
ARUNAI ENGINEERING COLLEGE
(Affiliated to Anna University)

Velu Nagar, Tiruvannamalai —606603

Phone: 04175-237419/236799/237739

www.arunai.org

DEPARTMENT OF COMPUTER SCIENCE AND
ENGINEERING

BACHELOR OF ENGINEERING

Second Year

Fourth Semester

CS8493- OPERATING SYSTEMS

Lecture By – R.SURESH AP/CSE

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

CS8493 OPERATING SYSTEMS

OBJECTIVES:

• To understand the basic concepts and functions of operating systems.

• To understand Processes and Threads

• To analyze Scheduling algorithms.

• To understand the concept of Deadlocks.

• To analyze various memory management schemes.

• To understand I/O management and File systems.

• To be familiar with the basics of Linux system and Mobile OS like iOS and Android.

UNIT I OPERATING SYSTEM OVERVIEW 7

Computer System Overview-Basic Elements, Instruction Execution, Interrupts, Memory

Hierarchy, Cache Memory, Direct Memory Access, Multiprocessor and Multicore

Organization. Operating system overview-objectives and functions, Evolution of Operating

System.- Computer System Organization Operating System Structure and Operations-

System Calls, System Programs, OS Generation and System Boot.

UNIT II PROCESS MANAGEMENT 11

Processes - Process Concept, Process Scheduling, Operations on Processes, Inter-process

Communication; CPU Scheduling - Scheduling criteria, Scheduling algorithms, Multiple-

processor scheduling, Real time scheduling; Threads- Overview, Multithreading models,

Threading issues; Process Synchronization - The critical-section problem, Synchronization

hardware, Mutex locks, Semaphores, Classic problems of synchronization, Critical regions,

Monitors; Deadlock - System model, Deadlock characterization, Methods for handling

deadlocks, Deadlock prevention, Deadlock avoidance, Deadlock detection, Recovery from

deadlock.

UNIT III STORAGE MANAGEMENT 9

Main Memory – Background, Swapping, Contiguous Memory Allocation, Paging,

Segmentation, Segmentation with paging, 32 and 64 bit architecture Examples; Virtual

Memory – Background, Demand Paging, Page Replacement, Allocation, Thrashing;

Allocating Kernel Memory, OS Examples.

UNIT IV FILE SYSTEMS AND I/O SYSTEMS 9

Mass Storage system – Overview of Mass Storage Structure, Disk Structure, Disk

Scheduling and Management, swap space management; File-System Interface - File

concept, Access methods, Directory Structure, Directory organization, File system

mounting, File Sharing and Protection; File System Implementation- File System Structure,

Directory implementation, Allocation Methods, Free Space Management, Efficiency and

Performance, Recovery; I/O Systems – I/O Hardware, Application I/O interface, Kernel I/O

subsystem, Streams, Performance.

UNIT V CASE STUDY 9

Linux System - Design Principles, Kernel Modules, Process Management, Scheduling,

Memory Management, Input-Output Management, File System, Inter-process

Communication; Mobile OS - iOS and Android - Architecture and SDK Framework, Media

Layer, Services Layer, Core OS Layer, File System.

TOTAL : 45

PERIODS

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

OUTCOMES:

At the end of the course, the students should be able to:

• Analyze various scheduling algorithms.

• Understand deadlock, prevention and avoidance algorithms.

• Compare and contrast various memory management schemes.

• Understand the functionality of file systems.

• Perform administrative tasks on Linux Servers.

• Compare iOS and Android Operating Systems.

TEXT BOOK :

1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, ―Operating System

Concepts‖, 9th Edition, John Wiley and Sons Inc., 2012.

REFERENCES :

1. Ramaz Elmasri, A. Gil Carrick, David Levine, ―Operating Systems – A Spiral

Approach‖, Tata McGraw Hill Edition, 2010.
2. Achyut S.Godbole, Atul Kahate, ―Operating Systems‖, McGraw Hill Education, 2016.

