
Arunai Engineering College

C S 8 4 9 4 SOFTWARE ENGINEERING

UNIT I

Software engineering paradigm:
• The framework activities will always be applied on every project ... BUT the tasks (and

degree of rigor) for each activity will vary based on:
– the type of project
– characteristics of the project
– common sense judgment; concurrence of the project team

The software process:
• A structured set of activities required to develop a software system

– Specification;
– Design;
– Validation;
– Evolution.

• A software process model is an abstract representation of a process. It presents a
description of a process from some particular perspective.

Waterfall model/Linear Sequential Model/classic life cycle :

• Systems Engineering
– Software as part of larger system, determine requirements for all

system elements, allocate requirements to software.
• Software Requirements Analysis

– Develop understanding of problem domain, user needs,
interfaces, ...

– Software Design

function, performance,

– Multi-step process to determine architecture, interfaces, data structures,

• Codin
g

–

functional detail. Produces (high-level) form that can be checked for quality,
conformance before coding.

Produce machine readable and executable form, match HW, OS and design needs.

• Testing

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

– Confirm that components, subsystems and complete products meet requirements,
specifications and quality, find and fix defects.

• Maintenance
– Incrementally, evolv

e
software to fix defects, add features, adapt to new

condition. Often 80% of effort spent here!
Waterfall model phases:

• Requirements analysis and definition
• System and software design
• Implementation and unit testing
• Integration and system testing
• Operation and maintenance
• The main drawback of the waterfall model is the difficulty of accommodating change

after the process is underway. One phase has to be complete before moving onto the next
phase.

• Each phase terminates only when the documents are complete and approved by the SQA
group.

• Maintenance begins when the client reports an error after having accepted the product. It
could also begin due to a change in requirements after the client has accepted the product

Waterfall model: Advantages:
• Disciplined approach
• Careful checking by the Software Quality Assurance Group at the end of each phase.
• Testing in each phase.
• Documentation available at the end of each phase.

Waterfall model problems:
• It is difficult to respond to changing customer requirements.
• Therefore, this model is only appropriate when the requirements are well-understood and

changes will be fairly limited during the design process.
• Few business systems have stable requirements.
• The waterfall model is mostly used for large systems engineering projects where a system

is developed at several sites.
• The customer must have patience. A working version of the program will not be

available until late in the project time-span
• Feedback from one phase to another might be too late and hence expensive.

The Prototyping Models:
• Often, a customer defines a set of general objectives for software but does not identify

detailed input, processing, or output requirements.
• In other cases, the developer may be unsure of the efficiency of an algorithm, the

adaptability of an operating system, or the form that human –machine interaction should
take

• In this case prototyping paradigm may offer the best approach
• Requirements gathering
• Quick design
• Prototype building
• Prototype evaluation by customers
• Prototype may be refined

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Team # n

Communicat ion
Team # 2

Mo d el i ng
b u si n e ss m o de li n
g d a t a m o d eli n g p ro ce ss m od elin g

C o n s t ru c t io n
c om ponent r eus e aut om at ic c ode
generat ion t es t ing

Planning

Team # 1

Mode ling
business mode lin g d at a mo delin g
p ro cess mod e ling

Co nst r uct i o n co m p o n e n t re u se a u t oma t i c cod e
g e n erat io n t e st i ng

De ployment
int egrat ion deliv ery
f eedback

Const ruct ion
co mp o ne n t reuse aut omat ic co de
gene rat io n
t est ing

M o d e lin g
busines s m odeling dat a m odeling
proc es s m odeling

Arunai Engineering College

• Prototype thrown away and software developed using formal process{ it is used to define
the requirement} Prototyping

Strengths:
•
•
•
•

Requirements can be set earlier and more reliably
Customer sees results very quickly.
Customer is educated in what is possible helping to refine
requirements. Requirements can be communicated more clearly and
completely

• Between developers and clients Requirements and design options can be
investigated quickly and Cheaply

Weaknesses:
– Requires a rapid prototyping tool and expertise in using it–a cost for the

development organisation
– Smoke and mirrors - looks like a working version, but it is not.

The RAD Model:
• Rapid Application Development is a linear sequential software development process

model that emphasizes an extremely short development cycle
• Rapid application achieved by using a component based construction approach
• If requirements are well understood and project scope is constrained the RAD process

enables a development team to create a ―fully functional systemǁ

6 0 - 9 0 d ays

RAD phases :
• Business modeling
• Data modeling

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Process modeling

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

incr em ent # n

C o m m u n i c a t i o n

P l a n n i n g

M o d e l i n g
a n a l y s i s

C o n s t r u c t
i o n

d e s i g n
D e p l o y m e n t

c o d e
d e l i v e r y

t e s t

f e e d b a c k

d e l i ve r y of
n t h in crem e nt

incr em ent # 2

C o m m u n i c a t i o n

P l a n n i n g

incr em ent # 1

d e li ve r y of
2 n d incr em e nt

C o u n i c a t i o n

P l a n n
i n g

d e l i ve r y of
1 st incre me nt

pr oject calendar time

c t i o n

D e p l o y m e n t

d e l i v e r y

f e e d b a c k

r uC o n s t

c o d e

t e s t

M o d e l i n g

a n a l y s i s

d es i g n

u c t i o n

D e p l o y m e n t

d e l i v e r y

f e e d b a c k

C o n s t r

c o d e

t e s t

d e l i n g

a n alys is

d es i g n

M o

Arunai Engineering College

• Application generation
• Testing and turnover

Business modeling:
• What information drives the business process?
• What information is generated?
• Who generates it?

Data Modeling:
• The information flow defined as part of the business modeling phase is refined into a set

of data objects that are needed to support the business.
• The characteristics (called attributes) of each object are identified and the relationships

between these objects are defined
Process modeling:

• The data modeling phase are transformed to achieve the information flow necessary to
implement a business function.

• Processing descriptions are created for adding , modifying, deleting, or retrieving a data
object

Application generation:
• RAD assumes the use of 4 generation techniques.
• Rather than creating software using conventional 3 generation programming languages,

the RAD process works to reuse existing program components (when possible) or created
reusable components (when necessary)

Testing and Turnover:
• Since the RAD process emphasizes reuse, many of the program components have already

been testing.
• This reduces over all testing time.
• However, new components must be tested and all interfaces must be fully exercised

Advantages &Disadvantages of RAD:
Advantages

• Extremely short development time.
• Uses component-based construction and emphasises reuse and code generation

Disadvantages
• Large human resource requirements (to create all of the teams).
• Requires

activities
.

stron
g

commitmen
t

betwee
n

developer
s

an
d

customer
s

fo
r

“rapid-fire”

• High performance requirements maybe can’t be met (requires tuning the components).
The Incremental Model

:

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

The Incremental development
• Combination of linear + prototype
• Rathe

r
tha
n

delive
r

th
e

system as
a

singl
e

delivery
,

th
e

developmen
t

an
d

delivery is

broke
n

dow
n

int
o

increment
s

wit
h

eac
h

incremen
t

deliverin
g

part
of

th
e

required

functionality
• User requirements are prioritised and the highest priority requirements are included in

early increments
• Once the development of an increment is started, the requirements are frozen though

requirements for later increments can continue to evolve
Incremental development advantages:

• The customer is able to do some useful work after release
• Lower risk of overall project failure
• The highest priority system services tend to receive the most testing

Spiral Model:

Spiral model sectors:
• Customer communication

Tasks required to establish effective communication between developer and
customer

• Planning
The tasks required to define recourses, timelines, and project is reviewed and the
next phase of the spiral is planned

• Risk analysis
– Risks are assessed and activities put in place to reduce the key

• Risks engineering
– Tasks required to build one or more representations of the application

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Construction & release
– Tasks required to construct, test, install and provid

e
user support (e.g

documentation and training)
• Customer evaluation

– Customer feedback collected every stage
Spiral Model Advantages:

• Focuses attention on reuse options.
• Focuses attention on early error elimination.
• Puts quality objectives up front.
• Integrates development and maintenance.
• Provides a framework for hardware/software Development.

System Engineering
• Software engineering occurs as a consequence of a process called system engineering.
• Instead of concentrating solely on software, system engineering focuses on a variety of

elements, analyzing, designing, and organizing those elements into a system that can be a
product, a service, or a technology for the transformation of information or control.

• The system engineering process usually begins with a
―world

view.ǁ That is, the entire

business or product domain is examined to ensure that the proper business or technology
CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

context can be established.
• The world view is refined to focus more fully on specific domain of interest. Within a

specific domain, the need for targeted system elements (e.g., data, software, hardware,
people) is analyzed. Finally, the analysis, design, and construction of a targeted system
element is initiated.

• At the top of the hierarchy, a very broad context is established and, at the bottom, detailed
technical activities, performed by the relevant engineering discipline (e.g., hardware or
software engineering), are conducted.

• Stated in a slightly more formal manner, the world view (WV) is composed of a set of
domains (Di), which can each be a system or system of systems in its own right.

WV = {D1, D2, D3, . . . , Dn}
• Each domain is composed of specific elements (Ej) each of which serves some role in

accomplishing the objective and goals of the domain or component:
Di = {E1, E2, E3, . . . , Em}

• Finally, each element is implemented by specifying the technical components (Ck) that
achieve the necessary function for an element:

Ej = {C1, C2, C3, . . . , Ck}

Computer Based System
• computer-based system as A set or arrangement of elements that are organized to accomplish

some predefined goal by processing information.
• The goal may be to support some business function or to develop a product that can be sold

to generate business revenue.
• To accomplish the goal, a computer-based system makes use of a variety of system elements:

1. Software. Computer programs, data structures, and related documentation that serve to
effect the logical method, procedure, or control that is required.

2. Hardware. Electronic devices that provide computing capability, the interconnectivity
devices (e.g., network switches, telecommunications devices) that enable th

e
flow of

data, and electromechanical devices (e.g., sensors, motors, pumps) that provide external
world function.

3. People. Users and operators of hardware and software.
4. Database. A large, organized collection of information that is accessed via software.
5. Documentation. Descriptive information (e.g., hardcopy manuals, on-line help files,

Web sites) that portrays the use and/or operation of the system.
6. Procedures. The steps that define the specific use of each system element or the

procedural context in which the system resides.
• The elements combine in a variety of ways to transform information. For example, a

marketing department transforms raw sales data into a profile of the typical purchaser of a
product; a robot transforms a command file containing specific instructions into a set of
control signals that cause some specific physical action.

• Creating an information system to assist the marketing department and control software to
support the robot both require system engineering.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• One complicating characteristic of computer-based systems is that the elements constituting
one system may also represent one macro element of a still larger system. The macro element
is a computer-based system that is one part of a larger computer-based system.

• As an example, we consider a "factory automation system" that is essentially a hierarchy of
systems. At the lowest level of the hierarchy we have a numerical control machine, robots,
and data entry devices.

• Each is a computerbased system in its own right. The elements of the numerical control
machine include electronic an

d
electromechanical hardware (e.g., processor an

d
memory,

motors, sensors), software (for communications, machine control, interpolation), people (the
machine operator), a database (the stored NC program), documentation, and procedures.

• A similar decomposition could be applied to the robot and data entry device. Each is a
computer-based system.

• At the next level in the hierarchy, a manufacturing cell is defined. The manufacturing cell is a
computer-based system that may have elements of its own (e.g., computers, mechanical
fixtures) and also integrates the macro elements that we have called numerical control
machine, robot, and data entry device.

Business Process Engineering Overview
• The goal of business process engineering (BPE) is to define architectures that will enable a

business to use information effectively.
• When taking a world view of a company‘s information technology needs, there is little doubt

that system engineering is required. Not only is the specification of the appropriate
computing architecture required, but the software architecture that populates the ―unique
configuration of heterogeneous computing resourcesǁ must be developed.

• Business process engineering is one approach for creating an overall plan for implementing
the computing architecture .

• Three different architectures must be analyzed and designed within the context of business
objectives and goals:

• data architecture
• applications architecture
• technology infrastructure

• The dat
a

architectur
e

provides a framework for the information needs of a business or

business function. The individual building blocks of the architecture are the data objects that
are used by the business. A data object contains a set of attributes that define some aspect,
quality, characteristic, or descriptor of the data that are being described.

• The application architecture encompasses those elements of a system that transform objects
within the data architecture for some business purpose. In the context of this book, we
consider the application architecture to be the system of programs (software) that performs
this transformation. However, in a broader context, the application architecture might
incorporate the role of people (who are information transformers and users) and business
procedures that have not been automated.

• The technolog
y

infrastructur
e

provides the foundation for the data and application

architectures. The infrastructure encompasses the hardware an
d

software that are used to

support the application and data. This includes computers, operating systems, networks,
CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

telecommunication links, storage technologies, and the architecture (e.g., client/server) that
has been designed to implement these technologies.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• The final BPE step—
construction

an
d

integratio
n

focuses on implementation detail. The

architecture and infrastructure are implemented by constructing an appropriate database and
internal data structures, by building applications using software components, and by selecting
appropriate elements of a technology infrastructure to support the design created during
BSD. Each of these system components must then be integrated to form a complete
information system or application.

• The integration activity also places the new information system into the business area
context, performing all user training and logistics support to achieve a smooth transition.

Product Engineering Overview
• The goal of product engineering is to translate the customer‘s desire for a set of defined

capabilities into a working product. To achieve this goal, product engineering—like business
process engineering—must derive architecture and infrastructure.

• The architecture encompasses four distinct system components: software, hardware, data
(and databases), and people. A support infrastructure is established and includes the
technology required to tie the components together and the information (e.g., documents,CD-
ROM, video) that is used to support the components.

• The world view is achieved through requirements engineering. The overall requirements of
the product are elicited from the customer. These requirements encompass information and
control needs, product function and behavior, overall product performance, design and
interfacing constraints, and other special needs.

• Once these requirements are known, the job of requirements engineering is to allocate
function and behavior to each of the four components noted earlier. Once allocation has
occurred, system component engineering commences.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• System component engineering is actually a set of concurrent activities that address each of
the system components separately: software engineering, hardware engineering, human
engineering, and database engineering.

• Each of these engineering disciplines takes a domain-specific view, but it is important to note
that the engineering disciplines must establish and maintain active communication with one
another. Part of the role of requirements engineering is to establish the interfacing
mechanisms that will enable this to happen.

• The element view for product engineering is the engineering discipline itself applied to the
allocated component. For software engineering, this means analysis and design modeling
activities (covered in detail in later chapters) and construction and integration activities that
encompass code generation, testing, and support steps.

• The analysis step models allocated requirements into representations of data, function, and
behavior. Design maps the analysis model into data, architectural, interface, and soft ware
component-level designs.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

UNIT II SOFTWARE

REQUIREMENTS

• The process of establishing the services that the customer requires from a system and the
constraints under which it operates and is developed

• Requirements may be functional or non-functional
• Functional requirements describe system services or functions
• Non-functional requirements is a constraint on the system or on the development

process

Types of requirements
• User requirements

• Statements in natural language (NL) plus diagrams of the services the system
provides and its operational constraints. Written for customers

• System requirements
• A structured document setting out detailed descriptions of the system services.

Written as a contract between client and contractor
• Software specification

• A detailed software description which can serve as a basis for a design or
implementation. Written for developers

Functional and Non-Functional

Functional requirements
• Functionality or services that the system is expected to provide.
• Functional requirements may also explicitly state what the system shouldn‘t do.
• Functional requirements specification should be:

• Complete: All services required by the user should be defined
• Consistent: should not have contradictory definition (also avoid ambiguity

don‘t leave room for different interpretations)

Examples of functional requirements
• The LIBSYS system
• A library system that provides a single interface to a number of databases of articles in

different libraries.
• Users can search for, download and print these articles for personal study.
• The user shall be able to search either all of the initial set of databases or select a subset from

it.
• The system shall provide appropriate viewers for the user to read documents in the document

store.
• Every order shall be allocated a unique identifier (ORDER_ID) which the user shall be able

to copy to the account‘s permanent storage area.

Non-Functional requirements

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Organisation al requir emen ts

Efficiency requir ementsReliability r equir ementsPorta bility requir ementsInter oper a bility requir ementsEthical r equir ements

Usa b ility
r equir ements

Delivery
requir ements requir ements

Stan d ar ds
requir ements requir

Performance requir ementsSpace r equir ements Pri vacy r equir ementsSafety requir ements

ements

Leg islativeImplementa tion

rnal mentsExte r equir educt ementsPro r equir

Non-functional requir ements

Arunai Engineering College

• Requirements that are not directly concerned with the specific functions delivered by the
system

• Typically relate to the system as a whole rather than the individual system features
• Often could be deciding factor on the survival of the system (e.g. reliability, cost, response

time)

Non-Functional requirements classifications:

Domain requirements
• Domain requirements are derived from the application domain of the system rather than from

the specific needs of the system users.
• May be new functional requirements, constrain existing requirements or set out how

particular computation must take place.
• Example: tolerance level of landing gear on an aircraft (different on dirt, asphalt, water), or

what happens to fiber optics line in case of sever weather during winter Olympics (Only
domain-area experts know)

Product requirements
• Specify the desired characteristics that a system or subsystem must possess.
• Most NFRs are concerned with specifying constraints on the behaviour of the executing

system.
Specifying product requirements
• Some product requirements can be formulated precisely, and thus easily quantified

• Performance
• Capacity

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Others are more difficult to quantify and, consequently, are often stated informally
• Usability

Process requirements
• Process requirements are constraints placed upon the development process of the system
• Process requirements include:

• Requirements on development standards and methods which must be followed
• CASE tools which should be used
• The management reports which must be provided

Examples of process requirements
• The development process to be used must be explicitly defined and must be conformant with

ISO 9000 standards
• The system must be developed using the XYZ suite of CASE tools
• Management reports setting out the effort expended on each identified system component

must be produced every two weeks
• A disaster recovery plan for the system development must be specified

External requirements
• May be placed on both the product and the process
• Derived from the environment in which the system is developed
• External requirements are based on:

• application domain information
• organisational considerations
• the need for the system to work with other systems
• health and safety or data protection regulations
• or even basic natural laws such as the laws of physics

Examples of external requirements
• Medical data system The organisation‘s data protection officer must certify that all data is

maintained according to data protection legislation before the system is put into operation.
• Train protection system The time required to bring the train to a complete halt is computed

using the following function:
• The deceleration of the train shall be taken

as: gtrain = gcontrol + ggradient

where:
ggradient = 9.81 ms-2 * compensated gradient / alpha and where the values of 9.81 ms-2/

alpha are known for the different types of train.
gcontrol is initialised at 0.8 ms-2 - this value bein

g
parameterised in order to remain

adjustable. The illustrates an example of the train‘s deceleration by using the parabolas derived
from the above formula where there is a change in gradient before the (predicted) stopping point
of the train.

