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x * y = y * x 

e* x = x * e = x 

CS8351-DIGITAL PRINCIPLES AND SYSTEM DESIGN 

II YEAR – III SEMESTER – R2017 

UNIT- I 
 
 

INTRODUCTION: 

In 1854, George Boole, an English mathematician, proposed algebra for 

symbolically representing problems in logic so that they may be analyzed 

mathematically. The mathematical systems founded upon the work of Boole are called 

Boolean algebra in his honor. 

The application of a Boolean algebra to certain engineering problems was 

introduced in 1938 by C.E. Shannon. 

For the formal definition of Boolean algebra, we shall employ the postulates 

formulated by E.V. Huntington in 1904. 

 
Fundamental postulates of Boolean algebra: 

The postulates of a mathematical system forms the basic assumption from which 

it is possible to deduce the theorems, laws and properties of the system. 

The most common postulates used to formulate various structures are— 

i) Closure: 

A set S is closed w.r.t. a binary operator, if for every pair of elements of S, the 

binary operator specifies a rule for obtaining a unique element of S. 

The result of each operation with operator (+) or (.) is either 1 or 0 and 1, 0 ЄB. 
 

ii) Identity element: 

A set S is said to have an identity element w.r.t a binary operation * on S, if there 

exists an element e Є S with the property, 
 

 

Eg: 0+ 0 = 0 0+ 1 = 1+ 0 = 1 a) x+ 0= x 

 1 . 1 = 1 1 . 0 = 0 . 1 = 1 b) x. 1 = x 
 
 

iii) Commutative law: 

A binary operator * on a set S is said to be commutative if, 

for all x, y Є S 
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x . (y+ z) = (x. y) + (x. z) 

x + (y. z) = (x+ y). (x+ z) 

x. x’ Є e 

Eg: 0+ 1 = 1+ 0 = 1 a) x+ y= y+ x 

0 . 1 = 1 . 0 = 0 b) x. y= y. x 

 
iv) Distributive law: 

If * and • are two binary operation on a set S, • is said to be distributive over + 

whenever, 
 

Similarly, + is said to be distributive over • whenever, 
 

 
v) Inverse: 

A set S having the identity element e, w.r.t. binary operator * is said to have an 

inverse, whenever for every x Є S, there exists an element x’ Є S such that, 

a) x+ x’ = 1, since 0 + 0’ = 0+ 1 and 1+ 1’ = 1+ 0 = 1 

b) x. x’ = 1, since 0 . 0’ = 0. 1 and 1. 1’ = 1. 0 = 0 

 
 

Summary: 

Postulates of Boolean algebra: 
 

POSTULATES (a) (b) 

Postulate 2 (Identity) x + 0 = x x . 1 = x 

Postulate 3 (Commutative) x+ y = y+ x x . y = y. x 

Postulate 4 (Distributive) x (y+ z) = xy+ xz x+ yz = (x+ y). (x+ z) 

Postulate 5 (Inverse) x+x’ = 1 x. x’ = 0 

 
 

 
Basic theorem and properties of Boolean algebra:  

 

Basic Theorems: 
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The theorems, like the postulates are listed in pairs; each relation is the dual of 

the one paired with it. The postulates are basic axioms of the algebraic structure and 

need no proof. The theorems must be proven from the postulates. The proofs of the 

theorems with one variable are presented below. At the right is listed the number of the 

postulate that justifies each step of the proof. 

1) a) x+ x = x 

x+ x = (x+ x) . 1 ------------------- by postulate 2(b) [ x. 1 = x ] 

= (x+ x). (x+ x’) ------------------- 5(a) [ x+ x’ = 1] 

= x+ xx’ ------------------- 4(b) [ x+yz = (x+y)(x+z)] 

= x+ 0 ------------------- 5(b) [ x. x’ = 0 ] 

= x ------------------- 2(a) [ x+0 = x ] 

 
b) x. x = x 

x. x = (x. x) + 0 ------------------- by postulate 2(a) [ x+ 0 = x ] 

= (x. x) + (x. x’) ------------------- 5(b) [ x. x’ = 0] 

= x ( x+ x’) ------------------- 4(a) [ x (y+z) = (xy)+ (xz)] 

= x (1) ------------------- 5(a) [ x+ x’ = 1 ] 

= x ------------------- 2(b) [ x.1 = x ] 

2) a) x+ 1 = 1 

x+ 1 = 1 . (x+ 1) ------------------- by postulate 2(b) [ x. 1 = x ] 

= (x+ x’). (x+ 1) ------------------- 5(a) [ x+ x’ = 1] 

= x+ x’.1 ------------------- 4(b) [ x+yz = (x+y)(x+z)] 

= x+ x’ ------------------- 2(b) [ x. 1 = x ] 

= 1 ------------------- 5(a) [ x+ x’= 1] 

b) x .0 = 0 

 
3) (x’)’ = x 

From postulate 5, we have x+ x’ = 1 and x. x’ = 0, which defines the complement 

of x. The complement of x’ is x and is also (x’)’. 

