

LAB MANUAL

ARUNAI ENGINEERING COLLEGE
Tiruvannamalai

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

YEAR/SEM: II/III

CS8382- DIGITAL SYSTEMS
LABORATORY

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

LIST OF EXPERIMENTS

1. Verification of Boolean Theorems using basic gates.

2. Design and implementation of combinational circuits using basic gates for arbitrary

functions, code converters.

3. Design and implement Half/Full Adder and Subtractor.

4. Design and implement combinational circuits using MSI devices:

 4 – bit binary adder / subtractor

 Parity generator / checker

 Magnitude Comparator

 Application using multiplexers

5. Design and implement shift-registers.

6. Design and implement synchronous counters.

7. Design and implement asynchronous counters.

8. Coding combinational circuits using HDL.

9. Coding sequential circuits using HDL.

10. Design and implementation of a simple digital system (Mini Project).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

INDEX

Ex.No. Date Title Marks
Staff

Sign.

1a STUDY OF LOGIC GATES

1b

VERIFICATION OF BOOLEAN

THEOREMS USING DIGITAL

LOGIC GATES

2 CODE CONVERTOR

3a ADDER AND SUBTRACTOR

4a 4-BIT ADDER AND SUBTRACTOR

4b
PARITY GENERATOR &

CHECKER

4c MAGNITUDE COMPARATOR

4d
MULTIPLEXER AND

DEMULTIPLEXER

5 SHIFT REGISTER

6
SYNCHRONOUS AND

ASYNCHRONOUS COUNTER

CODING – VERILOG & VHDL

7 BASIC LOGIC GATES

8
COMBINATIONAL AND

SEQUENTIAL CIRCUITS

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Ex.No.-1a STUDY OF LOGIC GATES

AIM:
To study about logic gates and verify their truth tables.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION QTY

1. AND GATE IC 7408 1

2. OR GATE IC 7432 1

3. NOT GATE IC 7404 1

4. NAND GATE 2 I/P IC 7400 1

5. NOR GATE IC 7402 1

6. X-OR GATE IC 7486 1

7. NAND GATE 3 I/P IC 7410 1

8. IC TRAINER KIT - 1

9. PATCH CORD - 14

THEORY:

Circuit that takes the logical decision and the process are called logic gates.
Each gate has one or more input and only one output.

OR, AND and NOT are basic gates. NAND, NOR and X-OR are known as
universal gates. Basic gates form these gates.

AND GATE:

The AND gate performs a logical multiplication commonly known as AND

function. The output is high when both the inputs are high. The output is low level

when any one of the inputs is low.

OR GATE:

The OR gate performs a logical addition commonly known as OR function.
The output is high when any one of the inputs is high. The output is low level when
both the inputs are low.

NOT GATE:
The NOT gate is called an inverter. The output is high when the input is low.

The output is low when the input is high.

AND GATE:

The NAND gate is a contraction of AND-NOT. The output is high when both
inputs are low and any one of the input is low .The output is low level when both
inputs are high.

NOR GATE:

The NOR gate is a contraction of OR-NOT. The output is high when both
inputs are low. The output is low when one or both inputs are high.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

X-OR GATE:
The output is high when any one of the inputs is high. The output is low

when both the inputs are low and both the inputs are high.

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

AND GATE

SYMBOL PIN DIAGRAM

OR GATE

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

NOT GATE

SYMBOL PIN DIAGRAM

EX-OR GATE

SYMBOL PIN DIAGRAM

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2-INPUT NAND GATE

 SYMBOL PIN DIAGRAM

3-INPUT NAND GATE

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

NOR GATE

RESULT:

The logic gates are studied and its truth tables are verified.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Ex.No.-1b VERIFICATION OF BOOLEAN

 THEOREMS USING DIGITAL LOGIC GATES

AIM:

To verify the Boolean Theorems using logic gates.

APPARATUS REQUIRED:

SL. NO. COMPONENT SPECIFICATION QTY.

1. AND GATE IC 7408 1

2. OR GATE IC 7432 1

3. NOT GATE IC 7404 1

4. IC TRAINER KIT - 1

5. CONNECTING WIRES
-

As per
required

THEORY:

BASIC BOOLEAN LAWS

1. Commutative Law
The binary operator OR, AND is said to be commutative if,

1. A+B = B+A

2. A.B=B.A

2. Associative Law
The binary operator OR, AND is said to be associative if,

1. A+(B+C) = (A+B)+C

2. A.(B.C) = (A.B).C

3. Distributive Law
The binary operator OR, AND is said to be distributive if,

1. A+(B.C) = (A+B).(A+C)

2. A.(B+C) = (A.B)+(A.C)

4. Absorption Law

1. A+AB = A

2. A+AB = A+B

5. Involution (or) Double complement Law

1. A = A

6. Idempotent Law
1. A+A = A

2. A.A = A

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7. Complementary Law
1. A+A' = 1

2. A.A' = 0

8. De Morgan’s Theorem
1. The complement of the sum is equal to the sum of the product of the individual
complements.

A+B = A.B
2. The complement of the product is equal to the sum of the individual complements.

A.B = A+B

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Demorgan’s Theorem

a) Proof of equation (1):

Construct the two circuits corresponding to the functions A’. B’and (A+B)’
respectively. Show that for all combinations of A and B, the two circuits give identical
results. Connect these circuits and verify their operations. Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

b) Proof of equation (2)

Construct two circuits corresponding to the functions A’+B’and (A.B)’ A.B,
respectively. Show that, for all combinations of A and B, the two circuits give identical
results. Connect these circuits and verify their operations.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

13

We will also use the following set of postulates:
P1: Boolean algebra is closed under the AND, OR, and NOT operations.
P2: The identity element with respect to • is one and + is zero. There is no identity
 element with respect to logical NOT.
P3: The • and + operators are commutative.