Software Document
• Should provide for communication among team members

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Sy st em cus to mers

Speci fy t he req uiremen ts and read th em to ch eck t hat t hey meet th eir n eeds . Th ey
s pecify ch ang es t o th e requ iremen ts

Manag ers

Us e t he req ui rement s
d ocumen t to pl an a bi d for t he s ys tem an d to pl an th e
sy st em dev elo pmen t p roces s

Sy st em eng in eers

Us e t he req ui rement s to
un ders tan d wh at s ys tem i s to b e dev elo ped

Sy st em tes t eng in eersUs e t he req ui rement s to
d ev elo p val id ati on tes ts fo r t he s ys tem

Syst em main ten ance eng
 in eers

Us e t he req ui rement s to hel p
u nd ers tan d th e sy st em an d
t he rel ati on sh ip s b etw een it s p art s

Arunai Engineering College

• Should act as an information repository to be used by maintenance engineers
• Should provide enough information to management to allow them to perform all program

management related activities
• Should describe to users how to operate and administer the system
• Specify external system behaviour
• Specify implementation constraints
• Easy to change
• Serve as reference tool for maintenance
• Record forethought about the life cycle of the system i.e. predict changes
• Characterise responses to unexpected events

Users of a requirements document

Process Documentation
• Used to record and track the development process

• Planning documentation
• Cost, Schedule, Funding tracking
• Schedules
• Standards

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• This documentation is created to allow for successful management of a software product
• Has a relatively short lifespan

• Only important to internal development process
• Except in cases where the customer requires a view into this data

• Some items, such as papers that describe design decisions should be extracted and moved
into the product documentation category when they become implemented

• Product Documentation
• Describes the delivered product
• Must evolve with the development of the software product
• Two main categories:

• System Documentation
• User Documentation

Product Documentation
• System Documentation

• Describes how the system works, but not how to operate it
• Examples:

• Requirements Spec
• Architectural Design
• Detailed Design
• Commented Source Code

 Including output such as JavaDoc
• Test Plans

 Including test cases
• V&V plan and results
• List of Known Bugs

• User Documentation has two main types
• End User
• System Administrator

 In some cases these are the same people
• The target audience must be well understood!

• There are five important areas that should be documented for a formal release of a software
application

• These do not necessarily each have to have their own document, but the topics should
be covered thoroughly

• Functional Description of the Software
• Installation Instructions
• Introductory Manual
• Reference Manual
• System Administrator‘s Guide

Document Quality
• Providing thorough and professional documentation is important for any size product

development team

• The problem is that many software professionals lack the writing skills to create
professional level documents

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Document Structure
• All documents for a given product should have a similar structure

• A good reason for product standards
• The IEEE Standard for User Documentation lists such a structure

• It is a superset of what most documents need
• The authors ―best practicesǁ are:
• Put a cover page on all documents
• Divide documents into chapters with sections and subsections
• Add an index if there is lots of reference information
• Add a glossary to define ambiguous terms

Standards
• Standards play an important role in the development, maintenance an

d
usefulness of

documentation
• Standards can act as a basis for quality documentation

• But are not good enough on their own
 Usually define high level content and organization

• There are three types of documentation standards

1.Process Standards
• Define the approach that is to be used when creating the documentation
• Don‘t actually define any of the content of the documents

2. Product Standards
• Goal is to have all documents created for a specific product attain a consistent structure and

appearance
• Can be based on organizational or contractually required standards

• Four main types:
• Documentation Identification Standards
• Document Structure Standards
• Document Presentation Standards
• Document Update Standards

• One caveat:
• Documentation that will be viewed by end users should be created in a way that is

best consumed and is most attractive to them
• Internal development documentation generally does not meet this need

3. Interchange Standards
• Deals with the creation of documents in a format that allows others to effectively use

• PDF may be good for end users who don‘t need to edit
• Word may be good for text editing

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Feasi bi li ty s tu dy Requ irement s eli cit ati on an d analy si s

Requ ir ement s s pecificati on

Feasi bi li ty repo rt Requ irement s
v al id ati on

Sy st em mo dels

Us er an d s ys tem requ iremen ts

Requ irement s d ocumen t

Arunai Engineering College

• Specialized CASE tools need to be considered
• This is usually not a problem within a single organization, but when sharing data between

organizations it can occur
• This same problem is faced all the time during software integration

Other Standards
• IEEE

• Has a published standard for user documentation
• Provides a structure and superset of content areas
• Many organizations

standard
probably won‘t create documents that completely match the

• Writing Style
• Ten ―best practicesǁ when writing are provided
• Author proposes that group edits of important documents should occur in a similar

fashion to software walkthroughs

Requirement Engineering Process
• The requirements engineering process includes a feasibility study, requirements elicitation

and analysis, requirements specification and requirements management

Feasibility Studies
• A feasibility study decides whether or not the proposed system is worthwhile
• A short focused study that checks

• If the system contributes to organisational objectives
• If the system can be engineered using current technology and within budget
• If the system can be integrated with other systems that are used

• Based on
writing

information assessment (what is required), information collection and report

• Questions for people in the organisation
• What if the system wasn‘t implemented?
• What are current process problems?
• How will the proposed system help?

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• What will be the integration problems?
• Is new technology needed? What skills?
• What facilities must be supported by the proposed system?

Elicitation and analysis
• Sometimes called requirements elicitation or requirements discovery
• Involves technical staff working with customers to find out about

• the application domain
• the services that the system should provide
• the system‘s operational constraints

• May involve end-users, managers, engineers involved in maintenance, domain experts, trade
unions, etc.

• These are called stakeholders

Problems of requirements analysis
• Stakeholders don‘t know what they really want
• Stakeholders express requirements in their own terms
• Different stakeholders may have conflicting requirements
• Organisational and political factors may influence the system requirements
• The requirements change during the analysis process

• New stakeholders may emerge and the business environment change

System models
• Different models may be produced during the requirements analysis activity
• Requirements analysis may involve three structuring activities which result in these different

models
• Partitioning – Identifies the structural (part-of) relationships between entities
• Abstraction – Identifies generalities among entities
• Projection – Identifies different ways of looking at a problem

• System models will be covered on January 30

Scenarios
• Scenarios are descriptions of how a system is used in practice
• They are helpful in requirements elicitation as people can relate to these more readily than

abstract statement of what they require from a system
• Scenarios are particularly useful for adding detail to an outline requirements description

Ethnography
• A social scientists spends a considerable time observing and analysing how people actually

work
• People do not have to explain or articulate their work
• Social and organisational factors of importance may be observed
• Ethnographic studies have shown that work is usually richer an

d
more complex than

suggested by simple system models

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Requirements validation
• Concerned with demonstrating that the requirements define the system that the customer

really wants
• Requirements error costs are high so validation is very important

• Fixing a requirements error after delivery may cost up to 100 times the cost of fixing
an implementation error

• Requirements checking
• Validity
• Consistency
• Completeness
• Realism
• Verifiability

Requirements validation techniques
• Reviews

• Systematic manual analysis of the requirements
• Prototyping

• Using an executable model of the system to check requirements.
• Test-case generation

• Developing tests for requirements to check testability
• Automated consistency analysis

• Checking the consistency of a structured requirements description

Requirements management
• Requirements management is the process of managing changing requirements during the

requirements engineering process and system development
• Requirements are inevitably incomplete and inconsistent

• New requirements emerge during the process as business needs change and a better
understanding of the system is developed

• Different viewpoints have different requirements and these are often contradictory

Software prototyping
Incomplete versions of the software program being developed. Prototyping can also be

used by end users to describe and prove requirements that developers have not considered

Benefits:
The software designer and implementer can obtain feedback from the users early in the

project. The client and the contractor can compare if the software made matches the software
specification, according to which the software program is built.

It also allows the software engineer some insight into the accuracy of initial project
estimates and whether the deadlines and milestones proposed can be successfully met.

Process of prototyping
1. Identify basic requirements

Determine basic requirements including the input and output information desired. Details,
such as security, can typically be ignored.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

2. Develop Initial Prototype
The initial prototype is developed that includes only user interfaces. (See Horizontal

Prototype, below)
3. Review

The customers, including end-users, examine the prototype and provide feedback on
additions or changes.
4. Revise and Enhance the Prototype

Using the feedback both the specifications and the prototype can be improved. Negotiation
abou
t

what is within the scope of the contract/product may be necessary. If changes are

introduced then a repeat of steps #3 and #4 may be needed.

Dimensions of prototypes
1. Horizontal Prototype

It provides a broad view of an entire system or subsystem, focusing on user interaction more
than low-level system functionality, such as database access. Horizontal prototypes are useful
for:

• Confirmation of user interface requirements and system scope
• Develop preliminary estimates of development time, cost and effort.

2 Vertical Prototypes
A vertical prototype is a more complete elaboration of a single subsystem or function. It is

useful for obtaining detailed requirements for a given function, with the following benefits:
• Refinement database design
• Obtain information on data volumes and system interface needs, for network sizing and

performance engineering

Types of prototyping
Software prototyping has many variants. However, all the methods are in some way

based on two major types of prototyping: Throwaway Prototyping and Evolutionary Prototyping.
1. Throwaway prototyping

Also called close ended prototyping. Throwaway refers to the creation of a model that
will eventually be discarded rather than becoming part of the final delivered software. After
preliminary requirements gathering is accomplished, a simple working model of the system is
constructed to visually show the users what their requirements may look like when they are
implemented into a finished system.

The most obvious reason for using Throwaway Prototyping is that it can be done quickly.
If the users can get quick feedback on their requirements, they may be able to refine them early
in the development of the software. Making changes early in the development lifecycle is
extremely cost effective since there is nothing at that point to redo. If a project is changed after a
considerable work has been done then small changes could require large efforts to implement
since software systems have many dependencies. Speed is crucial in implementing a throwaway
prototype, since with a limited budget of time and money little can be expended on a prototype
that will be discarded.

Strength of Throwaway Prototyping is its ability to construct interfaces that the users can
test. The user interface is what the user sees as the system, and by seeing it in front of them, it is
much easier to grasp how the system will work.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

2. Evolutionary prototyping
Evolutionary Prototyping (also known as breadboard prototyping) is quite different from

Throwaway Prototyping. The main goal when using Evolutionary Prototyping is to build a very
robust prototype in a structured manner and constantly refine it. "The reason for this is that the
Evolutionary prototype, when built, forms the heart of the new system, and the improvements
and further requirements will be built.

Evolutionary Prototypes have an advantage over Throwaway Prototypes in that they are
functional systems. Although they may not have all the features the users have planned, they
may be used on a temporary basis until the final system is delivered.

In Evolutionary Prototyping, developers can focus themselves to develop parts of the
system that they understand instead of working on developing a whole system. To minimize risk,
the developer does not implement poorly understood features. The partial system is sent to
customer sites. As users work with the system, they detect opportunities for new features and
give requests for these features to developers. Developers then take these enhancement requests
along with their own and use sound configuration-management practices to change the software-
requirements specification, update the design, recode and retest.

3. Incremental prototyping
The final product is built as separate prototypes. At the end the separate prototypes are

merged in an overall design.

4. Extreme prototyping
Extreme Prototyping as a development process is used especially for developing web

applications. Basically, it breaks down web development into three phases, each one based on
the preceding one. The first phase is a static prototype that consists mainly of HTML pages. In
the second phase, the screens are programmed and fully functional using a simulated services
layer. In the third phase the services are implemented. The process is called Extreme Prototyping
to draw attention to the second phase of the process, where a fully-functional UI is developed
with very little regard to the services other than their contract.

Advantages of prototyping

1. Reduced time and costs: Prototyping can improve the quality of requirements and
specifications provided to developers. Because changes cost exponentially more to implement as
they are detected later in development, the early determination of what the user really wants can
result in faster and less expensive software.

2. Improved and increased user involvement: Prototyping requires user involvement and
allows them to see and interact with a prototype allowing them to provide better an

d
more

complete feedback and specifications. The presence of the prototype being examined by the user
prevents many misunderstandings and miscommunications that occur when each side believe the
other understands what they said. Since users know the problem domain better than anyone on
the development team does, increased interaction can result in final product that has greater
tangible and intangible quality. The final product is more likely to satisfy the users‘ desire for
look, feel and performance.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Disadvantages of prototyping
1. Insufficient analysis: The focus on a limited prototype can distract developers from properly
analyzing the complete project. This can lead to overlooking better solutions, preparation of
incomplete specifications or the conversion of limited prototypes into poorly engineered final
projects that are hard to maintain. Further, since a prototype is limited in functionality it may not
scale well if the prototype is used as the basis of a final deliverable, which may not be noticed if
developers are too focused on building a prototype as a model.
2. User confusion of prototype and finished system: Users can begin to think that a prototype,
intended to be thrown away, is actually a final system that merely needs to be finished or
polished. (They are, for example, often unaware of the effort needed to add error -checking and
security features which a prototype may not have.) This can lead them to expect the prototype to
accurately model the performance of the final system when this is not the intent of the
developers. Users can also become attached to features that were included in a prototype for
consideration and then removed from the specification for a final system. If users are able to
require all proposed features be included in the final system this can lead to conflict.
3. Developer misunderstanding of user objectives: Developers may assume that users share
their objectives (e.g. to deliver core functionality on time and within budget), without
understanding wider commercial issues. For example, user representatives attending Enterprise
software (e.g. PeopleSoft) events may have seen demonstrations of "transaction auditing" (where
changes are logged and displayed in a difference grid view) without being told that this feature
demands additional coding and often requires more hardware to handle extra database accesses.
Users might believe they can demand auditing on every field, whereas developers might think
this is feature creep because they have made assumptions about the extent of user requirements.
If the developer has committed delivery before the user requirements were reviewed, developers
are between a rock and a hard place, particularly if user management derives some advantage
from their failure to implement requirements.
4. Developer attachment to prototype: Developers can also become attached to prototypes they
have spent a great deal of effort producing; this can lead to problems like attempting to convert a
limited prototype into a final system when it does not have an appropriate underlying
architecture. (This may suggest that throwaway prototyping, rather than evolutionary
prototyping, should be used.)
5. Excessive development time of the prototype: A key property to prototyping is the fact that
it is supposed to be done quickly. If the developers lose sight of this fact, they very well may try
to develop a prototype that is too complex. When the prototype is thrown away the precisely
developed requirements that it provides may not yield a sufficient increase in productivity to
make up for the time spent developing the prototype. Users can become stuck in debates over
details of the prototype, holding up the development team and delaying the final product.
6. Expense of implementing prototyping: the start up costs for building a development team
focused on prototyping may be high. Many companies have development methodologies in
place, and changing them can mean retraining, retooling, or both. Many companies tend to just
jump into the prototyping without bothering to retrain their workers as much as they should.
A common problem with adopting prototyping technology is high expectations for productivity
with insufficient effort behind the learning curve. In addition to training for the use of a
prototyping technique, there is an often overlooked need for developing corporate and project

specific underlying structure to support the technology. When this underlying structure is
omitted, lower productivity can often result.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Best projects to use prototyping
It has been found that prototyping is very effective in the analysis and design of on-line

systems, especially for transaction processing, where the use of screen dialogs is much more in
evidence. The greater the interaction between the computer and the user, the greater the benefit is
that can be obtained from building a quick system and letting the user play with it.

Systems with little user interaction, such as batch processing or systems that mostly do
calculations, benefit little from prototyping. Sometimes, the coding needed to perform the system
functions may be too intensive and the potential gains that prototyping could provide are too
small.

Prototyping is especially good for designing good human-computer interfaces. "One of
the most productive uses of rapid prototyping to date has been as a tool for iterative user
requirements engineering and human-computer interface design.

Methods
There are few formal prototyping methodologies even though most Agile Methods rely

heavily upon prototyping techniques.
1. Dynamic systems development method

Dynamic Systems Development Method (DSDM) is a framework for delivering business
solutions that relies heavily upon prototyping as a core technique, and is itself ISO 9001
approved. It expands upon most understood definitions of a prototype. According to DSDM the
prototype may be a diagram, a business process, or even a system placed into production. DSDM
prototypes are intended to be incremental, evolving from simple forms into more comprehensive
ones.
DSDM prototypes may be throwaway or evolutionary. Evolutionary prototypes may be evolved
horizontally (breadth then depth) or vertically (each section is built in detail with additional
iterations detailing subsequent sections). Evolutionary prototypes can eventually evolve into
final systems.

The four categories of prototypes as recommended by DSDM are:
• Business prototypes – used to

automated.
design and demonstrate the business processes being

• Usability prototypes – used to define, refine, and demonstrate user interface design
usability, accessibility, look and feel.

• Performance and capacity prototypes - used to define, demonstrate, and predict how
systems will perform under peak loads as well as to demonstrate and evaluate other non-
functional aspects of the system (transaction rates, data storage volume, response time)

• Capability/technique prototypes – used to develop, demonstrate, and evaluate a design
approach or concept.

The DSDM lifecycle of a prototype is to:
1. Identify prototype
2. Agree to a plan
3. Create the prototype
4. Review the prototype

2. Operational prototyping
Operational Prototyping was proposed by Alan Davis as a way to integrate throwaway and
evolutionary prototyping with conventional system development. "[It] offers the best of both the
quick-and-dirty and conventional-development worlds in a sensible manner. Designers develop

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

only well-understood features in building the evolutionary baseline, while using throwaway
prototyping to experiment with the poorly understood features."
Davis' belief is that to try to "retrofit quality onto a rapid prototype" is not the correct approach
when trying to combine the two approaches. His idea is to engage in an evolutionary prototyping
methodology and rapidly prototype the features of the system after each evolution.
The specific methodology follows these steps:

• An evolutionary prototype is constructed and made into a baseline using conventional
development strategies, specifying and implementing only the requirements that are well
understood.

• Copies of the baseline are sent to multiple customer sites along with a trained prototyper.
• At each site, the prototyper watches the user at the system.
• Whenever the user encounters a problem or thinks of a new feature or requirement, the

prototyper logs it. This frees the user from having to record the problem, and allows them
to continue working.

• After the user session is over, the prototyper constructs a throwaway prototype on top of
the baseline system.

• The user now uses the new system and evaluates. If the new changes aren't effective, the
prototyper removes them.

• If the user likes the changes, the prototyper writes feature-enhancement requests and
forwards them to the development team.

• The development team, with the change requests in hand from all the sites, then produce
a new evolutionary prototype using conventional methods.

Obviously, a key to this method is to have well trained prototypers available to go to the user
sites. The Operational Prototyping methodology has many benefits in systems that are complex
and have few known requirements in advance.

3. Evolutionary systems development
Evolutionary Systems Development is a class of methodologies that attempt to formally

implement Evolutionary Prototyping. One particular type, called Systems craft is described by
John Crinnion in his book: Evolutionary Systems Development.

Systemscraft was designed as a 'prototype' methodology that should be modified and
adapted to fit the specific environment in which it was implemented.

Systemscraft was not designed as a rigid 'cookbook' approach to the development
process. It is now generally recognised[sic] that a good methodology should be flexible enough
to be adjustable to suit all kinds of environment and situation…
The basis of Systemscraft, not unlike Evolutionary Prototyping, is to create a working system
from the initial requirements and build upon it in a series of revisions. Systemscraft places heavy
emphasis on traditional analysis being used throughout the development of the system.

4. Evolutionary rapid development

Evolutionary Rapid Development (ERD) was developed by the Software Productivity
Consortium, a technology development and integration agent for the Information Technology
Office of the Defense Advanced Research Projects Agency (DARPA).

Fundamental to ERD is the concept of composing software systems based on the reuse of
components, the use of software templates and on an architectural template. Continuous
evolution of system capabilities in rapid response to changing user needs and technology is
highlighted by the evolvable architecture, representing a class of solutions. The process focuses
on the use of small artisan-based teams integrating software and systems engineering disciplines

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

working multiple, often parallel short-duration timeboxes with frequent customer interaction.
Key to the success of the ERD-based projects is parallel exploratory analysis and development of
features, infrastructures, and components with and adoption of leading edge technologies
enabling the quick reaction to changes in technologies, the marketplace, or customer
requirements.
To elicit customer/user input, frequent scheduled and ad hoc/impromptu meetings with the
stakeholders are held. Demonstrations of system capabilities are held to solicit feedback before
design/implementation decisions are solidified. Frequent releases (e.g., betas) are made availa ble
for use to provide insight into how the system could better support user and customer needs. This
assures that the system evolves to satisfy existing user needs.