Therefore, since the complement is unique, 

(x’)’ = x. 

 
4) Absorption Theorem: 

a) x+ xy = x 
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x+ y = y+ x 

x. y = y. x 

x+ xy = x. 1 + xy ------------------- by postulate 2(b) [ x. 1 = x ] 

= x (1+ y) ------------------- 4(a) [ x (y+z) = (xy)+ (xz)] 

= x (1) ------------------- by theorem 2(a) [x+ 1 = x] 

= x. ------------------- by postulate 2(a) [x. 1 = x] 

 
b) x. (x+ y) = x 

x. (x+ y) = x. x+ x. y ------------------- 4(a) [ x (y+z) = (xy)+ (xz)] 

= x + x.y ------------------- by theorem 1(b) [x. x = x] 

= x. ------------------- by theorem 4(a) [x+ xy = x] 

 
c) x+ x’y = x+ y 

x+ x’y = x+ xy+ x’y ------------------- by theorem 4(a) [x+ xy = x] 

= x+ y (x+ x’) ------------------- by postulate 4(a) [ x (y+z) = (xy)+ (xz)] 

= x+ y (1) ------------------- 5(a) [x+ x’ = 1] 

= x+ y ------------------- 2(b) [x. 1= x] 

 
d) x. (x’+y) = xy 

x. (x’+y) = x.x’+ xy ------------------- by postulate 4(a) [ x (y+z) = (xy)+ (xz)] 

= 0+ xy ------------------- 5(b) [x. x’ = 0] 

= xy. ------------------- 2(a) [x+ 0= x] 

 

 
Properties of Boolean algebra: 

1. Commutative property: 

Boolean addition is commutative, given by 
 

According to this property, the order of the OR operation conducted on  the  

variables makes no difference. 

Boolean algebra is also commutative over multiplication given by, 
 

This means that the order of the AND operation conducted on the variables makes no 

difference. 

2. Associative property: 
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A+ (B+ C) = (A+B) + C 

A. (B. C) = (A.B) . C 

A+ BC = (A+B) (A+C) 

A. (B+C) = (A.B)+ (A.C) 

The associative property of addition is given by, 
 

The OR operation of several variables results in the same, regardless of the grouping of 

the variables. 

The associative law of multiplication is given by, 
 

It makes no difference in what order the variables are grouped during the AND 

operation of several variables. 

 

 
3. Distributive property: 

The Boolean addition is distributive over Boolean multiplication, given by 
 

The Boolean addition is distributive over Boolean addition, given by 
 

 
 
 

4. Duality: 

It states that every algebraic expression deducible from the postulates of Boolean 

algebra remains valid if the operators and identity elements are interchanged. 

If the dual of an algebraic expression is desired, we simply interchange OR and 

AND operators and replace 1’s by 0’s and 0’s by 1’s. 

x+ x’ = 1 is x. x’ = 0 

Duality is a very important property of Boolean algebra. 
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(AB)’ = A’+ B’ 

(A+ B)’ = A’. B’ 

AB+ A’C+ BC = AB+ A’C 

(A+B) (A’+C) (B+C) = (A+B) (A’+C) 

Summary: 

Theorems of Boolean algebra: 
 

 THEOREMS (a) (b) 

1 Idempotent 
x + x = x x . x = x 

x + 1 = 1 x . 0 = 0 

2 Involution (x’)’ = x 

3 

 Absorption 
x+ xy = x x (x+ y) = x 

x+ x’y = x+ y x. (x’+ y)= xy 

       4 Associative x+(y+ z)= (x+ y)+ z x (yz) = (xy) z 

5 DeMorgan’s Theorem (x+ y)’= x’. y’ (x. y)’= x’+ y’ 

 
 

DeMorgan’s Theorems: 

Two theorems that are an important part of Boolean algebra were proposed by 

DeMorgan. 

The first theorem states that the complement of a product is equal to the sum of 

the complements. 
 

The second theorem states that the complement of a sum is equal to the product of the 

complements. 
 

