iPhone introduced touch-based interfaces to the consumer market

With both gesture and touch-based interfaces, interaction happens directly with the
content.

Tip
The content is the interface. Instead of being contained in separate areas of functionality,
the actions feel close to the objects being interacted with.

This concept also informs our current challenge. How do we bring tools nearer to the
content to make the interaction as lightweight as possible?

Fitts’s Law
Fitts’s Law is an ergonomic principle that ties the size of a target and its contextual prox-
imity to ease of use. Bruce Tognazzini restates it simply as:

The time to acquire a target is a function of the distance to and size of the target.

In other words, if a tool is close at hand and large enough to target, then we can improve
the user’s interaction. Putting tools in context makes for lightweight interaction.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Always-Visible Tools 81

Contextual Tools
We could simply isolate our functionality into islands of tools (toolbars and menus). But
this would work against Fitts’s Law by requiring more effort from the user. It would also
add more visual weight to the page. Instead of interacting with the functionality sepa-
rately, we can bring the functionality into the content with Contextual Tools.

Contextual Tools are the Web’s version of the desktop’s right-click menus. Instead of hav-
ing to right-click to reveal a menu, we can reveal tools in context with the content. We can
do this in a number of ways:

Always-Visible Tools
Place Contextual Tools directly in the content.

Hover-Reveal Tools
Show Contextual Tools on mouse hover.

Toggle-Reveal Tools
A master switch to toggle on/off Contextual Tools for the page.

Multi-Level Tools
Progressively reveal actions based on user interaction.

Secondary Menus
Show a secondary menu (usually by right-clicking on an object).

Always-Visible Tools
The simplest version of Contextual Tools is to use Always-Visible Tools. Digg is an ex-
ample of making Contextual Tools always visible (Figure 4-3).

Visible tool

Beside each story is a digg scorecard. Just below is the
“digg it” button. The digg button shows for all stories.

Other actions are represented less prominently.

Invitation

On mouse hover, the digg button border changes to a
darker color and the text label changes to black. High-
lighting is an effective way to signal interactivity.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

82 Chapter 4: Contextual Tools

Completion

Once the user clicks the “digg it” button, the vote is
counted. The current vote fades out and then the new
digg count (including your vote) appears instantly. The
digg button changes to “dugg” and is no longer clickable
(indicated by the gray text).

Digg’s “digg it” button is a simple Contextual Tool that is always visibleFigure 4-3.

Considerations
The “digg it” button and Digg scorecard provide Always-Visible Tools next to each story.

Clear call to action
Why not hide the tools and only reveal them when the mouse is over the story? Since
digging stories is central to the business of Digg, always showing the tool provides a clear
call to action. There are other actions associated with news stories (comments, share, bury,
etc.) but they are represented less prominently. In the case of Digg, the designers chose to
show these at all times. An alternate approach would be to hide them and show them on
mouse hover (we will discuss this approach in the next section).

It turns out that voting and rating systems are the most common places to make tools
always visible. Netflix was the earliest to use a one-click rating system (Figure 4-4).

Netflix star ratings are always visibleFigure 4-4.

Just as with Digg, rating movies is central to the health of Netflix. The Cinematch™ rec-
ommendation engine is driven largely by the user’s ratings. So a clear call to action (to
rate) is important. Not only do the stars serve as a strong call to action to rate movies, but
they also provide important information for the other in-context tool: the “Add” button.
Adding movies to your movie-shipping queue is key to having a good experience with the
Netflix service.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Always-Visible Tools 83

Relative importance
One way to clarify this process is to decide on the relative importance of each exposed
action. Is the “digg it” action as important as the “bury it” action? In the case of Digg, the
answer is no. The “digg it” action is represented as a button and placed prominently in the
context of the story. The “bury it” action is represented as a hyperlink along with other
“minor” actions just below the story. The contrast of a button and a hyperlink as well as its
placement gives a strong indication as to the relative importance of each action.

Tip
If an action is critical, expose it directly in the interface.

Discoverability
Discoverability is a primary reason to choose Always-Visible Tools. On the flip side, it
can lead to more visual clutter. In the case of Digg and Netflix, there is a good deal of vi-
sual space given to each item (story, movie). But what happens when the items you want
to act on are in a list or table?

Generally Contextual Tools in a list work well when the number of actions is kept to a
minimum. Gmail provides a single Always-Visible Tool in its list of messages—the star
rating—for flagging emails (Figure 4-5).

Google Mail uses Contextual tools to flag favoritesFigure 4-5.

Simply clicking the star flags the message as important. The unstarred state is rendered in
a visually light manner, which minimizes the visual noise in the list.

The following list, from Google Reader, takes a different approach. It shows several tools
for managing subscriptions: rename, delete, and change folders for each subscription in
the list. This is convenient but is definitely heavier visually (Figure 4-6).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

84 Chapter 4: Contextual Tools

Google Reader’s Manage Subscriptions page displays lots of actions for each subscription, Figure 4-6.
leading to a visually heavier display

Sometimes concerns over visual noise must take a back seat to discoverability. The Yahoo!
India Our City team struggled with a design early on. They wanted to hide the “email this”
icon and only show it on hover. However, since the site was specifically for India, they
were concerned with how much exposure the population had with simple web interac-
tions like mouse rollover. So instead of hiding the icon, they chose to show it for every
story (Figure 4-7).

Figure 4-7. Yahoo! India Our City was designed for users who were not familiar with mouse rollover;
the email icon is shown at all times

Best Practices for Always-Visible Tools

Here are some best practices to keep in mind:

Make your •	 Contextual Tools always visible if it is important to make a prominent call to
action.
Keep visual clutter to a minimum.•	
Keep the number of visual items to a minimum.•	

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Hover-Reveal Tools 85

Hover-Reveal Tools
Instead of making Contextual Tools always visible, we can show them on demand. One
way to do this is to reveal the tools when the user pauses the mouse over an object. The
Hover-Reveal Tools pattern is most clearly illustrated by 37 Signal’s Backpackit (Figure
4-8). To-do items may be deleted or edited directly in the interface. The tools to accom-
plish this are revealed on mouse hover.

Normal state

The edit and delete tools are hidden in the normal state.

Invitation

On mouse hover, the tools are revealed. The tools are “cut” into
the gray bar, drawing the eye to the change.

Backpackit reveals its additional tools on mouse hoverFigure 4-8.

Considerations
The gray bar on the left is a nice visual reinforcement for the interaction. By allowing the
tools to “cut” into the sidebar, the designers draw your eye to the available tools. The light
yellow background draws attention to the to-do item being acted on. These two simple
treatments make it clear which line has the focus and that additional tools have been
revealed.

Tip
To reduce visual clutter, hide non-primary actions until they are needed.

Visual noise
Showing the items on hover decreases the visual noise in the interface. Imagine if instead
the delete and edit actions were always shown for all to-do items. Figure 4-9 shows just
how visually noisy that approach would have been.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

86 Chapter 4: Contextual Tools

What the Backpackit interface would have looked like if the Contextual Tools were always Figure 4-9.
visible

Yahoo! Buzz reveals its tools on mouse hover for both its Top Searches (Figure 4-10) and
Top Stories (Figure 4-11).

For Top Searches, it is important to keep the top-ten list as simple as possible. Showing
tools would compete with the list itself. Since the actions “Search Results” and “Top Ar-
ticles” (Figure 4-10, right) are less important, they are revealed on hover. The actions may
be important, but making the content clear and readable is a higher priority.

Yahoo! Buzz reveals additional tools for the top searches when the user hovers over each Figure 4-10.

item

Similarly, for Top Stories, Yahoo! Buzz shows only “Share”, “Post”, and “Buzz Down” tools
on hover. “Buzz Up” is shown at all times, but gets extra visual treatment on mouse hover
(Figure 4-11, right). “Buzz Up” is important enough to show at all times, but can be toned
down when not the focus.Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Hover-Reveal Tools 87

Yahoo! Buzz highlights the row and brings in additional toolsFigure 4-11.

Discoverability
A serious design consideration for Hover-Reveal Tools is just how discoverable the ad-
ditional functionality will be. In the earlier Backpackit example (Figure 4-8), while the
Contextual Tools are revealed on hover, the checkbox is always visible for each to-do
item. To check off an item, users have to move the mouse over it. When they do, they will
discover the additional functionality.

Flickr provides a set of tools for contacts. To avoid clutter, contact profile photos are
shown without any tool adornment. When the mouse hovers over the contact’s photo, a
drop-down arrow is revealed (Figure 4-12). Clicking reveals a menu with a set of actions
for the contact. This works because users often know to click on an image to get more
information. Being drawn to the content is a good way to get the user to move the mouse
over the area and discover the additional functionality.

Figure 4-12. Flickr reveals the drop-down menu on hover

Tip
Help users understand revealed tools by using familiar idioms (such as hyperlinks for
actions or drop-down arrows to expose additional functionality).

Yahoo! Mail’s flagging feature is revealed when the user hovers over the flagged column
on a mail message (Figure 4-13). Contrast this to Google’s always-revealed star approach
we discussed earlier (Figure 4-5).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

88 Chapter 4: Contextual Tools

Yahoo! Mail reveals the flag button when the user’s mouse hovers over the flag column of Figure 4-13.
a message

The Yahoo! approach is visually cleaner, but less discoverable. We will have more to say
about making tools discoverable in Chapter 10 when we discuss Dynamic Invitations.

Contextual Tools in an overlay
Sometimes there are several actions available for a focused object. Instead of placing tools
beside the object being acted on, the revealed tools can be placed in an overlay. However,
there can be issues with showing contextual tools in an overlay:

Providing an overlay feels heavier. An overlay creates a slight contextual switch for 1.
the user’s attention.

The overlay will usually cover other information—information that often provides 2.
context for the tools being offered.

Most implementations shift the content slightly between the normal view and the 3.
overlay view, causing the users to take a moment to adjust to the change.

The overlay may get in the way of navigation. Because an overlay hides at least part 4.
of the next item, it becomes harder to move the mouse through the content without
stepping into a “landmine.”

Anti-pattern: Hover and Cover
Figure 4-14 illustrates all four of these situations. In an early version of Yahoo! for
Teachers,* hovering over a clipped item brought in three tools: copy, delete, and preview.
However, when these tools were placed in an overlay, it covered the item to the right, mak-
ing it hard to see that content and even navigate to it. In addition, since the overlay had
some additional padding (as well as rounded corners), the image shown in the overlay
was about two pixels off from the non-overlay version. This slight jiggle was distracting.
To add insult to injury, the overlay was sluggish to bring into view.

* Yahoo! for Teachers was only released in beta and never widely publicized. It was recently closed down, and
another company (edtuit.com) will be launching a similar site.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Hover-Reveal Tools 89

An early version of the Figure 4-14. Yahoo! for Teachers beta revealed Contextual Tools in an overlay;

the overlay covered more than half of the item to its right

The final straw was if users wanted to delete several items, they would hover over the
image, wait for the overlay, click Delete, then be forced to move out and back in again to
activate the next image’s Contextual Tools (Figure 4-15). Hover and Cover is a common
anti-pattern that occurs when exposing an overlay on hover and hiding important context
or further navigation.

Navigating required a zigzag approach to get around the tool overlayFigure 4-15.

Hover and Cover was resolved by no longer using an overlay. Instead, additional margin
space was added to each image, and the Contextual Tools were hidden. On mouse hover,
the tools were simply revealed, along with a border defining the image being acted on
(Figure 4-16).

In the redesigned version, tools were shown on hover directly surrounding the image Figure 4-16.

instead of in an overlay

The difference (Figure 4-14 versus Figure 4-16) is dramatic. Not only is the experience
improved, but overall page performance is improved as well. On mouse hover, the image
no longer shifts in a distracting manner. In redesign, the delete always shows up in the
same place relative to the image; this means the user “remembers spatially” where the
command is, making it easier to target (Figure 4-17).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

90 Chapter 4: Contextual Tools

Since the Delete action appears in the same spot relative to the image, the user can easily Figure 4-17.
anticipate where the action will appear

Tip
Be careful when using overlays to expose additional information or tools. The overlay
can get in the way of normal navigation or hide important information.

Anti-pattern: Mystery Meat
Have you ever found a can in the back of the pantry whose label has long since fallen off?
The only way to identify this mystery meat is to open it. Unidentifiable icons are pretty
much the same as a row of unlabeled cans. You have to hover over each icon and hope for
a tool tip to label it. Even worse is when no tool tip is available. The easiest way to avoid
this predicament is to use either a text label or combine an icon with a text label. Mystery
Meat is a common anti-pattern that occurs when you have to hover over an item to un-
derstand how to use it.

Tip
Don’t make users hover over your tools in order to figure out what they mean.

Figure 4-18 illustrates this in an early version of Zooomr. The only recourse for the user
was to pause over each icon and wait a second or so to read a tool tip about the purpose
of the icon. This does not create a lightweight interaction!