The design framework for the system is based on using existing published or de facto
standards. The system is organized to allow for evolving a set of capabilities that includes
considerations for performance, capacities, and functionality. The architecture is defined in terms
of abstract interfaces that encapsulate the services and their implementation (e.g., COTS
applications). The architecture serves as a template to be used for guiding development of more
than a single instance of the system. It allows for multiple application components to be used to
implement the services. A core set of functionality not likely to change is also
established.

identified and

The ERD process is structured to use demonstrated functionality rather than paper
products as a way for stakeholders to communicate their needs and expectations. Central to this
goal of rapid delivery is the use of the "time box" method. Timeboxes are fixed periods of time
in which specific tasks (e.g., developing a set of functionality) must be performed. Rather than
allowing time to expand to satisfy some vague set of goals, the time is fixed (both in terms of
calendar weeks and person-hours) and a set of goals is defined that realistically can be achieved
within these constraints. To keep development from degenerating into a "random walk," long-
range plans are defined to guide the iterations. These plan

s
provide a vision for the overall

system and set boundaries (e.g., constraints) for the project. Each iteration within the process is
conducted in the context of these long-range plans.

Once architecture is established, software is integrated and tested on a daily basis. This
allows the team to assess progress objectively and identify potential problems quickly. Since
small amounts of the system are integrated at one time, diagnosing and removing the defect is
rapid. User demonstrations can be held at short
exercise at all times.

notice since the system is generally ready to

5. Scrum
Scrum is an agile method for project management. The approach was first described by

Takeuchi and Nonaka in "The New New Product Development Game" (Harvard Business
Review, Jan-Feb 1986).

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Tools
Efficiently using prototyping requires that an organization have proper tools and a staff

trained to use those tools. Tools used in prototyping can vary from individual tools like 4th
generation programming languages used for rapid prototyping to complex integrated CASE
tools. 4th generation programming languages like Visual Basic and ColdFusion are frequently
used since they are cheap, well known and relatively easy and fast to use. CASE tools are often
developed or selected by the military or large organizations. Users may prototype elements of an
application themselves in a spreadsheet.

1. Screen generators, design tools & Software Factories
Commonly used screen generating programs that enable prototypers to show users

systems that don't function, but show what the screens may look like. Developing Human
Computer Interfaces can sometimes be the critical part of the development effort, since to the
users the interface essentially is the system.

Software Factories are Code Generators that allow you to model the domain model and
then drag and drop the UI. Also they enable you to run the prototype and use basic database
functionality. This approach allows you to explore the domain model and make sure it is in sync
with the GUI prototype.

2. Application definition or simulation software
It enables users to rapidly build lightweight, animated simulations of another computer

program, without writing code. Application simulation software allows both technical and non-
technical users to experience, test, collaborate and validate the simulated program, and provides
reports such as annotations, screenshot and schematics. To simulate applications one can also use
software which simulate real-world software programs for computer based training,
demonstration, and customer support, such as screen casting software as those areas are closely
related.

3. Sketchflow
Sketch Flow, a feature of Microsoft Expression Studio Ultimate, gives the ability to quickly

and effectively map out and iterate the flow of an application UI, the layout of individual screens
and transition from one application state to another.

• Interactive Visual Tool
• Easy to learn
• Dynamic
• Provides enviroment to collect feedback

4. Visual Basic
One of the most popular tools for Rapid Prototyping is Visual Basic (VB). Microsoft Access,

which includes a Visual Basic extensibility module, is also a widely accepted prototyping tool
that is used by many non-technical business analysts. Although VB is a programming language it
has many features that facilitate using it to create prototypes, including:

• An interactive/visual user interface design tool.
• Easy connection of user interface components to underlying functional behavior.
• Modifications to the resulting software are easy to perform.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

5. Requirements Engineering Environment
It provides an integrated toolset for rapidly representing, building, and executing models

of critical aspects of complex systems.
It is currently used by the Air Force to develop systems. It is: an integrated set of tools

that allows systems analysts to rapidly build functional, user interface, and performance
prototype models of system components. These modeling activities are performed to gain a
greater understanding of complex systems an

d
lessen the impact that inaccurate requirement

specifications have on cost and scheduling during the system development process.
REE is composed of three parts. The first, called proto is a CASE tool specifically

designed to support rapid prototyping. The second part is called the Rapid Interface Prototyping
System or RIP, which is a collection of tools that facilitate the creation of user interfaces. The
third part of REE is a user interface to RIP and proto that is graphical and intended to be easy to
use.
Rome Laboratory, the developer of REE, intended that to support their internal requirements
gathering methodology. Their method has three main parts:

• Elicitation from various sources which means u loose (users, interfaces to other systems),
specification, and consistency checking

• Analysis that the needs of diverse users taken together do not conflict and are technically
and economically feasible

• Validation that requirements so derived are an accurate reflection of user needs.

6. LYMB
LYMB is an object-oriented development environment aimed at developing applications

that require combining graphics-based user interfaces, visualization, and rapid prototyping.

7. Non-relational environments
Non-relational definition of data (e.g. using Cache or associative models can help make

end-user prototyping more productive by delaying or avoiding the need to normalize data at
every iteration of a simulation. This may yield earlier/greater clarity of business requirements,
though it does not specifically confirm that requirements are technically and economically
feasible in the target production system.

8. PSDL
PSDL is a prototype description language to describe real-time software.

Prototyping in the Software Process

System prototyping
• Prototyping is the rapid development of a system
• In the past, the developed system was normally thought of as inferior in some way to the

required system so further development was required
• Now, the boundary between prototyping and normal system development is blurred and

many systems are developed using an evolutionary approach

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Establish prototype objectives Define prototype functionality
Develop prototype Evaluate prototype

Prototyping plan Outline definition Executable prototype Evaluation report

Arunai Engineering College

Uses of system prototypes
• The principal use is to help customers and developers understand the requirements for the

system
• Requirements elicitation. Users can experiment with a prototype to see how the

system supports their work
• Requirements

requirements
validation. The prototype can reveal errors and omissions in the

• Prototyping can be considered as a risk reduction activity which reduces requirements risks
Prototyping benefits
• Misunderstandings between software users and developers are exposed
• Missing services may be detected and confusing services may be identified
• A working system is available early in the process
• The prototype may serve as a basis for deriving a system specification
• The system can support user training and system testing

Prototyping process

Prototyping in the software process
• Evolutionary prototyping

• An approach to system development where an initial prototype is produced and
refined through a number of stages to the final system

• Throw-away prototyping
• A prototype which is usually a practical implementation of the system is produced to

help discover requirements problems and then discarded. The system is then
developed using some other development process

Data Model
• Used to describe the logical structure of data processed by the system
• Entity-relation-attribute model sets out the entities in the system, the relationships between

these entities and the entity attributes
• Widely used in database design. Can readily be implemented using relational databases
• No specific notation provided in the UML but objects and associations can be used

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Behavioural Model
• Behavioural models are used to describe the overall behaviour of a system
• Two types of behavioural model are shown here

• Data processing models that show how data is processed as it moves through the system
• State machine models that show the systems response to events

• Both of these models are required for a description of the system‘s behaviour

1. Data-processing models
• Data flow diagrams are used to model the system‘s data processing
• These show the processing steps as data flows through a system
• Intrinsic part of many analysis methods
• Simple and intuitive notation that customers can understand
• Show end-to-end processing of data

Data flow diagrams
• DFDs model the system from a functional perspective
• Tracking and documenting how the data associated with a process is helpful to develop an

overall understanding of the system
• Data flow diagrams may also be used in showing the data exchange between a system and

other systems in its environment

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Order processing DFD

2. State machine models
• These model the behaviour of the system in response to external and internal events
• They show the system‘s

systems
responses to stimuli so are often used for modelling real-time

• State machine models show system states as nodes and events as arcs between these nodes.
• When an event occurs, the system moves from one state to another
• Statecharts are an integral part of the UML

Microwave oven model

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Statecharts
• Allow the decomposition of a model into submodels
• A brief description of the actions is included following the ‗do‘ in each state
• Can be complemented by tables describing the states and the stimuli

Structured Analysis
• The data-flow approach is typified by the Structured Analysis method (SA)
• Two major strategies dominate structured analysis

• ‗Old‘ method popularised by DeMarco
• ‗Modern‘ approach by Yourdon

DeMarco
• A top-down approach

• The analyst maps the current physical system onto the current logical data-flow
model

• The approach can be summarised in four steps:
• Analysis of current physical system
• Derivation of logical model
• Derivation of proposed logical model
• Implementation of new physical system

Modern structured analysis
• Distinguishes between user‘s real needs and those requirements that represent the external

behaviour satisfying those needs
• Includes real-time extensions
• Other structured analysis approaches include:

• Structured Analysis and Design Technique (SADT)
• Structured Systems Analysis and Design Methodology (SSADM)

Method weaknesses
• They do not model non-functional system requirements.
• They do not usually include information about whether a method is appropriate for a given

problem.
• The may produce too much documentation.
• The system models are sometimes too detailed and difficult for users to understand.

CASE workbenches
• A coherent set of tools that is designed to support related software process activities such as

analysis, design or testing.
• Analysis and design workbenches support system modelling during both requirements

engineering and system design.
• These workbenches may support a specific design method or may provide support for a

creating several different types of system model.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Structur ed
dia g ram m ing tools

Repor t
gener ation facilities

Centr al infor mation
repository

Query langua ge
facilities

Design, anal y sis
and checking tools

Arunai Engineering College

An analysis and design workbench

• Diagram editors
• Model analysis and checking tools
• Repository and associated query language
• Data dictionary
• Report definition and generation tools
• Forms definition tools
• Import/export translators
• Code generation tools

Data Dictionary
• Data dictionaries are lists of all of the names used in the system models. Descriptions of the

entities, relationships and attributes are also included
• Advantages

• Support name management and avoid duplication
• Store of organisational knowledge linking analysis, design and implementation

• Many CASE workbenches support data dictionaries

Data dictionary entries

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

UNIT III

ANALYSIS, DESIGN CONCEPTS AND PRINCIPLES

Design Concepts and Principles:
• Map the information from the analysis model to the design representations - data design,

architectural design, interface design, procedural design
Analysis to Design:

Design Models – 1:

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Data Design
– created by transforming the data dictionary and ERD into implementation data

structures
– requires as much attention as algorithm design

• Architectural Design
– derived from the analysis model and the subsystem interactions defined in the

DFD
• Interface Design

– derived from DFD and CFD
– describes software elements communication with

• other software elements
• other systems
• human users

Design Models – 2 :
• Procedure-level design

– created by transforming the structural elements defined by the software
architecture into procedural descriptions of software components

– Derived from information in the PSPEC, CSPEC, and STD
Design Principles – 1:

• Process should not suffer from tunnel vision – consider alternative approaches
• Design should be traceable to analysis model
• Do not try to reinvent the wheel
- use design patterns ie reusable components
• Design should exhibit both uniformity and integration
• Should be structured to accommodate changes

Design Principles – 2 :
• Design is not coding and coding is not design
• Should be structured to degrade gently, when bad data, events, or operating conditions

are encountered
• Needs to be assessed for quality as it is being created
• Needs to be reviewed to minimize conceptual (semantic) errors

Design Concepts -1 :
• Abstraction

– allows designers to focus on solving a problem without being concerned about
irrelevant lower level details

Procedural abstraction is
function
e.g open a door

a named sequence of instructions that has a specific an
d

limited

Open implies a long sequence of procedural steps
data abstraction is collection of data that describes a data object

e.g door type, opening mech, weight,dimen
Design Concepts -2 :

• Design Patterns
– description of a design structure that solves a particular design problem within a

specific context and its impact when applied
Design Concepts -3 :

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Software Architecture
– overall structure of the software components and the ways in which that structure
– provides conceptual integrity for a system

Design Concepts -4 :
• Information Hiding

– information (data and procedure) contained within a module is inaccessible to
modules that have no need for such information

• Functional Independence
– achieved by developing modules with single-minded purpose and an aversion to

excessive interaction with other models
Refactoring – Design concepts :

• Fowler [FOW99] defines refactoring in the following manner:
– "Refactoring is the process of changing a software system in such a way that it

does not alter the external behavior of the code [design] yet improves its internal
structure.ǁ

• When software is refectories, the existing design is examined for
– redundancy
– unused design elements
– inefficient or unnecessary algorithms
– poorly constructed or inappropriate data structures
– or any other design failure that can be corrected to yield a better design.

Design Concepts – 4 :
• Objects

–

• Class
–

encapsulate both data and data manipulation procedures needed to describe the
content and behavior of a real world entity

generalized description (template or pattern) that describes a collection of similar
objects

• Inheritance
– provides a means for allowing subclasses to reuse existing superclass data and

procedures; also provides mechanism for propagating changes
Design Concepts – 5:

• Messages
– the means by which objects exchange information with one another

• Polymorphism
– a mechanism that allows several objects in an class hierarchy to have different

methods with the same name
– instances of each subclass will be free to respond to messages by calling their own

version of the method

Modular Design Methodology Evaluation – 1:
Modularity

– the degree to which software can be understood by examining its components
independently of one another

• Modular decomposability
– provides systematic means for breaking problem into sub problems

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Modular compos ability
– supports reuse of existing modules in new systems

• Modular understandability
– module can be understood as a stand-alone unit

Modular Design Methodology Evaluation – 2:
• Modular continuity

– module change side-effects minimized
• Modular protection

– processing error side-effects minimized
Effective Modular Design:

• Functional independence
– modules have high cohesion and low coupling

• Cohesion
– qualitative indication of the degree to which a module focuses on just one thing

• Coupling
– qualitative indication of the degree to which a module is connected to other

modules and to the outside world
Architectural Design:
Why Architecture?
The architecture is not the operational software.
software engineer to:

Rather, it is a representation that enables a

(1) analyze the effectiveness of the design in meeting its stated requirements,
(2) consider architectural alternatives at a stage when making design changes is still relatively
easy, and
(3) reduce the risks associated with the construction of the
software. Importance :

• Software architecture representations enable communications among stakeholders
• Architecture highlights early design decisions that will have a profound impact on the

ultimate success of the system as an operational entity
• The architecture constitutes an intellectually graspable model of how the system is

structured and how its components work together
Architectural Styles – 1:

• Data centered
– file or database lies at the center of this architecture and is accessed frequently by

other components that modify data
Architectural Styles – 2:

• Data flow
– input data is transformed by a series of computational components into output

data
– Pipe and filter pattern has a set of components called

that transmit data from one component to the next.
filters, connected by pipes

– If the data flow degenerates into a single line of transforms, it is termed batch
sequential

• Object-oriented
– components of system encapsulate data and operations, communication between

components is by message passing

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Layered
– several layers are defined
– each layer performs operations that become closer to the machine instruction set

in the lower layers
Architectural Styles – 3:
Call and return

– program structure decomposes function into control hierarchy with main program
invoking several subprograms

Software Architecture Design – 1:
• Software to be developed must be put into context

– model external entities and define interfaces
• Identify architectural archetypes

– collection of abstractions that must be modeled if the system is to be constructed
Object oriented Architecture :

• The components of a system encapsulate data and the operations that must be applied to
manipulate the data. Communication an

d
coordination between components is

accomplished via message passing
Software Architecture Design – 2:

• Specify structure of the system
– define and refine the software components needed to implement each archet ype

• Continue the process iteratively until a complete architectural structure has been derived

Layered Architecture:
• Number of different layers are defined, each accomplishing operations that progressively

become closer to the machine instruction set
• At the outer layer –components service user interface operations.
• At the inner layer – components perform operating system interfacing.
• Intermediate layers provide utility services and application software function

Architecture Tradeoff Analysis – 1:
1. Collect scenarios
2. Elicit requirements, constraints, and environmental description
3. Describe architectural styles/patterns chosen to address scenarios and requirements

• module view
• process view
• data flow view

Architecture Tradeoff Analysis – 2:
4. Evaluate quality attributes independently (e.g

.
reliability, performance, security,

maintainability, flexibility, testability, portability, reusability, interoperability)
5. Identify sensitivity points for architecture

• any attributes significantly affected by changing in the architecture
Refining Architectural Design:

• Processing narrative developed for each module
• Interface description provided for each module
• Local and global data structures are defined
• Design restrictions/limitations noted
• Design reviews conducted

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Refinement considered if required and justified
Architectural Design
• An early stage of the system design process.
• Represents the link between specification and design processes.
• Often carried out in parallel with some specification activities.
• It involves identifying major system components and their communications.
Advantages of explicit architecture
• Stakeholder communication

- Architecture may be used as a focus of discussion by system stakeholders.
• System analysis

- Means that analysis of whether the system can meet its non-functional requirements is
possible.

• Large-scale reuse
- The architecture may be reusable across a range of systems.

Architecture and system characteristics
• Performance

- Localise critical operations and minimise communications. Use large rather than fine-
grain components.

• Security
-

• Safety
-

Use a layered architecture with critical assets in the inner layers.

Localise safety-critical features in a small number of sub-systems.
• Availability

- Include redundant components and mechanisms for fault tolerance.
• Maintainability

- Use fine-grain, replaceable components.
Architectural conflicts
• Using large-grain components improves performance but reduces maintainability.
• Introducing redundant data improves availability but makes security more difficult.
• Localising safety-related features usually means mor

e
communication so degraded

performance.
System structuring
• Concerned with decomposing the system into interacting sub-systems.
• The architectural design is normally expressed as a block diagram presenting an overview of

the system structure.
• More specific models showing how sub-systems share data, are distributed and interface with

each other may also be developed.

Packing robot control system

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Box and line diagrams
• Very abstract - they do not show the nature of component relationships nor the externally

visible properties of the sub-systems.
• However, useful for communication with stakeholders and for project planning.
Architectural design decisions
• Architectural design is a creative process so the process differs depending on the type of

system being developed.
• However, a number of common decisions span all design processes.
• Is there a generic application architecture that can be used?
• How will the system be distributed?
• What architectural styles are appropriate?
• What approach will be used to structure the system?
• How will the system be decomposed into modules?
• What control strategy should be used?
• How will the architectural design be evaluated?
• How should the architecture be documented?
Architecture reuse
• Systems in the same domain often have similar architectures that reflect domain concepts.
• Application product lines are built around a core architecture with variants that satisfy

particular customer requirements.
Architectural styles
• The architectural model of a system may conform to a generic architectural model or style.
• An awareness of these styles can simplify the problem of defining system architectures.
• However, most large systems are heterogeneous and do

style.
not follow a single architectural

Architectural models
• Used to document an architectural design.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Static structural model that shows the major system components.
• Dynamic process model that shows the process structure of the system.
• Interface model that defines sub-system interfaces.
• Relationships model such as a data-flow model that shows sub-system relationships.
• Distribution model that shows how sub-systems are distributed across computers.
System organisation
• Reflects the basic strategy that is used to structure a system.
• Three organisational styles are widely used:

• A shared data repository style;
• A shared services and servers style;
• An abstract machine or layered style.

The repository model
• Sub-systems must exchange data. This may be done in two ways:

• Shared data is held in a central database or repository and may be accessed by all sub-
systems;

• Each sub-system maintains its own database and passes data explicitly to other sub-
systems.

• When large amounts of data are to be shared, the repository model of sharing is most
commonly used.

CASE toolset architecture

Repository model characteristics
Advantages
• Efficient way to share large amounts of data;
• Sub-systems need not be concerned with how data is produced Centralised management

e.g. backup, security, etc.
• Sharing model is published as the repository schema.
Disadvantages

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Sub-systems must agree on a repository data model. Inevitably a compromise;
• Data evolution is difficult and expensive;
• No scope for specific management policies;
• Difficult to distribute efficiently.

Client-server model
• Distributed system model which shows how data and processing is distributed across a range

of components.
• Set of stand-alone servers which provide specific services such as printing, data

management, etc.
• Set of clients which call on these services.
• Network which allows clients to access servers.
Client-server characteristics

Advantages
• Distribution of data is straightforward;
• Makes effective use of networked systems. May require cheaper hardware;
• Easy to add new servers or upgrade existing servers.