 
Consensus Theorem: 

In simplification of Boolean expression, an expression of the form AB+ A’C+ BC, 

the term BC is redundant and can be eliminated to form the equivalent expression AB+ 

A’C. The theorem used for this simplification is known as consensus theorem and is 

stated as, 
 

The dual form of consensus theorem is stated as, 
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BOOLEAN FUNCTIONS:  

Minimization of Boolean Expressions: 
The Boolean expressions can be simplified by applying properties, laws and 

theorems of Boolean algebra. 

 
Simplify the following Boolean functions to a minimum number of literals: 

 
1. x (x’+y) 

= xx’+ xy [ x. x’= 0 ] 

= 0 + xy [ x+ 0 = x ] 

= xy. 

 
2. x+ x’y 

= x + xy + x’y [ x+ xy= x] 

= x+ y (x+x’) 

= x+ y (1) [ x+ x’ = 1] 

= x+ y. 

 
3. (x+ y) (x+ y’) 

= x.x+ xy’+ xy+ yy’ 

= x+ xy’+ xy+ 0 [ x. x= 0]; [ y. y’= 0] 

= x (1+ y’+ y) 

= x (1) [ 1+y= 1 ] 

= x. 

 
4. xy + x’z + yz. 

= xy + x’z + yz( x+ x’) [ x+ x’= 1] 

= xy + x’z + xyz + x’yz 

Re-arranging, 

= xy + xyz + x’z +x’yz 

= xy (1+ z) + x’z (1+y) [1+y= 1] 

= xy+ x’z. 

 
5. xy+ yz+ y’z 

= xy+ z ( y+ y’) 

= xy+ z ( 1 ) [ y+ y’ = 1] 

= xy+ z. 
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6. (x+ y) (x’+ z) (y+ z) 

= (x+ y) (x’+ z) [ dual form of consensus theorem, 

(A+ B) (A’+ C) (B+ C) = (A+ B) (A’+ C) ] 

 
 

7. x’y+ xy+ x’y’ 

= y ( x’+ x) + x’y’ [ x (y+ z) = xy+ xz ] 

= y ( 1 ) + x’y’ [ x+ x’ = 1] 

= y+ x’y’ [ x+ x’y’ = x+ y’ ] 

= y+ x’. 

 
 

8. x+ xy’+ x’y 

= x (1+ y’)+ x’y 

= x (1) + x’y [ 1+ x = 1 ] 

= x+ x’y [ x+ x’y = x+ y ] 

= x+ y. 

 
9. AB + (AC)' + AB’C (AB + C) 

= AB + (AC)' + AAB'BC + AB'CC 

= AB + (AC)' + 0+ AB'CC [B.B' = 0] 

= AB + (AC)' + AB'C [C.C = 1] 

= AB + A' + C' +AB'C [(AC)' = A' + C'] 

= AB + A’ + C' + AB' [C’ + AB’C = C’ + AB’] 

= A' + B+ C’+ AB’ [A’ + AB = A’ + B] 

Re- arranging, 

= A' + AB’+ B+ C' [A’ + AB = A’ + B] 

= A' + B’+ B+ C' [ B’+ B= 1] 

= A' +1+ C’ [ A+ 1= 1] 

= 1 

 
10. (x’+ y) (x+ y) 

= x’.x+ x’y+ yx+ y.y 

= 0+ x’y+ xy+ y [ x.x’= 0]; [ x. x= x] 

= y ( x’+ x+ 1) 

= y( 1 ) [ 1+ x = 1 ] 

= y. 

 
11. xy+ xyz+ xy (w+ z) 

= xy ( 1+ z+ w+ z) 
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= xy ( 1 ) [ 1+ x = 1 ] 

= xy. 

12. xy+ xyz+ xyz’+ x’yz 

= xy ( 1+ z+ z’)+ x’yz 

= xy ( 1 ) + x’yz [ 1+ x = 1 ] 

= xy+ x’yz 

= y ( x+ x’z ) [ x+ x’y = x+ y] 

= y ( x+ z ). 