3. Andrew S. Tanenbaum, ―Modern Operating Systems‖, Second Edition,

Pearson Education, 2004.

4. Gary Nutt, ―Operating Systems‖, Third Edition, Pearson Education, 2004.

5. Harvey M. Deitel, ―Operating Systems‖, Third Edition, Pearson Education, 2004.

6. Daniel P Bovet and Marco Cesati, ―Understanding the Linux kernel‖, 3rd edition,

O‘Reilly, 2005.

7. Neil Smyth, ―iPhone iOS 4 Development Essentials – Xcode‖, Fourth Edition, Payload

media, 2011.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Scanned by CamScanner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 5104 ARUNAI ENGG COLLEGE

VMware Workstation

VMware Workstation includes the ability to designate multiple virtual machines as a

team which can then be powered on, powered off, suspended or resumed as a single object,

making it particularly useful for testing client-server environments.

VMWare Player

The VMware Player, a virtualization package of basically similar, but reduced,

functionality, is also available, and is free of charge for non-commercial use, or for distribution

or other use by written agreement.

VMware Player is a virtualization software package supplied free of charge by VMware,

Inc. VMware Player can run existing virtual appliances and create its own virtual machines. It

uses the same virtualization core as VMware Workstation, a similar program with more

features, but not free of charge. VMware Player is available for personal non-commercial use,

or for distribution or other use by written agreement.

VMware claims the Player offers better graphics, faster performance, and tighter

integration for running Windows XP under Windows Vista or Windows 7 than Microsoft's

Windows XP Mode running on Windows Virtual PC, which is free of charge for all purposes.

VMware Tools

VMware Tools is a package with drivers and other software that can be installed in guest

operating systems to increase their performance. It has several components, including the

following drivers for the emulated hardware:

• VESA-compliant graphics for the guest machine to access high screen resolutions

• Network drivers for the vmxnet2 and vmxnet3 NIC Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 VMware Web Access Login

• Mouse integration, Drag-and-drop file support

• Clipboard sharing between host and guest

• Time synchronization capabilities (guest syncs with host machine's clock)

• Support for Unity, a feature that allows seamless integration of applications with the

host desktop

Installing and Configuring VMWare

1. Download VMware Server 2. VMware management console on a remote Ubuntu

desktop behind a firewall at a remote location. Run the following command:

$gksu vmware-server-console

2. Install the VMware Server 2.0.2 rpm as shown below.

rpm -ivh VMware-server-2.0.2-203138.i386.rpm

Preparing...

1:VMware-server

[100%]

The installation of VMware Server 2.0.2 for Linux completed successfully.

You can decide to remove this software from your system at any time by invoking the

following command:

rpm -e VMware-server

Before running VMware Server for the first time, you need to configure it for your

running kernel by invoking the following command:

/usr/bin/vmware-config.pl

3. Configure VMware Server 2 using vmware-config.pl. Execute the vmware-config.pl as

shown below. Accept default values for everything. Partial output of the vmware-

config.pl is shown below.

/usr/bin/vmware-config.pl

4. Go to VMware Infrastructure Webaccess. Go to https://{host-os-ip}:8333/ui to access

the VMware Infrastructure web access console.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Installing a VMware Guest OS

1. Start VMware Workstation

Windows host: Double-click the VMware Workstation icon on your desktop or use the

Start menu (Start > Programs > VMware > VMware Workstation).

Linux host: In a terminal window, enter the command

vmware &

2. Start the New Virtual Machine Wizard

When you start VMware Workstation, you can open an existing virtual machine or

create a new one. Choose File > New > Virtual Machine to begin creating your virtual

machine.