Disadvantages
• No shared data model so sub-systems use different data organisation. Data

interchange may be inefficient;
• Redundant management in each server;
• No central register of names and services - it may be hard to find out what servers

and services are available.
Abstract machine (layered) model
• Used to model the interfacing of sub-systems.
• Organises the system into a set of layers (or abstract machines) each of which provide a set

of services.
• Supports the incremental development of sub-systems in different layers. When a layer

interface changes, only the adjacent layer is affected.
• However, often artificial to structure systems in this way.
Modular decomposition styles
• Styles of decomposing sub-systems into modules.
• No rigid distinction between system organisation and modular decomposition.
Sub-systems and modules
• A sub-system is a system in its own right whose operation is independent of the services

provided by other sub-systems.
• A module is a system component that provides services to other components but would not

normally be considered as a separate system.
• Modular decomposition
• Another structural level where sub-systems are decomposed into modules.
• Two modular decomposition models covered

• An object model where the system is decomposed into interacting object;
• A pipeline or data-flow model where the system is decomposed into functional

modules which transform inputs to outputs.
• If possible, decisions about concurrency should be delayed until modules are implemented.
Object models

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Structure the system into a set of loosely coupled objects with well-defined interfaces.
• Object-oriented decomposition is concerned with identifying object classes, their attributes

and operations.
• When implemented, objects are created from these classes and some control model used to

coordinate object operations.

Invoice processing system

Object model advantages
• Objects are loosely coupled so their implementation can be modified without affecting other

objects.
• The objects may reflect real-world entities.
• OO implementation languages are widely used.
• However, object interface changes may cause problems and complex entities may be hard to

represent as objects.
Function-oriented pipelining
• Functional transformations process their inputs to produce outputs.
• May be referred to as a pipe and filter model (as in UNIX shell).
• Variants of this approach are very common. When transformations are sequential, this is a

batch sequential model which is extensively used in data processing systems.
• Not really suitable for interactive systems.
User interface design
• Designing effective interfaces for software systems
• System users often judge a system by its interface rather than its functionality
• A poorly designed interface can cause a user to make catastrophic errors
• Poor user interface design is the reason why so many software systems are never used
• Most users of business systems interact with these systems through graphical user interfaces

(GUIs)
• In some cases, legacy text-based interfaces are still used
User interface design process

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Analyse and understand user activities Produce paper-
based des ign
prototype

Evaluate design
wi th end-users

Design prototype
Produce dynamic design prototype

Eval uate design
with end-users

Executable prototype Implement final user int erface

Arunai Engineering College

UI design principles
• User familiarity

• The interface should be based on user-oriented terms and concepts rather than
computer concepts

• E.g., an office system should use concepts such as letters, documents, folders etc.
rather than directories, file identifiers, etc.

• Consistency
• The system should display an appropriate level of consistency
• Commands and menus should have the same format, command punctuation should be

similar, etc.
• Minimal surprise

• If a command operates in a known way, the user should be able to predict the
operation of comparable commands

• Recoverability
• The system should provide some interface to user errors and allow the user to recover

from errors
• User guidance

• Some user guidance such as help systems, on-line manuals, etc. should be supplied
• User diversity

• Interaction facilities for different types of user should be supported
• E.g., some users have seeing difficulties and so larger text should be available

User-system interaction
• Two problems must be addressed in interactive systems design

• How should information from the user be provided to the computer system?
• How should information from the computer system be presented to the user?

Interaction styles
• Direct manipulation

• Easiest to grasp with immediate feedback
• Difficult to program

• Menu selection
• User effort and errors minimized
• Large numbers and combinations of choices a problem

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1

4 2

3

0 100

Press ure
200300 4000

Temper atu re
255075 100

OK Ca ncel

Ch . 1 6 U ser i nt erface d esi gn

The fi lena me y o u have cho sen h as been us ed. P lea se cho os e an other na me

!

Arunai Engineering College

• Form fill-in
• Ease of use, simple data entry
• Tedious, takes a lot of screen space

• Natural language
• Great for casual users
• Tedious for expert users

Information presentation
• Information presentation is concerned with presenting system information to system users
• The information may be presented directly or may be transformed in some way for

presentation
• The Model-View-Controller approach is a way of supporting multiple presentations of data
Information display

0 10 20

Dial with
needle

Pie chart Thermometer Horizontal bar

Displaying relative values

Textual highlighting

Data visualisation
• Concerned with techniques for displaying large amounts of information

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Visualisation can reveal relationships between entities and trends in the data
• Possible data visualisations are:

• Weather information
• State of a telephone network
• Chemical plant pressures and temperatures
• A model of a molecule

Colour displays
• Colour adds an extra dimension to an interface and can help the user understand complex

information structures
• Can be used to highlight exceptional events

• The use of colour to communicate meaning
Error messages
• Error message design is critically important. Poor error messages can mean that a user

rejects rather than accepts a system
• Messages should be polite, concise, consistent and constructive
• The background and experience of users should be the determining factor in

message design
User interface evaluation
• Some evaluation of a user interface design should be carried out to assess its suitability
• Full scale evaluation is very expensive and impractical for most systems
• Ideally, an interface should be evaluated against req
• However, it is rare for such specifications to be produced

Real Time Software Design
• Systems which monitor and control their environment
• Inevitably associated with hardware devices

• Sensors: Collect data from the system environment
• Actuators: Change (in some way) the system's environment

• Time is critical. Real-time systems MUST respond within specified times
• A real-time system is a software system where the correct functioning of the system depends

on the results produced by the system and the time at which these results are produced
• A ‗soft‘ real-time system is a system whose operation is degraded if results are not produced

according to the specified timing requirements
• A ‗hard‘ real-time system is a system whose operation is incorrect if results are not produced

according to the timing specification
Stimulus/Response Systems
• Given a stimulus, the system must produce a response within a specified time
• 2 classes
• Periodic stimuli. Stimuli which occur at predictable time intervals

• For example, a temperature sensor may be polled 10 times per second
• Aperiodic stimuli. Stimuli which occur at unpredictable times

• For example, a system power failure may trigger an interrupt which must be
processed by the system

Architectural considerations

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Because of the need to respond to timing demands made by different stimuli / responses, the
system architecture must allow for fast switching between stimulus handlers

• Timing demands of different stimuli are different so a simple sequential loop is not usually
adequate

Real –Time Software Design:
• Designing embedded software systems whose behaviour is subject to timing constraints
• To explain the concept of a real-time system and why these systems are usually

implemented as concurrent processes
• To describe a design process for real-time systems
• To explain the role of a real-time executive
• To introduce generic architectures for monitoring and control and data acquisition

systems

Real-time systems:
• Systems which monitor and control their environment
• Inevitably associated with hardware devices

– Sensors: Collect data from the system environment
– Actuators: Change (in some way) the

system's environment
• Time is critical. Real-time systems MUST respond within specified times

Definition:
• A real-time system is a software system where the correct functioning of the system

depends on the results produced by the system and the time at which these results
are produced

• A ‗soft‘ real-time system is a system whose operation is degraded if results are
not produced according to the specified timing requirements

• A ‗hard‘ real-time system is a system whose operation is incorrect if results are
not produced according to the timing specification

Stimulus/Response Systems:
• Given a stimulus, the system must produce a esponse within a specified time
• Periodic stimuli. Stimuli which occur at predictable time intervals

– For example, a temperature sensor may be polled 10 times per second
• Aperiodic stimuli. Stimuli which occur at unpredictable times

– For example, a system power failure may trigger an
processed by the system

interrupt which must be

Architectural considerations:
• Because of the need to respond to timing demands made by different stimuli/responses,

the system architecture must allow for fast switching between stimulus handlers
• Timing demands of different

usually adequate
stimuli are different so a simple sequential loop is not

• Real-time systems are usually designed as cooperating processes with a real-time
executive controlling these processes

A real-time system model:

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Sen so r Sen so r Sen so r Sen so r Sen so r Sen so r

Real-time con tro l sys tem

Act uat or Act uat or Act uat or Act uat or

Arunai Engineering College

System elements:
• Sensors control processes

– Collect information from sensors. May buffer information collected in response to
a sensor stimulus

• Data processor
– Carries out processing of collected information and computes the system response

• Actuator control
– Generates control signals for the actuator

R-T systems design process:
• Identify the stimuli to be processed and the required responses to these stimuli
• For each stimulus and response, identify the timing constraints
• Aggregate the stimulus and response processing into concurrent processes. A process

may be associated with each class of stimulus and response
• Design algorithms to process each class of stimulus and response. These must meet the

given timing requirements
• Design a scheduling system which will ensure that processes are started in time to meet

their deadlines
• Integrate using a real-time executive or operating system

Timing constraints:
• May require extensive simulation and experiment to ensure that these are met by the

system
• May mean that certain design strategies such as object-oriented design cannot be used

because of the additional overhead involved
• May mean that low-level programming language features have to be used for

performance reasons
Real-time programming:

• Hard-real time systems may have to programmed in assembly language to ensure that
deadlines are met

• Languages such as C allow efficient programs to be written but do not have constructs to
support concurrency or shared resource management

• Ada as a language designed to support real-time systems design so includes a general
purpose concurrency mechanism

Non-stop system components:

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Configuration manager
– Responsible for the dynamic reconfiguration of the system

software and hardware. Hardware modules may be replaced and software
upgraded without stopping the systems

• Fault manager
– Responsible for detecting software and hardware faults and

taking appropriate actions (e.g. switching to backup disks) to ensure that the
system continues in operation

Burglar alarm system e.g
• A system is required to monitor sensors on doors and windows to detect the presence of

intruders in a building
• When a sensor indicates a break-in, the system switches on lights around the area and

calls police automatically
• The system should include provision for operation without a mains power supply
• Sensors

• Movement detectors, window sensors, door sensors.
• 50 window sensors, 30 door sensors and 200 movement detectors
• Voltage drop sensor

• Actions
• When an intruder is detected, police are called automatically.
• Lights are switched on in rooms with active sensors.
• An audible alarm is switched on.
• The system switches automatically to backup power when a voltage drop

is detected.
The R-T system design process:

• Identify stimuli and associated responses
• Define the timing constraints associated with each stimulus and response
• Allocate system functions to concurrent processes
• Design algorithms for stimulus processing and response generation
• Design a scheduling system which ensures that processes will always be scheduled

to meet their deadlines
Control systems:

• A burglar alarm system is primarily a monitoring system. It collects data from sensors
but no real-time actuator control

• Control systems are similar but, in response to sensor values,
signals to actuators

the system sends control

• An example of a monitoring and control system is a system which monitors temperature
and switches heaters on and off

Data acquisition systems:
• Collect data from sensors for subsequent processing and analysis.
• Data collection processes and processing processes may have different periods

and deadlines.
• Data collection may be faster than processing e.g. collecting information about an

explosion.
• Circular or ring buffers are a mechanism for smoothing speed differences.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Sensor proces s

500Hz
Senso r values

Thermostat process

Heater
control process

Reactor flux monitoring:
Sensors (each data flow is a sensor value)
Sensor
 identifier and value
SensorSensor data
 processbuffer Process data

Processed flux level
Display

Arunai Engineering College

A temperature control system:
500Hz

500Hz
Switch
command Thermostat process
Room number

Furnace
control
process

Reactor data collection:
• A system collects data from a set of sensors monitoring the neutron flux from a

nuclear reactor.
• Flux data is placed in a ring buffer for later processing.
• The ring buffer is itself implemented as a concurrent process so that the collection

and processing processes may be synchronized.

Mutual exclusion:
• Producer processes collect data and add it to from the buffer and make elements

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

available the buffer. Consumer processes take data

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Sen so r Act uat or

St imulus Response

Sensor con trol Dat a
p ro ces so r

Act uat or contro l

Arunai Engineering College

• Producer and consumer processes must be mutually excluded from accessing the
same element.

The buffer must stop producer processes adding information to a full buffer and consumer
processes trying to take information from an empty buffer

System Design

• Design both the hardware and the software associated with system. Partition functions to
either hardware or software

• Design decisions should be made on the basis on non-functional system requirements
• Hardware delivers better performance but potentially longer development and less scope for

change

System elements
• Sensors control processes

• Collect information from sensors. May buffer information collected in response t o a
sensor stimulus

• Data processor
• Carries out processing of collected information and computes the system response

• Actuator control
• Generates control signals for the actuator

Sensor/actuator processes

Hardware and software design

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Es t ab l is h s ys tem requ irement s

Parti ti on requ irement s

So ftware requ ir ement s Hardw are requ irement s

So ftware d es ig n Hardw are d es ig n

Arunai Engineering College

R-T systems design process
• Identify the stimuli to be processed and the required responses to these stimuli
• For each stimulus and response, identify the timing constraints
• Aggregate the stimulus and response processing into concurrent processes. A process may be

associated with each class of stimulus and response
• Design algorithms to process each class of stimulus and response. These must meet the given

timing requirements
• Design a scheduling system which will ensure that processes are started in time to meet their

deadlines
• Integrate using a real-time executive or operating system

Timing constraints
• For aperiodic stimuli, designers make assumptions about probability of occurrence of stimuli.
• May mean that certain design strategies such as object-oriented design cannot be used

because of the additional overhead involved

State machine modelling
• The effect of a stimulus in a real-time system may trigger a transition from one state to

another.
• Finite state machines can be used for modelling real-time systems.
• However, FSM models lack structure. Even simple systems can have a complex model.
• The UML includes notations for defining state machine models

Microwave oven state machine

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Nu mber

Set ti me
o: get nu mber exi t: s et t ime

Op erati on
d o: op erate o ven

Do or clo sed
Cancel

Do or o pen

Do or clo sed

St art

En abl ed d o: di sp lay
'Ready'

Sy st em faul t
Wait in g
d o: di sp lay ti me

Di s ab l ed
d o: di sp lay 'Wait in g'

Fu ll
p owerFu ll pow er
 d o: set po wer
= 6 00

Ti mer
Wait in g
d o: di sp lay ti me

Fu ll
p ow erd

Hal f
Halfp ow er
p ow er

Ti mer

Hal f p ower d o: set po wer
= 3 00

Arunai Engineering College

Real-time programming
• Hard-real time systems may have to programmed in assembly language to ensure that

deadlines are met
• Languages such as C allow efficient programs to be written but do not have constructs to

support concurrency or shared resource management
• Ada as a language designed to support real-time systems design so includes a general

purpose concurrency mechanism

Java as a real-time language
• Java supports lightweight concurrency (threads and synchonized methods) and can be used

for some soft real-time systems
• Java 2.0 is not suitable for hard RT programming or programming where precise control of

timing is required
• Not possible to specify thread execution time
• Uncontrollable garbage collection
• Not possible to discover queue sizes for shared resources
• Variable virtual machine implementation
• Not possible to do space or timing analysis

Real Time Executives
• Real-time executives are specialised operating systems which manage processes in the RTS
• Responsible for process management and resource (processor and memory) allocation
• Storage management, fault management.
• Components depend on complexity of system

Executive components
• Real-time clock

• Provides information for process scheduling.
• Interrupt handler

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Manages aperiodic requests for service.
• Scheduler

• Chooses the next process to be run.
• Resource manager

• Allocates memory and processor resources.
• Dispatchers

• Starts process execution.

Non-stop system components
• Configuration manager

• Responsible for the dynamic reconfiguration of the system software and hardware.
Hardware
systems

• Fault manager

modules may be replaced and software upgraded without stopping the

• Responsible for detecting software and hardware faults and taking appropriate actions
(e.g. switching to backup disks) to ensure that the system continues in operation

Real-time executive components
Sch edul in
g i nfo rmat
io n

Real-t ime
clo ck Sch edul er Int errup t

h an dl er

Pro ces s reso urce
requ irement s

Pro ces ses
await in g
reso urces

Reso ur ce
manag er

Avail able
reso urce l

is t

Ready
l is t

Ready
p ro ces
ses

Des pat ch
er

Releas ed
reso urces

Pro ces so
r l is t

Ex ecut in
g p ro ces s

Process priority
• The processing of some types of stimuli must sometimes take priority
• Interrupt level priority. Highest priority which is allocated to processes requiring a very

fast response
• Clock level priority. Allocated to periodic processes
• Within these, further levels of priority may be assigned

Interrupt servicing
• Control is transferred automatically to a pre-determined memory location
• This location contains an instruction to jump to an interrupt service routine
• Further interrupts are disabled, the interrupt serviced and control returned to the

interrupted process

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Interrupt service routines MUST be short, simple and fast

Periodic process servicing
• In most real-time systems, there will be several classes of periodic process, each with

different periods (the time between executions), execution times and deadlines (the time by
which processing must be completed)

• The real-time clock ticks periodically and each tick causes an interrupt which schedules
the process manager for periodic processes

• The process manager selects a process which is ready for execution

Process management
• Concerned with managing the set of concurrent processes
• Periodic processes are executed at pre-specified time intervals
• The executive uses the real-time clock to determine when to execute a process
• Process period - time between executions
• Process deadline - the time by which processing must be complete

RTE process management
Scheduler

Choose process
for execution

Resource manager

Allocat e memory
and processor

Despatcher

Start execution on an
available processor

Process switching
• The scheduler chooses the next process to be executed by the processor. This depends on a

scheduling strategy which may take the process priority into account
• The resource manager allocates memory and a processor for the process to be executed
• The despatcher takes the process from ready list, loads it onto a processor an

d
starts

execution

Scheduling strategies
• Non pre-emptive scheduling

• Once a process has been scheduled for execution, it runs to completion or until it is
blocked for some reason (e.g. waiting for I/O)

• Pre-emptive scheduling
• The execution of an executing processes may be stopped if a higher priority process

requires service
• Scheduling algorithms

• Round-robin
• Shortest deadline first

Data Acquisition System
• Collect data from sensors for subsequent processing and analysis.
• Data collection processes and processing processes may have different periods

and deadlines.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Sensor

Sensor identifier and value
 Sensor data

Processed flux level

 processbuffer
 Process data

Display

Producer process

Consumer process

Arunai Engineering College

• Data collection may be faster than processing
e.g. collecting information about an explosion, scientific experiments

• Circular or ring buffers are a mechanism for smoothing speed differences.

Reactor data collection
• A system collects data from a set of sensors monitoring the neutron flux from a

nuclear reactor.
• Flux data is placed in a ring buffer for later processing.
• The ring buffer is itself implemented as a concurrent process so that the collection

and processing processes may be synchronized.

Reactor flux monitoring
Sensors (each data flow is a sensor
value)

A ring buffer

Mutual exclusion
• Producer processes collect data and add it to the buffer. Consumer processes take data

from the buffer and make elements available.
• Producer and consumer processes must be mutually excluded from accessing the

same element.
• The buffer must stop producer processes adding information to a full buffer and

consumer processes trying to take information from an empty buffer.

Java implementation of a ring buffer
class CircularBuffer
{

int bufsize ;
SensorRecord [] store ;

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

int numberOfEntries = 0 ;
int front = 0, back = 0 ;

CircularBuffer (int n) {
bufsize = n ;
store = new SensorRecord [bufsize] ;

} // CircularBuffer

synchronized void put (SensorRecord rec) throws InterruptedException
{

} //
put

if (numberOfEntries ==
bufsize) wait () ;

store [back] = new SensorRecord (rec.sensorId, rec.sensorVal) ;
back = back + 1 ;
if (back == bufsize)

back = 0 ;
numberOfEntries = numberOfEntries + 1 ;
notify () ;

synchronized SensorRecord get () throws InterruptedException
{

} //
get

SensorRecord result = new SensorRecord (-1, -1) ;
if (numberOfEntries == 0)

wait () ;
result = store [front] ;
front = front + 1 ;
if (front == bufsize)

front = 0 ;
numberOfEntries = numberOfEntries - 1 ;
notify () ;
return result ;

} // CircularBuffer

Monitoring and Control System

• Important class of real-time systems
• Continuously check sensors and take actions depending on sensor values
• Monitoring systems examine sensors and report their results
• Control systems take sensor values and control hardware actuators
• Burglar alarm system e.g
• A system is required to monitor sensors on doors and windows to detect the presence of

intruders in a building
• When a sensor indicates a break-in, the system switches on lights around the area and calls

police automatically

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• The system should include provision for operation without a mains power supply

Burglar alarm system
• Sensors

• Movement detectors, window sensors, door sensors.
• 50 window sensors, 30 door sensors and 200 movement detectors
• Voltage drop sensor

• Actions
• When an intruder is detected, police are called automatically.
• Lights are switched on in rooms with active sensors.
• An audible alarm is switched on.
• The system switches automatically to backup power when a voltage drop is detected.