A very early version of Zooomr revealed a number of unidentifiable icons when the mouse Figure 4-18.

hovered over a photo Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Toggle-Reveal Tools 91

Activation
Tool overlays should activate immediately. The tools are an extension of the interface, and
any delay creates too much of a delay between the activation and invocation of the action.
In Chapter 5, we will discuss Dialog Overlays. In that discussion we suggest a delay be-
fore showing informational overlays. Why the difference? Since information may not be
needed to understand the object, and given the fact that activation might be accidental,
it is best to place a small delay when showing the additional information (usually a half-
second delay is sufficient). But actions are different. Following the suggestions just men-
tioned (avoid Hover and Cover anti-pattern), the actions can be revealed without a lot of
disruption. And if they show immediately, the user can access the additional commands
almost as quickly as with Always-Visible Tools.

Best Practices for Hover-Reveal Tools

Here are some best practices to keep in mind:

Hide •	 Contextual Tools behind a mouse hover if the actions are secondary and you want
to make the content more important (or other visible commands more important).
Avoid using overlays when revealing additional tools. They will lead to the •	 Hover and
Cover anti-pattern, as well as require the user to perform mouse gymnastics to accom-
plish the most basic tasks.
When additional tools are revealed, make sure that all parts of the page remain stable. •	
Avoid any element shifting by a few pixels or page elements moving around. These cause •	
the user to be directed away from what is really happening.
Make sure revealed icons are clear and understandable. When possible, just use text •	
labels.
Activate tool overlays instantly. Unlike informational overlays, the user needs the addi-•	
tional tools to be available for immediate interaction.

Toggle-Reveal Tools
A variation on the two previous approaches is to not show any Contextual Tools until a
special mode is set on the page. A good example of Toggle-Reveal Tools is in Basecamp’s
category editing, which we discussed in Chapter 1 (Figure 4-19).Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

92 Chapter 4: Contextual Tools

Not visible

Each category is listed in this section. The “Edit”
link at the top is the way to edit the category
section.

Visible in edit mode

Each category gets a “Rename” link and where
appropriate a trashcan is displayed (for empty
categories that may be deleted).

This is a “soft” mode, since the user can ignore the
additional tools and choose to do something dif-
ferent on the page.

Figure 4-19. Basecamp reveals category-editing tools only when the edit mode is turned on for the area

Considerations
Here are a few considerations to keep in mind when using Toggle-Reveal Tools.

Soft mode
Generally, it is a good thing to avoid specific modes in an interface. However, if a mode is
soft it is usually acceptable. By “soft” we mean the user is not trapped in the mode. With
Basecamp, the user can choose to ignore the tools turned on. It just adds visual noise and
does not restrict the user from doing other actions. This is a nice way to keep the interac-
tion lightweight.

Tip
Interfaces should strive to be modeless. Often, though, a “soft mode” can be employed
to provide context for an action that is easy to activate and easy to remove.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Multi-Level Tools 93

When would you use this technique? When the actions are not the main thing and you
want to reduce visual noise. This fits the category example perfectly. Items are renamed or
deleted occasionally. It is common, however, to want to click through and see the contents
of a category (the category is always hyperlinked). Hence, make it readable and easily nav-
igable in the normal case—but still give the user a way to manage the items in context.

Google Reader could potentially be improved in this manner. In the current interface,
clicking “Manage Subscriptions” takes the user to another page to edit subscriptions. One
possible change is the addition of an “edit” button that toggles in a set of context tools for
each subscription (Figure 4-20). This would allow the user to rename and unsubscribe
without leaving the context of the reading pane.

Adding an “edit” link to Google Reader’s feed list and toggling in common actions could Figure 4-20.

potentially make it easier to manage subscriptions

Best Practices for Toggle-Reveal Tools

Here are some best practices to keep in mind:

Toggle a tool mode for an area or page when the actions are not the main flow, but you •	
want to provide the most direct way to act on these objects when the need arises.
Make the activation and deactivation of the edit mode as symmetrical as possible.•	
Keep the transition between display and edit as seamless as possible to provide a “soft •	
mode” for editing.

Multi-Level Tools
Contextual Tools can be revealed progressively with Multi-Level Tools. Songza* provides
a set of tools that get revealed after a user clicks on a song. Additional tools are revealed
when hovering over the newly visible tools (Figure 4-21).

* Aza Raskin is the designer of Songza, founder of Humanized. He is the son of the late human-computer inter-
face expert Jef Raskin.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

94 Chapter 4: Contextual Tools

Normal state

The tools are not visible normally.
Mouse hover just highlights the
song—it does not reveal the Con-
textual Tools.

Click activation

On mouse click, a cloverleaf-style
menu is shown with the four basic
functions: play, rate, add, and share.

Hover expose

Second-level actions are exposed
while hovering over share or rate.

Songza uses a multi-level contextual tool menuFigure 4-21.

Considerations
Songza reveals the four options “play”, “rate”, “share”, and “add to playlist” after the user
clicks on a song title. Hovering over “share” or “rate” reveals a secondary set of menu items
(Figure 14-21, center).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Multi-Level Tools 95

Radial menus
Radial menus* such as in Songza have been shown to have some advantages over more
traditional menus. First, experienced users can rely on muscle memory rather than hav-
ing to look directly at the menu items. Second, the proximity and targeting size make the
menu easy to navigate since the revealed menu items are all equally close at hand (recall
Fitts’s Law).

The one potential downside to this approach is that rating a song requires several steps: an
initial click on the song, moving the mouse over the “rate” menu item, then clicking either
the thumbs up or thumbs down option. If rating songs was an important activity, the extra
effort might prevent some users from doing so. An alternate approach would be to replace
“rate” directly with the thumbs up and the thumbs down options.

Activation
Another interesting decision Songza made was to not activate the radial menu on hover.
Instead, the user must click on a song to reveal the menu. Activating on click makes the
user intent more explicit.

Making activation more explicit avoids the issues described earlier in the Hover and Cov-
er anti-pattern. The user has chosen to interact with the song. Conversely, with a mouse
hover, it’s never quite clear if the user meant to activate the menu or just happened to
pause over a song title.

Default action
However, this does mean there is no way to start a song playing with just a simple click.
Playing a song requires moving to the top leaf. One possible solution would be to place the
“play” option in the middle of the menu (at the stem) instead of in one of the leaves. Click-
ing once would activate the menu. Clicking a second time (without moving the mouse)
would start playing the song. This interaction is very similar to one commonly used in
desktop applications: allowing a double-click to activate the first item (default action) in
a right-click menu.

Tip
Keep the most common actions as near to the activation point as possible.

* Also known as pie menus. See Jack Callahan et al. (1988), “An empirical comparison of pie vs. linear menus.”
Proceedings of ACM CHI Conference on Human Factors in Computing Systems: 95–100.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

96 Chapter 4: Contextual Tools

Contextual toolbar
Picnik is an online photo-editing tool that integrates with services like Flickr. In all, there are
six sets of tools, each with a wide range of palette choices. Picnik uses Multiple-Level Tools
to expose additional functionality. By wrapping the photo with tools in context and progres-
sively revealing the levels of each tool, Picnik makes editing straightforward (Figure 4-22).

Picnik wraps layers of Contextual Tools around the image being editedFigure 4-22.

Muttons
Another variation on Multi-Level Tools is the “mutton” (menu + button = mutton). Mut-
tons are useful when there are multiple actions and we want one of the actions to be the
default. Yahoo! Mail uses a mutton for its “Reply” button (Figure 4-23).

Normal state

Yahoo! Mail displays the “Reply” mutton in its toolbar as a button
with a drop-down arrow control.

As a button

On mouse hover, the button gets a 3D treatment and color high-
light. The drop-down arrow gets the same treatment to call out its
functionality.

Clicking the “Reply” button at this point will trigger a reply without
activating the menu.

As a menu

Clicking on the drop-down arrow reveals two commands: “Reply
to Sender” is the same as the default “Reply” button action; “Reply
to All” is an additional action that was hidden until the menu was
revealed.

Yahoo! Mail’s “Reply” button looks like a drop-down when hovered over; clicking “Reply” Figure 4-23.
replies to sender, and clicking the drop-down offers the default action as well as “Reply to All”

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Multi-Level Tools 97

Clicking “Reply” performs the individual reply. To reply to all, the menu has to be acti-
vated by clicking on the drop-down arrow to show the menu.

Muttons are used to:

Provide a default button action (“Reply to Sender”)•	

Provide a clue that there are additional actions•	

Provide additional actions in the drop-down•	

If muttons are not implemented correctly, they can be problematic for those using acces-
sibility technologies. Because an earlier version of Yahoo! Mail did not make the mutton
keyboard accessible, Yahoo!’s accessibility guru, Victor Tsaran, was convinced that there
was no “Reply to All” command in the Yahoo! Mail interface. Only after the mutton was
made more accessible could he find the “Reply” command.

Anti-pattern: Tiny Targets
At the beginning of this chapter, we discussed Fitts’s Law. Recall that the time it takes to
acquire a target is a function of both distance and size. Even if tools are placed close by in
context, don’t forget to make them large enough to target.

Both Flickr and Yahoo! Mail provide a reasonable-size target for the drop-down arrow.
Compare this with the expand/collapse arrow used in an early version of Yahoo! for
Teachers (Figure 4-24).

The Figure 4-24. Yahoo! for Teachers Profile Card info is hidden unnecessarily

Tip
Never use small targets. Make targets large enough to notice and interact with.

The arrow is tiny (8×8 pixels). It is exposed only on hover. Providing Tiny Targets makes
interaction much more difficult. An alternate approach would be to always show a “more
info” link. Clicking it could toggle the additional profile information. Alternatively, pro-
viding a larger target for the arrow would improve its findability and targeting.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

98 Chapter 4: Contextual Tools

Best Practices for Multi-Level Tools

Here are some best practices to keep in mind:

Use •	 Multi-Level Tools when you want to avoid revealing Contextual Tools on a mouse
hover.
Use •	 Multi-Level Tools to make activation explicit.
Use muttons when you have a default action that the user normally takes but alternate •	
actions are still fairly frequent.
Avoid cascades where possible. Users have a hard time maneuvering the various mouse •	
turns that are required to get to these secondary menus.
Keep actions as close to the activation point as possible.•	

Secondary Menu
Desktop applications have provided Contextual Tools for a long time in the form of Sec-
ondary Menus. These menus have been rare on the Web. Google Maps uses a secondary
menu that is activated by a right-click on a route. It shows additional route commands
(Figure 4-25).

Normal view of route

Routes give no indication of additional function-
ality when not hovered over.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Secondary Menu 99

Invitation

When the mouse is over the route, potential
stops are marked with a white circle.

Menu

Right-clicking on the item exposes four com-
mands that act on the point selected: “Add a
destination”, “Zoom in”, “Zoom out”, and “Center
map here”.

Google Maps uses a right-click menu to add new route stops or to adjust the map around Figure 4-25.
the current point on the route

Considerations
Secondary Menus have not been common in web applications.

Conflict with browser menu
One problem is the browser inserts its own right-click menu. Replacing the menu in nor-
mal content areas can confuse users, as they may not know if the standard browser menu
or the application-specific menu will be shown. It will depend on whether it is clear that
an object exists in the interface (as in the route line above), and if the menu is styled dif-
ferently enough to disambiguate the menus.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

100 Chapter 4: Contextual Tools

Discoverability
As a general rule, never put anything in the Secondary Menu that can’t be accomplished
elsewhere. Secondary Menus are generally less discoverable. More advanced items or
shortcuts, however, can be placed in the Secondary Menu as an alternate way to accom-
plish the same task.

Accessibility
Right-click is not the only way to activate a Secondary Menu. You can activate the menu
by holding down the mouse for about one second. This provides a more accessible ap-
proach to popping up a Secondary Menu. This technique is used in the Macintosh Dock.
Clicking and holding down on an application in the dock will reveal the Secondary Menu
without requiring a right-click activation.

Acting on multiple objects
Keep in mind that all of the other Contextual Tools presented in this chapter have a limi-
tation on the number of items they can operate on. Always-Visible Tools, Hover-Reveal
Tools, Toggle-Reveal Tools, and Multi-Level Tools all operate on a single item at a time
(even Toggle-Reveal Tools just shows a tool per item). Secondary Menus are different.
They can be combined with a selection model (as described in Chapter 3) to perform ac-
tions on selected set of items.

Best Practices for Secondary Menus

Here are some best practices to keep in mind:

Place alternate or shortcut commands in •	 Secondary Menus.
Consider activating •	 Secondary Menus by holding down the mouse for one second as an
alternative to right-clicking to show the menu.
Style •	 Secondary Menus differently than the Browser’s standard secondary menu.
Avoid •	 Secondary Menus for all but redundant commands
Avoid •	 Secondary Menus in places where there is little resemblance to a traditional web
page.
Use •	 Secondary Menus for operating on a selected set of objects.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Secondary Menu 101

General Practices for Contextual Tools
To sum up, here are some overall best practices to keep in mind:

Contextual Tools•	 are useful for reducing the user’s path to completing a task. By placing
tools near the point of focus and making these tools easy to activate, you can create a
lightweight interaction.
Use •	 Contextual Tools when you have no way to select elements and operate on them
as a whole.
Use •	 Contextual Tools when you want to shorten the path the user must take to com-
plete a task for an item shown on the page.
Use •	 Contextual Tools when you want to provide a clear call to action at the point of
focus.
Always make your actions as immediate as possible, avoiding additional steps where you •	
can.
Where possible use familiar techniques (hyperlinks, drop-down arrows, buttons) when •	
providing actions in unexpected places (hover-revealed Contextual Tools).
Make the actions clear and direct. Avoid using icons for all but the most obvious (an [x] or •	
a trashcan for delete, for instance).
Use buttons for strong calls to action and links for minor actions.•	
Make sure that targets used to open menus or expand information are suitably sized. •	
Never use 8×8 pixel targets.
Make tools easy to understand, easy to target, and quick to execute. This will make them •	
feel lightweight.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Principle Three

Stay on the Page

Flow
In the book, Flow: The Psychology of Optimal Experience, published by Harper Perennial,
Mihaly Csikszentmihalyi describes the state of “optimal experience” as the times when
people enter a state of concentration so focused it creates a state of effortless control. Athletes
may enter into flow and report the feeling of unself-consciousness as well as rising to the
peak of their abilities. Flow, however, can be broken by a sudden awareness of the sur-
roundings or by some interruption that happens to come along.