 
13. xyz+ xy’z+ xyz’ 

= xy (z+ z’) + xy’z 

= xy+ xy’z [ x+ x’= 1] 

= x(y+ y’z) [ x+ x’y = x+ y] 

= x(y+ z) 

 
14. x’y’z’+ x’yz’+ xy’z’+ xyz’ 

= x’z’ (y’+ y)+ xz’ (y’+ y) 

= x’z’+ xz’ [ x+ x’= 1] 

= z’ (x’+ x) 

= z’ [ x+ x’= 1] 

 
15. w’xyz’+ xyz’+ xy’z’+ xy’z 

= xyz’ (w’+ 1) + xy’z’+ xy’z 

= xyz’+ xy’z’+ xy’z [ 1+ x = 1 ] 

= xz’ (y+ y’) + xy’z 

= xz’+ xy’z [ x+ x’= 1] 

= x (z‘+ y’z) 

= x (z’+ y’). [ x’+ xy’ = x’+ y’] 

 
16. w’xy’z+ w’xyz+ wxz 

= w’xz (y’+ y)+ wxz 

= w’xz (1)+ wxz [ x+ x’= 1] 

= w’xz+ wxz 

= xz (w’+ w) 

= xz. [ x+ x’= 1] 

 
17. x’y’z’+ x’y’z+ x’yz’+ x’yz+ xy’z’ 

= x’y’ (z’+z) + x’y (z’+z)+ xy’z’ 

= x’ y’ (1) + x’y (1)+ xy’z’ [ x+ x’= 1] 

= x’y’ + x’y + xy’z’ 

= x’(y’+y) + xy’z’ 
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= x’ (1) + xy’z’ [ x+ x’= 1] 

= x’ + xy’z’ 

= x’+ y’z’. [ x’+ xy’ = x’+ y’] 

18. w’y (w’xz)’ + w’xy’z’ + wx’y 

= w’y (w’’+ x’+ z’) + w’xy’z’ + wx’y 

= w’y (w+ x’+ z’) + w’xy’z’  + wx’y [ x’’ = x] 

= w’yw+ w’y x’+ w’y z’ + w’xy’z’ + wx’y 

= 0 + w’x’y+ w’y z’ + w’xy’z’ + wx’y [x. x’= 0] 

Re-arranging, 

= w’x’y+ wx’y + w’y z’ + w’xy’z’ 

= x’y (w’+ w) + w’z’ (y+ xy’) 

= x’y (1) + w’z’ (y+ xy’) [ x+ x’= 1] 

= x’y+ w’z’ (y+x) [ x+ x’y = x+ y] 

 
19. xy+ x (y+ z) + y (y+ z) 

= xy+ xy+ xz+ yy+ yz 

= xy+ xz+ y+ yz [x+ x= x]; [x. x= x] 

= xy+ xz+ y [x+ xy= x] 

= y+ xz [x+ xy= x] 

 
20. [ xy’ (z+ wy) + x’y’] z 

= [ xy’z+ xy’wy+ x’y’] z 

= [ xy’z+ 0+ x’y’] z [x. x’= 0] 

= xy’z. z+ x’y’z 

= xy’z+ x’y’z [x. x= x] 

= y’z (x+ x’) 

= y’z (1) [ x+ x’= 1] 

= y’z. 

 
21. x’yz+ xy’z’+ x’y’z’+ xy’z+ xyz 

= yz (x’+x) + xy’z’+ x’y’z’+ xy’z 

= yz (1) + y’z’ (x+ x’) + xy’z [ x+ x’= 1] 

= yz+ y’z’ (1) + xy’z [ x+ x’= 1] 

= yz+ y’z’+ xy’z 

= yz+ y’ (z’+ xz) 

= yz+ y’ (z’+ x) [ x’+ xy = x’+ y] 

= yz+ y’z’+ xy’ 

 
 

22. [(xy)’+ x’+ xy]’ 

= [ x’+ y’+ x’+ xy]’ 

= [ x’+ y’+ xy]’ [x+ x= x] 
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= [x’+ y’+ x]’ [ x’+ xy = x’+ y] 

= [y’+ 1]’ [ x+ x’= 1] 

= [ 1 ]’ [ 1+ x = 1 ] 

= 0. 

23. [ xy+ xz]’+ x’y’z 

= (xy)’. (xz)’+ x’y’z 

= (x’+ y’). (x’+ z’)+ x’y’z 

= x’x’+ x’z’+ x’y’+ y’z’+ x’y’z 

= x’+ x’z’+ x’y’+ y’z’+ x’y’z [x+ x= x] 

= x’+ x’z’+ x’y’+ y’ [z’+ x’z] 

= x’+ x’z’+ x’y’+ y’ [z’+ x’] [ x’+ xy = x’+ y] 

= x’+ x’y’+ y’ [z’+ x’] [x+ xy = x] 

= x’+ x’y’+ y’z’+ x’y’ 

= x’+ y’z’+ x’y’ [x+ xy = x] 

= x’+ y’z’. [x+ xy = x] 

 

24. xy+ xy’( x’z’)’ 

= xy+ xy’ (x’’+ z’’) 

= xy+ xy’ (x+ z) [x’’ = x] 

= xy+ xy’x+ xy’z 

= xy+ xy’+ xy’z [x. x= x] 

= xy+ xy’ [1+ z] 

= xy+ xy’ [1] [ 1+ x = 1 ] 

= xy+ xy’ 

= x( y+ y’) 

= x [1] [ x+ x’= 1] 

= x. 