The R-T system design process
• Identify stimuli and associated responses
• Define the timing constraints associated with each stimulus and response
• Allocate system functions to concurrent processes
• Design algorithms for stimulus processing and response generation
• Design a scheduling system which ensures that processes will always be scheduled to

meet their deadlines
• Stimuli to be processed
• Power failure

• Generated by a circuit monitor. When received, the system must switch to
backup power within 50 ms

• Intruder alarm
• Stimulus generated by system sensors. Response is to call the police, switch on

building lights and the audible alarm

Timing requirements

Stimulus/Response Timing requirements
Power fail interrupt The switch to backup power must be completed

Door alarm
within a deadline of 50 ms.
Each door alarm should be polled twice per second.

Window alarm Each window alarm should be polled twice per

Movement detector

Audible alarm

Lights switch

second.
Each movement detector should be polled twice per
second.
The audible alarm should be switched on within 1/2
second of an alarm being raised by a sensor.
The lights should be switched on within 1/2 second
of an alarm being raised by a sensor.

Communications The call to the police should be started within 2

Voice synthesiser
seconds of an alarm being raised by a sensor.
A synthesised message should be available within 4
seconds of an alarm being raised by a sensor.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Movement
d et ecto r p ro ces s

Door sen so r p ro ces s W i nd ow sen so r p ro ces s

5 60 Hz Al ar m s ys tem

Bu il di ng mon it or p ro ces s Co mmu ni cat io n pro ces s

Power fai lu re i nt erru pt
Bu il di ng mon it or Roo m n umb er

Pow er swi t ch p ro ces s

Al arm s ys tem

Al arm s ys tem p ro ces s
Ro om nu mber Al arm
s ys tem

Al ert mess ag e

Al arm s ys tem
Ro om nu mber

Au di bl e alarmLi ghti ng co nt ro lVo ice s yn th esi zer p p ro ces sp ro ces sro ces s

Arunai Engineering College

Process architecture
4 00 Hz 6 0Hz 1 00 Hz

Det ecto r s tat us
Sen so r st at
us

Sen so r st at us

Building monitor process

class BuildingMonitor extends Thread {

BuildingSensor win, door, move ;

Siren
Lights

siren = new Siren () ;
lights = new Lights () ;

Synthesizer synthesizer = new Synthesizer () ;
DoorSensors doors = new DoorSensors (30) ; WindowSensors

windows = new WindowSensors (50) ;
MovementSensors movements = new MovementSensors (200) ;
PowerMonitor pm = new PowerMonitor () ;

BuildingMonitor()
{

// initialise all the sensors and start the
processes siren.start () ; lights.start () ;
synthesizer.start () ; windows.start () ;
doors.start () ; movements.start () ; pm.start () ;

}

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Sen so r p ro cess

5 00 Hz
Sen so r valu es

Th ermo st at p ro ces s

Heat er con tro l p ro ces s
Fu rnace con trol p ro ces s

Arunai Engineering College

public void run ()
{

int room = 0 ;
while (true)
{

// poll the movement sensors at least twice per second (400 Hz)
move = movements.getVal () ;
// poll the window sensors at least twice/second (100
Hz) win = windows.getVal () ;
// poll the door sensors at least twice per second (60 Hz)
door = doors.getVal () ;
if (move.sensorVal == 1 | door.sensorVal == 1 | win.sensorVal == 1)

{
// a sensor has indicated an intruder
if (move.sensorVal ==
1) if (door.sensorVal ==
1) if (win.sensorVal ==
1)

room = move.room
; room = door.room
;

room = win.room ;

lights.on (room) ; siren.on () ; synthesizer.on (room)
; break ;

}
}
lights.shutdown () ; siren.shutdown () ; synthesizer.shutdown () ;
windows.shutdown () ; doors.shutdown () ; movements.shutdown () ;

} // run
} //BuildingMonitor

A temperature control
system 5 00 Hz

5 00 Hz

Swit ch co
mmand
Ro om n u mber Th ermost at pro ces s

Control systems

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• A burglar alarm system is primarily a monitoring system. It collects data from sensors but no
real-time actuator control

• Control systems are similar
signals to actuators

but, in response to sensor values, the system sends control

• An example of a monitoring and control system is a system which monitors temperature and
switches heaters on and off

UNIT IV

TESTING
Taxonomy of Software Testing

• Classified by purpose, software testing can be divided into: correctness testing, performance
testing, and reliability testing and security testing.

• Classified by life-cycle phase, software testing can be classified into the following
categories: requirements phase testing, design phase testing, program phase testing,
evaluating test results, installation phase testing, acceptance testing and maintenance testing.

• By scope, software testing can be categorized as follows: unit testing, component testing,
integration testing, and system testing.

Correctness testing
Correctness is the minimum requirement of software, the essential purpose of testing. It is

used to tell the right behavior from the wrong one. The tester may or may not know the inside
details of the software module under test, e.g. control flow, data flow, etc. Therefore, either a
white-box point of view or black-box point of view can be taken in testing software. We must
note that the black-box and white-box ideas are not limited in correctness testing only.

• Black-box testing
• White-box testing

Performance testing
Not all software systems have specifications on performance explicitly. But every system

will have implicit performance requirements. The software should not take infinite time or
infinite resource to execute. "Performance bugs" sometimes are used to refer to those design
problems in software that cause the system performance to degrade.
Performance has always been a great concern and a driving force of computer evolution.
Performance evaluation of a software system usually includes: resource usage, throughput,
stimulus-response time and queue lengths detailing the average or maximum number of tasks
waiting to be serviced by selected resources. Typical resources that need to be considered
include network bandwidth requirements, CPU cycles, disk space, disk access operations, and
memory usage. The goal of performance testing can be performance
performance comparison and evaluation, etc.

bottleneck identification,

Reliability testing

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Software reliability refers to the probability of failure-free operation of a system. It is
related to many aspects of software, including the testing process. Directly estimating software
reliability by quantifying its related factors can be difficult. Testing is an effective sampling
method to measure software reliability. Guided by the operational profile, software testing
(usually black-box testing) can be used to obtain failure data, and an estimation model can be
further used to analyze the data to estimate the present reliability and predict future reliability.
Therefore, based on the estimation, the developers can decide whether to release the software,
and the users can decide whether to adopt and use the software. Risk of using software can also
be assessed based on reliability information.

Security testing
Software quality, reliability and security are tightly coupled. Flaws in software can be

exploited by intruders to open security holes. With the development of the Internet, software
security problems are becoming even more severe.
Many critical software applications and services have integrated security measures against
malicious attacks. The purpose of security testing of these systems include identifying and
removing software flaws that may potentially lead to security violations, and validating the
effectiveness of security measures. Simulated security attacks can be performed to find
vulnerabilities.

Types of S/W Test

Acceptance testing
Testing to verify a product meets customer specified requirements. A customer usually

does this type of testing on a product that is developed externally.

Compatibility testing
This is used to ensure compatibility of an application or Web site with different browsers,

OSs, and hardware platforms. Compatibility testing can be performed manually or can be driven
by an automated functional or regression test suite.

Conformance testing
This is used to verify implementation conformance to industry standards. Producing tests

for the behavior of an implementation to be sure it provides the portability, interoperability,
and/or compatibility a standard defines.

Integration testing
Modules are typically code modules, individual applications, client and server

applications on a network,
testing.

etc. Integration Testing follows unit testing and precedes system

Load testing
Load testing is a generic term covering Performance Testing and Stress Testing.

Performance testing

Performance testing can be applied to understand your application or WWW site's
scalability, or to benchmark the performance in an environment of third party products such as
servers and middleware for potential purchase. This sort of testing is particularly useful to

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

identify performance bottlenecks in high use applications. Performance testing generally
involves an automated test suite as this allows easy simulation of a variety of normal, peak, and
exceptional load conditions.

Regression testing
Similar in scope to a functional test, a regression test allows a consistent, repeatable

validation of each new release of a product or Web site. Such testing ensures reported product
defects have been corrected for each new release and that no new quality problems were
introduced in the maintenance process. Though regression testing can be performed manually an
automated test suite is often used to reduce the time and resources needed to perform the
required testing.

System testing
Entire system is tested as per the requirements. Black-box type testing that is based on

overall requirements specifications, covers all combined parts of a system.

End-to-end testing
Similar to system testing, involves testing of a complete application environment in a

situation that mimics real-world use, such as interacting with a database, using network
communications, or interacting with other hardware, applications, or systems if appropriate.

Sanity testing
Testing is to determine if a new software version is performing well enough to accept it

for a major testing effort. If application is crashing for initial use then system is not stable
enough for further testing and build or application is assigned to fix.

Alpha testing
In house virtual user environment can be created for this type of testing. Testing is done

at the end of development. Still minor design changes may be made as a result of such testing.

Beta testing
Testing is typically done by end-users or others.

the application to commercial purpose.
This is the final testing before releasing

Software Testing Techniques
Software Testing:
Testing is the process of exercising a program with the specific intent of finding errors prior to
delivery to the end user.
Testing Objectives:

• Testing is the process of executing a program with the intent of finding errors.
• A good test case is one with a high probability of finding an as-yet undiscovered error.
• A successful test is one that discovers an as-yet-undiscovered error.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Testing Principles:
• All tests should be traceable to customer requirements.
• Tests should be planned before testing begins.
• 80% of all errors are in 20% of the code.
• Testing should begin in the small and progress to the large.
• Exhaustive testing is not possible.

Testing should be conducted by an independent third party if possible.
Software Defect Causes:

• Specification may be wrong.
• Specification may be a physical impossibility.
• Faulty program design.
• Program may be incorrect.

Types of Errors:
• Algorithmic error.
• Computation & precision error.
• Documentation error.
• Capacity error or boundary error.
• Timing and coordination error.
• Throughput or performance error.
• Recovery error.
• Hardware & system software error.
• Standards & procedure errors.

Software Testability Checklist – 1:
• Operability

– if it works better it can be tested more efficiently
• Observability

– what you see is what you test
• Controllability

– if software can be controlled better the it is more that testing can be automated
and optimized

Software Testability Checklist – 2:
• Decomposability

– controlling the scope of testing allows problems to be isolated quickly and
retested intelligently

• Stability
– the fewer the changes, the fewer the disruptions to testing

• Understandability
– the more information that is known, the smarter the testing can be done

Good Test Attributes:
• A good test has a high probability of finding an error.
• A good test is not redundant.
• A good test should be best of breed.
• A good test should not be too simple or too complex.

Test Strategies:
• Black-box or behavioral testing

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

– knowing the specified function a product is to perform and demonstrating correct
operation based solely on its specification without regard for its internal logic

• White-box or glass-box testing
– knowing the internal workings of a product, tests are performed to

workings of all possible logic paths
check the

White-Box Testing:
Basis Path Testing:

• White-box technique usually based on the program flow graph
• The cyclo matic complexity of the program computed from its flow graph using the

formula V(G) = E – N + 2 or by counting the conditional statements in the PDL
representation and adding 1

• Determine the basis set of linearly independent paths (the cardinality of this set is the
program cyclomatic complexity)

• Prepare test cases that will force the execution of each path in the basis set.

Cyclomatic Complexity:
A number of industry studies have indicated that the higher V(G), the higher the probability or
errors.
Control Structure Testing – 1:

• White-box techniques focusing on control structures present in the software
• Condition testing (e.g. branch testing)

– focuses on testing each decision statement in a software module
– it is important to ensure coverage of all logical combinations of data that may be

processed by the module (a truth table may be helpful)
Control Structure Testing – 2:

• Data flow testing
– selects test paths based according to the locations of variable definitions and uses

in the program (e.g. definition use chains)
• Loop testing

– focuses on the validity of the program loop constructs (i.e. while, for, go to)
– involves checking to ensure loops start and stop when they are supposed to

(unstructured loops should be redesigned whenever possible)
Loop Testing: Simple Loops:
Minimum conditions—Simple Loops
1. skip the loop entirely
2. only one pass through the loop
3. two passes through the loop
4. m passes through the loop m < n
5. (n-1), n, and (n+1) passes through the loop
where n is the maximum number of allowable passes
Loop Testing: Nested Loops:
Nested Loops
Start at the innermost loop. Set all outer loops to their minimum iteration parameter values.
Test the min+1, typical, max-1 and max for the innermost loop, while holding the outer loops at
their minimum values.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Move out one loop and set it up as in step 2, holding all other loops at typical values. Continue
this step until the outermost loop has been tested.
Concatenated Loops
If the loops are independent of one another

then treat each as a simple loop
else* treat as nested loops

end if*
for example, the final loop counter value of loop 1 is
used to initialize loop 2.

Black-Box Testing:
Graph-Based Testing – 1:

• Black-box methods based on the nature of the relationships (links) among the program
objects (nodes), test cases are designed to traverse the entire graph

• Transaction flow testing
– nodes represent steps in some transaction and links represent logical connections

between steps that need to be validated
• Finite state modeling

– nodes represent user observable states of the software and links represent state
transitions

Graph-Based Testing – 2:
• Data flow modeling

– nodes are data objects and links are transformations of one data object to another
data object

• Timing modeling
– nodes are program objects and links are sequential connections between these

objects
– link weights are required execution times

Equivalence Partitioning:
• Black-box technique that divides the input domain into classes of data from which test

cases can be derived
• An ideal test case uncovers a class of errors that might require many arbitrary test cases

to be executed before a general error is observed
Equivalence Class Guidelines:

• If input condition specifies a range, one valid and two invalid equivalence classes are
defined

• If an input condition requires a specific value, one valid and two invalid equivalence
classes are defined

• If an input condition specifies a member of a set, one valid and one invalid equivale nce
class is defined

• If an input condition is Boolean, one valid and one invalid equivalence class is defined
• Boundary Value Analysis - 1
• Black-box technique

– focuses on the boundaries of the input domain rather than its center
• Guidelines:

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

– If input condition specifies a range bounded by values a and b, test cases should
include a and b, values just above and just below a and b

– If an input condition specifies and number of values, test cases should be exercise
the minimum and maximum numbers, as well as values just above and just below
the minimum and maximum values

Boundary Value Analysis – 2
1. Apply guidelines 1 and 2 to output conditions, test cases should be designed to

produce the minimum and maximum output reports
2. If internal program data structures have boundaries (e.g. size limitations), be

certain to test the boundaries
Comparison Testing:

• Black-box testing for safety critical systems in which independently developed
implementations of redundant systems are tested for conformance to specificatio ns

• Often equivalence class partitioning is used to develop a common set of test cases for
each implementation

Orthogonal Array Testing – 1:
• Black-box technique that enables the design of a reasonably small set of test cases that

provide maximum test coverage
• Focus is on categories of faulty logic likely to be present in the software component

(without examining the code)
Orthogonal Array Testing – 2:

• Priorities for assessing tests using an orthogonal array
– Detect and isolate all single mode faults
– Detect all double mode faults
– Multimode faults

Software Testing Strategies:
Strategic Approach to Testing – 1:

• Testing begins at the component level and works outward toward the integration of the
entire computer-based system.

• Different testing techniques are appropriate at different points in time.
• The developer of the software conducts testing and may be assisted by independent test

groups for large projects.
• The role of the independent tester is to remove the conflict of interest inherent when the

builder is testing his or her own product.
Strategic Approach to Testing – 2:

• Testing and debugging are different activities.
• Debugging must be accommodated in any testing strategy.
• Need to consider verification issues

– are we building the product right?
• Need to Consider validation issuesare we building the right product?

Verification vs validation:
• Verification:

"Are we building the product right" The software should conform to its specification
Validation:

"Are we building the right product" The software should do what the user really requires
The V & V process:

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• As a whole life-cycle process - V & V must be applied at each stage in the software
process.

• Has two principal objectives
– The discovery of defects in a system
– The assessment of whether or not the system is usable in an operational situation.

• Strategic Testing Issues - 1 Specify product requirements in a quantifiable manner before
testing starts.

• Specify testing objectives explicitly.
• Identify the user classes of the software and develop a profile for each.
• Develop a test plan that emphasizes rapid cycle testing.

Strategic Testing Issues – 2:
• Build robust software that is designed to test itself (e.g. use anti-bugging).
• Use effective formal reviews as a filter prior to testing.
• Conduct formal technical reviews to assess the test strategy and test cases.

Testing Strategy:

Unit Testing:

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Program reviews.
• Formal verification.
• Testing the program itself.

– black box and white box testing.
Black Box or White Box?:

• Maximum # of logic paths - determine if white box testing is possible.
• Nature of input data.
• Amount of computation involved.
• Complexity of algorithms.

Unit Testing Details:
• Interfaces tested for proper information flow.
• Local data are examined to ensure that integrity is maintained.
• Boundary conditions are tested.
• Basis path testing should be used.
• All error handling paths should be tested.
• Drivers and/or stubs need to be developed to test incomplete software.

Unit Testing:

Unit Test Environment:

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Integration Testing:
• Bottom - up testing (test harness).
• Top - down testing (stubs).
• Regression Testing.
• Smoke Testing

Top Down Integration:

Top-Down Integration Testing:
• Main program used as a test driver and stubs are substitutes for components directly

subordinate to it.
• Subordinate stubs are replaced one at a time with real components (following the depth-

first or breadth-first approach).
• Tests are conducted as each component is integrated.
• On completion of each set of tests and other stub is replaced with a real component.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Regression testing may be used to ensure that new errors not introduced.
Bottom-Up Integration:

Bottom-Up Integration Testing:
• Low level components are combined in clusters that perform a specific software function.
• A driver (control program) is written to coordinate test case input and output.
• The cluster is tested.
• Drivers are removed and clusters are combined moving upward in the program structure.

Regression Testing:
• The selective retesting of a software system that has been modified to ensure that any

bugs have been fixed and that no other previously working functions have failed as a
result of the reparations and that newly added features have not created problems with
previous versions of the software. Also referred to as verification testing, regression
testing is initiated after a programmer has attempted to fix a recognized problem or has
added source code to a program that may have inadvertently introduced errors. It is a
quality control measure to ensure that the newly modified code still complies with its
specified requirements and that unmodified code has not been affected by the
maintenance activity.

Regression Testing:
• Regression test suit contains 3 different classes of test cases

– Representative
functions.

sample of existing test cases is used to exercise all software

– Additional test
change.

cases focusing software functions likely to be affected by the

– Tests cases that focus on the changed software components.
Smoke Testing:

• Software components already translated into code are integrated into a build.
• A series of tests designed to expose errors that will keep the build from performing its

functions are created.
• The build is integrated with the other builds and the entire product is smoke tested daily

using either top-down or bottom integration.
Validation Testing:

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Ensure that each function or performance characteristic conforms to its specification.
• Deviations (deficiencies) must be negotiated with the customer to establish a means for

resolving the errors.
• Configuration review or audit is used to ensure that all elements of the software

configuration have been properly developed, cataloged, and documented to allow its
support during its maintenance phase.

Acceptance Testing:
• Making sure the software works correctly for intended user in his or her normal work

environment.
• Alpha test

– version of the complete software is tested by customer under the supervision of
the developer at the developer‘s site

• Beta test
– version of the complete software is tested by customer at his or her own site

without the developer being present
System Testing:

• Recovery testing
– checks system‘s ability to recover from failures

• Security testing
– verifies that system protection mechanism prevents improper penetration or data

alteration
• Stress testing

– program is checked to see how well it deals with abnormal resource demands
• Performance testing

– tests the run-time performance of software
Performance Testing:

• Stress test.
• Volume test.
• Configuration test (hardware & software).
• Compatibility.
• Regression tests.
• Security tests.
• Timing tests.
• Environmental tests.
• Quality tests.
• Recovery tests.
• Maintenance tests.
• Documentation tests.
• Human factors tests.