Unfortunately, users of our web applications rarely experience this level of happiness. In
fact, the traditional web experience is punctuated with a page refresh each time the user
chooses an action. It’s like watching a play where the curtain comes down between each
line of dialogue. The page refresh creates an artificial break in the action—or a break in
the user’s flow.

Change Blindness
The break can cause visual consequences as well. I recently took some of my children to
the Exploratorium in San Francisco (a wonderful hands-on science museum for all ages).
An exhibit that caught my eye was the one demonstrating change blindness.* A large screen
displayed an image of a store-front typical of those seen in most urban areas, complete
with awning, windows, doors—all of a distinctive style. Then suddenly a new updated im-
age of the store-front replaced the original one. The new image had a slight change from
the original. However, try as I might I could not detect the change. Why? The transition
was punctuated by a very brief (less than a fourth of a second) delay. Showing the origi-
nal image, going blank, then showing the second image made it really hard to detect the
change between the two.

Wikipedia describes change blindness as:

In visual perception, change blindness is the phenomenon where a person viewing a
visual scene apparently fails to detect large changes in the scene.†

* You can see a demonstration of this at http://www.usd.edu/psyc301/ChangeBlindness.htm.
† See http://en.wikipedia.org/wiki/Change_blindness.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.usd.edu/psyc301/ChangeBlindness.htm
http://en.wikipedia.org/wiki/Change_blindness

Fortunately the exhibit included a button to press that removed the “page refresh.” When
I held down this button, the change was obvious.

Including the page refresh in web applications was not the desire of web designers but
rather an artifact of the technology underlying the Web. Each action generated a request
for a new page, which included the refresh break. With this limitation, the ability to pro-
vide a seamless flow-based experience with continuous visual perception to the user was
almost impossible.

However, this is no longer the case. We now have a button we can hold down! With the
rise of Ajax, Flash, and other new technologies, it is possible to perform actions and bring
back results for those actions while remaining on the same page and disturbing none of
the surrounding context.

The principle Stay on the Page gets at the idea of creating a continuous visual perception
that enhances flow nirvana. Given the history of the Web, it is important to always ask
ourselves, “Can we create this experience in context, within the current page?” Some-
times, though, we may answer these questions with a “No.” That can be OK. It is impor-
tant to realize that there are times when switching the page makes more sense than staying
within the page. We will explore these situations in the next few chapters.

In Chapters 5 through 8, we look at four ways to keep the user on the page:

Overlays
Instead of going to a new page, a mini-page can be displayed in a lightweight layer
over the page.

Inlays
Instead of going to a new page, information or actions can be inlaid within the page.

Virtual Pages
By revealing dynamic content and using animation, we can extend the virtual space
of the page.

Process Flow
Instead of moving from page to page, sometimes we can create a flow within a page
itself.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Chapter 5

Overlays

Overlays are really just lightweight pop ups. We use the term lightweight to make a clear
distinction between it and the normal idea of a browser pop up. Browser pop ups are cre-
ated as a new browser window (Figure 5-1). Lightweight overlays are shown within the
browser page as an overlay (Figure 5-2). Older style browser pop ups are undesirable
because:

Browser pop ups display a new browser window. As a result these windows often take •	
time and a sizeable chunk of system resources to create.

Browser pop ups often display browser interface controls (e.g., a URL bar). Due to •	
security concerns, in Internet Explorer 7 the URL bar is a permanent fixture on any
browser pop-up window.

If Figure 5-1. Orbitz used a browser pop-up window for its calendar chooser (it does not), this is how it
might look

By using either Flash or Ajax-style techniques (Dynamic HTML), a web application
can present a pop up in a lightweight overlay within the page itself. This has distinct
advantages:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

106 Chapter 5: Overlays

•	 Lightweight overlays are just a lightweight in-page object. They are inexpensive to
create and fast to display.

The interface for lightweight overlays is controlled by the web application and not •	
the browser.

There is complete control over the visual style for the overlay. This allows the overlay •	
to be more visually integrated into the application’s interface (compare Figures 5-1
and 5-2).

Figure 5-2. Orbitz uses a lightweight DHTML overlay for its calendar chooser; since it does not require
the overhead of a separate browser window, it can pop up quickly and is better integrated into the page
visually

Lightweight overlays can be used for asking questions, obtaining input, introducing fea-
tures, indicating progress, giving instructions, or revealing information. They can be ac-
tivated directly by user events (e.g., clicking on an action, hovering over objects) or be
provided by the web application at various stages in the completion of an action.

Tip
Never use browser overlays. They are expensive to create, hard to control, slower than
lightweight overlays, and visually unappealing.

We will look at three specific types of overlays: Dialog Overlays, Detail Overlays, and
Input Overlays.Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Dialog Overlay 107

Dialog Overlay
Dialog Overlays replace the old style browser pop ups. Netflix provides a clear example
of a very simple Dialog Overlay. In the “previously viewed movies for sale” section, a user
can click on a “Buy” button to purchase a DVD. Since the customer purchasing the DVD
is a member of Netflix, all the pertinent shipping and purchasing information is already
on record. The complete checkout experience can be provided in a single overlay (Figure
5-3).

Activation

Clicking the “Buy” button initiates the
purchase process.

Overlay treatment

The confirmation dialog is shown in a
lightweight overlay. Since the overlay
is modal (interaction is only accepted
in the overlay) the rest of the page is
dimmed down. The user may also can-
cel the purchase.

Figure 5-3. Netflix uses a lightweight pop up to confirm a previously viewed DVD purchase; in
addition, it uses the Lightbox Effect to indicate modality

Considerations
Because the overlay is a lightweight pop up, the confirmation can be displayed more rap-
idly and the application has complete control over its look and placement.

Lightbox Effect
One technique employed here is the use of a Lightbox Effect. In photography a lightbox
provides a backlit area to view slides. On the Web, this technique has come to mean bring-
ing something into view by making it brighter than the background. In practice, this is
done by dimming down the background.

You can see the Lightbox Effect pattern used by Flickr when rotating images (Figure 5-4).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

108 Chapter 5: Overlays

Flickr also uses a Lightbox Effect to focus attention on the overlayFigure 5-4.

The Lightbox Effect is useful when the Dialog Overlay contains important information
that the user should not ignore. Both the Netflix Purchase dialog and the Flickr Rotate
dialog are good candidates for the Lightbox Effect. If the overlay contains optional infor-
mation, then the Lightbox Effect is overkill and should not be used.

Modality
Overlays can be modal* or non-modal. A modal overlay requires the user to interact with
it before she can return to the application. In both the Netflix example (Figure 5-3) and
the Flickr example (Figure 5-4), the overlays are modal: users cannot interact with the
main Netflix or Flickr page until they perform the action or cancel the overlay. In both
cases, modality is reinforced with the Lightbox Effect. Dimming down the background
cues the user that this portion of the interface cannot be interacted with.

Sometimes overlays are non-modal. An example of this can be found in the Netflix site.
When a DVD is added to the user’s shipping list (queue), a confirmation overlay is shown
(Figure 5-5). While it may appear that the only way to dismiss the overlay is by clicking the
“Close” box in the upper-right corner, in reality the user can click anywhere outside the
overlay (in the dimmed area) and the overlay will dismiss. In this case the Lightbox Effect is
used to focus the user’s attention on the confirmation and recommendations available.

* For a discussion on modality, see Jef Raskin’s “The Humane Interface” (2000), 100, 141.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Dialog Overlay 109

Figure 5-5. Netflix uses a non-modal overlay with the Lightbox Effect to focus attention on the
confirmation and recommendation

The Lightbox Effect emphasizes that we are in a separate mode. As a consequence, it is
not needed for most non-modal overlays. As an example, refer back to Figure 5-2, the
Orbitz calendar pop up. Since the overlay is really more like an in-page widget, it would
not be appropriate to make the chooser feel heavier by using a Lightbox Effect.

Tip
Use the Lightbox Effect to emphasize modality or call attention to special information
in an overlay.

Staying in the flow
Overlays are a good way to avoid sending a user to a new page. This allows the user to
stay within the context of the original page. However, since overlays are quick to display
and inexpensive to produce, sometimes they can be tempting to use too freely, and in the
process, may actually break the user’s flow.

Anti-pattern: Idiot Boxes
Alan Cooper states a simple principle:

Don’t stop the proceedings with idiocy.*

* Cooper, Alan and Robert Reimann. About Face 2.0: The Essentials of Interaction Design (Wiley, 1995), 178.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

110 Chapter 5: Overlays

In the context of flow he describes how egregious it is to interrupt the user needlessly:

One form of excise is so prevalent that it deserves special attention…. Flow is a natural
state, and people will enter it without much prodding. It takes some effort to break
into flow after someone has achieved it. Interruptions like a ringing telephone will do
it, as will an error message box. Some interruptions are unavoidable, but most others
are easily dispensable…. Interrupting a user’s flow for no good reason is stopping the
proceedings with idiocy and is one of the most disruptive forms of excise.*

This is a clear anti-pattern that should be avoided. We call these types of overlays Idiot
Boxes.

One of the clearest examples of Idiot Boxes is the way certain confirmation overlays
were used in Yahoo! Photos. When users selected a set of photos and dragged and then
dropped them onto an album, they were treated with not just one confirmation, but with
two (Figure 5-6).

Drag and drop

Photos are added to an album by
drag and drop.

Album on drag over

The album provides no visual feed-
back that it is a valid drop target.

* Cooper, Alan et al. About Face 3: The Essentials of Interaction Design (Wiley, 2007), 228.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Dialog Overlay 111

Add Photos overlay

A confirmation overlay is posted that
asks the users if they really want to
drop the photos onto the album.

Add Complete overlay

Stating the obvious, the overlay re-
peats what just happened. Yes, the
photos were added.

Album after drop

Notice that there is no difference be-
tween the album before or after the
drop.

Figure 5-6. Yahoo! Photos uses unnecessary overlay pop ups to communicate what happens when the
user drops photos into an album

A fundamental problem in this interaction is the lack of clear invitations and feedback at
just the right moment. Lacking feedback when the user drags over the album (to signal
you will be dropping it on the “Paris06” album) and after it has been dropped is often
“remedied” by the heavy-handed use of pop-up overlays to state the obvious. We will
discuss these concepts in more detail in later chapters.

Tip
Mind the interesting moments in an interaction. They can remove the need for Idiot
Boxes.

Using JavaScript alerts
It is tempting to use the alert mechanism built into the browser for some confirmations.
The problem with using this type of alerts is two-fold.

First, they do not present themselves consistently across different operating systems. Un-
der Microsoft Windows they will appear centered in the browser window, but with the
Macintosh they will slide out from under the title bar. Depending on where the action
takes place, users may have to move their mouse a lot further each time they need to dis-
miss the alert (Figure 5-7).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

112 Chapter 5: Overlays

Second, there is no way to control the look and feel of the alert pop up. With lightweight
overlays, any valid web interface can be created to interact with the user.

In an older version of Figure 5-7. Google Reader, the JavaScript alert box displays differently on a

Microsoft Windows PC versus a Macintosh

The alert shown in Figure 5-7 has recently been replaced with a lightweight overlay (Fig-
ure 5-2).

Best Practices for Dialog Overlay

Here are some best practices to keep in mind:

Always use •	 Dialog Overlays instead of browser pop ups.
Use the •	 Lightbox Effect when the overlay contains important information, if the user
should not ignore it, or if the interaction with the dialog should be modal.
Avoid unnecessary •	 Dialog Overlays (Idiot Boxes), as they interrupt the user’s flow.
Don’t use an overlay when a simpler, in-page interaction would suffice (see discussion in •	
the next chapter on Inlays).
Avoid JavaScript alert boxes, as they don’t provide a consistent user experience between •	
operating systems.

Detail Overlay
The second type of overlay is somewhat new to web applications. The Detail Overlay al-
lows an overlay to present additional information when the user clicks or hovers over a
link or section of content. Toolkits now make it easier to create overlays across different
browsers and to request additional information from the server without refreshing the
page.

Taking another example from Netflix, information about a specific movie is displayed as
the user hovers over the movie’s box shot (Figure 5-8).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Detail Overlay 113

Box shots

In the more recent versions of the Netflix site, large box
shots are employed without synopsis text. Box shots convey
a lot of information.

Detail overlay activation

However, often more information is needed to decide
whether a movie should be played or added to a movie
queue.