3. Select the method you want to use for configuring your virtual machine

If you select Typical, the wizard prompts you to specify or accept defaults for the

following choices:

• The guest operating system

• The virtual machine name and the location of the virtual machine's files

• The network connection type

• Whether to allocate all the space for a virtual disk at the time you create it

• Whether to split a virtual disk into 2GB file

If you select Custom, the wizard prompts you to specify or accept defaults for the following choices:

• Make a legacy virtual machine that is compatible with Workstation 4.x, GSX

Server 3.x, ESX Server 2.x and VMware ACE 1.x.

• Use an IDE virtual disk for a guest operating system that would otherwise have

a SCSI virtual disk created by default

• Use a physical disk rather than a virtual disk and Set memory options that are

different from the defaults

If you selected Custom as your configuration path, you may adjust the memory settings

or accept the defaults, then click Next to continue.

6. Configure the networking capabilities of the virtual machine.

If you selected Typical as your configuration path, click Finish and the wizard

sets up the files needed for your virtual machine.

If you selected Custom as your configuration path, continue with the steps

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

below to configure a disk for your virtual machine.

7. Select whether to create an IDE or SCSI disk and specify the capacity of the virtual disk.

8. Click Finish. The wizard sets up the files needed for your virtual machine.

 Setting up a XEN Workstation XEN

Workstation

Xen is a hypervisor using a microkernel design, providing services that allow multiple

computer operating systems to execute on the same computer hardware concurrently.

The University of Cambridge Computer Laboratory developed the first versions of Xen.

The Xen community develops and maintains Xen as free and open-source software, subject to

the requirements of the GNU General Public License (GPL), version 2. Xen is currently available

for the IA-32, x86-64 and ARM instruction sets.

XenServer runs directly on server hardware without requiring an underlying operating

system, which results in an efficient and scalable system. XenServer works by abstracting

elements from the physical machine (such as hard drives, resources and ports) and allocating

XEN Environment

Responsibilities of the hypervisor include memory management and CPU scheduling of

all virtual machines, and for launching the most privileged domain - the only virtual machine

which by default has direct access to hardware. From the dom0 the hypervisor can be managed

and unprivileged domains can be launched.

Benefits of Using XenServer

1. Using XenServer reduces costs by:

• Consolidating multiple VMs onto physical servers

• Reducing the number of separate disk images that need to be managed

• Allowing for easy integration with existing networking and storage infrastructures

2. Using XenServer increases flexibility by:

• Allowing you to schedule zero downtime maintenance by using XenMotion to live

migrate VMs between XenServer hosts

• Increasing availability of VMs by using High Availability to configure policies that

restart VMs on another XenServer host if one fails

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• Increasing portability of VM images, as one VM image will work on a range of

deployment infrastructures

Administering XenServer

• There are two methods by which to administer XenServer: XenCenter and the XenServer

Command-Line Interface (CLI).

• XenCenter is a graphical, Windows-based user interface. XenCenter allows you to manage

XenServer hosts, pools and shared storage, and to deploy, manage and monitor VMs from

your Windows desktop machine.

• The XenCenter on-line Help is a useful resource for getting started with XenCenter and for

context-sensitive assistance.

Installing and Configuring XenServer

1. Type the following command to get information about xen server package

yum info xen

2. Run the system-config-securitylevel program or edit /etc/selinux/config to looks as follows:

SELINUX=Disabled

SELINUXTYPE=targeted

If you changed the SELINUX value from enforcing, you’ll need to reboot Fedora before proceeding.

3. This command will install the Xen hypervisor, a Xen-modified Fedora kernel called domain 0, and

various utilities:

yum install kernel-xen0

4. To make the Xen kernel the default, change this line:

default=1

to

default=0

5. Now you can reboot. Xen should start automatically, but let’s check:

/usr/sbin/xm list

Name ID Mem(MiB) VCPUs State Time(s)

Domain-0 0 880 1 r----- 20.5

The output should show that Domain-0 is running. Domain 0 controls

all the guest operating systems that run on the processor,

similarly to how the kernel controls processes in an operating

system.