P4: • and + are distributive with respect to one another. That is,

 A • (B + C) = (A • B) + (A • C) and A + (B • C) = (A + B) • (A + C).

P5: For every value A there exists a value A’ such that A•A’ = 0 and A+A’ = 1.

 This value is the logical complement (or NOT) of A.

P6: • and + are both associative. That is, (A•B)•C = A•(B•C) and (A+B)+C = A+(B+C).

 You can prove all other theorems in boolean algebra using these postulates.

PROCEDURE:

1. Obtain the required IC along with the Digital trainer kit.

2. Connect zero volts to GND pin and +5 volts to Vcc .

3. Apply the inputs to the respective input pins.

4. Verify the output with the truth table.

RESULT:
Thus the above stated Boolean laws are verified.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

14

Ex.No.-2 CODE CONVERTOR

AIM:

To design and implement 4-bit

(i) Binary to gray code converter

(ii) Gray to binary code converter

(iii) BCD to excess-3 code converter
(iv) Excess-3 to BCD code converter

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION QTY.

1. X-OR GATE IC 7486 1

2. AND GATE IC 7408 1

3. OR GATE IC 7432 1

4. NOT GATE IC 7404 1

5. IC TRAINER KIT - 1

6. PATCH CORDS - 35

THEORY:

The availability of large variety of codes for the same discrete elements of

information results in the use of different codes by different systems. A conversion circuit

must be inserted between the two systems if each uses different codes for same

information. Thus, code converter is a circuit that makes the two systems compatible even

though each uses different binary code.

The bit combination assigned to binary code to gray code. Since each code uses

four bits to represent a decimal digit. There are four inputs and four outputs. Gray code is a

non-weighted code.

The input variable are designated as B3, B2, B1, B0 and the output variables are

designated as C3, C2, C1, Co. from the truth table, combinational circuit is designed. The

Boolean functions are obtained from K-Map for each output variable.

A code converter is a circuit that makes the two systems compatible even though

each uses a different binary code. To convert from binary code to Excess-3 code, the input

lines must supply the bit combination of elements as specified by code and the output lines

generate the corresponding bit combination of code. Each one of the four maps represents

one of the four outputs of the circuit as a function of the four input variables.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

15

A two-level logic diagram may be obtained directly from the Boolean expressions

derived by the maps. These are various other possibilities for a logic diagram that

implements this circuit. Now the OR gate whose output is C+D has been used to

implement partially each of three outputs.

BINARY TO GRAY CODE CONVERTOR

TRUTH TABLE:

K-Map for G3

 G3 = B3

Binary Input Gray Code Output

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

16

K-Map for G2

K-Map for G1

K-Map for G0

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

17

LOGIC DIAGRAM:

GRAY CODE TO BINARY CONVERTOR

TRUTH TABLE:

GRAY CODE BINARY CODE

G3 G2 G1 G0 B3 B2 B1 B0

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 1 0 0 1 0

0 0 1 0 0 0 1 1

0 1 1 0 0 1 0 0

0 1 1 1 0 1 0 1

0 1 0 1 0 1 1 0

0 1 0 0 0 1 1 1

1 1 0 0 1 0 0 0

1 1 0 1 1 0 0 1

1 1 1 1 1 0 1 0

1 1 1 0 1 0 1 1

1 0 1 0 1 1 0 0

1 0 1 1 1 1 0 1

1 0 0 1 1 1 1 0

1 0 0 0 1 1 1 1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

18

K-Map for B3:

B3 = G3

K-Map for B2:

K-Map for B1:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

19

K-Map for B0:

LOGIC DIAGRAM:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

20

TRUTH TABLE: BCD TO EXCESS-3 CONVERTOR

| BCD input | Excess – 3 output |

B3 B2 B1 B0 G3 G2 G1 G0

0 0 0 0 0 0 1 1

0 0 0 1 0 1 0 0

0 0 1 0 0 1 0 1

0 0 1 1 0 1 1 0

0 1 0 0 0 1 1 1

0 1 0 1 1 0 0 0

0 1 1 0 1 0 0 1

0 1 1 1 1 0 1 0

1 0 0 0 1 0 1 1

1 0 0 1 1 1 0 0

1 0 1 0 x x x x

1 0 1 1 x x x x

1 1 0 0 x x x x

1 1 0 1 x x x x

1 1 1 0 x x x x

1 1 1 1 x x x X

K-Map for E3:

E3 = B3 + B2 (B0 + B1)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

21

K-Map for E2:

K-Map for E1:

K-Map for E0:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

22

 EXCESS-3 TO BCD CONVERTOR

LOGIC DIAGRAM:

TRUTH TABLE:

| Excess – 3 Input | BCD Output |

B3 B2 B1 B0 G3 G2 G1 G0

0 0 1 1 0 0 0 0

0 1 0 0 0 0 0 1

0 1 0 1 0 0 1 0

0 1 1 0 0 0 1 1

0 1 1 1 0 1 0 0

1 0 0 0 0 1 0 1

1 0 0 1 0 1 1 0

1 0 1 0 0 1 1 1

1 0 1 1 1 0 0 0

1 1 0 0 1 0 0 1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

23

EXCESS-3 TO BCD CONVERTOR

K-Map for A:

A = X1 X2 + X3 X4 X1

K-Map for B:

K-Map for C:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

24

K-Map for D:

EXCESS-3 TO BCD CONVERTOR

PROCEDURE:

(i) Connections were given as per circuit diagram.