By providing a synopsis along with personalized recom-
mendation information, the user can quickly make a
 determination.

The movie detail information is displayed after a slight delay.

Detail overlay deactivation

Moving the mouse outside the box shot immediately re-
moves the movie detail information.

Netflix shows “back of the box” information in an overlay as the user hovers over a movie’s Figure 5-8.
box shot

Considerations
The overlay provides a nice way to reveal a synopsis for a movie. In a sense it is like flip-
ping over the DVD box and reading what is on the back.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

114 Chapter 5: Overlays

Activation
The overlay is displayed when the mouse hovers over a box shot. There is about a half-
second delay after the user pauses over a movie. The delay on activation prevents us-
ers from accidentally activating the overlay as they move the cursor around the screen.
Once the user moves the cursor outside the box shot, the overlay is removed immediately.
Removing it quickly gives the user a fast way to dismiss it without having to look for a
“Close” box.

Tip
For Detail Overlays activated by a mouse hover, provide a slight delay before displaying.

You can find the same interaction style employed on Yahoo! News. When the user hovers
over news story links in various areas (like Most Popular), a sneak peek shows the news
photo and lead of the story (Figure 5-9).

Figure 5-9. Yahoo! News reveals more about a story without a user having to click to another page

In both cases the user is given the additional context to make a decision about what to
do next. In the case of Netflix, a movie’s description or rating prediction may lead to the
user renting the movie. With Yahoo! News, since click-throughs to news stories are more
intentional, the user will be taken to stories that interest him. This creates a sense of user
satisfaction and control, both of which are ingredients to a good user experience.

Anti-pattern: Mouse Traps
It is important to avoid activating the Detail Overlay too easily. We have seen usability
studies that removed the delay in activation, and users reported that the interface was “too
noisy” and “felt like a trap”. We label this anti-pattern the Mouse Trap.

The reasoning for this is not clear, but Amazon uses the Mouse Trap anti-pattern in one of
its “associate widgets”. In Figure 5-10 the link “Ray! Original Motion Picture Soundtrack”
activates an overlay providing information on the soundtrack and a purchase option. Pre-
sumably, this approach is intended to drive purchases—but it also presents an annoying
experience.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Detail Overlay 115

Amazon shows a book-buying widget on simple hover—but requires clicking the “Close” Figure 5-10.
box to dismiss it

Anti-pattern: Non-Symmetrical Activation/Deactivation
When the user moves her mouse over the link, the overlay springs up immediately. The
only way she can remove the overlay is by clicking the small close button in the upper
right. Using Non-Symmetrical Activation/Deactivation is also a general anti-pattern
that should be avoided. It should take the same amount of effort to dismiss an overlay as
it took to open it.

Compare the Amazon approach to both the Netflix and Yahoo! News approaches. The
activation is slightly harder (pause, slight delay) than the deactivation (immediate when
mouse is moved away).

Tip
Make activation and deactivation symmetrical interactions.

Another example of Non-Symmetrical Activation/Deactivation turns up in a previous ver-
sion of Yahoo! Foods (Figure 5-11). To see all main ingredients for a recipe, the user clicked
a red arrow. This activated an overlay with the ingredients. However, clicking on the arrow
again did not collapse the overlay. Instead, the user had to click on the close button (red X).

Figure 5-11. Yahoo! Foods All Main Ingredients drop-down is activated by clicking on the arrow and
can only be deactivated by clicking the close button (X)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

116 Chapter 5: Overlays

Anti-pattern: Needless Fanfare
One of the advantages of a lightweight overlay is the ability to pop it up quickly. After a
slight delay in activation (recall the half-second delay used by Netflix), you would not
want or need the overlay to come up slowly. But in the case of Borders online, this is pre-
cisely the approach taken (Figure 5-12). First the activation is immediate (no delay). This
creates the noisy, mouse-trap interface just discussed. Second, there’s a needless anima-
tion that zooms the box up into place and then back down when the mouse moves away
from a book. Needless Fanfare is an anti-pattern to avoid.

Each Detail Overlay is preceded by the Needless Fanfare of a one-second animation that Figure 5-12.

zooms the information into place

The animation takes a full second to complete. Instead of delaying before activation, it de-
lays after activation. Perhaps the design team thought that the animation tied the details
to the item it zoomed out from. However, the Netflix approach simply creates a bubble
effect that points back to the item it is revealing information for (Figure 5-7, right).

Tip
Once activated, show Detail Overlays immediately without fanfare.

Anti-pattern: Hover and Cover
We discussed the anti-pattern Hover and Cover in Chapter 2, and it’s important to keep
this anti-pattern in mind when providing a Detail Overlay. In the Netflix example (Figure
5-7), the overlay does not get in the way of moving to the next box shot. Even though it
covers the neighboring box shot, moving the mouse outside the original one removes the
overlay immediately, providing a clear path to get an overlay on the next box shot.

Compare this to the Detail Overlay provided by barnesandnoble.com (Figure 5-13).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Detail Overlay 117

Product display

On the Barnes & Noble home page,
books are displayed with lots of detailed
information.

Detail Overlay

The Detail Overlay is an exact copy of
the information displayed on the page.
Also notice that the overlay covers most
of the other item (Mad Men).

Figure 5-13. Barnes & Noble does not need Detail Overlay since the information is exactly the same as
displayed on the page

Barnes & Noble uses a Detail Overlay in a completely useless manner. The overlay con-
tains exactly the same information that the page already contained! Not only that, but the
overlay almost completely obscures the other item displayed on the page. It also creates an-
other common problem—the book image (dictionary) in the overlay is not positioned the
same as the book image on the page (about 12 pixels difference). The shift causes the annoy-
ing illusion that the book is wiggling back and forth, which detracts from the experience.

On the other hand, AOL Finance provides a very nice example of pulling detailed stock
information into an overlay that fits in a seamless manner, provides additional informa-
tion, and does not cover up the navigation to the next item that might be of interest
(Figure 5-14).Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

118 Chapter 5: Overlays

AOL Finance provides additional information without preventing other navigation; the Figure 5-14.

detail is activated by clicking on the blue arrow button

Best Practices for Detail Overlay

Here are some best practices to keep in mind:

Use •	 Detail Overlays to give a sneak peek at detailed information. This will avoid unneces-
sary page transitions.
For hover-activated •	 Detail Overlays, provide a slight delay for activation (about half a
second). This will avoid the interface behaving like a Mouse Trap.
For hover-activated •	 Detail Overlays, provide a simple deactivation (e.g., simple mouse
out).
For •	 Detail Overlays, make activation and deactivation symmetrical (don’t make it harder
to get out of the overlay than it was to activate it).
Once activated, avoid lengthy animations or effects that delay showing a •	 Detail Overlay.
Use hover when clicking the object is reserved for a different action. In Yahoo! News, click-
ing on the link takes you to the news story page. Hovering gives you a sneak peek.
Use hover when it is not obvious how to get more information. If you use hover to activate •	
the details, you don’t need additional user interface controls for activation.
Use click if you prefer to make getting details more explicit. Usually you will couple this •	
with a “see more” or a button that exposes more detail. Yahoo! Foods (Figure 5-11) uses a
red arrow to indicate drop-down information. AOL Finance uses a blue arrow button to
indicate more information (Figure 3-10).
Use click if you will be providing additional links inside the overlay. Trying to keep an over-•	
lay in place (that was activated by hover) and click a link inside it is difficult.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Input Overlay 119

Input Overlay
Input Overlay is a lightweight overlay that brings additional input information for each
field tabbed into. American Express uses this technique in its registration for premium
cards such as its gold card (Figure 5-15).

Input form

The form is displayed with simple
prompt/input for each field. No ad-
ditional help information is shown
statically.

Input overlay

Tabbing or clicking into any field
wraps the field in an overlay. The
overlay provides additional input
information.

Obscuring fields

The overlay does obscure fields just
below it, but not to the left or right.

Deactivation

Clicking anywhere removes the over-
lay. This lets the user click through
the field covered by the overlay.

American Express provides Input Overlays to guide the user through the signup processFigure 5-15. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

120 Chapter 5: Overlays

Considerations
There are a few things to keep in mind when using Input Overlays.

Clear focus
As the user tabs or clicks from field to field, the field gets wrapped in an overlay. The over-
lay contains additional input help information. This allows the normal display of the form
to be displayed in a visually simple manner (just prompts and inputs). The overlay creates
focus on the given input field. Instead of seeing an ocean of inputs, the user is focused on
just entering one field.

Display versus editing
Additionally, when the Input Overlay is shown, the prompt is displayed in exactly the
same manner as when the overlay doesn’t show. This is critical, as it makes the overlay feel
even more lightweight. If the overlay prompt were bold, for example, the change would
be slightly distracting and take the focus away from input. The only difference between
the non-overlay field and the overlay version is a slightly thicker input field border. This
draws the eye to the task at hand—input.

Anti-pattern: Hover and Cover
But what about the anti-pattern, Hover and Cover? Doesn’t this cause the same issues
that we saw earlier? For example, in Figure 5-15 (“Obscuring fields”), the “Name on Card”
overlay hides the “Home Apt/Suite#” and “Home Phone Number Fields” fields below it.
There are several reasons that American Express was able to employ this overlay in forms
and “get away” with covering some fields during input:

Field traversal
The field traversal is side-to-side. The overlay for the “First Name” field (Figure 5-15,
“Input overlay”) does not obscure the next field, “Last Name”.

Tab navigation
Since tabbing is a primary navigation for forms, the mouse is not needed to navigate.
This allows navigation to fields even if they were covered.

One-click deactivation
Clicking anywhere hides the overlay. That means that when the “Name on Card”
overlay is shown (Figure 5-15, “Obscuring fields”), clicking anywhere in the “Home/
Apt Suite#” field will remove the overlay, allowing the user to click in the previously
hidden field (Figure 5-15, “Deactivation”).
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Input Overlay 121

Two additional touches that would help with field-covering issues include:

Give the overlay a slight translucency in order to faintly reveal the fields below.•	

Allow a click deactivation to not only deactivate the overlay but click through to the •	
field that was clicked over. This allows the user to click into a field shown through
the overlay.

Best Practices for Input Overlay

Here are some best practices to keep in mind:

Use •	 Input Overlays to simplify the visual style of a form. Place additional help in the
overlay.
For •	 Input Overlays, make sure the only visual change between the field and the overlay
field is intentional (e.g., making input field visually bolder).
For •	 Input Overlays, allow clicking anywhere to deactivate the overlay.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Chapter 6

Inlays

Not every bit of additional control, information, or dialog with the user needs to be an
overlay. Another approach is to inlay the information directly within the page itself. To
distinguish from the pop-up overlay, we call these in-page panels Inlays.

Dialog Inlay
A simple technique is to expand a part of the page, revealing a dialog area within the page.
The BBC recently began experimenting with using a Dialog Inlay as a way to reveal cus-
tomization controls for its home page (Figure 6-1).

Activation

The “Customize homepage”
button activates the cus-
tomization inlay.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

124 Chapter 6: Inlays

Customization inlay (slide)

The inlay slides into view.

Customization inlay

The additional customization
controls for the BBC home
page are shown directly in
context with the rest of the
page.

The BBC home page puts its customization tools in an inlay that slides out when activatedFigure 6-1.

Considerations
Of course an overlay could have been used instead. However, the problem with overlays
is that no matter where they get placed, they will end up hiding information. Inlays get
around this problem by inserting themselves directly into the context of the page.

Tip
Inlays provide in-context dialog with the user.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Dialog Inlay 125

In context
This Dialog Inlay is similar to a drawer opening with a tray of tools. Instead of being tak-
en to a separate page to customize the home page appearance, the user can make changes
and view the effects directly. The advantage is the ability to tweak the page while viewing
the actual page.

My Yahoo! also provides a Dialog Inlay for revealing its home page customization tools.
The original version of My Yahoo! did not use this approach. Instead, customizations
would take the user away to a separate page (Figure 6-2).

In an original version of Figure 6-2. My Yahoo!, clicking on “Change Colors” takes you to a separate

page to customize colors

Figure 6-3 shows the new My Yahoo!, incorporating an Dialog Inlay that slides into place
to reveal customization tools for changing the page’s appearance.

My Yahoo! allows the page to be customized inline by using an Inlay Dialog panel that Figure 6-3.
slides into view

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

126 Chapter 6: Inlays

Here’s one more example, which shows how a Dialog Inlay can be used to operate on spe-
cific objects within an interface. In Yahoo! Bookmarks, selected bookmarks can be edited,
deleted, etc. Because a pop up will often hide the items being operated on (the user ends
up having to move the dialog pop up out of the way to make sure the right object is being
deleted), an inlay can work nicely when tied in with a toolbar (Figure 6-4).

Toolbar + selected items

Two bookmarks are select-
ed. The toolbar at the top
operates on the selected
 bookmarks.

Edit tags

Clicking the “Edit Tags” but-
ton slides an “Edit Bookmark
Tags” panel into place. The
panel provides full editing
for the selected bookmarks.
The bookmarks gallery is still
visible.