Installing a Xen Guest OS from the Command-line

1. Preparing the System for virt-install

Fedora Linux does not install VNC by default. To verify whether VNC is installed, run the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

following command from a Terminal Window:

If rpm reports that VNC is not installed, it may be installed from root as follows:

yum install vnc

2. Running virt-install to Build the Xen Guest System

virt-install must be run as root and, once invoked, will ask a number of questions before

creating the guest system. The question are as follows:

i. What is the name of your virtual machine and install location?

ii. How much RAM should be allocated (in megabytes)?

iii. What would you like to use as the disk (path)?

iv. Would you like to enable graphics support? (yes or no)

The following transcript shows a typical virt-install session:

virt-install

3. Once the guest system has been created, the vncviewer screen will appear containing the operating

system installer:

Installing a Xen Guest OS (Fedora Core 5)

1. Fedora Core 5 has a Xen guest installation script that simplifies the process, although it

installs only FC5 guests. The script expects to access the FC5 install tree via FTP, the Web,

or NFS; for some reason, you can’t specify a directory or file.

mkdir /var/www/html/dvd

mount -t iso9660 /dev/dvd /var/www/html/dvd

apachectl start

Now we’ll run the installation script and answer its questions:

xenguest-install.py

2. Xen does not start the guest operating system automatically. You need to type this command on

the host:

3. To prove that both servers are running, try these commands:

xm list

xentop

4. To start Xen domains automatically, use these commands:

/sbin/chkconfig --level 345 xendomains on

/sbin/service xendomains start

5. To Edit A Xen Guest Configuration File, Which Is A Text File (Actually, A Python Script) In The

/Etc/Xen Directory.

man xmdomain.cfg

And edit as follows,

Automatically generated Xen config file

name = "guest1"

memory = "256"

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

disk = ['file:/xenguest,xvda,w']

vif = ['mac=00:16:3e:63:c7:76']

uuid = "bc2c1684-c057-99ea-962b-de44a038bbda"

bootloader="/usr/bin/pygrub"

on_reboot = 'restart'

on_crash = 'restart'

6. Once you have a guest configuration file, create the Xen guest with

this command:

where

xm create -c guest_name

guest_name can be a full pathname or a relative filename (in which case Xen places

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Ss

s5104 ARUNAI ENGG COLLEGE

it in /etc/xen/guest_name).

Xen will create the guest domain and try to boot it from the given file or

device. The -c option attaches a console to the domain when it starts, so you can

answer the installation questions that appear.

iPhone OS becomes iOS

Prior to the release of the iPad in 2010, the operating system running on the iPhone was

generally referred to as iPhone OS. Given that the operating system used for the iPad is

essentially the same as that on the iPhone it didn‟t make much sense to name it iPad OS. Instead,

Apple decided to adopt a more generic and non-device specific name for the operating system.

Given Apple‟s predilection for names prefixed with the letter „i‟ (iTunes, iBookstore, iMac etc)

the logical choice was, of course, iOS. Unfortunately, iOS is also the name used by Cisco for the

operating system on its routers (Apple, it seems, also has a predilection for ignoring trademarks).

When performing an internet search for iOS, therefore, be prepared to see large numbers of

results for Cisco‟s iOS which have absolutely nothing to do with Apple‟s iOS.

An Overview of the iOS 6 Architecture

iOS consists of a number of different software layers, each of which provides programming

frameworks for the development of applications that run on top of the underlying hardware.

These operating system layers can be presented diagrammatically as illustrated in Figure

Figure: iOS 6 Architecture

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5104 ARUNAI ENGG COLLEGE

Some diagrams designed to graphically depict the iOS software stack show an additional box

positioned above the Cocoa Touch layer to indicate the applications running on the device. In the

above diagram we have not done so since this would suggest that the only interface available to

the app is Cocoa Touch. In practice, an app can directly call down any of the layers of the stack

to perform tasks on the physical device.