(ii) Logical inputs were given as per truth table

(iii) Observe the logical output and verify with the truth tables.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

25

RESULT:

Thus the following 4-bit converters are designed and constructed.

(i) Binary to gray code converter

(ii) Gray to binary code converter

(iii) BCD to excess-3 code converter
(iv) Excess-3 to BCD code converter

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

26

Ex.No.-3 ADDER AND SUBTRACTOR

AIM:

To design and construct half adder, full adder, half subtractor and full
subtractor circuits and verify the truth table using logic gates.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION QTY.

1. AND GATE IC 7408 1

2. X-OR GATE IC 7486 1

3. NOT GATE IC 7404 1

4. OR GATE IC 7432 1

5. IC TRAINER KIT - 1

6. PATCH CORDS - 23

THEORY:

HALF ADDER:

A half adder has two inputs for the two bits to be added and two outputs one from

the sum ‘ S’ and other from the carry ‘ c’ into the higher adder position. Above circuit is

called as a carry signal from the addition of the less significant bits sum from the X-OR

Gate the carry out from the AND gate.

FULL ADDER:

A full adder is a combinational circuit that forms the arithmetic sum of input; it

consists of three inputs and two outputs. A full adder is useful to add three bits at a time but

a half adder cannot do so. In full adder sum output will be taken from X-OR Gate, carry

output will be taken from OR Gate.

HALF SUBTRACTOR:

The half subtractor is constructed using X-OR and AND Gate. The half subtractor

has two input and two outputs. The outputs are difference and borrow. The difference can

be applied using X-OR Gate, borrow output can be implemented using an AND Gate and

an inverter.

FULL SUBTRACTOR:

The full subtractor is a combination of X-OR, AND, OR, NOT Gates. In a full

subtractor the logic circuit should have three inputs and two outputs. The two half

subtractor put together gives a full subtractor .The first half subtractor will be C and A B.

The output will be difference output of full subtractor. The expression AB assembles the

borrow output of the half subtractor and the second term is the inverted difference output

of first X-OR.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

27

HALF ADDER

TRUTH TABLE:

 A B CARRY SUM

 0 0 0 0

 0 1 0 1

 1 0 0 1

 1 1 1 0

K-Map for SUM: K-Map for CARRY:

1
1

1

SUM = A’B + AB’ CARRY = AB

LOGIC DIAGRAM:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

28

TRUTH TABLE:

FULL ADDER

 A B C CARRY SUM

 0 0 0 0 0

 0 0 1 0 1

 0 1 0 0 1

 0 1 1 1 0

 1 0 0 0 1

 1 0 1 1 0

 1 1 0 1 0

 1 1 1 1 1

K-Map for SUM

 1 1

1 1

SUM = A’B’C + A’BC’ + ABC’ + ABC

K-Map for CARRY

CARRY = AB + BC + AC

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

29

LOGIC DIAGRAM:

FULL ADDER USING TWO HALF ADDER

HALF SUBTRACTOR

TRUTH TABLE:

 A B BORROW DIFFERENCE

 0 0 0 0

 0 1 1 1

 1 0 0 1

 1 1 0 0

K-Map for DIFFERENCE

1

1

DIFFERENCE = A’B + AB’

K-Map for BORROW

1

BORROW = A’B

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

30

LOGIC DIAGRAM

 FULL SUBTRACTOR

TRUTH TABLE:

 A B C BORROW DIFFERENCE

 0 0 0 0 0

 0 0 1 1 1

 0 1 0 1 1

 0 1 1 1 0

 1 0 0 0 1

 1 0 1 0 0

 1 1 0 0 0

 1 1 1 1 1

K-Map for Difference

1 1

1 1

Difference = A’B’C + A’BC’ + AB’C’ + ABC

K-Map for Borrow

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

31

Borrow = A’B + BC + A’C

LOGIC DIAGRAM:

FULL SUBTRACTOR USING TWO HALF SUBTRACTOR

PROCEEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

RESULT:

Thus, the half adder, full adder, half subtractor and full subtractor

circuits are designed, constructed and verified the truth table using logic gates.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

32

Ex.No.-4a 4-BIT ADDER AND SUBTRACTOR

AIM:

To design and implement 4-bit adder and subtractor using basic gates and MSI

device IC 7483.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION QTY.

1. IC IC 7483 1

2. EX-OR GATE IC 7486 1

3. NOT GATE IC 7404 1

3. IC TRAINER KIT - 1

4. PATCH CORDS - 40

THEORY:

4 BIT BINARY ADDER:

A binary adder is a digital circuit that produces the arithmetic sum of two binary

numbers. It can be constructed with full adders connected in cascade, with the output carry

from each full adder connected to the input carry of next full adder in chain. The augends

bits of ‘A’ and the addend bits of ‘B’ are designated by subscript numbers from right to

left, with subscript 0 denoting the least significant bits. The carries are connected in chain

through the full adder. The input carry to the adder is C0 and it ripples through the full

adder to the output carry C4.

4 BIT BINARY SUBTRACTOR:

The circuit for subtracting A-B consists of an adder with inverters, placed between

each data input ‘B’ and the corresponding input of full adder. The input carry C0 must be

equal to 1 when performing subtraction.

4 BIT BINARY ADDER/SUBTRACTOR:

The addition and subtraction operation can be combined into one circuit with one

common binary adder. The mode input M controls the operation. When M=0, the circuit is

adder circuit. When M=1, it becomes subtractor.