In Figure 6-4. Yahoo! Bookmarks, clicking “Edit Tags” expands a Dialog Inlay for editing the two
bookmarks selected

By being in proximity to the toolbar and keeping the objects visible, the Dialog Inlay pro-
vides a clear way to expose additional interface elements in context. In all of the previous
examples, the panel is revealed with an animated slide in transition. This provides a nice
way to smooth out the experience (we will discuss transitions in Chapters 11 and 12).Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

List Inlay 127

Best Practices for Dialog Inlay

Here are some best practices to keep in mind:

Use •	 Dialog Inlays for page customization. It is helpful to tweak the page and see the
results at the same time.
To smooth the introduction of the •	 Dialog Inlay into the page, use a quick slide in
 animation.
Use •	 Dialog Inlays to connect the dialog with the element it slides out from.
Use •	 Dialog Inlays for secondary tools that aren’t primary to the main flow of the page.

List Inlay
Lists are a great place to use Inlays. Instead of requiring the user to navigate to a new page
for an item’s detail or popping up the information in an Overlay, the information can be
shown with a List Inlay in context. The List Inlay works as an effective way to hide detail
until needed—while at the same time preserving space on the page for high-level over-
view information.

Google Reader provides an expanded view and a list view for unread blog articles. In the
list view, an individual article can be expanded in place as a List Inlay (Figure 6-5).

Google Reader list view

In list view, articles are shown as a
list of blog article titles.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

128 Chapter 6: Inlays

Inlay list

Clicking on a single article ex-
pands it in place, in context with
the rest of the list.

In list view, Google Reader shows all articles as a collapsed list—except for the one that is Figure 6-5.
currently selected

Considerations
By allowing the reader to move through a list of article titles (by mouse or keyboard),
the articles can be scanned quickly so she can decide which should be looked at in detail.
Clicking on an article title expands the article in place. Showing one item at a time focuses
the reader on the current content.

Tip
Expanding content in context is a powerful way to help users understand information.
It follows the principle of focus+context.*

Accordion: One-at-a-time expand
The Accordion is an interface element that employs the List Inlay pattern to show only
one open panel in a list at a time. The following weather widget demo uses weather.com
to display real-time weather information in an accordion (Figure 6-6).

* Focus+context enables users to see the object of interest in full detail while at the same time getting a overview
of the surrounding context. It is also related to Jenifer Tidwell’s design pattern, “Overview Plus Detail,” de-
scribed in her book Designing Interfaces (O’Reilly).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

List Inlay 129

One panel at a time

The weather demo uses an accordion to display a single panel
of weather-related information at a time.

Opening and closing

Opening a new panel (“Current Conditions”) closes the previous
panel (“Moon”).

The sliding transition makes it clear which panel is being
switched to.

One panel at a time

It is important that the accordion control stay the same height
throughout the sliding transition.

The Figure 6-6. weather demo illustrates the way an accordion works: only one panel is revealed at a
time

In this example, the accordion allows only one weather pane to be visible at a time. When
a pane is activated it slides open, simultaneously closing the previously open panel.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

130 Chapter 6: Inlays

Accordions work best when:

Each pane of content is independent•	

Only one pane is visible at a time•	

Each pane can be logically titled•	

Accordion: More than one pane visible at a time
You may want to allow multiple panes to be visible at a time if:

Detail panes provide context for one another•	

The vertical height of the accordion area is not fixed•	

Different panels of content may be different heights•	

Parallel content
The Yahoo! Autos Car Finder tool (Figure 6-7) uses an accordion-style interaction for
search filters that allows more than one pane to be open at a time. This choice makes sense
because the decisions needed for one detail pane may be affected by the details of another
pane. However, one problem with this specific implementation is the lack of information
when a pane is closed. For example, no summary information is given for the “Price” tab.
Looking at that button, it is not clear whether search criteria has been set or what it might
be set to without first opening the pane.

Yahoo! Autos places filter criteria in Accordion panes; when panes are hidden, no summary Figure 6-7.

information is provided

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

List Inlay 131

Wine.com takes the opposite approach (Figure 6-8). Each area is initially open. All filters
are displayed. As the user selects filters, the area collapses partially to show the results of
filtering. This strategy accomplishes a few things. First, it gets rid of detail progressively—
unnecessary information is hidden. Second, it invites the user to interact with the hidden
content (with the “view all” link). Third, it provides summary information for panels that
do not need to be opened as often.

Figure 6-8. Wine.com never closes a pane completely; as filters are selected, it partially closes and
summarizes the choices

Accordions can also be horizontally oriented. This is usually best done in nontraditional
interfaces. A good example is the Xbox 360 interface (Figure 6-9).

The Figure 6-9. Xbox 360 provides a novel menu interface by using a horizontal accordion

Even though the previous examples vary in visual and interaction styles, they all share the
List Inlay pattern as a basic approach to revealing additional content in the context of the
existing page.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

132 Chapter 6: Inlays

Best Practices for List Inlay

Here are some best practices to keep in mind:

Use •	 List Inlay when the context of the other items in the list help the user understand
the visible inlay.
Use •	 List Inlay to avoid having users navigate to a new page or popping up an overlay to
see an item’s detail.
Restrict it to show only a single item when you need to preserve space and the hidden •	
content is not critical to the opened content.
Allow multiple items to be visible for parallel content (like filters in a search).•	

Detail Inlay
A common idiom is to provide additional detail about items shown on a page. We saw this
with the example of the Netflix movie detail pop up in Chapter 5 (Figure 5-8). Hovering
over a movie revealed a Detail Overlay calling out the back-of-the-box information.

Details can be shown inline as well. Roost allows house photos to be viewed in-context for
a real estate listing with a Detail Inlay (Figure 6-10).

In-context tools

Hovering over a real estate list-
ing brings in a set of in-context
tools, including the “View pho-
tos” tool.

House photos inlay

Clicking on the “View photos”
link expands the real estate
item to include a carousel of
house photos.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Detail Inlay 133

Detail overlay

The Detail Inlay contains
thumbnails of house pho-
tos. Clicking on an individual
thumbnail pops up a Detail
Overlay with a larger photo of
the house.

Figure 6-10. Roost provides both Detail Inlay and Detail Overlay patterns to show home photos

Considerations
One of the more difficult things to do on most real estate sites is get a view of the house
in context without having to navigate from page to page. The curb appeal, inside view,
and backyard are all key factors in driving interest for a house. Knowing this, the team at
Roost wanted to make it really easy to get to the photos quickly.

Combining inlays and overlays
Roost’s solution was to combine several patterns. First, it uses the Hover Reveal, a Con-
textual Tools pattern, to reveal a set of tools when the user hovers over a listing. Second, it
uses the Detail Inlay pattern to show a carousel of photos when the user clicks on the “View
photos” link. And finally, it uses a Detail Overlay to blow up a thumbnail when clicked on.

Compare this to the traditional approach, one that requires the user to navigate from the
listing page to a photo page and back again. The Roost team actually expended a Hercu-
lean effort in setting up this convenience, as it is dealing with hundreds of MLS listings
with different contractual requirements for displaying real estate photos. The Roost team
worked out the difficulties behind the scenes to create a nice user experience.

Best Practices for Detail Inlay

Here are some best practices to keep in mind:

Use •	 Detail Inlay to provide additional information in context without hiding other
 information.
Use •	 Detail Inlay to avoid the anti-pattern Hover and Cover.
Make it easy to dismiss the •	 Detail Inlay.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

134 Chapter 6: Inlays

Tabs
Lest we forget, there are some very traditional interface elements that can be used to inlay
details. Tabs, for instance, can be used as a Detail Inlay. Instead of moving the user from
page to page (site navigation), tabs can be used to bring in content within the page, keep-
ing the user in the page.

Considerations
In Figure 6-11 you can see not just one type of tab for Yahoo!’s home page, but three!
Three different tab styles and interactions can be confusing. In fact, user-testing revealed
this to be the case. However, the design sidestepped some of the problem by giving the
three tab areas each a different visual style. Let’s look at each type of tab interaction.

Figure 6-11. Yahoo’s home page employs three different Tab styles to encourage exploration of
additional content

Traditional tabs
The Featured, Entertainment, Sports, and Video sections are styled as a traditional tab
notebook (Figure 6-11, callout 1). Going from section to section requires the user to
click on the corresponding tab. Most studies on tabs find that the first and second tabs get
the most activity and the subsequent tabs get clicked less frequently. This is the rationale
for placing the “Featured” content first.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Tabs 135

Content tabs
Each section has four featured stories. In this example, the “Cute hamster” is tied to the
thumbnail and story lead (Figure 6-11, callout 2). Clicking on a story lead switches the
content inside the tab. Effectively this is a secondary tab control, but visually it appears as
a content story. By switching in the story without leaving the page, the user can get a peek
at the top stories.

Personal assistant tabs
On the right side of the page, Yahoo! provides what it calls a Personal Assistant. Each tab
in this area (Mail, Messenger, etc.) is activated by hovering over the tab. In our example
the mouse is hovered over the Mail tab (Figure 6-11, callout 3) and it automatically ex-
pands open. Clicking on the link actually takes the user to Yahoo! Mail.

The three types of tabs vary greatly, visually and interactively. However, Yahoo! is able to
pull this off because:

Normal users of Yahoo! will discover these interactions over time.•	

Creating the contrast makes a more visually compelling interface, as well as making •	
the interaction feel deeper (inviting exploration).

It is a great improvement over the old Yahoo! home page, which was completely static. •	
Every link took the user to a different page. Keeping users on the page until they are
ready to leave actually creates a happier user experience.

Best Practices for Tabs

Here are some best practices to keep in mind:

Use tabs to display additional content inline.•	
Avoid using multiple tabs on a single page.•	
If you do use more than one set of tabs on a page, create a visual contrast to distinguish •	
the tab content areas.
Put the most important content in the first tab. Many users may not navigate to any of •	
the other tabs.
Activate tabs with mouse click.•	
If revealing the content on other tabs is important, you can activate tabs on hover—but •	
use this sparingly as it can be annoying (e.g., personal assistant tab on the Yahoo! home
page).Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

136 Chapter 6: Inlays

Inlay Versus Overlay?
In these last two chapters we discussed overlays and inlays. How do we choose which
makes sense in our interface? The following guidelines provide some suggestions on
which to choose in a given situation:

Use an overlay when there may be more than one place a dialog can be activated from •	
(the exception may be showing details for items in a list).

Use an overlay to interrupt the process.•	

Use an overlay if there is a multi-step process.•	

Use an inlay when you are trying to avoid covering information on the page needed •	
in the dialog.

Use an inlay for contextual information or details about one of many items (as in a •	
list): a typical example is expanding list items to show detail.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Chapter 7

Virtual Pages

Overlays allow you to bring additional interactions or content in a layer above the cur-
rent page. Inlays allow you to do this within the page itself. However, another powerful
approach to keeping users engaged on the current page is to create a virtual page. That is
to say, we create the illusion of a larger virtual page.

Tip
Think of the interface as a children’s pop-up book. Additional real estate can be called
on as needed to extend the interface.

Patterns that support virtual pages include:

Virtual Scrolling•	

•	 Inline Paging

•	 Scrolled Paging

•	 Panning

•	 Zoomable User Interface

Virtual Scrolling
The traditional Web is defined by the “page.” In practically every implementation of web-
sites (for about the first 10 years of the Web’s existence) pagination was the key way to get
to additional content. Of course, websites could preload data and allow the user to scroll
through it. However, this process led to long delays in loading the page. So most sites kept
it simple: go fetch 10 items and display them as a page and let the user request the next
page of content. Each fetch resulted in a page refresh.

The classic example of this is Google Search. Each page shows 10 results. Moving through
the content uses the now-famous Google pagination control (Figure 7-1).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

138 Chapter 7: Virtual Pages

The now-famous Google pagination control illustrates the most common way to move Figure 7-1.
through data on the Web

Another approach is to remove the artificial page boundaries created by paginating the
data with Virtual Scrolling. In Yahoo! Mail, mail messages are displayed in a scrolled list
that loads additional messages on demand as the user scrolls (Figure 7-2).

Scrolled list

Email messages are displayed as
a scrolled list. This has been the
normal approach on desktop mail
clients. Yahoo! Mail brings that ap-
proach to the Web.

Scrolling

Messages are loaded on demand. As
the user scrolls, the content items
are filled in. While loading, the mes-
sage lines are replaced with the text
“Loading…”.

Scroll completes

Messages are displayed based on
where the user scrolled to.

Instead of showing just the messages that can be displayed on a single page, Yahoo! Mail Figure 7-2.
dynamically loads messages as the user scrolls

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Virtual Scrolling 139

Considerations
In some sense Virtual Scrolling turns the scrollbar into a “pagination control.” But in-
stead of a page refresh, the messages are seamlessly brought into the message-list pane,
giving the illusion of a larger virtual space.

Desktop-style applications
In testing Virtual Scrolling, Yahoo! found that users naturally understood the scrolling
paradigm, most likely because they were already accustomed to this feature on desktop
mail clients. Since the Yahoo! Mail Web application looks very similar to desktop web ap-
plications, the expectation for scrolling already exists in the user’s mind.

Tip
The more the web application looks and behaves like a desktop application, the more
intuitive desktop idioms (like Virtual Scrolling) are to the user.