That said, however, each operating system layer provides an increasing level of abstraction away

from the complexity of working with the hardware. As an iOS developer you should, therefore,

always look for solutions to your programming goals in the frameworks located in the higher

level iOS layers before resorting to writing code that reaches down to the lower level layers. In

general, the higher level of layer you program to, the less effort and fewer lines of code you will

have to write to achieve your objective. And as any veteran programmer will tell you, the less

code you have to write the less opportunity you have to introduce bugs.

The Cocoa Touch Layer

The Cocoa Touch layer sits at the top of the iOS stack and contains the frameworks that are most

commonly used by iPhone application developers. Cocoa Touch is primarily written in

Objective-C, is based on the standard Mac OS X Cocoa API (as found on Apple desktop and

laptop computers) and has been extended and modified to meet the needs of the iPhone

hardware.

The Cocoa Touch layer provides the following frameworks for iPhone app development:

UIKit Framework (UIKit.framework)

The UIKit framework is a vast and feature rich Objective-C based programming interface. It is,

without question, the framework with which you will spend most of your time working. Entire

books could, and probably will, be written about the UIKit framework alone. Some of the key

features of UIKit are as follows:

• User interface creation and management (text fields, buttons, labels, colors, fonts etc)

• Application lifecycle management

• Application event handling (e.g. touch screen user interaction)

• Multitasking

• Wireless Printing

• Data protection via encryption

• Cut, copy, and paste functionality

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5104 ARUNAI ENGG COLLEGE

• Web and text content presentation and management

• Data handling

• Inter-application integration

• Push notification in conjunction with Push Notification Service

• Local notifications (a mechanism whereby an application running in the background can

gain the user‟s attention)

• Accessibility

• Accelerometer, battery, proximity sensor, camera and photo library interaction

• Touch screen gesture recognition

• File sharing (the ability to make application files stored on the device available via

iTunes)

• Blue tooth based peer to peer connectivity between devices

• Connection to external displays

Map Kit Framework (MapKit.framework)

If you have spent any appreciable time with an iPhone then the chances are you have needed to

use the Maps application more than once, either to get a map of a specific area or to generate

driving directions to get you to your intended destination. The Map Kit framework provides a

programming interface which enables you to build map based capabilities into your own

applications. This allows you to, amongst other things, display scrollable maps for any location,

display the map corresponding to the current geographical location of the device and annotate the

map in a variety of ways.

Push Notification Service

The Push Notification Service allows applications to notify users of an event even when the

application is not currently running on the device. Since the introduction of this service it has

most commonly been used by news based applications. Typically when there is breaking news

the service will generate a message on the device with the news headline and provide the user the

option to load the corresponding news app to read more details. This alert is typically

accompanied by an audio alert and vibration of the device. This feature should be used sparingly

to avoid annoying the user with frequent interruptions.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5104 ARUNAI ENGG COLLEGE

Message UI Framework (MessageUI.framework)

The Message UI framework provides everything you need to allow users to compose and send

email messages from within your application. In fact, the framework even provides the user

interface elements through which the user enters the email addressing information and message

content. Alternatively, this information may be pre-defined within your application and then

displayed for the user to edit and approve prior to sending.

Address Book UI Framework (AddressUI.framework)

Given that a key function of the iPhone is as a communications device and digital assistant it

should not come as too much of a surprise that an entire framework is dedicated to the

integration of the address book data into your own applications. The primary purpose of the

framework is to enable you to access, display, edit and enter contact information from the iPhone

address book from within your own application.

Game Kit Framework (GameKit.framework)

The Game Kit framework provides peer-to-peer connectivity and voice communication between

multiple devices and users allowing those running the same app to interact. When this feature

was first introduced it was anticipated by Apple that it would primarily be used in multi-player

games (hence the choice of name) but the possible applications for this feature clearly extend far

beyond games development.

iAd Framework (iAd.framework)

The purpose of the iAd Framework is to allow developers to include banner advertising within

their applications. All advertisements are served by Apple‟s own ad service.