Testing Life Cycle:
• Establish test objectives.
• Design criteria (review criteria).

– Correct.
– Feasible.
– Coverage.
– Demonstrate functionality.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Writing test cases.
• Testing test cases.
• Execute test cases.
• Evaluate test results.

Testing Tools:
• Simulators.
• Monitors.
• Analyzers.
• Test data generators.

Document Each Test Case:
• Requirement tested.
• Facet / feature / path tested.
• Person & date.
• Tools & code needed.
• Test data & instructions.
• Expected results.
• Actual test results & analysis
• Correction, schedule, and signoff.

Debugging:
• Debugging (removal of a defect) occurs as a consequence of successful testing.
• Some people better at debugging than others.
• Is the cause of the bug reproduced in another part of the program?
• What ―next bugǁ might be introduced by the fix that is being proposed?
• What could have been done to prevent this bug in the first place?

Software Implementation techniques
• Implementation techniques include imperative languages (object-oriented or procedural),

functional languages, and logic languages.
• Software Implementation Techniques include process and thread scheduling, synchronization

an
d

concurrency primitives, file management, memory management, performance,

networking facilities, and user interfaces. Software Implementation Techniques is designed
to facilitate determining what is required to implement a specific operating system function.

Procedural programming
Procedural programming can sometimes be used as a synonym for imperative

programming (specifying the steps the program must take to reach the desired state), but can also
refer (as in this article) to a programming paradigm, derived from structured programming, based
upon the concept of the procedure call. Procedures, also know

n
as routines, subroutines,

methods, or functions (not to be confused with mathematical functions, but similar to those used
in functional programming) simply contain a series of computational steps to be carried out. Any
given procedure might be called at any point during a program's execution, including by other
procedures or itself. Some good examples of procedural programs are the Linux
Apache Server, and Quake III Arena.

Kernel, GIT,

Object-oriented programming

Object-oriented programming (OOP) is a programming paradigm that uses "objects" –
CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

data structures consisting of data fields and methods together with their interactions – to design
applications and computer programs. Programming techniques may include features such as data
abstraction, encapsulation, modularity, polymorphism, and inheritance. Many modern
programming languages now support OOP.

An object-oriented program may thus be viewed as a collection of interacting objects, as
opposed to the conventional model, in which a program is seen as a list of tasks (subroutines) to
perform. In OOP, each object is capable o f receiving messages, processing data, and sending
messages to other objects. Each object can be viewed as an independent 'machine' with a distinct
role or responsibility. The actions (or "methods") on these objects are closely associated with the
object. For example, OOP data structures tend to 'carry their own operators around with them' (or
at least "inherit" them from a similar object or class). In the conventional model, the data and
operations on the data don't have a tight, formal association.

functional programming is a programming paradigm that treats computation as the evaluation
of mathematical functions and avoids state and mutable data. It emphasizes the application of
functions, in contrast to the imperative programming style, which emphasizes changes in state.
Functional programming has its roots in lambda calculus, a formal system developed in the
1930s to investigate function definition, function application, an

d
recursion. Many functional

programming languages can be viewed as elaborations on the lambda calculus.
In practice, the difference between a mathematical function and the notion of a "function"

used in imperative programming is that imperative functions can have side effects, changing the
value of already calculated computations. Because of this they lack referential transparency, i.e.
the same language expression can result in different values at different times depending on the
state of the executing program. Conversely, in functional code, the output value of a function
depends only on the arguments that are input to the function, so calling a function f twice with
the same value for an argument x will produce the same result f(x) both times. Eliminating side
effects can make it much easier to understand and predict the behavior of a program, which is
one of the key motivations for the development of functional programming.JavaScript, one of the
most widely employed languages today, incorporates functional programming capabilities.

Logic programming is, in its broadest sense, the use of mathematical logic for computer
programming. In this view of logic programming, which can be traced at least as far back as
John McCarthy's [1958] advice-taker proposal, logic is used as a purely declarative
representation language, and a theorem-prover or model-generator is used as the problem-solver.
The problem-solving task is split between the programmer, who is responsible only for ensuring
the truth of programs expressed in logical form, and the theorem-prover or model-generator,
which is responsible for solving problems efficiently.

Oracle’s Application Implementation Method
AIM provides with an integrated set of templates, procedures, PowerPoint presentations,

spreadsheets, and project plans for implementing the applications. AIM was such a success,
Oracle created a subset of the templates, called it AIM Advantage, and made it available as a
product to customers and other consulting firms. Since its initial release, AIM has been revised
and improved several times with new templates and methods.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

AIM Is a Six-Phase Method
Because the Oracle ERP Applications are software modules buy from a vendor, different

implementation methods are used than the techniques used for custom developed systems. AIM
has six major phases:
• Definition phase: During this phase, you plan the project, determine business objectives,
and verify the feasibility of the project for given time, resource, and budget limits.
• Operations Analysis phase: Includes documents business requirements, gaps in the
software (which can lead to customizations), and system architecture requirements. Results of
the analysis should provide a proposal for future business processes, a technical architecture
model, an application architecture model, workarounds for application gaps, performance testing
models, and a transition strategy to migrate to the new systems. Another task that can begin in
this phase is mapping of legacy data to Oracle Application APIs or open interfaces—data
conversion.
• Solution Design phase—Used to create designs for solutions that meet future
business requirements and processes. The design of your future organization comes alive during
this phase as customizations and module configurations are finalized.
• Build phase—During this phase of AIM, coding and testing of customizations,
enhancements, interfaces, and data conversions happens. In addition, one or more conference
room pilots test the integrated enterprise system.
working, tested business system solution.

The results of the build phase should be a

• Transition phase—During this phase, the project team delivers the finished
solution to the enterprise. End-user training and support, management of change, and data
conversions are major activities of this phase.
• Production phase—Starts when the system goes live. Technical people work to
stabilize and maintain the system under full transaction loads. Users and the implementation
team begin a series of refinements to minimize unfavorable impacts and realize the business
objectives identified in the definition phase.

Rapid Implementations
In the late 1990s as Y2K approached, customers demanded and consulting firms discovered

faster ways to implement packaged software applicat ions. The rapid implementation became
possible for certain types of customers. The events that converged in the late 1990s to provide
faster implementations include the following:
• Many smaller companies couldn‘t afford the big ERP project. If the software vendors and

consulting firms were going to sell to the ―middle marketǁ companies, they had to
develop more efficient methods.

• Many dotcoms needed a financial infrastructure; ERP applications filled the need, and rapid
implementation methods provided the way.

• The functionality of the software improved a lot, many gaps were eliminated, and more
companies could implement with fewer customizations.

• After the big, complex companies implemented their ERP systems, the typical
implementation became less difficult.

• The number of skilled consultants and project managers increased significantly.
• Other software vendors started packaging preprogrammed integration points to the Oracle

ERP modules.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Rapid implementations focus on delivering a predefined set of functionality. A key set of
business processes is installed in a standard way to accelerate the implementation schedule.
These projects benefit from the use of preconfigured modules and predefined business processes.
You get to reuse the analysis and integration testing from other implementations, and you agree
to ignore all gaps by modifying your business to fit the software. Typically, the enterprise will be
allowed some control over key decisions such as the structure of the chart of accounts. Fixed
budgets are set for training, production support, and data conversions (a limited amount of data).

Phased Implementations
Phased implementations seek to break up the work of an ERP implementation project.

This technique can make the system more manageable and reduce risks, and costs in some cases,
to the enterprise. In the mid-1990s, 4 or 5 was about the maximum number of application
modules that could be launched into production at one time. If you bought 12 or 13 applications,
there would be a financial phase that would be followed by phases for the distribution and
manufacturing applications. As implementation techniques improved and Y2K pressures grew in
the late 1990s, more and more companies started launching most of their applications at the same
time. This method became known as the big-bang approach. Now, each company selects a
phased or big-bang approach based on its individual requirements.

Another approach to phasing can be employed by companies with business units at
multiple sites. With this technique, one business unit is used as a template, and all applications
are completely implemented in an initial phase lasting 10–14 months. Then, other sites
implement the applications in cookie-cutter fashion. The cookie-cutter phases are focused on
end-user training and the differences that a site has from the prototype site. The cookie-cutter
phas
e

can be as short as 9–12 weeks, and these phases can be conducted at several sites

simultaneously. For your reference, we participated in an efficient project where 13 app lications
were implemented big bang–style in July at the Chicago site after about 8 months work. A site in
Malaysia went live in October. The Ireland site started up in November. After a holiday break,
the Atlanta business unit went live in February, and the final site in China started using the
applications in April. Implementing thirteen application modules at five sites in four countries in
sixteen months was pretty impressive.
Case Studies Illustrating Implementation Techniques
Some practical examples from the real world might help to illustrate some of the principles and
techniques of various software implementation methods. These case studies are composites from
about 60 implementation projects we have observed during the past 9 years.

Big companies often have a horrible time resolving issues and deciding on configuration
parameters becaus

e
there is so much money involved and each of many sites might want to

control decisions about what it considers its critical success factors. For example, we once saw a
large company argue for over two months about the chart of accounts structure, while eight
consultants from two consulting firms tried to referee among the feuding operating units.
Another large company labored for more than six months to unify a mast er customer list for a
centralized receivables and decentralized order entry system.

Transition activities at large companies need special attention. Training end users can be
a logistical challenge and can require considerable planning. For example, if you have 800 users
to train and each user needs an average of three classes of two hours each and you have one
month, how many classrooms and instructors do you need? Another example is that loading data

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

from a legacy system can be a problem. If you have one million customers to load into Oracle
receivables at the rate of 5,000/hour and the database administrator allows you to load 20 hours
per day, you have a 10-day task.

Because they spend huge amounts of money on their ERP systems, many big companies
try to optimize the systems and capture specific returns on the investment. However, sometimes
companies can be incredibly insensitive and uncoordinated as they try to make money from their
ERP software. For example, one business announced at the beginning of a project that the
accounts payable department would be cut from 50–17 employees as soon as the system went
live. Another company decided to centralize about 30 accounting sites into one shared service
center and advised about 60 accountants that they would lose their jobs in about a year. Several
of the 60 employees were offered positions on the ERP implementation team.

Small companies have other problems when creating an implementation team. Occasionally, the
small company tries to put clerical employees on the team and they have problems with issue
resolution or some of the ERP concepts. In another case, one small company didn‘t create the
position of project manager. Each department worked on its own modules and ignored the
integration points, testing, and requirements of other users. When Y2K deadlines forced the
system startup,
project.

results were disastrous with a cost impact that doubled the cost of the entire

Project team members at small companies sometimes have a hard time relating to the cost
of the implementation. We once worked with a company where the project manager (who was
also the database administrator) advised me within the first hour of our meeting that he thought
consulting charges of $3/minute were outrageous, and he couldn‘t rationalize how we could
possibly make such a contribution. We agreed a consultant could not contribute $3 in value each
and every minute to his project. However, when I told him we would be able to save him
$10,000/week and make the difference between success and failure, he realized we should get to
work.

Because the small company might be relatively simple to implement and the technical
staff might be inexperienced with the database and software, it is possible that the technical staff
will be on the critical path of the project. If the database administrator can‘t learn how to handle
the production database by the time the users are ready to go live, you might need to hire some
temporary help to enable the users to keep to the schedule. In addition, we often see small
companies with just a single database administrator who might be working 60 or more hours per
week. They feel they can afford to have more DBAs as employees, but they don‘t know how to
establish the right ratio of support staff to user requirements. These companies can burn out a
DBA quickly and then have to deal with the problem of replacing an important skill.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

UNIT V

SOFTWARE PROJECT MANAGEMENT

Measures and Measurements
• Software measurement is concerned with deriving a numeric value for an attribute of a

software product or process.
• This allows for objective comparisons between techniques and processes.
• Although some companies have introduced measurement programmes, most organisations

still don‘t make systematic use of software measurement.
• There are few established standards in this area.

Software metric
• Any type of measurement which relates to a software system, process or

related documentation
• Lines of code in a program, the Fog index, number of person-days required to

develop a component.
• Allow the software and the software process to be quantified.
• May be used to predict product attributes or to control the software process.
• Product metrics can be used for general predictions or to identify anomalous components.

Predictor and control metrics

Metrics assumptions
• A software property can be measured.
• The relationship exists between what we can measure and what we want to know. We can

only measure internal attributes but are often more interested in external software
attributes.

• This relationship has been formalised and validated.
• It may be difficult to relate what can be measured to desirable external quality attributes.

Internal and external attributes

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

The measurement process
• A software measurement process may be part of a quality control process.
• Data collected during this process should be maintained as an organisational resource.
• Once a measurement database has been established, comparisons across projects become

possible.

Product measurement process

Data collection
• A metrics programme should be based on a set of product and process data.
• Data should be collected immediately (not in retrospect) and, if possible, automatically.
• Three types of automatic data collection

• Static product analysis;
• Dynamic product analysis;
• Process data collation.

Data accuracy
• Don‘t collect unnecessary data

• The questions to be answered should be decided in advance and the required data
identified.

• Tell people why the data is being collected.
• It should not be part of personnel evaluation.

• Don‘t rely on memory
• Collect data when it is generated not after a project has finished.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Product metrics
• A quality metric should be a predictor of product quality.
• Classes of product metric

• Dynamic
execution;

metrics which are collected by measurements made of a program in

• Static metrics which are collected by measurements made of the system
representations;

• Dynamic metrics help assess efficiency and reliability; static metrics help assess
complexity, understand ability and maintainability.

Dynamic and static metrics
• Dynamic metrics are closely related to software quality attributes

• It is relatively easy to measure the response time of a system (performance attribute)
or the number of failures (reliability attribute).

• Static metrics have an indirect relationship with quality attributes
• You need to try and derive a relationship between these metrics and properties such

as complexity, understandability and maintainability.

Software product metrics

Software metric Description
Fan in/Fan-out Fan-in is a measure of the number of functions or methods that

call some other function or method (say X). Fan-out is the
number of functions that are called by function X. A high value
for fan-in means that X is tightly coupled to the rest of the design
and changes to X will have extensive knock-on effects. A high
value for fan-out suggests that the overall complexity of X may
be high because of the complexity of the control logic needed to
coordinate the called components.

Length of code This is a measure of the size of a program. Generally, the larger
the size of the code of a component, the more complex and error-
prone that component is likely to be. Length of code has been
shown to be one of the most reliable metrics for predicting error-
proneness in components.

Cyclomatic complexity This is a measure of the control complexity of a program. This
control complexity may be related to program understandability. I
discuss how to compute cyclomatic complexity in Chapter 22.

Length of identifiers This is a measure of the average length of distinct identifiers in a
program. The longer the identifiers, the more likely they are to be
meaningful and hence the more understandable the program.

Depth of conditional
nesting

This is a measure of the depth of nesting of if-statements in a
program. Deeply nested if statements are hard to understand and
are potentially error-prone.

Fog index This is a measure of the average length of words and sentences in
documents. The higher the value for the Fog index, the more
difficult the document is to understand.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Object-oriented metrics

Object-oriented metric Description

Depth of inheritance tree This represents the number of discrete levels in the inheritance
tree where sub-classes inherit attributes and operations
(methods) from super-classes. The deeper the inheritance tree,
the more complex the design. Many different object classes may
have to be understood to understand the object classes at the
leaves of the tree.

ethod fan-in/fan-out This is directly related to fan-in and fan-out as described above
and means essentially the same thing. However, it may be
appropriate to make a distinction between calls from other
methods within the object and calls from external methods.

Weighted methods per
class

This is the number of methods that are included in a class
weighted by the complexity of each method. Therefore, a
simple method may have a complexity of 1 and a large and
complex method a much higher value. The larger the value for
this metric, the more complex the object class. Complex objects
are more likely to be more difficult to understand. They may not
be logically cohesive so cannot be reused effectively as super-
classes in an inheritance tree.

Number of overriding
operations

This is the number of operations in a super-class that are over-
ridden in a sub-class. A high value for this metric indicates
that
the super-class used may not be an appropriate parent for
the sub-class.

Measurement analysis
• It is not always obvious what data means

• Analysing collected data is very difficult.
• Professional statisticians should be consulted if available.
• Data analysis must take local circumstances into account.

Measurement surprises
• Reducing the number of faults in a program leads to an increased number of help desk calls

• The program is now thought of as more reliable and so has a wider more diverse
market. The percentage of users who call the help desk may have decreased but the
total may increase;

• A more reliable system is used in a different way from a system where users work
around the faults. This leads to more help desk calls.

ZIPF’s Law
• Zipf's Law as "the observation that frequency of occurrence of some event (P), as a function

of the rank (i) when the rank is determined by the above frequency of occurrence, is a power-
law function Pi ~ 1/ia with the exponent a close to unity (1)."

• Let

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

P (a rand om variable) represented the frequency of occurrence of a keyword in a
program listing.

• It applies to computer programs written in any modern computer language.
• Without empirical proof because it's an obvious finding, that any computer program written

in any programming language has a power law
more than others.

distribution, i.e., some keywords are used

• Frequency of occurrence of events is inversely proportional to the rank in this frequency of
occurrence.

• When both are plotted on a log scale, the graph is a straight line.
• we create entities that don't exist except in computer memory at run time; we create logic

nodes that will never be tested because it's impossible to test every logic branch; we create
information flows in quantities that are humanly impossible to analyze with a glance;

• Software application is the combination of keywords within the context of a solution and not
their quantity used in a program; context is not a trivial task because the context of an
application is attached to the problem being solved and every problem to solve is different
and must have a specific program to solve it.

• Although a program could be syntactically correct, it doesn't mean that t he algorithms
implemented solve the problem at hand. What's more, a correct program can solve the wrong
problem. Let's say we have the simple requirement of printing "Hello, World!" A
syntactically correct solution in Java looks as follows:

• Public class SayHello {
public static void main(String[] args)

{ System.out.println("John
Sena!");

}
}

• This solution is obviously wrong because it doesn't solve the original requirement. This
means that the context of the solution within the problem being solved needs to be
determined to ensure its quality. In other words, we need to verify that the output matches the
original requirement.

• Zip's Law can't even say too much about larger systems.

Software Cost Estimation
Software cost components
• Hardware and software costs.
• Travel and training costs.
• Effort costs (the dominant factor in most projects)

• The salaries of engineers involved in the project;
• Social and insurance costs.

• Effort costs must take overheads into account
• Costs of building, heating, lighting.
• Costs of networking and communications.
• Costs of shared facilities (e.g library, staff restaurant, etc.).

Costing and pricing
• Estimates are made to discover the cost, to the developer, of producing a software system.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• There is not a simple relationship between the development cost and the price charged to the
customer.

• Broader organisational, economic, political and business considerations influence the price
charged.

Software productivity
• A measure of the rate at which individual engineers involved in software development

produce software and associated documentation.
• Not quality-oriented although quality assurance is a factor in productivity assessment.
• Essentially, we want to measure useful functionality produced per time unit.

Productivity measures
• Size related measures based on some output from the software process. This may be lines of

delivered source code, object code instructions, etc.
• Function-related measures based on an estimate of the functionality of the delivered

software. Function-points are the best known of this type of measure.

Measurement problems
• Estimating the size of the measure (e.g. how many function points).
• Estimating the total number of programmer months that have elapsed.
• Estimating contractor productivity (e.g. documentation team) and incorporating

this estimate in overall estimate.

Lines of code
• The measure was first proposed when programs were typed on cards with one line per card;
• How does this correspond to statements as in Java which can span several lines or where

there can be several statements on one line.