Loading status
There are a few downsides to the Yahoo! Mail version of Virtual Scrolling. First, if the
loading is slow, it spoils the illusion that the data is continuous. Second, since the scrollbar
does not give any indication of where users are located in the data, they have to guess how
far down to scroll. A remedy would be to apply a constantly updating status while the user
is scrolling.

Progressive loading
Microsoft has applied Virtual Scrolling to its image search. However, it implements it in
a different manner than Yahoo! Mail. Instead of all content being virtually loaded (and
the scrollbar reflecting this), the scrollbar reflects what has been loaded. Scrolling to the
bottom causes more content to load into the page (Figure 7-3).

Scrolled list

12,500,000 image results are represented as a scrolled
list. Obviously there is no way to accurately represent
that many items in a list with a scrollbar. Notice the
scrollbar shows size relative to the amount of data that
has been loaded.Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

140 Chapter 7: Virtual Pages

Scrolling

By scrolling into the area where results have not been
loaded, images are initially represented as gray squares
to indicate that they are currently not loaded.

As each image is loaded it replaces the gray squares.

At the top, the start and end range of the visible im-
ages is displayed (“Images 46–70 of 12,500,00”).

Scroll completes

Image results are fully loaded, and the scrollbar is up-
dated to reflect where this page is in relation to the
previously loaded content.

Figure 7-3. Microsoft Live Image Search uses Virtual Scrolling to fetch additional search results

The Live Image Search approach does a nice job of eliminating paging. It gets around the
“Where am I?” issue by progressively loading and dynamically adapting the scrollbar to
reflect how much has been loaded.

Tip
Use progressive loading of content when the data size is large or unknown.

This type of Virtual Scrolling (where the scrollbar only reflects what has been directly
loaded) works well for search results since relevance starts dropping off the further you
move through the data. But with mail messages, this is not the case and would not be a
good approach since users need to access messages beyond just those loaded at the top.
The Microsoft approach also provides no way to jump to the bottom (although in this
case the option is not needed since the end of all results has little or no relevance).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Virtual Scrolling 141

One more example illustrates an endless wall of pictures and uses a novel approach to a
scrollbar control for Virtual Scrolling. PicLens is a Firefox add-on that allows viewing
images from Google Search, Flickr, and other services to be displayed in the browser as a
wall of photos that can be scrolled through (Figure 7-4).

Figure 7-4. PicLens provides an endless wall of photos; the scroller at the bottom continues to expand
with more content

The scrollbar dynamically resizes and relocates its thumb based on the amount of content
loaded and where it is in the data (Figure 7-5). It also cleverly discards the beginning as it
gets further and further into the content. The basic idea is to give users good navigation
no matter where they are in the gallery of images.

The scroller in PicLens dynamically adapts to show the user’s orientation in the data; it Figure 7-5.
indicates how many images are shown and to some degree where the user is in the wall of images

These examples of Virtual Scrolling demonstrate three different ways to manage the vir-
tual space:

•	 Yahoo! Mail creates the illusion that all data has been loaded up-front by having the
scrollbar reflect the total virtual space.

•	 Microsoft Live Search creates the virtual illusion as the user moves down through the
search results.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

142 Chapter 7: Virtual Pages

And PicLens does the same with the caveat that it shows a virtual window in the •	
larger virtual space (by only providing a scroller control for where the user is and
some before and after context).

Best Practices for Virtual Scrolling

Here are some best practices to keep in mind:

Keep the users informed about where they are. Either use a tool tip or status area to com-•	
municate the range of data they are scrolling into.
Give feedback while waiting on data to load.•	
Create the illusion of an entire loaded virtual space for when the data feels like a data set •	
(e.g., Yahoo! Mail’s mail messages).
Extend the virtual space during scroll for search results (e.g., Microsoft Live Search).•	
Keep a limited virtual space when the user is moving through search results in order to •	
provide a nice back-and-forth experience (e.g., PicLens).

Inline Paging
What if instead of scrolling through content we just wanted to make pagination feel less
like a page switch? By only switching the content in and leaving the rest of the page stable,
we can create an Inline Paging experience. This is what Amazon’s Endless.com site does
with its search results (Figure 7-6).

Paginated results

Searching for “Men’s athletic shoes”
displays a traditional-looking set of
search results. The pagination con-
trols are familiar (shown as an explod-
ed callout).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Inline Paging 143

Inline Paging

Clicking to “page 3” causes just the
search results area to update with the
third page of results.

Page remains stable

The rest of the page stays stable when
the new “page” of results is brought
into view.

Endless uses Inline Paging to create a seamless experience moving through search resultsFigure 7-6.

Considerations
There are some issues to consider with Inline Paging.

In-page update
Endless.com provides the normal pagination controls. But instead of the whole page re-
freshing, only the results area is updated. Keeping the context stable creates a better flow
experience. With Inline Paging it feels like the user never leaves the page even though
new virtual pages of results are being brought into view.

Tip
Paging is sometimes the most convenient and natural way to break up information.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

144 Chapter 7: Virtual Pages

Natural chunking
Inline Paging can also be useful when reading news content online. The International
Herald Tribune applied this as a way to page through an article while keeping the sur-
rounding context visible at all times (Figure 7-7).

Paging tool

The online version of the
paper mimics the paper
version.

But unlike the paper ver-
sion, a “next page” button
moves through the story.

Inline Paging

Instead of refreshing the
complete page, only
the story columns are
replaced with the next
page.

The International Herald Tribune uses Inline Paging to seamlessly move through a story Figure 7-7.
without losing context

Gmail also uses Inline Paging (Figure 7-8). A set number of messages is displayed on
the page. Clicking the “Older” or “Newer” links moves the user to a new set of messages.
However, instead of refreshing the complete page, just the message area updates. While
there is still some interruption whenever the user switches pages, by making the transi-
tion “stay in the page” the interaction feels much lighter, and a virtual space is created
through clever use of pagination.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Inline Paging 145

Gmail paginates seamlessly by only updating the message areaFigure 7-8.

Sometimes Inline Paging can be as simple as clicking on a button to load more items into
the page on demand. The newly loaded content can be added to the current page. This
allows the content to be scrolled, but places the control outside the scrollbar.

Back button
The biggest issue with Inline Paging is whether the back button works correctly. One
criticism of Endless.com is that if the user pages through search results and then hits the
back button, it jumps to the page just before the search. This unexpected result could be
fixed by making the back button respect the virtual pages as well. This is the way Gmail
handles the back button.* Clicking back moves you through the virtual pages.

Interactive content loading
The iPhone employs inline paging when displaying search results in the iTunes store
(Figure 7-9).

* This was not always the case. Originally, Gmail did not handle the back button correctly. In the most recent
versions, however, it has provided correct handling for the back button.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

146 Chapter 7: Virtual Pages

The iPhone iTunes store displays 25 songs initially; the “Load 25 More Results…” button Figure 7-9.
fetches 25 more songs

Each tap of the “Load 25 More Results…” button loads 25 more songs. The number of
songs loaded is cumulative. With the first tap there are now 50 songs; the third tap, 75
songs; and so on. Normally no scrollbar is shown. However, if the user places a finger on
the list to move up or down, the scrollbar is displayed (Figure 7-10). Since the finger is
the “scroller,” the scrollbar becomes just an indicator of how many songs are loaded and
where the user is in the list.

The scrollbar displays when the user starts scrolling through the content; the scrollbar is Figure 7-10.
just a feedback mechanism to indicate scrolling is happening, how much content is loaded, and where
the user is in the scroll operation

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scrolled Paging: Carousel 147

Best Practices for Inline Paging

Here are some best practices to keep in mind:

Use •	 Inline Paging for material that is naturally “chunked” but for which you still want to
create a smooth viewing experience when moving between pages.
Respect the back button. Make it work for paging (e.g., Gmail).•	
Only update the “virtual page” and not the entire page when inline paging.•	
Consider progressive loading as a way to page-in more content in a virtual space.•	

Scrolled Paging: Carousel
Besides Virtual Scrolling and Virtual Paging, there is another option. You can combine
both scrolling and paging into Scrolled Paging. Paging is performed as normal. But in-
stead the content is “scrolled” into view.

The Carousel pattern takes this approach. A Carousel provides a way to page-in more
data by scrolling it into view. On one hand it is a variation on the Virtual Scrolling pat-
tern. In other ways it is like Virtual Paging since most carousels have paging controls. The
additional effect is to animate the scrolled content into view.

Yahoo! Underground uses a Carousel (Figure 7-11) to provide a way to page/scroll
through articles.

Timeline

The top section provides
a navigation control
through various Under-
ground articles. “Previous-
ly” and “Up Next” indicate
where the user can go.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

148 Chapter 7: Virtual Pages

Animation

Animation reinforces the
fact that the articles are
from the past (the content
moves in from the left to
the right).

Yahoo! Underground uses a Carousel to communicate a timeline of blog articlesFigure 7-11.

Considerations
There are some issues to consider when using Scrolled Paging.

Time-based
Carousels work well for time-based content. Flickr employs a Carousel to let users navi-
gate back and forth through their photo collection (Figure 7-12).

Figure 7-12. Flickr uses a Carousel to allow the user to get photos in chronological order; this makes it
possible to find photos without leaving the current page

Tip
Carousels are best for featured or recent content. They are also good for small sets of
time-based content.

Animation direction
Inexplicably, AMCtheatres.com animates its Carousel the opposite way. This leads to a
confusing experience, and it’s harder to know which control to click (Figure 7-13).Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Virtual Panning 149

AMC animates its carousel backward from the accepted standard: clicking the right arrow Figure 7-13.
should scroll in content from the right (not the left)

Carousel Best Practices

Here are some best practices to keep in mind:

Carousels•	 are best for visually distinct contents. Images, CD covers, and movie box shots
are all natural items to place in a carousel.
If the content is not in a discernible order, users will get frustrated navigating.•	
If the content is highly relevant at the beginning and relevancy drops off, a •	 Carousel is a
good solution, since it spotlights the most relevant items.
If there is a lot of content to display, carousels provide too small of a window and thus can •	
frustrate users when they actually try to find content.
If there is limited space available for a set of content, a •	 Carousel allows the virtual content
to be placed in a row on the page.
Placing arrows at each end can become tedious if the •	 Carousel is not circular or if the user
needs to go back and forth through the content.
Placing back and forth arrows next to each other is simpler to operate but somewhat less •	
discoverable. It solves the back and forth issue but moves the buttons away from their
naturally expected position (think scrollbars).
Make the content big enough to view easily, providing enough whitespace to make each •	
item distinct.
Allow a portion of the next item to be partially revealed. This invites the user to scroll the •	
content to see the partial content fully.
Clicking the left arrow should scroll content in from the left (left to right), and clicking the •	
right arrow should scroll content in from the right (right to left).

Virtual Panning
One way to create a virtual canvas is to allow users the freedom to roam in two-dimensional
space. A great place for Virtual Panning is on a map. Google Maps allows you to pan in any
direction by clicking the mouse down and dragging the map around (Figure 7-14).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

150 Chapter 7: Virtual Pages

Start drag

Clicking and holding down changes
the cursor into a hand (signifying
panning).

Dragging

Dragging the canvas moves the map
in real time.

Google Maps creates a virtual canvas; one tool that helps with that illusion is the ability to Figure 7-14.
pan from area to area

Considerations
There are some issues to consider while using Virtual Panning.

Natural Visual Construct
When we discussed dragging routes in Google Maps, we pointed out that drag and drop
worked well since it fit with the natural visual representation of routes on the map (see
Figure 2-26). In the same way, panning around in a map is a natural visual metaphor.
Extending the visual space to a larger virtual space is a natural fit.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Zoomable User Interface 151

Gestures
Besides map applications, the idea of Virtual Panning has been extended to other devices
thanks to gesture-based interfaces.* With the introduction of the iPhone, the user can
simply “flick” through weather locations, photos, or an iTunes playlist.

Flicking is similar to panning yet has some differences. With Virtual Panning the canvas
only moves while the mouse is dragging it around. With flicking, if the user starts the
dragging operation and releases, the canvas will continue moving with some momentum.
The canvas slows in such a way as to mimic real-world forces.

Best Practices for Virtual Panning

Here are some best practices to keep in mind:

Use •	 Virtual Panning as an alternative to scrolling through an infinite 2D canvas.
Consider allowing panning to continue with some momentum (think “flicking”).•	

Zoomable User Interface
A Zoomable User Interface (ZUI) is another way to create a virtual canvas. Unlike pan-
ning or flicking through a flat, two-dimensional space, a ZUI allows the user to also zoom
in to elements on the page. This freedom of motion in both 2D and 3D supports the con-
cept of an infinite interface.

Practically speaking, ZUIs have rarely been available in everyday software applications,
much less on the Web. But with more advanced features added to Flash and the advent
of Silverlight, this type of interface is starting to emerge and may be commonplace in the
not-too-distant future.

Considerations
Hard Rock Café has a large rock and roll memorabilia collection. Recently, it digitized
photos of the collection and placed them online for virtual viewing.† The memorabilia
application uses a ZUI interface to move around from artifact to artifact and zoom in to
see details on each item (Figure 7-15).