Event Kit UI Framework (EventKit.framework)

The Event Kit UI framework was introduced in iOS 4 and is provided to allow the calendar and

reminder events to be accessed and edited from within an application.

Accounts Framework (Accounts.framework)

iOS 5 introduced the concept of system accounts. These essentially allow the account

information for other services to be stored on the iOS device and accessed from within

application code. Currently system accounts are limited to Twitter accounts, though other

services such as Facebook will likely appear in future iOS releases. The purpose of the Accounts

Framework is to provide an API allowing applications to access and manage these system

accounts.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5104 ARUNAI ENGG COLLEGE

Social Framework (Social.framework)

The Social Framework allows Twitter, Facebook and Sina Weibo integration to be added to

applications. The framework operates in conjunction the Accounts Framework to gain access to

the user‟s social network account information.

The iOS Media Layer

The role of the Media layer is to provide iOS with audio, video, animation and graphics

capabilities. As with the other layers comprising the iOS stack, the Media layer comprises a

number of frameworks which may be utilized when developing iPhone apps. In this section we

will look at each one in turn.

Core Video Framework (CoreVideo.framework)

The Core Video Framework provides buffering support for the Core Media framework. Whilst

this may be utilized by application developers it is typically not necessary to use this framework.

Core Text Framework (CoreText.framework)

The iOS Core Text framework is a C-based API designed to ease the handling of advanced text

layout and font rendering requirements.

Image I/O Framework (ImageIO.framework)

The Image I/O framework, the purpose of which is to facilitate the importing and exporting of

image data and image metadata, was introduced in iOS 4. The framework supports a wide range

of image formats including PNG, JPEG, TIFF and GIF.

Assets Library Framework (AssetsLibrary.framework)

The Assets Library provides a mechanism for locating and retrieving video and photo files

located on the iPhone device. In addition to accessing existing images and videos, this

framework also allows new photos and videos to be saved to the standard device photo album.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5104 ARUNAI ENGG COLLEGE

Core Graphics Framework (CoreGraphics.framework)

The iOS Core Graphics Framework (otherwise known as the Quartz 2D API) provides a

lightweight two dimensional rendering engine. Features of this framework include PDF

document creation and presentation, vector based drawing, transparent layers, path based

drawing, anti-aliased rendering, color manipulation and management, image rendering and

gradients. Those familiar with the Quartz 2D API running on MacOS X will be pleased to learn

that the implementation of this API is the same on iOS.

Core Image Framework (CoreImage.framework)

A new framework introduced with iOS 5 providing a set of video and image filtering and

manipulation capabilities for application developers.

Quartz Core Framework (QuartzCore.framework)

The purpose of the Quartz Core framework is to provide animation capabilities on the iPhone. It

provides the foundation for the majority of the visual effects and animation used by the UIKit

framework and provides an Objective-C based programming interface for creation of specialized

animation within iPhone apps.

OpenGL ES framework (OpenGLES.framework)

For many years the industry standard for high performance 2D and 3D graphics drawing has

been OpenGL. Originally developed by the now defunct Silicon Graphics, Inc (SGI) during the

1990s in the form of GL, the open version of this technology (OpenGL) is now under the care of

a non-profit consortium comprising a number of major companies including Apple, Inc., Intel,

Motorola and ARM Holdings.

OpenGL for Embedded Systems (ES) is a lightweight version of the full OpenGL specification

designed specifically for smaller devices such as the iPhone. iOS 3 or later supports both

OpenGL ES 1.1 and 2.0 on certain iPhone models (such as the iPhone 3GS and iPhone 4).

Earlier versions of iOS and older device models support only OpenGL ES version 1.1.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

GLKit Framework (GLKit.framework)

The GLKit framework is an Objective-C based API designed to ease the task of creating

OpenGL ES based applications.