4 BIT BCD ADDER:

Consider the arithmetic addition of two decimal digits in BCD, together with an

input carry from a previous stage. Since each input digit does not exceed 9, the output sum

cannot be greater than 19, the 1 in the sum being an input carry. The output of two decimal

digits must be represented in BCD and should appear in the form listed in the columns.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

33

ABCD adder that adds 2 BCD digits and produce a sum digit in BCD. The 2

decimal digits, together with the input carry, are first added in the top 4 bit adder to

produce the binary sum.

PIN DIAGRAM FOR IC 7483:

4-BIT BINARY ADDER

LOGIC DIAGRAM:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

34

4-BIT BINARY SUBTRACTOR

LOGIC DIAGRAM:

4-BIT BINARY ADDER/SUBTRACTOR

LOGIC DIAGRAM:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

35

TRUTH TABLE:

Input Data A Input Data B Addition Subtraction

A4 A3 A2 A1 B4 B3 B2 B1 C S4 S3 S2 S1 B D4 D3 D2 D1

1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0

1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0

0 0 1 0 1 0 0 0 0 1 0 1 0 0 1 0 1 0

0 0 0 1 0 1 1 1 0 1 0 0 0 0 1 0 1 0

1 0 1 0 1 0 1 1 1 0 0 1 0 0 1 1 1 1

1 1 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1

1 0 1 0 1 1 0 1 1 0 1 1 1 0 1 1 0 1

PROCEDURE:

(i) Connections were given as per circuit diagram.

(ii) Logical inputs were given as per truth table

(iii) Observe the logical output and verify with the truth tables.

RESULT:

Thus the 4-bit adder and subtractor using basic gates and MSI device IC 7483 is
designed and implemented.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

36

Ex.No.-4b PARITY GENERATOR AND CHECKER

AIM:

To design and verify the truth table of a three bit Odd Parity generator and checker.

APPARATUS REQUIRED:

SL. NO. NAME OF THE APPARATUS RANGE QUANTITY

1. Digital IC trainer kit 1

2. EX-OR gate IC 7486

3. NOT gate IC 7404

4. Connecting wires As required

THEORY:

A parity bit is used for the purpose of detecting errors during transmission of binary

information. A parity bit is an extra bit included with a binary message to make the number

of 1’s either odd or even. The message including the parity bit is transmitted and then

checked at the receiving end for errors. An error is detected if the checked parity does not

correspond with the one transmitted. The circuit that generates the parity bit in the

transmitter is called a parity generator and the circuit that checks the parity in the receiver

is called a parity checker.

In even parity the added parity bit will make the total number of 1’s an even

amount and in odd parity the added parity bit will make the total number of 1’s an odd

amount.

In a three bit odd parity generator the three bits in the message together with the

parity bit are transmitted to their destination, where they are applied to the parity checker

circuit. The parity checker circuit checks for possible errors in the transmission.

Since the information was transmitted with odd parity the four bits received must

have an odd number of 1’s. An error occurs during the transmission if the four bits

received have an even number of 1’s, indicating that one bit has changed during

transmission. The output of the parity checker is denoted by PEC (parity error check) and

it will be equal to 1 if an error occurs, i.e., if the four bits received has an even number of
1’s. Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

37

ODD PARITY GENERATOR

TRUTH TABLE:

SL.NO.

INPUT OUTPUT

(Three bit message) (Odd Parity bit)

A B C P

1. 0 0 0 1

2. 0 0 1 0

3. 0 1 0 0

4. 0 1 1 1

5. 1 0 0 0

6. 1 0 1 1

7. 1 1 0 1

8. 1 1 1 0

From the truth table the expression for the output parity bit is,
 P(A, B, C) = Σ (0, 3, 5, 6)
Also written as,

 P = A’B’C’ + A’BC + AB’C + ABC’ = (A B C) ‘

ODD PARITY GENERATOR

CIRCUIT DIAGRAM:

ODD PARITY CHECKER

CIRCUIT DIAGRAM:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

38

ODD PARITY CHECKER

TRUTH TABLE:

SL.NO.
INPUT OUTPUT

(4 - Bit Message Received) (Parity Error Check)

 A B C P X

1. 0 0 0 0 1

2. 0 0 0 1 0

3. 0 0 1 0 0

4. 0 0 1 1 1

5. 0 1 0 0 0

6. 0 1 0 1 1

7. 0 1 1 0 1

8. 0 1 1 1 0

9. 1 0 0 0 0

10. 1 0 0 1 1

11. 1 0 1 0 1

12. 1 0 1 1 0

13. 1 1 0 0 1

14. 1 1 0 1 0

15. 1 1 1 0 0

16. 1 1 1 1 1

From the truth table the expression for the output parity checker bit is,

X (A, B, C, P) = Σ (0, 3, 5, 6, 9, 10, 12, 15)
The above expression is reduced as,

X = (A B C P)

PROCEDURE:

1. Connections are given as per the circuit diagrams.

2. For all the ICs 7
th

 pin is grounded and 14
th

 pin is given +5 V supply.
3. Apply the inputs and verify the truth table for the Parity generator and checker.

PIN DIAGRAM FOR IC 74180:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

39

FUNCTION TABLE:

INPUTS OUTPUTS

Number of High Data PE PO ∑E ∑O

Inputs (I0 – I7)

EVEN 1 0 1 0

ODD 1 0 0 1

EVEN 0 1 0 1

ODD 0 1 1 0

X 1 1 0 0

X 0 0 1 1

16 BIT ODD/EVEN PARITY GENERATOR

LOGIC DIAGRAM:

TRUTH TABLE:

I7 I6 I5 I4 I3 I2 I1 I0 I7 I6 I5 I4 I3 I2 I1 I0 Active ∑E ∑O

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0

1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1

1 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

40

16 BIT ODD/EVEN PARITY CHECKER

LOGIC DIAGRAM

TRUTH TABLE:

I7 I6 I5 I4 I3 I2 I1 I0 I7’I6’I5’I4’I3’I2’11’ I0’ Active ∑E ∑O

 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 1 0 1

RESULT:

Thus the three bit and 16 bit odd Parity generator and checker circuits were

designed, implemented and their truth tables were verified.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

41

Ex.No.-4c MAGNITUDE COMPARATOR

AIM:

To design and implement the magnitude comparator using MSI device.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION QTY.