Productivity comparisons
• The lower level the language, the more productive the programmer

• The same functionality takes more code to implement in a lower-level language than
in a high-level language.

• The more verbose the programmer, the higher the productivity
• Measures of productivity based on lines of code suggest that programmers who write

verbose code are more productive than programmers who write compact code.

Function Point model
Function points
• Based on a combination of program characteristics

• external inputs and outputs;
• user interactions;
• external interfaces;
• files used by the system.

• A weight is associated with each of these and the function point count is computed by
multiplying each raw count by the weight and summing all values.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• The function point count is modified by complexity of the project
• FPs can be used to estimate LOC depending on the average number of LOC per FP for a

given language
• LOC = AVC * number of function points;
• AVC is a language-dependent factor varying from 200-300 for assemble language to

2-40 for a 4GL;
• FPs are very subjective. They depend on the estimator

• Automatic function-point counting is impossible.

COCOMO model
• An empirical model based on project experience.
• Well-documented, ‗independent‘ model which is not tied to a specific software vendor.
• Long history from initial version published in 1981 (COCOMO-81) through various

instantiations to COCOMO 2.
• COCOMO 2 takes into account different approaches to software development, reuse, etc.

COCOMO 81

Project
complexity

Formula Description

Simple PM = 2.4 (KDSI)1.05 × M Well-understood applications developed by
small teams.

Moderate PM = 3.0 (KDSI)1.12 × M More complex projects where team
members may have limited experience of
related systems.

Embedded PM = 3.6 (KDSI)1.20 × M Complex projects where the software is part
of a strongly coupled complex of hardware,
software, regulations and operational
procedures.

COCOMO 2
• COCOMO 81 was developed with the assumption that a waterfall process would be used and

that all software would be developed from scratch.
• Since its formulation, there have been many changes in software engineering practice and

COCOMO 2 is designed to accommodate different approaches to software development.

COCOMO 2 models
• COCOMO 2 incorporates a range of sub-models that produce increasingly detailed software

estimates.
• The sub-models in COCOMO 2 are:

• Application
parts.

composition model. Used when software is composed from existing

• Early design model. Used when requirements are available but design has not yet
started.

• Reuse model. Used to compute the effort of integrating reusable components.

• Post-architecture model. Used once the system architecture has been designed and
more information about the system is available.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Use of COCOMO 2 models

Application composition model
• Supports prototyping projects and projects where there is extensive reuse.
• Based on standard estimates of developer productivity in application (object) points/month.
• Takes CASE tool use into account.
• Formula is

o PM = (NAP (1 - %reuse/100)) / PROD
o PM is the effort in person-months, NAP is the number of application points and

PROD is the productivity.

Early design model
• Estimates can be made after the requirements have been agreed.
• Based on a standard formula for algorithmic models

• PM = A ´ SizeB ´ M where
• M = PERS ´ RCPX ´ RUSE ´ PDIF ´ PREX ´ FCIL ´ SCED;
• A = 2.94 in initial calibration, Size in KLOC, B varies from 1.1 to 1.24 depending on

novelty of the project, development flexibility, risk management approaches and the
process maturity.

Multipliers
• Multipliers reflect the capability of the developers, the non-functional requirements, the

familiarity with the development platform, etc.
• RCPX - product reliability and complexity;

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• RUSE - the reuse required;
• PDIF - platform difficulty;
• PREX - personnel experience;
• PERS - personnel capability;
• SCED - required schedule;
• FCIL - the team support facilities.

The reuse model
• Takes into account black-box code that is reused without change and code that has to be

adapted to integrate it with new code.
• There are two versions:

• Black-box reuse where code is not modified. An effort estimate (PM) is computed.
• White-box reuse where code is modified. A size estimate equivalent to the number of

lines of new source code is computed. This then adjusts the size estimate for new
code.

Reuse model estimates
• For generated code:

• PM = (ASLOC * AT/100)/ATPROD
• ASLOC is the number of lines of generated code
• AT is the percentage of code automatically generated.
• ATPROD is the productivity of engineers in integrating this code.

• When code has to be understood and integrated:
• ESLOC = ASLOC * (1-AT/100) * AAM.
• ASLOC and AT as before.
• AAM is the adaptation adjustment multiplier computed from the costs of changing

the reused code, the costs of understanding how to integrate the code and the costs of
reuse decision making.

Post-architecture level
• Uses the same formula as the early design model but with 17 rather than 7 associated

multipliers.
• The code size is estimated as:

• Number of lines of new code to be developed;
• Estimate of equivalent number of lines of new code computed using the reuse model;
• An estimate of the number of lines of code that have to be modified according to

requirements changes.
The exponent term
• This depends on 5 scale factors (see next slide). Their sum/100 is added to 1.01
• A company takes on a project in a new domain. The client has not defined the process to be

used and has not allowed time for risk analysis. The company has a CMM level 2 rating.
• Precedenteness - new project (4)
• Development flexibility - no client involvement - Very high (1)
• Architecture/risk resolution - No risk analysis - V. Low .(5)
• Team cohesion - new team - nominal (3)
• Process maturity - some control - nominal (3)

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Scale factor is therefore 1.17.

Multipliers
• Product attributes

• Concerned with required characteristics of the software product being developed.
• Computer attributes

• Constraints imposed on the software by the hardware platform.
• Personnel attributes

• Multipliers that take the experience and capabilities of the people working on the
project into account.

• Project attributes
• Concerned with the particular characteristics of the software development project.

Delphi method
The Delphi method is a systematic, interactive forecasting method which relies on a panel

of experts. The experts answer questionnaires in two or more rounds. After each round, a
facilitator provides an anonymous summary of the experts‘ forecasts from the previous round as
well as the reasons they provided for their judgments. Thus, experts are encouraged to revise
their earlier answers in light of the replies of other members of their panel. It is believed that
during this process the range of the answers will decrease and the group will converge towards
the "correct" answer. Finally, the process is stopped after a pre-defined stop criterion (e.g.
number of rounds, achievement of consensus, stability of results) and the mean or median scores
of the final rounds determine the results.

The Delphi Technique is an essential project management technique that refers to an
information gathering technique in which the opinions of those whose opinions are most
valuable, traditionally industry experts, is solicited, with the ultimate hope and go al of attaining a
consensus. Typically, the polling of these industry experts is done on an anonymous basis, in

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

hopes of attaining opinions that are unfettered by fears or identifiability. The experts are
presented with a series of questions in regards to the project, which is typically, but not always,
presented to the expert by a third-party facilitator, in hopes of eliciting new ideas regarding
specific project points. The responses from all experts are typically combined in the form of an
overall summary, which is then provided to the experts for a review and for the opportunity to
make further comments. This process typically results in consensus within a number of rounds,
and this technique typically helps minimize bias, and minimizes the possibility t hat any one
person can have too much influence on the outcomes.

Key characteristics
The following key characteristics of the Delphi method help the participants to focus on

the issues at hand and separate Delphi from other methodologies:
• Structuring of information flow

The initial contributions from the experts are collected in the form of answers to
questionnaires and their comments to these answers. The panel director controls the interactions
among the participants by processing the information and filt ering out irrelevant content. This
avoids the negative effects of face-to-face panel discussions and solves the usual problems of
group dynamics.
• Regular feedback

Participants comment on their own forecasts, the responses of others and on the progress
of the panel as a whole. At any moment they can revise their earlier statements. While in regular
group meetings participants tend to stick to previously stated opinions and often conform too
much to group leader, the Delphi method prevents it.
• Anonymity of the participants

Usually all participants maintain anonymity. Their identity is not revealed even after the
completion of the final report. This stops them from dominating others in the process using their
authority or personality, frees them to some extent from their personal biases, minimizes the
"bandwagon effect" or "halo effect", allows them to freely express their opinions, and
encourages open critique and admitting errors by revising earlier judgments.

The first step is to found a steering committee (if you need one) and a management team
with sufficient capacities for the process. Then expert panels to prepare and formulate the
statements are helpful unless it is decided to let that be done by the management team. The
whole procedure has to be fixed in advance: Do you need panel meetings or do the teams work
virtually. Is the questionnaire an electronic or a paper one? This means, that logistics (from
Internet programming to typing the results from the paper versions) have to be organised. Will
there be follow-up work-shops,interviews, presentations? If yes, these also have to be organised
and pre-pared. Printing of brochures, leaflets, questionnaire, reports have also be considered. The
last organisational point is the interface with the financing organisation if this is different from
the management team.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Scheduling
Scheduling Principles

• compartmentalization—define distinct tasks
• interdependency—indicate task interrelationship
• effort validation—be sure resources are available
• defined responsibilities—people must be assigned
• defined outcomes—each task must have an output
• defined milestones—review for quality

Effort and Delivery Time

Effor
t

Ea = m (t d
4 / t a

4)

Ea = effort i n person-m onths

t d = nom i nal del i very ti m e for schedul e

t o = opti m al devel opm ent ti m e (i n term s of cost)

t a = actual
d

Eo

del i very ti m e desi red

Tm i n = 0.75T
d

t d t o devel opm ent ti m e

Empirical Relationship: P vs E
Given Putnam‘s Software Equation (5-3),

E = L3 / (P3t4)

Consider a project estimated at 33 KLOC, 12 person-years of effort, with a P of 10K, the
CS8494 Sofware Engineering

Im possi bl e

regi on

E

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

completion time would be 1.3 years
If deadline can be extended to 1.75 years,

E = L3 / (P3t4) ≈ 3.8 p-years vs 12 p-years

Timeline Charts

Effort Allocation
• ―front endǁ activities

• customer communication
• analysis
• design
• review and modification

• construction activities
• coding or code generation

• testing and installation
• unit, integration
• white-box, black box
• regression

Defining Task Sets
 determine type of project

 concept development, new application development, application enhancement,
application maintenance, and reengineering projects

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

 assess the degree of rigor required
 identify adaptation criteria
 select appropriate software engineering tasks

Earned Value Analysis
• Earned value

• is a measure of progress
• enables us to assess the

―percent
of completenessǁ of a project using quantitative

analysis rather than rely on a gut feeling
• ―provides accurate and reliable readings of performance from as early as 15

percent into the project.ǁ

Computing Earned Value
Budgeted cost of work scheduled (BCWS)
• The budgeted cost of work scheduled (BCWS) is determined for each work task represented

in the schedule.
• BCWSi is the effort planned for work task i.
• To determine progress at a given point along the project schedule, the value of BCWS

is the sum of the BCWSi values for all work tasks that should have been completed
by that point in time on the project schedule.

• The BCWS values for all work tasks are summed to derive the budget at completion, BAC.
Hence,

• BAC = ∑ (BCWSk) for all tasks k

Budgeted cost of work performed (BCWP)
• Next, the value for budgeted cost of work performed (BCWP) is computed.

• The value for BCWP is the sum of the BCWS values for all work tasks that have
actually been completed by a point in time on the project schedule.

• ―the distinction between the BCWS and the BCWP is that the former represents the budget of
the activities that were planned to be completed and the latter represents the budget of the
activities that actually were completed.ǁ

• Given values for BCWS, BAC, and BCWP, important progress indicators can be computed:
 Schedule performance index, SPI = BCWP/BCWS
 Schedule variance, SV = BCWP – BCWS
 SPI is an indication of the efficiency with which the project is utilizing

scheduled resources.

Actual cost of work performed, ACWP
• Percent scheduled for completion = BCWS/BAC

• provides an indication of the percentage of work that should have been completed by
time t.

• Percent complete = BCWP/BAC
• provides a quantitative indication of the percent of completeness of the project at a

given point in time, t.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Actual cost of work performed, ACWP, is the sum of the effort actually expended on work
tasks that have been completed by a point in time on the project schedule. It is then possible
to compute

 Cost performance index, CPI = BCWP/ACWP
 Cost variance, CV = BCWP – ACWP

Problem
• Assume you are a software project manager and that you‘ve been asked to computer earned

value statistics for a small software project. The project has 56 planned work tasks that are
estimated to require 582 person-days to complete. At the time that you‘ve been asked to do
the earned value analysis, 12 tasks have been completed. However, the project schedu le
indicates that 15 tasks should have been completed. The following scheduling data (in
person-days) are available:

• Task Planned Effort Actual Effort
• 1 12 12.5
• 2 15 11
• 3 13 17
• 4 8 9.5
• 5 9.5 9.0
• 6 18 19
• 7 10 10
• 8 4 4.5
• 9 12 10
• 10 6 6.5
• 11 5 4
• 12 14 14.5
• 13 16
• 14 6
• 15 8

Error Tracking
• Schedule Tracking

• conduct periodic project status meetings in which each team member reports progress
and problems.

• evaluate the results of all reviews conducted throughout the software engineering
process.

• determine whether formal project milestones (diamonds in previous slide) have been
accomplished by the scheduled date.

• compare actual start-date to
resource table

planned start-date for each project task listed in the

• meet informally with practitioners to obtain their subjective assessment of progress to
date and problems on the horizon.

• use earned value analysis to assess progress quantitatively.
• Progress on an OO Project-I

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Technical milestone: OO analysis completed
• All classes and the class hierarchy have been defined and reviewed.
• Class attributes and operations associated with a class have been defined and

reviewed.
• Class relationships (Chapter 8) have been established and reviewed.
• A behavioral model (Chapter 8) has been created and reviewed.
• Reusable classes have been noted.

• Technical milestone: OO design completed
• The set of subsystems (Chapter 9) has been defined and reviewed.
• Classes are allocated to subsystems and reviewed.
• Task allocation has been established and reviewed.
• Responsibilities and collaborations (Chapter 9) have been identified.
• Attributes and operations have been designed and reviewed.
• The communication model has been created and reviewed.

• Progress on an OO Project-II
• Technical milestone: OO programming completed

• Each new class has been implemented in code from the design model.
• Extracted classes (from a reuse library) have been implemented.
• Prototype or increment has been built.

• Technical milestone: OO testing
• The correctness and completeness of OO analysis and design models has been

reviewed.
• A class-responsibility-collaboration network (Chapter 8) has been developed and

reviewed.
• Test cases are designed and class-level tests (Chapter 14) have been conducted for

each class.
• Test cases are designed and cluster testing (Chapter 14) is completed and the classes

are integrated.
• System level tests have been completed.

Software Configuration Management
• Configuration management is all about change control.
• Every software engineer has to be concerned with how changes made to work products are

tracked and propagated throughout a project.
• To ensure quality is maintained the change process must be audited.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Software Configuration categories
• Computer programs

– source
– executable

• Documentation
–

• Data
Technical / user

– contained within the program
– external data (e.g. files and databases)

Elements of SCM
• Component element

- Tools coupled with file management
• Process element

-Procedures define change management
• Construction element

-Automate construction of software
• Human elements

-Give guidance for activities and process features

Baselines
• A work product becomes a baseline only after it is reviewed and approved.
• Before baseline – changes informal
• Once a baseline is established each change request must be evaluated and verified before it is

processed.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Software Configuration Items
• SCI
• Document
• Test cases
• Program component
• Editors, compilers, browsers

– Used to produce documentation.

Configuration Management process
• Identification

• tracking changes to multiple SCI versions
• Version control

• controlling changes before and after customer release
• Change control

• authority to approve and prioritize changes
• Configuration auditing

• ensure changes are made properly
• Reporting

• tell others about changes made

Program evolution dynamics
• Program evolution dynamics is the study of the processes of system change.
• After major empirical studies, Lehman and Belady proposed that there were a number of

‗laws‘ which applied to all systems as they evolved.
• There are sensible observations rather than laws. They are applicable to large systems

developed by large organisations. Perhaps less applicable in other cases.

Importance of evolution
• Organizations have huge investments in their software systems - they are critical business

assets.
• To maintain the value of these assets to the business, they must be changed and updated.
• The majority of the software budget in large companies is devoted to evolving existing

software rather than developing new software.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Software change
• Software change is inevitable

• New requirements emerge when the software is used;
• The business environment changes;
• Errors must be repaired;
• New computers and equipment is added to the system;
• The performance or reliability of the system may have to be improved.

• A key problem for organisations is implementing and managing change to their existing
software systems.

Lehman’s laws

Law Description

Continuing change A program that is used in a real-world environment
necessarily must change or become progressively less
useful in that environment.

Increasing complexity As an evolving program changes, its structure tends to
become more complex. Extra resources must be devoted to
preserving and simplifying the structure.

Large program
evolution

Program evolution is a self-regulating process. System
attributes such as size, time between releases and the
number of reported errors is approximately invariant for
each system release.

Organisational stability Over a program‘s lifetime, its rate of development is
approximately constant and independent of the resources
devoted to system development.

Conservation of
familiarity

Over the lifetime of a system, the incremental change in
each release is approximately constant.

Continuing growth The functionality offered by systems has to continually
increase to maintain user satisfaction.

Declining quality The quality of systems will appear to be declining unless
they are adapted to changes in their operational
environment.

Feedback system Evolution processes incorporate multi-agent, multi-loop
feedback systems and you have to treat them as feedback
systems to achieve significant product improvement.

Applicability of Lehman’s laws
• Lehman‘s laws seem to be generally applicable to large, tailored systems developed by

large organisations.
• Confirmed in more recent work by Lehman on the FEAST project (see

further reading on book website).

• It is not clear how they should be modified for
• Shrink-wrapped software products;
• Systems that incorporate a significant number of COTS components;

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Small organisations;
• Medium sized systems.

Software maintenance
• Modifying a program after it has been put into use or delivered.
• Maintenance does not normally involve major changes to the system‘s architecture.
• Changes are implemented by modifying existing components and adding new components to

the system.
• Maintenance is inevitable
• The system requirements are likely to change while the system is being developed because

the environment is changing. Therefore a delivered system won't meet its requirements!
• Systems are tightly coupled with their environment. When a system is installed in an

environment it changes that environment and therefore changes the system
requirements.

• Systems MUST be maintained therefore if
they are to remain useful in an environment.

Types of maintenance
• Maintenance to repair software faults

• Code ,design and requirement errors
• Code & design cheap.

Requirements
most expensive.

• Maintenance to adapt software to a different operating environment
• Changing a system‘s hardware and other support so that it operates in a

different environment (computer, OS, etc.) from its initial implementation.
• Maintenance to add to or modify the system‘s functionality

• Modifying the system to satisfy new requirements for org or business change.

Distribution of maintenance effort

Maintenance costs
• Usually greater than development costs (2* to 100* depending on the application).

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Affected by both technical and non-technical factors.
• Increases as software is maintained. Maintenance corrupts the software structure so

makes further maintenance more difficult.
• Ageing software can have high support costs

(e.g. old languages, compilers etc.).

Development/maintenance costs

Maintenance cost factors
• Team stability

• Maintenance costs are reduced if the same staff are involved with them for some
time.

• Contractual responsibility
• The developers of a system may have no contractual responsibility for

• Staff skills
•

maintenance so there is no incentive to design for future change.

Maintenance staff are often inexperienced and have limited domain knowledge.
• Program age and structure

• As programs age, their structure is degraded and they become harder to
understand and change.

Maintenance prediction
• Maintenance prediction is concerned with assessing which parts of the system may

cause problems and have high maintenance costs
• Change acceptance depends on the maintainability of the components affected by

the change;
• Implementing

maintainability;
changes degrades th

e
system structure an

d
reduces its

• Maintenance costs depend on the number of changes and costs of change depend
on maintainability.

Change prediction
• Predicting the number of changes requires and understanding of the relationships between a

system and its environment.
• Tightly coupled systems require changes whenever the environment is changed.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Factors influencing this relationship are
• Number and complexity of system interfaces;
• Number of inherently volatile system requirements;
• The business processes where the system is used.

Complexity metrics
• Predictions of

components.
maintainability can be made by assessing the complexity of system

• Studies have shown that most maintenance effort is spent on a relatively small number of
system components of complex system.