* For a discussion on gestural interfaces, see Designing Gestural Interfaces by Dan Saffer (O’Reilly).
† The Hard Rock Memorabilia site is located at http://memorabilia.hardrock.com/. It was developed in Silverlight

using Deep Zoom (a.k.a. Seadragon) by Vertigo Software in Point Richmond, CA.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://memorabilia.hardrock.com/

152 Chapter 7: Virtual Pages

Zoomed-out

At the zoomed-out level the
user can see thumbnails of the
total collection.

Zooming in

By using the mouse thumb-
wheel, the user can zoom in (it
is like flying) on any object.

Detail stitched in

As the user gets closer and
closer, more detail is stitched
in. Detail is only limited by what
can be dynamically mapped in
as the user zooms.

Hard Rock Café uses a zoomable user interface (ZUI) to allow its memorabilia collection Figure 7-15.
to be viewed online

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Zoomable User Interface 153

Aza Raskin, son of the late Jef Raskin (who pioneered many of the original ZUI concepts)
is continuing to experiment with user interfaces that push the current norms. He dem-
onstrated some potential ZUI interactions in a concept demo for Firefox on the mobile
(Figure 7-16). *

Zoomed-in to content

This browser page lives on a large canvas. This
view is zoomed in to the page.

Slide over

Using a panning technique, the page is pulled
to the right, revealing a hidden toolbar on the
left.

Zoomed-out

The canvas can contain many “Tabs”, or
 windows.

* You can see Aza’s concept video at http://www.azarask.in/blog/post/firefox-mobile-concept-video/.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.azarask.in/blog/post/firefox-mobile-concept-video/

154 Chapter 7: Virtual Pages

Add a Tab

Clicking the plus sign adds a new Tab. The
interface zooms out slightly, revealing a new
window being created in the bottom left of
the canvas.

Zooming in to new Tab

The canvas automatically zooms into the
newly created Tab.

New Tab

The new Tab now fills up the screen as the in-
terface settles in to a zoomed-in mode.

Firefox Mobile Concept Prototype showing panning gestures as well as a ZUI interfaceFigure 7-16.

In this concept prototype, two key ideas are presented:

Additional interface elements are just off the page to the top, left, bottom, and/or •	
right. Pulling the content to one side or the other reveals these tools.

Moving between the canvas (desktop) and windows is accomplished with a ZUI •	
interface.

ZUIs provide the ultimate virtual canvas. By extending the concept of the page, the user
never actually leaves the virtual page.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Paging Versus Scrolling 155

Best Practices for Virtual Spaces

Here are some best practices to keep in mind:

Use a hybrid •	 Scrolled Paging for content that is time-based.
Use •	 Virtual Panning for moving around in a canvas (e.g., Google Maps).
Use •	 ZUIs to work on large sets of information that have lots of detail.

Paging Versus Scrolling
Leading web designers and companies have taken different approaches to solving the
same problems. Yahoo! Mail chose Virtual Scrolling. Gmail chose Inline Paging.

How do you choose between paging and scrolling? While there are no hard and fast rules,
here are some things to consider when making the decision:

When the data feels “more owned” by the user—in other words, the data is not tran-•	
sient but something users want to interact with in various ways. If they want to sort
it, filter it, and so on, consider Virtual Scrolling (as in Yahoo! Mail).

When the data is more transient (as in search results) and will get less and less rele-•	
vant the further users go in the data, Inline Paging works well (as with the iPhone).

For transient data, if you don’t care about jumping around in the data to specific sec-•	
tions, consider using Virtual Scrolling (as in Live Image Search).

If you are concerned about scalability and performance, paging is usually the best •	
choice. Originally Microsoft’s Live Web Search also provided a scrollbar. However,
the scrollbar increased server-load considerably since users are more likely to scroll
than page.

If the content is really continuous, scrolling is more natural than paging.•	

If you get your revenue by page impressions, scrolling may not be an option for your •	
business model.

If paging causes actions for the content to become cumbersome, move to a scroll-•	
ing model. This is an issue in Gmail. The user can only operate on the current page.
Changing items across page boundaries is unexpected. Changing items in a continu-
ous scrolled list is intuitive.Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Chapter 8

Process Flow

In the last three chapters we’ve been discussing the principle Stay on the Page. Sometimes
tasks are unfamiliar or complicated and require leading the user step-by-step through a
Process Flow. It has long been common practice on the Web to turn each step into a sepa-
rate page. While this may be the simplest way break down the problem, it may not lead
to the best solution. For some Process Flows it makes sense to keep the user on the same
page throughout the process.

Google Blogger
The popular site Google Blogger generally makes it easy to create and publish blogs. One
thing it does not make easy, though, is deleting comments that others may leave on your
blog. This is especially difficult when you are the victim of hundreds of spam comments
left by nefarious companies hoping to increase their search ranking.

Blogger forces you to delete these comments through a three-step process. Each step is an
individual page, all punctuated with a page refresh (Figure 8-1).

Google Blogger forces you through a three-step process for each comment you delete, which Figure 8-1.
is especially tiresome if you have dozens of spam comments to delete

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

158 Chapter 8: Process Flow

My (Bill’s) blog site was recently spammed. It turns out that my 100 or so articles all had 4
or more spam comments. That means that I had to delete more than 400 spam comments.
Given the way Google Blogger implemented comment deleting, I had to follow these steps
for each comment on each blog article:

Scroll to find the offending comment.1.

Click the trash icon to delete the comment.2.

After page refreshes, click the “Remove Forever” checkbox.3.

Click the “Delete Comment” button.4.

After the page refreshes, click the link to return to my blog article.5.

Repeat steps 1–5 for each article with spam comments.6.

It took 1,600 clicks, 1,200 page refreshes, 400 scroll operations, and several hours to finally
rid myself of all of the spam comments. If the delete action could have been completed in
the same page as the comments, that would have eliminated hundreds of clicks and well
over a thousand page refreshes, and scrolling would have been all but eliminated. I would
not have wasted all the mental energy to reorient myself after each page transition. And I
would have been a much happier man.

This is a common interaction flow on the Web. It turns out to be simpler to design and
implement a process as a series of pages rather than a single interactive space.

The Magic Principle
Alan Cooper discusses a wonderful technique for getting away from a technology-driven
approach and discovering the underlying mental model of the user. He calls it the “magic
principle.”* Ask the question, “What if when trying to complete a task the user could in-
voke some magic?” For example, let’s look at the problem of taking and sharing photos.
The process for this task breaks down like this:

Take pictures with a digital camera. •	

Sometime later, upload the photos to a photo site like Flickr. This involves:•	

— Finding the cable.

— Starting iTunes.

— Importing all photos.

* Discussed in his “Interaction Design Practicum” course, found at http://www.cooper.com/services/training/
ixd_practicum.html.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.cooper.com/services/training/

The Magic Principle 159

— Using a second program, such as Flickr Uploadr, to upload the photos to Flickr.

— Copying the link for a Flickr set (which involves first locating the page for the
uploaded set).

Send the link in email to appropriate friends.•	

If some magic were invoked, here is how it might happen:

The camera would be event-aware. It would know that is your daughter’s eighth •	
birthday.

When finished taking pictures of the event, the camera would upload the pictures to •	
Flickr.

Flickr would notify family and friends that the pictures of the birthday party are •	
available.

Thinking along these lines gets some of the artifacts out of the way. Of course the magic
could be taken to the extreme: just eliminate the camera altogether! But by leaving some
elements in the equation, the potentially unnecessary technology pieces can be exposed.
How about the cable? What if the camera could talk magically to the computer?

This kind of thinking led to some recent products that allow users to upload photos auto-
matically from their digital camera to their favorite photo site. The camera’s memory card
actually contains a Wi-Fi connection, giving it direct access to a photo-upload service.*

Turning back to our world, when we look at the multiple page Process Flows that lit-
ter the Web, we find that a little magic could dispense with the artifact of the “page” in
many places. Amazon’s shopping process illustrates this artifact. It provides a fairly typical
multi-page experience when users add items to a cart (Figure 8-2).

Figure 8-2. Amazon’s multi-page “Add to Shopping Cart” process

* Eye-Fi is an example of this. See http://www.eye.fi/overview/.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.eye.fi/overview/

160 Chapter 8: Process Flow

First, the user finds a book. Then when she adds it to her shopping cart, she is taken to a
separate page. Getting back happens either through the back button or finding the “Con-
tinue Shopping” button elsewhere on the page. Each book add is a heavy context switch
to the second page.

But what if we could apply some magic? Could we get away with having fewer page transi-
tions? Could we eliminate the multi-page transition?

Yes. It is possible to take flows like this and present them in a single interactive space. At
other times, we can convert a multi-page experience into a single, long page. But some-
times the process is best left broken into individual pages. In those cases we can often
encapsulate the multiple pages into a simple Dialog Overlay, which effectively maintains
the context while preserving distinct page-to-page flow.

John Maeda, author of the book Laws of Simplicity (MIT Press), discusses the magic of
hiding complexity:

Hiding complexity through ingenious mechanical doors or tiny display screens is an
overt form of deception. If the deceit feels less like malevolence, more like magic, then
hidden complexities become more of a treat than a nuisance.

In this chapter we will apply a little magic, hopefully get rid of the nuisance of page transi-
tions where possible, and in the end treat the user to a better experience. Specifically, we
will look at these Process Flow patterns:

Interactive Single-Page Process•	

Inline Assistant Process•	

Configurator Process•	

Overlay Process•	

Static Single-Page Process•	

Interactive Single-Page Process
Consumer products come in a variety of shapes, sizes, textures, colors, etc. Online shop-
pers will not only have to decide that they want shoes, but do they want blue suede shoes?
And what size and width do they want them in? In the end the selection is constrained
by the available inventory. As the user makes decisions, the set of choices gets more and
more limited.

This type of product selection is typically handled with a multi-page workflow. On one
page, the user selects a shirt and its color and size. After submitting the choice, a new page
is displayed. Only when the user arrives at this second page does he find out that the “true
navy” shirt is not available in the medium size.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Interactive Single-Page Process 161

The Gap accomplishes this kind of product selection in a single page (Figure 8-3) us-
ing Interactive Single-Page Process. The purple shirt is available in all sizes from XS to
XXXL. Hovering over the dark blue shirt immediately discloses that this color is only
available in XS and S sizes.

The Gap uses Interactive Single-Page Process to reflect the sizes for each product color Figure 8-3.

choice in real time

Considerations
There are some issues to consider when using an Interactive Single-Page Process.

Responsiveness
The user’s taste preference comes first. Either the color or the size can be chosen. If the
item is out of stock for any color/size combination, it is displayed as unavailable (by show-
ing the color or size as disabled). By placing this process in a few simple interactions, the
user can quickly find something available to buy. With any online shopping experience,
the potential for the user to bail out is a real concern. In-place interactions like this reduce
these bailout moments.

In Designing Interfaces (O’Reilly), Jenifer Tidwell uses the term Responsive Disclosure to
describe this same pattern. According to Tidwell, Responsive Disclosure is good when:

The user should be walked through a complex UI task step-by-step, perhaps because
he is computer-naive, or because the task is novel or rarely done (as in a Wizard). But
you don’t want to force the user to go page-by-page at each step—you’d rather keep
the whole interface on one single page. *

* See http://www.oreilly.com/catalog/9780596008031 or page 123 in printed book.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.oreilly.com/catalog/9780596008031

162 Chapter 8: Process Flow

Amazon’s interface for selecting a shirt also uses Interactive Single-Page Process with a
slightly different interface (Figure 8-4).

Selecting sizes

Sizes are shown in a drop-down
menu. The sizes that are not avail-
able for the selected color are
 disabled.

If a disabled size is selected, the un-
available colors will be displayed in
a dimmed state.

Selecting color

The colors available for this size
neck are clearly shown in the color
selection palette.

Unavailable

If a combination that is unavail-
able is selected, a clear warning is
displayed and no links to purchase
are made available.

Amazon provides a similar experience to the Gap, utilizing Interactive Single-Page ProcessFigure 8-4.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Interactive Single-Page Process 163

The idea is the same: make the experience for selecting a product painless by providing
inventory disclosures as quickly as possible, and doing it all in a single-page interface.

Tip
Interactive, single-page process flows improve user engagement and increase conver-
sion rates.

Keeping users engaged
Broadmoor Hotel uses Interactive Single-Page Process for room reservations (Figure
8-5).

Date selection

In the first column, the
calendar reveals available
dates. Check-in and check-
out dates can be chosen
from a calendar.

Available room types are
shown for the date and
number of people.

Room and payment

The available rooms are
shown in the second
 column.

Selecting a room fills out
price information on the
right.

Credit card contact infor-
mation is filled out on the
right to hold a reservation.

Broadmoor Hotels provides a one-page interactive reservation systemFigure 8-5.

Each column represents what would normally be presented on a separate page. In the first
column, a calendar discloses availability up front. This prevents scheduling errors. Select-
ing the room from the second column updates both the room picture and the pricing. The
pricing is reflected back on the calendar days (Figure 8-6) as well as in the third column
where credit card and contact information is entered.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

164 Chapter 8: Process Flow

The Broadmoor calendar shows availability and pricing informationFigure 8-6.

Benefits
Adobe calls out the Broadmoor one-page reservation interface in its Adobe Showcase.* It
states the benefits of this method:

Reduces entire reservation process to a single screen. •	

Reduces the number of screens in the online reservation process from five to one. •	
Other online reservation applications average 5 to 10 screens.