1. AND GATE IC 7408 2

2. X-OR GATE IC 7486 1

3. OR GATE IC 7432 1

4. NOT GATE IC 7404 1

5. 4-BIT MAGNITUDE COMPARATOR IC 7485 2

6. IC TRAINER KIT - 1

7. PATCH CORDS - 30

THEORY:

The comparison of two numbers is an operator that determine one number is greater

than, less than (or) equal to the other number. A magnitude comparator is a combinational

circuit that compares two numbers A and B and determine their relative magnitude. The

outcome of the comparator is specified by three binary variables that indicate whether

A>B, A=B (or) A<B.

A = A3 A2 A1 A0

B = B3 B2 B1 B0

The equality of the two numbers and B is displayed in a combinational circuit

designated by the symbol (A=B).

This indicates A greater than B, then inspect the relative magnitude of pairs of

significant digits starting from most significant position. A is 0 and that of B is 0.

We have A<B, the sequential comparison can be expanded as

A>B = A3B3
1
 + X3A2B2

1
 + X3X2A1B1

1
 + X3X2X1A0B0

1

A<B = A3
1
B3 + X3A2

1
B2 + X3X2A1

1
B1 + X3X2X1A0

1
B0

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

42

The same circuit can be used to compare the relative magnitude of two BCD

digits. Where, A = B is expanded as,

A = B = (A3 + B3) (A2 + B2) (A1 + B1) (A0 + B0)

x3 x2 x1 x0

PIN DIAGRAM FOR IC 7485:

8-BIT MAGNITUDE COMPARATOR

LOGIC DIAGRAM:

TRUTH TABLE:

 A B A>B A=B A<B

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

43

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

RESULT:

Thus the magnitude comparator using MSI device is designed and implemented.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

44

Ex.No.-4d MULTIPLEXER AND DEMULTIPLEXER

AIM:

To design and implement the multiplexer and demultiplexer using logic gates

and study of IC 74150 and IC 74154.

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION QTY.

1. 3 I/P AND GATE IC 7411 2

2. OR GATE IC 7432 1

3. NOT GATE IC 7404 1

2. IC TRAINER KIT - 1

3. PATCH CORDS - 32

THEORY:

MULTIPLEXER:

Multiplexer means transmitting a large number of information units over a smaller

number of channels or lines. A digital multiplexer is a combinational circuit that selects

binary information from one of many input lines and directs it to a single output line. The

selection of a particular input line is controlled by a set of selection lines. Normally there

are 2
n
 input line and n selection lines whose bit combination determine which input is

selected.

DEMULTIPLEXER:

The function of Demultiplexer is in contrast to multiplexer function. It takes

information from one line and distributes it to a given number of output lines. For this

reason, the demultiplexer is also known as a data distributor. Decoder can also be used as

demultiplexer.

In the 1: 4 demultiplexer circuit, the data input line goes to all of the AND gates.

The data select lines enable only one gate at a time and the data on the data input line will

pass through the selected gate to the associated data output line.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

45

4:1 MULTIPLEXER

BLOCK DIAGRAM FOR 4:1 MULTIPLEXER:

FUNCTION TABLE:

Y = D0 S1’ S0’ + D1 S1’ S0 + D2 S1 S0’ + D3 S1 S0

TRUTH TABLE:

S1 S0 Y = OUTPUT

0 0 D0

0 1 D1

1 0 D2

1 1 D3

S1 S0 INPUTS Y

0 0 D0 → D0 S1’ S0’

0 1 D1 → D1 S1’ S0

1 0 D2 → D2 S1 S0’

1 1 D3 → D3 S1 S0

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

46

CIRCUIT DIAGRAM FOR MULTIPLEXER:

1:4 DEMULTIPLEXER

BLOCK DIAGRAM FOR 1:4 DEMULTIPLEXER:

FUNCTION TABLE:

S1 S0 INPUT

0 0 X → D0 = X S1’ S0’

0 1 X → D1 = X S1’ S0

1 0 X → D2 = X S1 S0’

1 1 X → D3 = X S1 S0

Y = X S1’ S0’ + X S1’ S0 + X S1 S0’ + X S1 S0

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

47

TRUTH TABLE:

INPUT OUTPUT

S1 S0 I/P D0 D1 D2 D3

0 0 0 0 0 0 0

0 0 1 1 0 0 0

0 1 0 0 0 0 0

0 1 1 0 1 0 0

1 0 0 0 0 0 0

1 0 1 0 0 1 0

1 1 0 0 0 0 0

1 1 1 0 0 0 1

LOGIC DIAGRAM FOR DEMULTIPLEXER:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

48

PIN DIAGRAM FOR IC 74150:

PIN DIAGRAM FOR IC 74154:

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

RESULT:
Thus the multiplexer and demultiplexer using logic gates are designed and

implemented.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

49

Ex.No.-5 SHIFT REGISTER

AIM:

To design and implement the following shift registers

(i) Serial in serial out

(ii) Serial in parallel out

(iii) Parallel in serial out

(iv) Parallel in parallel out

APPARATUS REQUIRED:

SL.NO. COMPONENT SPECIFICATION QTY.