NewsstandKit Framework (NewsstandKit.framework)

The Newsstand application is a new feature of iOS 5 and is intended as a central location for

users to gain access to newspapers and magazines. The NewsstandKit framework allows for the

development of applications that utilize this new service.

iOS Audio Support

iOS is capable of supporting audio in AAC, Apple Lossless (ALAC), A-law, IMA/ADPCM,

Linear PCM, µ-law, DVI/Intel IMA ADPCM, Microsoft GSM 6.10 and AES3-2003 formats

through the support provided by the following frameworks.

AV Foundation framework (AVFoundation.framework)

An Objective-C based framework designed to allow the playback, recording and management of

audio content.

Core Audio Frameworks (CoreAudio.framework, AudioToolbox.framework and

AudioUnit.framework)

The frameworks that comprise Core Audio for iOS define supported audio types, playback and

recording of audio files and streams and also provide access to the device‟s built-in audio

processing units.

Open Audio Library (OpenAL)

OpenAL is a cross platform technology used to provide high-quality, 3D audio effects (also

referred to as positional audio). Positional audio may be used in a variety of applications though

is typically used to provide sound effects in games.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5104 ARUNAI ENGG COLLEGE

Media Player Framework (MediaPlayer.framework)

The iOS Media Player framework is able to play video in .mov, .mp4, .m4v, and .3gp formats at

a variety of compression standards, resolutions and frame rates.

Core Midi Framework (CoreMIDI.framework)

Introduced in iOS 4, the Core MIDI framework provides an API for applications to interact with

MIDI compliant devices such as synthesizers and keyboards via the iPhone‟s dock connector.

The iOS Core Services Layer

The iOS Core Services layer provides much of the foundation on which the previously

referenced layers are built and consists of the following frameworks.

Address Book Framework (AddressBook.framework)

The Address Book framework provides programmatic access to the iPhone Address Book

contact database allowing applications to retrieve and modify contact entries.

CFNetwork Framework (CFNetwork.framework)

The CFNetwork framework provides a C-based interface to the TCP/IP networking protocol

stack and low level access to BSD sockets. This enables application code to be written that

works with HTTP, FTP and Domain Name servers and to establish secure and encrypted

connections using Secure Sockets Layer (SSL) or Transport Layer Security (TLS).

Core Data Framework (CoreData.framework)

This framework is provided to ease the creation of data modeling and storage in Model-View-

Controller (MVC) based applications. Use of the Core Data framework significantly reduces the

amount of code that needs to be written to perform common tasks when working with structured

data within an application.

Core Foundation Framework (CoreFoundation.framework)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The Core Foundation framework is a C-based Framework which provides basic functionality

such as data types, string manipulation, raw block data management, URL manipulation, threads

and run loops, date and times, basic XML manipulation and port and socket communication.

Additional XML capabilities beyond those included with this framework are provided via the

libXML2 library. Though this is a C-based interface, most of the capabilities of the Core

Foundation framework are also available with Objective-C wrappers via the Foundation

Framework.

Core Media Framework (CoreMedia.framework)

The Core Media framework is the lower level foundation upon which the AV Foundation layer is

built. Whilst most audio and video tasks can, and indeed should, be performed using the higher

level AV Foundation framework, access is also provided for situations where lower level control

is required by the iOS application developer.

Core Telephony Framework (CoreTelephony.framework)

The iOS Core Telephony framework is provided to allow applications to interrogate the device

for information about the current cell phone service provider and to receive notification of

telephony related events.

EventKit Framework (EventKit.framework)

An API designed to provide applications with access to the calendar, reminders and alarms on

the device.

Foundation Framework (Foundation.framework)

The Foundation framework is the standard Objective-C framework that will be familiar to those

who have programmed in Objective-C on other platforms (most likely Mac OS X). Essentially,

this consists of Objective-C wrappers around much of the C-based Core Foundation Framework.