Seventy-five percent of users choose OneScreen in favor of the HTML version. •	

Allows users to vary purchase parameters at will and immediately view results. •	

Reduces the time it takes to make a reservation from at least three minutes to less •	
than one.

Additionally, Adobe notes that conversion rates (users who make it through the reserva-
tion process) are much higher with the Interactive Single-Page Process.

Inline Assistant Process
Another common place where multiple pages are used to complete a process is when add-
ing items to a shopping cart. As mentioned earlier, Amazon provides the typical experi-
ence (Figure 8-2). So what magic can we apply to move this from a multi-page experience
to a single-page experience? Instead of thinking about the cart as a process, we can think
about it as a real-world object. Given this mindset, the cart can be realized in the interface
as an object and be made available on the page. The Gap employed an Inline Assistant
Process pattern for its shopping cart when it re-launched its site a few years back (Figure
8-7).

* Other benefits are highlighted in the case study. See http://www.adobe.com/cfusion/showcase/index.cfm?event
=casestudyprint&casestudyid=2486.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.adobe.com/cfusion/showcase/index.cfm?event

Inline Assistant Process 165

“Add to Bag” button in context

 “Add to Bag” is available in the con-
text of selecting the sweater pat-
tern and size.

Inline shopping cart

The shopping cart is not a separate
page. Instead it is an interface ele-
ment that is tied to each page.

It is always available as a drop-down
shade. It is readily available to add
items to or to open up and manage
at any time.

Figure 8-7. The Gap’s single-page “Add to Bag” process

Considerations
There are some things to consider when using the Inline Assistant Process.

Quick and easy
The Gap integrates the shopping cart into its entire site as a drop-down shade. In fact,
the Gap, Old Navy, Banana Republic, and PiperLime all share the same Inline Assistant
Process-style shopping cart. The Gap is betting that making it quick and easy to add items
to the cart across four stores will equal more sales.

Additional step
Amazon, on the other hand, is betting on its recommendation engine. By going to a sec-
ond page, Amazon can display other shirts like the one added—as well as advertise the
Amazon.com Visa card (Figure 8-8).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

166 Chapter 8: Process Flow

Amazon shows recommendations when confirming an add to its shopping cartFigure 8-8.

Which is the better experience? The Gap seems to be the clear winner in pure user expe-
rience. But which brings in more money? It’s a question we cannot answer, but the right
one for any site to ask.

Tip
Use a quick and easy approach to get users to finish a task. Use additional steps when
there are opportunities to engage the user further (as with recommendations).

Blending quick and easy with the additional step
Is there a way to combine both the single-page experience and the recommendation expe-
rience? This is what Netflix does when a user adds movies to his shipping queue (Figure
8-9).

Netflix displays its recommendations in an overlayFigure 8-9.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Inline Assistant Process 167

Each movie on the site has an “Add” button. Clicking “Add” immediately adds the movie
to the user’s queue. As a confirmation and an opportunity for recommendations, a Dialog
Overlay is displayed on top of the movie page.

Just like Amazon, Netflix has a sophisticated recommendation engine. The bet is that
since the user has expressed interest in an item (shirt or movie), the site can find other
items similar to it to suggest. Amazon does this in a separate page. Netflix does it in an
overlay that is easily dismissed by clicking anywhere outside the overlay (or by clicking
the close button at the top or bottom).

In a previous version of Netflix (or if JavaScript is disabled), this becomes a multiple-page
experience (Figure 8-10).

Without JavaScript enabled, you can see the original multi-page flow for the “Add to Figure 8-10.
Queue” process on the Netflix site

Each movie add leads to a separate recommendation page. Clicking on “Add” for a movie
on a recommendation page takes the user to a secondary recommendation page. This
process can continue, on and on. Eventually, the user has to hit the back button a num-
ber of times to get back to the original context. In the Overlay example (Figure 8-9), the
multi-page flow is encapsulated in the overlay and can be easily dismissed at any point,
quickly returning the user to the originating page.Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

168 Chapter 8: Process Flow

Best Practices for
Interactive Single-Page Process and Inline Assistant Process

Here are some best practices to keep in mind:

Use these patterns to simplify user flow.•	
Use these patterns to improve conversion rates.•	
Show previews in context.•	
Show invalid choices in real time. This informs users of the impact of their decisions.•	
Show shopping carts inline where possible.•	
Treat shopping carts as first-class interface elements and not just as an extra process. •	
Show an additional step if recommendations are relevant and important.•	

Dialog Overlay Process
As mentioned before, any page switch is an interruption to the user’s mental flow. In addi-
tion, any context switch is a chance for a user to leave the site. We seek an experience that
has as little mental friction as possible. But sometimes the step-by-step flow is necessary.

The Netflix approach just described (Figure 8-9) uses a Dialog Overlay Process to en-
capsulate a multi-step flow inside a Dialog Overlay. We looked at Overlays in detail in
Chapter 5. Overlays allow us to keep the context of the page yet present a virtual space to
conduct a conversation with the user.

Discover.com recently expanded its account section with a more detailed profile. The
profile captures things like your payment date, mobile fraud alerts, paperless statements,
and general contact information (Figure 8-11). The overlay pops up when you first enter
your account.

Invitation to set up profile

When entering an account, a Dialog
Overlay is presented with an invitation to
set up a profile.

A Lightbox Effect is used to focus the
user on the task of profile setup. The pleas-
ing visuals add a level to the engagement
factor.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Dialog Overlay Process 169

Multiple steps

Each step is presented is presented as a
separate “page” within the overlay.

Each “page” has a simple, clear call to
 action.

Final step

Filling out the contact information is left
until the end. If this step occurs too early in
the process, it might make the user think
all the steps will be this involved.

Discover encapsulates its “Create Your Profile” flow in a Dialog OverlayFigure 8-11.

Considerations
There are some issues to consider when using the Dialog Overlay Process.

Making it feel lightweight
The Lightbox Effect is nice because it focuses the user on the task. But what is smart
about the flow is the first page is colorful and rendered in a simple, pleasing manner. The
process looks like it might be simple and feels engaging.

The in-between steps are usually a single action. There is a whole page dedicated just to
selecting the due date for payments (Figure 8-12).Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

170 Chapter 8: Process Flow

Discover dedicates a complete “page” to just selecting when you would like to pay your billFigure 8-12.

Making the in-between steps clear and visually appealing with a single call to action
makes the process feel lightweight. The last step is the biggest. By this time the user has
committed to the process to some degree. Most of the user information is already filled in
from the account, so the step does not feel too involved. But imagine if this step were first.
It could cause users to more frequently bail out from the process, thinking that each step
would be as involved as the first one.

Clear status
The other interesting touch in this example is providing an indication of the number
of steps (Figure 8-13). There are any number of ways to indicate this information; the
important thing is to give some indication of what the users are dealing with when they
start. Usually three steps are ideal. In this case, there are five steps. But as we mentioned,
the early steps are single actions.

Discover uses the orange dot to indicate how far the users are in the process and gray dots Figure 8-13.
to indicate what they have left

Netflix probably has one of the simplest overlay flows. When a user purchases a previously
viewed DVD, a one-page overlay appears. Since the only way for a user to get to this pur-
chase dialog is by being a member, Netflix has all the information it needs (shipping and
billing information, for example) to complete the purchase in a single step (Figure 8-14).Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Configurator Process 171

Figure 8-14. Netflix has a single-step purchase flow for previously viewed DVDs

Best Practices for Dialog Overlay Process

Here are some best practices to keep in mind:

Use •	 Dialog Overlay Process to make multiple steps appear in context of the page.
Use •	 Dialog Overlay Process to make the process feel lighter than moving to different
pages.
Use a •	 Lightbox Effect to focus users on the workflow.
Keep the users informed throughout of their location in the process.•	

Configurator Process
Sometimes a Process Flow is meant to invoke delight. In these cases, it is the engagement
factor that becomes most important. This is true with various Configurator Process in-
terfaces on the Web. We can see this especially at play with car configurators. Porsche
provides a configurator that allows users to build their own Porsche (Figure 8-15).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

172 Chapter 8: Process Flow

Porsche’s car configurator provides an engaging way to customize a carFigure 8-15.

Being able to tweak the colors, wheels, interior, and options for a car and see the results in
real time is an engaging experience. In Chapter 14, we discuss Live Previews. Live Previews
allow the user to see the effect of his changes on a simulated version of the real thing.

Considerations
There are some issues to consider when using a Configurator Process.

Immediate feedback
In the case of the Porsche site, when the user clicks on various body colors, the car is re-
configured in the selected color and rendered in photorealistic shading. Most configura-
tors allow a 360-degree view of the car as it is configured.

Tip
Use immediate feedback (Live Previews) to simulate real-world choices.

Imagine if this was turned into a multi-page experience. Each panel would ask for the color,
the wheel style, the interior material, dashboard configuration, and various other options.
At the end, you would see your car. Not compelling? By making the experience engaging,
users are more apt to experiment and fall in love with the car they have “designed.”

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Configurator Process 173

It should be noted that the Porsche color configuration experience is actually part of a
multi-page process flow. This highlights the fact that the decision between a single-page
experience and a multi-page experience are not mutually exclusive. Single-page work-
flows can live within a multi-page workflow.

Out of view status
Apple has a Configurator Process for purchasing a Macintosh computer (Figure 8-16).

Figure 8-16. Apple provides a one-page configurator for computer purchase

There is a dynamic nature to this Configurator Process. As the user selects items to add
to the computer, the price is dynamically updated using a Spotlight technique (discussed
later in Chapter 11). In the upper-right corner of the page, the system configuration and
price are highlighted to indicate updated information. The downside is that if this user is
scrolled too far down, she can’t see the update Spotlight since the summary panel is not
visible.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

174 Chapter 8: Process Flow

Static Single-Page Process
The Apple example illustrates another way to get rid of multiple pages in a Process Flow.
Just put the complete flow on one page in a Static Single-Page Process. The user sees all
the tasks needed to complete the full process. This can be both good and bad. Seeing just
one step to complete the process can encourage users to finish the task. But if the single
step seems too long or too confusing, the user will most likely bail out of the process early.
In other words, if placing all the tasks on a single page is enough to cause the user to bail
out, it is not a good idea. In the case of the Apple store, each item is optionally set, and it’s
just a single click to include or exclude an item from the purchase.

eBay provides two ways to sell an item. An introductory panel (Figure 8-17) gathers the
description of the item for sale. The “Customize your listings…” option takes the user
through a traditional multi-page process (Figure 8-18).

eBay’s simplified one-page flow Figure 8-17.

The customized flow is a traditional multi-page processFigure 8-18.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Static Single-Page Process 175

Since the customized flow contains many options for listing an item, it requires a good
deal of handholding. A multi-page process fits well with guiding the user through a com-
plex set of tasks.

The other flow provided by eBay is a simplified Static Single-Page Process (Figure 8-19).

eBay displays a simplified “Sell Your Item” as a Static Single-Page ProcessFigure 8-19.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

176 Chapter 8: Process Flow

Considerations
There are some issues to keep in mind when using a Static Single-Page Process.

Making it feel lightweight
In this Static Single-Page Process, many options are defaulted and a simplified form is
presented to the user. Multiple pages are compressed into a single page. Of course a long
page like this can also be daunting. But eBay did a good job of getting the essentials into a
single page. Each step is clearly called out with a clear border and a large step number. In
addition, color is used to further simplify the steps. The two steps in green are about the
item the user is selling. The last two steps in blue are about money. The color coding gives
the impression there are only four steps total: item, photo, description, and pricing.

Multiple pages are not necessarily evil
The eBay example (Figures 8-16 through 8-18) illustrates that there is more than one way
to deal with a step-by-step Process Flow. For a very complex flow, a Static Single-Page
Process may work well.

Sometimes it is good to break what could be a Static Single-Page Process into a multi-
page process. Multiple pages can provide the natural chunking needed. They say “You are
done with that step, now move onto the next.” Netflix has a problem-reporting interface
that does just that. When reporting a scratched disc, clicking on the “DVD is damaged…”
link takes the user to a secondary page (Figure 8-20).

First page

The first page focuses the us-
ers on just deciding what the
issue is.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Static Single-Page Process 177

Final page

The second page allows them
to describe the details of that
problem.

Figure 8-20. Netflix provides a multi-page approach to reporting disc problems

Why is it good to have a multi-page process in this case? Confirmation is a critical step in
the process. The user needs a place to focus just on reporting a problem. Suggestions can
be provided here without the context of all the other possible problems.

Best Practices for Static Single-Page Process

Here are some best practices to keep in mind:

Use a multi-page process when the process is complex.•	
Use a multi-page process when you want to hide the previous context (and the next) and •	
bring the focus to a single task in the steps.
Use a •	 Static Single-Page Process when you only have a few steps and want to avoid tak-
ing the chance that a user will quit while moving from page to page.
Use visual treatments to make the number of steps seem fewer.•	
Provide clues as to where the user is and how much is left in a multi-step operation.•	
Gather as many defaults as possible to simplify a flow.•	
Use engagement, color visuals, interactivity, and simple visual styles to make the steps •	
seem fewer.
Put lightweight tasks up front in a multi-step operation.•	

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