1. D FLIP FLOP IC 7474 2

2. OR GATE IC 7432 1

3. IC TRAINER KIT - 1

4. PATCH CORDS - 35

THEORY:

A register is capable of shifting its binary information in one or both directions is

known as shift register. The logical configuration of shift register consist of a D-Flip flop

cascaded with output of one flip flop connected to input of next flip flop. All flip flops

receive common clock pulses which causes the shift in the output of the flip flop. The

simplest possible shift register is one that uses only flip flop. The output of a given flip flop

is connected to the input of next flip flop of the register. Each clock pulse shifts the content

of register one bit position to right.

PIN DIAGRAM OF IC 7474:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

50

 SERIAL IN SERIAL OUT

LOGIC DIAGRAM:

TRUTH TABLE:

CLK Serial In Serial Out

1 1 0

2 0 0

3 0 0

4 1 1

5 X 0

6 X 0

7 X 1

 SERIAL IN PARALLEL OUT

LOGIC DIAGRAM:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

51

TRUTH TABLE:

CLK DATA
 OUTPUT

QA QB QC QD

1 1 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 1

4 1 1 0 0 1

PARALLEL IN SERIAL OUT

LOGIC DIAGRAM:

TRUTH TABLE:

CLK Q3 Q2 Q1 Q0 O/P

0 1 0 0 1 1

1 0 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 1
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

52

PARALLEL IN PARALLEL OUT

LOGIC DIAGRAM:

TRUTH TABLE:

CLK

DATA INPUT OUTPUT

DA DB DC DD QA QB QC QD

1 1 0 0 1 1 0 0 1

2 1 0 1 0 1 0 1 0

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

RESULT:

The Serial in serial out, Serial in parallel out, Parallel in serial out and

Parallel in parallel out shift registers are designed and implemented.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

53

Ex.No.-6 SYNCHRONOUS AND ASYNCHRONOUS COUNTER

AIM:

To design and implement synchronous and asynchronous counter.

APPARATUS REQUIRED:

S.NO. NAME OF THE APPARATUS RANGE QUANTITY

1. Digital IC trainer kit 1

2. JK Flip Flop IC 7473 2

3. D Flip Flop IC 7473 1

4. NAND gate IC 7400 1

5. Connecting wires As required

THEORY:

Asynchronous decade counter is also called as ripple counter. In a ripple counter

the flip flop output transition serves as a source for triggering other flip flops. In other

words the clock pulse inputs of all the flip flops are triggered not by the incoming pulses

but rather by the transition that occurs in other flip flops. The term asynchronous refers to

the events that do not occur at the same time. With respect to the counter operation,

asynchronous means that the flip flop within the counter are not made to change states at

exactly the same time, they do not because the clock pulses are not connected directly to

the clock input of each flip flop in the counter.

A counter is a register capable of counting number of clock pulse arriving at its

clock input. Counter represents the number of clock pulses arrived. A specified sequence

of states appears as counter output. This is the main difference between a register and a

counter. There are two types of counter, synchronous and asynchronous. In synchronous

common clock is given to all flip flop and in asynchronous first flip flop is clocked by

external pulse and then each successive flip flop is clocked by Q or Q output of previous

stage. A soon the clock of second stage is triggered by output of first stage. Because of

inherent propagation delay time all flip flops are not activated at same time which results

in asynchronous operation.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

54

PIN DIAGRAM FOR IC 7476:

CIRCUIT DIAGRAM:

TRUTH TABLE:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

55

LOGIC DIAGRAM FOR MOD - 10 RIPPLE COUNTER:

TRUTH TABLE:

CLK QA QB QC QD

0 0 0 0 0

1 1 0 0 0

2 0 1 0 0

3 1 1 0 0

4 0 0 1 0

5 1 0 1 0

6 0 1 1 0

7 1 1 1 0

8 0 0 0 1

9 1 0 0 1

10 0 0 0 0

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

56

PIN DIAGRAM:

SYNCHRONOUS COUNTER

LOGIC DIAGRAM:

TRUTH TABLE:

CLK DATA
OUTPUT

QA QB QC QD

1 1 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 1

4 1 1 0 0 1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

57

PROCEDURE:

(i) Connections are given as per circuit diagram.

(ii) Logical inputs are given as per circuit diagram.

(iii) Observe the output and verify the truth table.

RESULT:

Thus the synchronous and asynchronous counter are designed and implemented.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

58

Ex.No.- 7 IMPLEMENTATION OF BASIC LOGIC GATES

AIM:

To implement all the basic logic gates using Verilog and VHDL simulator.

 LOGIC GATE SYMBOLS TRUTH TABLES

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

59

VERILOG CODE

AND GATE

VERILOG CODE:

module and12(a,b,c);

 input a;

 input b;

 output c;

 assign c = a & b;

endmodule

 AND GATE OR GATE

module and12(a,b,c); module or12(a,b,d);
input a; input a;
input b; input b;
output c; output d;
assign c = a & b; assign d = a | b;

endmodule endmodule

NAND GATE XOR GATE
module nand12(a,b,e); module xor12(a,b,h);

input a; input a;
input b; input b;
output e; output h;
assign e = ~(a & b); assign h = a ^ b;

endmodule endmodule

XNOR GATE NOR GATE
module xnor12(a,b,i); module nor12(a,b,f);

input a; input a;
input b; input b;
output i; output f;
assign i = ~(a ^ b); assign f = ~(a | b);

endmodule endmodule

NOT GATE

module not12(a,g);

input a;

output g;

assign g = ~a;

endmodule

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

60

OUTPUT WAVEFORM:

OR GATE

VERILOG CODE:

module or12(a,b,d);

 input a;

 input b;

 output d;

 assign d = a | b;

endmodule

OUTPUT WAVEFORM:

NOT GATE

VERILOG CODE:

module not12(a,g);

 input a;

 output g;

 assign g = ~a;

endmodule

OUTPUT WAVEFORM:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

61

EX-OR GATE

VERILOG CODE:

module xor12(a,b,h);

 input a;

input b;

output h;

assign h = a^ b;

endmodule

VHDL CODE:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity xor_gate is

port (a,b : in std_logic ;

 c : out std_logic);

end xor_gate;

architecture Behavioral o f xor_gate is

begin

c <= a xor b;

end Behavioral;

OUTPUT WAVEFORM:

RESULT:

Thus all the basic logic gates are implemented and verified using Verilog and VHDL

simulator.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

62

Ex.No.-8 COMBINATIONAL AND SEQUENTIAL CIRCUITS

AIM:

To simulate the sequential and combinational circuits using HDL simulator (Verilog

and VHDL).

1. HALF ADDER

Truth Table

Input Output

 A B S(Sum) C(Carry)
0 0 0 0
0 1 1 0
1 0 1 0
1 1 1 1

Circuit Diagram Graphical Notation

Equations
S (Sum) =A^B
C (Carry) =AB

Verilog Code:

module hadd(a,b,s,c); input a;
input b;
output s;
output c;
assign s = a ^ b;
assign c = a & b;
endmodule

Output:

VHDL Code:

library IEEE;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

63

use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL; entity halfadder is
port(

a : in std_logic; b : in std_logic;

sum : out std_logic; carry : out std_logic);
end halfadder;

architecture Behavioral of halfadder is begin

sum <= (a xor b); carry <= (a and b); end Behavioral;

Input:
a : 1 ;

b :1;
Sum : 0
Carry : 1

Output:

2. FULL ADDER

Truth Table

Input Output

A B C SUM Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

64

 K- Map for sum K-map for Carry

 Circuit Diagram:

Verilog Code:

module fadd(a,b,c,s,cout);

input a;
input b;
input c; output s;
output cout;
assign s = (a ^ b) ^ c;
assign cout = (a & b)|(b & c)|(c & a);

endmodule

Output :

H.ADDER SUM = A’B’C + A’BC’ + AB’C’ + ABC Cout = A’BC + AB’C + ABC’ +ABC

 SUM= A^B^C Cout= (A^B)C+AB

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

65

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity fulladder is

port(

a : in std_logic;

b : in std_logic;

cin : in std_logic;

sum : out std_logic;

carry : out std_logic

);

end fulladder;

architecture Behavioral of fulladder is

begin

sum <= (a xor b xor cin);

carry <= (a and b) or (b and cin) or (a and cin);

end Behavioral;

Output:

3. HALF SUBTRACTOR

Verilog Code:

module hsub(a,b,d,bor);

Input a;

Input b;

output d;

output bor;

assign d=)a^b);

assign bor = (~a&~b);

end module

VHDL Code:

library IEEE;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

66

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity halfsubtractor is

port(

a : in std_logic;

b : in std_logic;

dif : out std_logic;

bor : out std_logic

);

end halfsubtractor;

architecture Behavioral of halfsubtractor is

begin

dif <= a xor b;

bor <= ((not a) and b);

end Behavioral;

Output:

4. FULL SUBTRACTOR

Verilog Code:

module sub(a,b,c,d,b out);

 input a;

 input b;

 input c;

 output d;

 output bout;

 assign d = (a ^ b) ^ c;

 assign bout = (~a & b)|(b & c)|(c & ~a);

endmodule

Output:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

67

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
entity fullsubtractor is
port(a : in std_logic;
b : in std_logic;
cin : in std_logic;
dif : out std_logic;
bor : out std_logic);
end fullsubtractor;

architecture Behavioral of fullsubtractor is begin
dif <= a xor b xor cin;

bor <= (((not a) and b) or ((not a) and cin) or (b and cin));
end Behavioral;

INPUT:
a : 0 ;
b :0;
Cin : 1
Difference : 1
Borrow : 1

Output:

5. MULTIPLEXER

Verilog Code:

module mux4to1(Y, I0,I1,I2,I3, sel);

 output Y;

 input I0,I1,I2,I3;

 input [1:0] sel;

 reg Y;

always @ (sel or I0 or I1 or I2 or I3)

case (sel)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

68

 2'b00:Y=I0;

 2'b01:Y=I1;

 2'b10: Y=I2;

 2'b11: Y=I3;

endcase

endmodule

Output:

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL; use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL; entity mux is

port(

inp : in std_logic_vector(3 downto 0); sel : in std_logic_vector(1 downto 0); muxout
: out std_logic --mux output line);
end mux;

architecture Behavioral of mux is begin

process(inp,sel) begin

case sel is when "00" =>

muxout <= inp(0); -- mux O/P=1 I/P-- when "01" =>

muxout <= inp(1); -- mux O/P=2 I/P-- when "10" =>

muxout <= inp(2); -- mux O/P=3 I/P-- when "11" =>

muxout <= inp(3); -- mux O/P=4 I/P-- when others =>

end case; end process;
end Behavioral;

Truth Table:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

69

6. DEMULTIPLEXER

Verilog Code:

module demux(S,D,Y);

Input [1:0] S;
Input D;
Output [3:0] Y; reg Y;
always @(S OR)
case({D,S})
 3’b100: Y=4’b0001;
 3’b101: Y=4’b0010;
 3’b110: Y=4’b0100;
 3’b111: Y=4’b1000;
 default:Y=4’b0000;
 endcase

endmodule

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity demux is

port(

dmuxin : in std_logic;

sel : in std_logic_vector(1 downto 0);

oup : out std_logic_vector(3 downto 0)