Core Location Framework (CoreLocation.framework)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5104 ARUNAI ENGG COLLEGE

The Core Location framework allows you to obtain the current geographical location of the

device (latitude, longitude and altitude) and compass readings from with your own applications.

The method used by the device to provide coordinates will depend on the data available at the

time the information is requested and the hardware support provided by the particular iPhone

model on which the app is running (GPS and compass are only featured on recent models). This

will either be based on GPS readings, Wi-Fi network data or cell tower triangulation (or some

combination of the three).

Mobile Core Services Framework (MobileCoreServices.framework)

The iOS Mobile Core Services framework provides the foundation for Apple‟s Uniform Type

Identifiers (UTI) mechanism, a system for specifying and identifying data types. A vast range of

predefined identifiers have been defined by Apple including such diverse data types as text, RTF,

HTML, JavaScript, PowerPoint .ppt files, PhotoShop images and MP3 files.

Store Kit Framework (StoreKit.framework)

The purpose of the Store Kit framework is to facilitate commerce transactions between your

application and the Apple App Store. Prior to version 3.0 of iOS, it was only possible to charge a

customer for an app at the point that they purchased it from the App Store. iOS 3.0 introduced

the concept of the “in app purchase” whereby the user can be given the option to make additional

payments from within the application. This might, for example, involve implementing a

subscription model for an application, purchasing additional functionality or even buying a faster

car for you to drive in a racing game. With the introduction of iOS 6, content associated with an

in-app purchase can now be hosted on, and downloaded from, Apple‟s servers.

SQLite library

Allows for a lightweight, SQL based database to be created and manipulated from within your

iPhone application.

System Configuration Framework (SystemConfiguration.framework)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The System Configuration framework allows applications to access the network configuration

settings of the device to establish information about the “reachability” of the device (for example

whether Wi-Fi or cell connectivity is active and whether and how traffic can be routed to a

server).

Quick Look Framework (QuickLook.framework)

The Quick Look framework provides a useful mechanism for displaying previews of the contents

of file types loaded onto the device (typically via an internet or network connection) for which

the application does not already provide support. File format types supported by this framework

include iWork, Microsoft Office document, Rich Text Format, Adobe PDF, Image files,

public.text files and comma separated (CSV).

The iOS Core OS Layer

The Core OS Layer occupies the bottom position of the iOS stack and, as such, sits directly on

top of the device hardware. The layer provides a variety of services including low level

networking, access to external accessories and the usual fundamental operating system services

such as memory management, file system handling and threads.

Accelerate Framework (Accelerate.framework)

The Accelerate Framework provides a hardware optimized C-based API for performing complex

and large number math, vector, digital signal processing (DSP) and image processing tasks and

calculations.

External Accessory Framework (ExternalAccessory.framework)

Provides the ability to interrogate and communicate with external accessories connected

physically to the iPhone via the 30-pin dock connector or wirelessly via Bluetooth. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Security Framework (Security.framework)

The iOS Security framework provides all the security interfaces you would expect to find on a

device that can connect to external networks including certificates, public and private keys, trust

policies, keychains, encryption, digests and Hash-based Message Authentication Code (HMAC).

System (LibSystem)

As we have previously mentioned, iOS is built upon a UNIX-like foundation. The System

component of the Core OS Layer provides much the same functionality as any other UNIX like

operating system. This layer includes the operating system kernel (based on the Mach kernel

developed by Carnegie Mellon University) and device drivers. The kernel is the foundation on

which the entire iOS platform is built and provides the low level interface to the underlying

hardware. Amongst other things, the kernel is responsible for memory allocation, process

lifecycle management, input/output, inter-process communication, thread management, low level

networking, file system access and thread management.

As an app developer your access to the System interfaces is restricted for security and stability

reasons. Those interfaces that are available to you are contained in a C-based library called

LibSystem. As with all other layers of the iOS stack, these interfaces should be used only when

you are absolutely certain there is no way to achieve the same objective using a framework

located in a higher iOS layer.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