• Reduce maintenance cost – replace complex components with simple alternatives.
• Complexity depends on

• Complexity of control structures;
• Complexity of data structures;
• Object, method (procedure) and module size.

Process metrics
• Process measurements may be used to assess maintainability

• Number of requests for corrective maintenance;
• Average time required for impact analysis;
• Average time taken to implement a change request;
• Number of outstanding change requests.

• If any or all of these is increasing, this may indicate a decline in maintainability.
• COCOMO2 model maintenance = understand existing code + develop new code.

Project management
Objectives

• To explain the main tasks undertaken by project managers
• To introduce software project management and to describe its distinctive characteristics
• To discuss project planning and the planning process

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• To show how graphical schedule representations are used by project management
• To discuss the notion of risks and the risk management process Software project

management
• Concerned with activities involved in ensuring that software is delivered on time and on

schedule and in accordance with the requirements of the organisations develoing
and procuring the software.

• Project management is needed because software development is always subject to budget
and schedule constraints that are set by the organisation developing the software.

Project planning
• Probably the most time-consuming project management activity.
• Continuous activity from initial concept through to system delivery. Plans must be

regularly revised as new information becomes available.
• Various different types of plan may be developed to support the main software project

plan that is concerned with schedule and budget.

Types of project plan

Plan Description
Quality plan

Validation plan

Configuration management
Plan
Maintenance plan

Development plan.

Describes the quality procedures and standards that
will be used in a project.
Describes the approach, resources and schedule used
for system validation.
Describes the configuration management procedures
and structures to be used.
Predicts the maintenance requirements of the
system, maintenance costs and effort required.
Describes how the skills and experience of the project
team members will be developed.

Project planning process
Establish the project constraints(delivery date, staff, budget)
Make initial assessments of the project parameters (structure,
size)
Define project milestones and deliverables
while project has not been completed or cancelled loop

Draw up project schedule
Initiate activities according to schedule
Wait (for a while)
Review project progress
Revise estimates of project parameters
Update the project schedule
Re-negotiate project constraints and
deliverables if (problems arise) then

Initiate technical review and possible revision
end if

end loop

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

project plan
The project plan sets out:

• resources available to the project
• work breakdown
• schedule for the work.

Project plan structure
• Introduction – objective, budget, time
• Project organisation. – roles of people
• Risk analysis. – arising, reduction
• Hardware and software resource requirements.
• Work breakdown. – break project to activity, milestone
• Project schedule. – time, allocation of people
• Monitoring and reporting mechanisms.

Milestones and deliverables
• Milestones are the end-point of a process activity.- report presented to management
• Deliverables are project results delivered to customers.

- milestones need not be deliverables. May be used by project managers.
– not to customers

• The waterfall process allows for the straight forward definition of progress milestones.

Milestones in requirement process

Project scheduling
• Split project into tasks and estimate time and resources required to complete each task.
• Organize tasks concurrently to make

optimal use of workforce.
• Minimize task dependencies to avoid delays

caused by one task waiting for another to complete.
• Dependent on project managers intuition and experience.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

The project scheduling process

Scheduling problems
• Estimating the difficulty of problems and hence the cost of developing a solution is hard.
• Productivity is not proportional to the number of people working on a task.
• Adding people to a late project makes it later because of communication overheads.
• The unexpected always happens. Always allow contingency in planning.

Bar charts and activity networks
• Graphical notations used to illustrate the project schedule.
• Show project breakdown into tasks. Tasks should not be too small. They should

take about a week or two.
• Activity charts show task dependencies and the critical path.
• Bar charts show schedule against calendar time.

Task durations and dependencies

Activity Duration (days) Dependencies
T1 8
T2 15
T3 15 T1 (M1)
T4 10
T5 10 T2, T4 (M2)
T6 5 T1, T2 (M3)
T7 20 T1 (M1)
T8 25 T4 (M5)
T9 15 T3, T6 (M4)

T10 15 T5, T7 (M7)
T11 7 T9 (M6)
T12 10 T11 (M8)

Activity network

8 da ys

T1

4
/
7

/
0
3

14/7 /
03

M1

2 5/7
/03

M
3

15 da y

s T3

5 da ys

T6

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

T8

4/7 11/718/72 5/71/8 8/8 1 5/822/82 9/85/9 12/91 9/9

Sta r t

T4
T1
T2

M1

T7 T3
M5
T8

M3 M2 T6
T5

M4

T9

M7
T10

M6

T11

M8

T12

Finish

Arunai Engineering College

4/8/03

M4 15 da y s

T9

25/8/03

M6

star t

10 da y
s

15 da
ys

25/7 /03

M2

2 0 da
ys

T7

10 da
ys

11/8/03

M7 15 da y
s

7 da ys

T11

5/9/03

M8

1 8/7 /03

M5

2 5 da ys

10da ys

T12

Finish

19/9/03

Activity timeline

CS8494 Sofware Engineering

T10

T4
T5

T
2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Staff allocation

4/7 1 1/7 18/7 2 5/7 1/8 8/8 15/8 2 2/8 2 9/8 5/9 1 2/9 19/9

Fred

Ja ne

Anne

Jim

Ma ry

T4

T8 T11

T12

T1

T3

T9

T2

T6 T10

T7

T5

Risk management
• Risk management - identifying risks and drawing up plans to minimise their effect on a

project.
• A risk is a probability that some adverse circumstance will occur

• Project risks : affect schedule or resources. eg: loss of experienced designer.
• Product risks: affect the quality or performance of the software being developed.

eg: failure of purchased component.
• Business risks :

affect
organisation developing software. Eg: competitor

introducing new product.

Software risks

Risk Affects Description
Staff turnover Project Experienced staff will leave the project before it

is finished.
Management change Project There will be a change of organisational

management with different priorities.
Hardware unavailability Project Hardware that is essential for the project will not

be delivered on schedule.
Requirements change Project and product There will be a larger number of changes to the

requirements than anticipated.
Specification delays Project and product Specifications of essential interfaces are not

available on schedule
Size underestimate Project and product The size of the system has been underestimated.
CASE tool under-
performance

Product CASE tools which support the project do not
perform as anticipated

Technology change Business The underlying technology on which the system
is built is superseded by new technology.

Product competition Business A competitive product is marketed before the
system is completed.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Risk management process
• Risk identification

• Identify project, product and business risks;
• Risk analysis

• Assess the likelihood and consequences of these risks;
• Risk planning

• Draw up plans to avoid or minimise the effects of the risk;
• Risk monitoring

• Constantly monitor risks & plans
for

risk mitigation.

Risk management process

Risk identification
• Discovering possible risk
• Technology risks.
• People risks.
• Organisational risks.
• Tool risk.
• Requirements risks.
• Estimation risks.

Risks and risk types
Risk type

Technology

People

Organisational

Tools

Possible risks
The database used in the system cannot process as many transactions
per second as expected.
Software components that should be reused contain defects that limit their
functionality.
It is impossible to recruit staff with the skills
required. Key staff are ill and unavailable at critical
times.
Required training for staff is not available.
The organisation is restructured so that different management are
responsible for the project.
Organisational financial problems force reductions in the project budget.
The code generated by CASE tools is inefficient.
CASE tools cannot be integrated.

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Requirements Changes to requirements that require major design rework are proposed.
Customers fail to understand the impact of requirements changes.

Estimation The time required to develop the software is underestimated.
The rate of defect repair is underestimated.
The size of the software is underestimated.

Risk analysis
• Make judgement about probability and seriousness of each identified risk.
• Made by experienced project managers
• Probability may be very low(<10%), low(10-25%), moderate(25-50%), high(50-75%) or

very high(>75%). not precise value. Only range.
• Risk effects might be catastrophic, serious, tolerable or insignificant.

Risk Probability Effects
Organisational financial problems force
reductions in the project budget.

Low Catastrophic

It is impossible to recruit staff with the
skills required for the project.

High Catastrophic

Key staff are ill at critical times in the
project.

Moderate Serious

Software components that should be reused
contain defects which limit their
functionality.

Moderate Serious

Changes to requirements that require major
design rework are proposed.

Moderate Serious

The organisation is restructured so that
different management are responsible for
the project.

High Serious

The database used in the system cannot
process as many transactions per second as
expected.

Moderate Serious

The time required to develop the software
is underestimated.

High Serious

CASE tools cannot be integrated. High Tolerable
Customers fail to understand the impact of
requirements changes.

Moderate Tolerable

Required training for staff is not available. Moderate Tolerable
The rate of defect repair is underestimated. Moderate Tolerable
The size of the software is underestimated. High Tolerable
The code generated by CASE tools is
inefficient.

Moderate Insignificant

Risk planning
• Consider each identified risk and develop a strategy to manage that risk.
• categories

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

• Avoidance strategies
• The probability that the risk will arise is reduced;

• Minimisation strategies
• The impact of the risk on the project will be reduced;

• Contingency plans
• If the risk arises, contingency plans are plans to deal with that risk. eg:

financial problems

Risk management strategies
Risk Strategy

Organisational financial
problems

Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business.

Recruitment problems Alert customer of potential difficulties and the
possibility of delays, investigate buying-in
components.

Staff illness Reorganise team so that there is more overlap of work
and people therefore understand each other‘s jobs.

Defective components Replace potentially defective components with
bought-in components of known reliability.

Requirements changes Derive traceability information to assess requirements
change impact, maximise information hiding in the
design.

Organisational restructuring Prepare a briefing document for senior management
showing how the project is making a very important
contribution to the goals of the business.

Database performance Investigate the possibility of buying a higher-
performance database.

Underestimated development
time

Investigate buying in components, investigate use of a
program generator

Risk monitoring
• Assess each identified risks regularly to decide whether or not it is becoming less or

more probable.
• Also assess whether the effects of the risk have changed.
• Cannot be observed directly. Factors affecting will give clues.
• Each key risk should be discussed at management progress meetings & review.

Risk indicators

Risk type Potential indicators
Technology Late delivery of hardware or support software, many

reported technology problems
People Poor staff morale, poor relationships amongst team member,

job availability

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Arunai Engineering College

Organisational Organisational gossip, lack of action by senior management
Tools Reluctance by team members to use tools, complaints about

CASE tools, demands for higher-powered workstations
Requirements Many requirements change requests, customer complaints
Estimation Failure to meet agreed schedule, failure to clear reported

defects

CS8494 Sofware Engineering

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

	C S 8 4 9 4 SOFTWARE ENGINEERING
	Software engineering paradigm:
	The software process:
	Waterfall model/Linear Sequential Model/classic life cycle :
	Waterfall model phases:
	Waterfall model: Advantages:
	Waterfall model problems:
	The Prototyping Models:
	Strengths:
	Weaknesses:
	The RAD Model:
	RAD phases :
	Business modeling:
	Data Modeling:
	Process modeling:
	Application generation:
	Testing and Turnover:
	Advantages &Disadvantages of RAD: Advantages
	Disadvantages
	The Incremental Model
	The Incremental development
	Spiral Model:
	Spiral Model Advantages:
	System Engineering
	Computer Based System
	5. Documentation.
	6. Procedures.
	Business Process Engineering Overview
	Product Engineering Overview
	UNIT II SOFTWARE
	Types of requirements
	Functional and Non-Functional
	Examples of functional requirements
	Non-Functional requirements
	Non-Functional requirements classifications:
	Product requirements
	Specifying product requirements
	Process requirements
	Examples of process requirements
	External requirements
	Examples of external requirements
	Software Document
	Users of a requirements document
	Product Documentation
	Document Quality
	Document Structure
	Standards
	1. Process Standards
	2. Product Standards
	3. Interchange Standards
	Other Standards
	Requirement Engineering Process
	Feasibility Studies
	Elicitation and analysis
	Problems of requirements analysis
	System models
	Scenarios
	Ethnography
	Requirements validation
	Requirements validation techniques
	Requirements management
	Software prototyping
	Benefits:
	Process of prototyping
	Dimensions of prototypes
	2 Vertical Prototypes
	Types of prototyping
	1. Throwaway prototyping
	2. Evolutionary prototyping
	3. Incremental prototyping
	4. Extreme prototyping
	Advantages of prototyping
	time
	2. Improved
	increased
	involvement:
	Disadvantages of prototyping
	Best projects to use prototyping
	Methods
	1. Dynamic systems development method
	2. Operational prototyping
	3. Evolutionary systems development
	4. Evolutionary rapid development
	5. Scrum
	Tools
	1. Screen generators, design tools & Software Factories
	2. Application definition or simulation software
	3. Sketchflow
	4. Visual Basic
	5. Requirements Engineering Environment
	6. LYMB
	7. Non-relational environments
	8. PSDL
	Prototyping in the Software Process
	Uses of system prototypes
	Prototyping benefits
	Prototyping process
	Evolutionary prototyping
	Throw-away prototyping
	Data Model
	Behavioural Model
	1. Data-processing models
	Data flow diagrams
	Order processing DFD
	Statecharts
	Structured Analysis
	DeMarco
	Modern structured analysis
	Method weaknesses
	CASE workbenches
	An analysis and design workbench
	Data Dictionary
	Data dictionary entries
	ANALYSIS, DESIGN CONCEPTS AND PRINCIPLES
	Analysis to Design:
	Data Design
	Architectural Design
	Interface Design
	Design Models – 2 :
	Design Principles – 1:
	Design Principles – 2 :
	Design Concepts -1 :
	Design Concepts -2 :
	Design Concepts -3 :
	Design Concepts -4 :
	Refactoring – Design concepts :
	Design Concepts – 4 :
	Design Concepts – 5:
	Modular Design Methodology Evaluation – 1:
	Modular Design Methodology Evaluation – 2:
	Effective Modular Design:
	Architectural Design:
	Architectural Styles – 1:
	Architectural Styles – 2:
	Architectural Styles – 3:
	Software Architecture Design – 1:
	Object oriented Architecture :
	Software Architecture Design – 2:
	Layered Architecture:
	Architecture Tradeoff Analysis – 1:
	Architecture Tradeoff Analysis – 2:
	Refining Architectural Design:
	Architectural Design
	Advantages of explicit architecture
	Architecture and system characteristics
	Architectural conflicts
	System structuring
	Packing robot control system
	Architectural design decisions
	Architecture reuse
	Architectural styles
	Architectural models
	System organisation
	The repository model
	CASE toolset architecture
	Advantages
	Disadvantages
	Client-server model
	Client-server characteristics
	Abstract machine (layered) model
	Modular decomposition styles
	Sub-systems and modules
	Object models
	Invoice processing system
	Function-oriented pipelining
	User interface design
	User interface design process
	User-system interaction
	Interaction styles
	Information presentation
	Information display
	Displaying relative values
	Data visualisation
	Colour displays
	Error messages
	User interface evaluation
	Real Time Software Design
	Stimulus/Response Systems
	Architectural considerations
	Real –Time Software Design:
	Real-time systems:
	Definition:
	Stimulus/Response Systems:
	Architectural considerations:
	A real-time system model:
	R-T systems design process:
	Timing constraints:
	Real-time programming:
	Non-stop system components:
	Burglar alarm system e.g
	The R-T system design process:
	Control systems:
	Data acquisition systems:
	A temperature control system:
	Reactor data collection:
	Mutual exclusion:
	System Design
	System elements
	Sensor/actuator processes
	R-T systems design process
	Timing constraints
	State machine modelling
	Microwave oven state machine
	Java as a real-time language
	Real Time Executives
	Executive components
	Non-stop system components
	Process priority
	Interrupt servicing
	Periodic process servicing
	Process management
	RTE process management
	Process switching
	Scheduling strategies
	Data Acquisition System
	Reactor data collection
	Reactor flux monitoring
	A ring buffer
	Java implementation of a ring buffer
	Monitoring and Control System
	Burglar alarm system
	The R-T system design process
	Timing requirements
	Process architecture
	Building monitor process
	A temperature control system
	Control systems
	UNIT IV
	Taxonomy of Software Testing
	Correctness testing
	Performance testing
	Reliability testing
	Security testing
	Types of S/W Test
	Compatibility testing
	Conformance testing
	Integration testing
	Load testing
	Performance testing
	Regression testing
	System testing
	End-to-end testing
	Sanity testing
	Alpha testing
	Beta testing
	Software Testing Techniques Software Testing:
	Testing Objectives:
	Testing Principles:
	Software Defect Causes:
	Types of Errors:
	Software Testability Checklist – 1:
	Software Testability Checklist – 2:
	Good Test Attributes:
	Test Strategies:
	White-Box Testing: Basis Path Testing:
	Cyclomatic Complexity:
	Control Structure Testing – 1:
	Condition testing (e.g. branch testing)
	Control Structure Testing – 2:
	Loop Testing: Simple Loops: Minimum conditions—Simple Loops
	Loop Testing: Nested Loops:
	Black-Box Testing: Graph-Based Testing – 1:
	Graph-Based Testing – 2:
	Equivalence Partitioning:
	Equivalence Class Guidelines:
	Boundary Value Analysis – 2
	Comparison Testing:
	Orthogonal Array Testing – 1:
	Orthogonal Array Testing – 2:
	Software Testing Strategies: Strategic Approach to Testing – 1:
	Strategic Approach to Testing – 2:
	Verification vs validation:
	The V & V process:
	Strategic Testing Issues – 2:
	Testing Strategy:
	Black Box or White Box?:
	Unit Testing Details:
	Unit Testing:
	Integration Testing:
	Top Down Integration:
	Top-Down Integration Testing:
	Bottom-Up Integration:
	Bottom-Up Integration Testing:
	Regression Testing:
	Regression Testing:
	Smoke Testing:
	Validation Testing:
	Acceptance Testing:
	System Testing:
	Performance Testing:
	Testing Life Cycle:
	Testing Tools:
	Document Each Test Case:
	Debugging:
	Software Implementation techniques
	Procedural programming
	Object-oriented programming
	Logic
	Oracle’s Application Implementation Method
	Rapid Implementations
	Phased Implementations
	Big
	UNIT V
	Measures and Measurements
	Software metric
	Predictor and control metrics
	Internal and external attributes
	Product measurement process
	Data accuracy
	Product metrics
	Dynamic and static metrics
	Software product metrics
	Measurement analysis
	Measurement surprises
	ZIPF’s Law
	Software Cost Estimation
	Costing and pricing
	Software productivity
	Productivity measures
	Measurement problems
	Lines of code
	Productivity comparisons
	Function Point model
	COCOMO model
	COCOMO 81
	COCOMO 2 models
	Use of COCOMO 2 models
	Early design model
	Multipliers
	The reuse model
	Reuse model estimates
	Post-architecture level
	The exponent term
	Multipliers
	Delphi method
	Key characteristics
	Structuring of information flow
	Regular feedback
	Anonymity of the participants
	Scheduling
	Effort and Delivery Time
	Empirical Relationship: P vs E
	Timeline Charts
	Defining Task Sets
	Earned Value Analysis
	Computing Earned Value
	Budgeted cost of work performed (BCWP)
	Actual cost of work performed, ACWP
	Problem
	Error Tracking
	Software Configuration Management
	Software Configuration categories
	Elements of SCM
	Baselines
	Software Configuration Items
	Configuration Management process
	Program evolution dynamics
	Importance of evolution
	Software change
	Lehman’s laws
	Software maintenance
	Types of maintenance
	Distribution of maintenance effort
	Development/maintenance costs
	Maintenance prediction
	Change prediction
	Complexity metrics
	Process metrics
	Project management
	Project planning
	Types of project plan
	project plan
	Project plan structure
	Milestones and deliverables
	Milestones in requirement process
	The project scheduling process
	Scheduling problems
	Bar charts and activity networks
	Task durations and dependencies
	Activity timeline
	Risk management
	Software risks
	Risk management process
	Risks and risk types Risk type
	Possible risks
	Risk analysis
	Risk planning
	Risk management strategies
	Risk indicators