);

end demux;

architecture Behavioral of demux is

begin

process(dmuxin,sel)

begin

case sel is

when "00" =>

oup(0) <= dmuxin; --1 dmux o/p = dmux i/p--

oup(1) <= '0';

oup(2) <= '0';

oup(3) <= '0';

when "01" =>

oup(0) <= '0';

oup(1) <= dmuxin; --2 dmux o/p = dmux i/p--

oup(2) <= '0';

oup(3) <= '0';

when "10" =>

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

70

oup(0) <= '0';

oup(1) <= '0';

oup(2) <= dmuxin; --3 dmux o/p = dmux i/p--

oup(3) <= '0';

when "11" =>

oup(0) <= '0';

oup(1) <= '0';

oup(2) <= '0';

oup(3) <= dmuxin; --4 dmux o/p = dmux i/p--

when others =>

end case;

end process;

end Behavioral;

Truth Table:

Output:

7. D FLIPFLOP

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity dff is

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

71

port(

clk : in std_logic; --clock input

rst : in std_logic; --active low,synchronous reset

d : in std_logic; --d input

q,qbar : out std_logic --flip flop outputs ie,Qn+1 and its complement

);

end dff;

architecture Behavioral of dff is

begin

process(clk,rst)

begin

if rising_edge(clk) then

if (rst = '0') then --active low,synchronous reset

q <= '0';

qbar <= '1';

else

q <= d;

qbar <= not(d);

end if;

end if;

end process;

end Behavioral;

Output:

8. T FLIPFLOP

Verilog Code :

module tffeq(t,rst, clk,qp, qbar); input t,rst, clk;

output qp, qbar; wire q;
reg qp;
always @ (posedge clk) if (rst)

qp=0; else
qp = q ^ t; assign qbar = ~ qp;

endmodule

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

72

9. JK FLIPFLOP
Verilog Code:

module jkff(jk,pst,clr,clk,qp,qbar);
input [1:0] jk;
input pst,clr,clk;
output qp,qbar;

reg qp;

wire q;

always @ (posedge clk) if (pst)
qp= 1;
else
begin
if (clr)

 qp= 0;
 else
 begin
 case (jk)

2'b00: qp=q;
2'b01 : qp = 1'b0;
2'b10 : qp =1'b1;
2'b11 : qp = ~q;
default qp =0;

endcase
end
end
assign qbar = ~q;
assign q = qp;

endmodule

Output:

10. RIPPLE COUNTER

Verilog Code:

module ripple(clkr,st,,t,A,B,C,D);
input clk,rst,t;
output A,B,C,D;
Tff T0(D,clk,rst,t);
Tff T1(C,clk,rst,t);
Tff T2(B,clk,rst,t);

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

73

Tff T3(A,clk,rst,t);
endmodule
module Tff(q,clk,rst,t);
input clk,rst,t;
output q;
reg q;
always @(posedge clk)
begin
if(rst)
q<=1’b0; else
if(t)
q<=~q;
end
endmodule

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

---- Uncomment the following library declaration if instantiating

---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity counter is

Port (rst : in STD_LOGIC;

clk : in STD_LOGIC;

led : out std_logic_vector(3 downto 0)

);

end counter;

architecture Behavioral of counter is

signal reg :std_logic_vector(3 downto 0);

begin

process(rst,clk)

begin

if rst = '1' then

reg <= "0000";

elsif rising_edge(clk) then

reg <= reg + 1;

end if;

end process;

led(3 downto 0) <= reg(3 downto 0);

end Behavioral;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

74

Output:

11. UPDOWN COUNTER

Verilog Code:

module updowncount (R, Clock, clr, E, up_down, Q);

parameter n = 4;

input [n-1:0] R;

input Clock, clr, E, up_down;

output [n-1:0] Q;

reg [n-1:0] Q;

integer direction;

always @(posedge Clock)

begin

if (up_down) direction = 1;

else direction = -1;

if (clr) Q <= R;

else if (E) Q <= Q + direction;

end

endmodule

UP Counter:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

75

DOWN Counter:

12. SHIFT REGISTER

a. Serial In Serial Out

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

--library UNISIM;

--use UNISIM.VComponents.all;

entity hj is

port(

clk : in std_logic;

rst : in std_logic;

si: in std_logic;

so: out std_logic

);

end hj;

architecture Behavioral of hj is

signal temp : std_logic_vector(3 downto 0);

begin

process(clk,rst)

begin

if rising_edge(clk) then

if rst = '1' then

temp <= (others=>'0');

else

temp <= temp(2 downto 0) & si;

end if;

end if;

end process;

so <= temp(3);

end Behavioral;

Output:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

76

b. Parallel In Parallel Out

VHDL Code:

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

use IEEE.STD_LOGIC_ARITH.ALL;

use IEEE.STD_LOGIC_UNSIGNED.ALL;

--library UNISIM;

--use UNISIM.VComponents.all;

entity hj is

port(

clk : in std_logic;

rst : in std_logic;

po: out std_logic_vector(3 downto 0);

pi: in std_logic_vector(3 downto 0)

);

end hj;

architecture Behavioral of hj is

signal temp : std_logic_vector(3 downto 0);

begin

process(clk,rst)

begin

if rising_edge(clk) then

if rst = '1' then

temp <= (others=>'0');

else

temp <= pi(3 downto 0);

end if;

end if;

end process;

po <= temp(3 downto 0);

end Behavioral;

Output:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

77

RESULT:

Thus the sequential and combinational circuits are designed and implemented using

HDL simulator (Verilog and VHDL).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