 

25. [( xy’+ xyz)’+ x (y+ xy’)]’ 

= [ x( y’+yz)’+ x (y+ xy’)]’ 

= [ x( y’+z)’+ x (y+ x)]’ [ x’+ xy = x’+ y]; [ x+ x’y = x+ y] 

= [ x( y’+z)’+ xy+ x.x)]’ 

= [ (xy’+xz)’+ xy+ x)]’ [x. x= x] 

= [ ( xy’+xz)’+ x)]’ [x+ xy = x] 

= [ (xy’)’. (xz)’+ x]’ 

= [ (x’+y’’). (x’+z’)+ x]’ 

= [ (x’+y). (x’+z’)+ x]’ [x’’ = x] 

= [ (x’+ yz’)+ x]’ [ (x+ y) (x+ z)= x+ yz] 

= [ x’+ yz’+ x]’ 

= [ 1+ yz’]’ [ x+ x’= 1] 

= [1]’ [ 1+ x = 1 ] 

= 0. 

 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



Department of Information Technology

 

26. [ (xy+ z’) ((x+ y)’+z) ]’ 

= [ (xy+ z’) ((x’. y’)+z) ]’ 

= [ xy. x’y’+ xy. z+ z’. x’y’+ z’. z]’ 

= [ 0+ xyz+ x’y’z’+ 0]’ [x. x’= 0] 

= [ xyz+ x’y’z’ ]’ 

= (xyz)’. ( x’y’z’)’ 

= ( x’+ y’+ z’). (x’’+ y’’+ z’’) 

= ( x’+ y’+ z’). (x+ y+ z). [x’’ = x] 

 
 

27. (x+ y) (x’z’+ z) (y’+ xz)’ 

= (x+ y) (x’z’+ z) (y’’. (xz)’) 

= (x+ y) (x’+ z) (y. (xz)’) [ x+ x’y = x+ y]; [x’’ = x] 

= (x+ y) (x’+ z) (y. (x’+z’)) 

= ( x.x’+ xz+ x’y+ yz) (x’y+ yz’) 

= ( 0+ xz+ x’y+ yz) (x’y+ yz’) 

= (xz+ x’y+ yz) (x’y+ yz’) 

= xz. x’y+ xz. yz’+ x’y. x’y+ x’y. yz’+ yz. x’y+ yz. yz’ 

= 0+ 0+ x’y+ x’yz’+ x’yz+ 0 [x. x’= 0]; [x. x= x] 

= x’y+ x’yz’+ x’yz 

= x’y (1+ z’+ z) 

= x’y (1) [ 1+ x = 1 ] 

= x’y. 

 
 

28. Y= ∑m (1, 3, 5, 7) 

= x’y’z+ x’yz+ xy’z+ xyz 

= x’z( y’+y) + xz( y’+y) 

= x’z (1)+ xz (1) [ x+ x’= 1] 

= x’z+ xz 

= z( x’+ x) 

= z (1) [ x+ x’= 1] 

= z. 
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COMPLEMENT OF A FUNCTION:  

The complement of a function F is F’ and is obtained from an interchange of 0’s 

for 1’s and 1’s for 0’s in the value of F. The complement of a function may be derived 

algebraically through DeMorgan’s theorem. 

DeMorgan’s theorems for any number of variables resemble in form the two- 

variable case and can be derived by successive substitutions similar to the method used 

in the preceding derivation. These theorems can be generalized as – 
 

(A+ B+ C+ D+ … + F)’ = A’ B’ C’ D’ … F’ 

 

(A B C D … F)’ = A’+B’+ C’+ D’+ … +F’. 

 
Find the complement of the following functions, 

 
1. F= x’yz’+ x’y’z 

F’= (x’yz’+ x’y’z)’ 

= (x”+ y’+ z”) . (x”+ y”+z’) 

= (x+ y’+ z). (x+ y+ z’). 

 
2. F= (xy + y’z + xz) x. 

F’ = [(xy + y’z + xz) x]’ 

= (xy + y’z + xz)’ + x’ 

= [(xy)’ . (y’z)’. (xz)’] + x’ 

= [(x’+y’). (y+z’). (x’+z’)] + x’ 

= [(x’y+ x’z’+ 0+ y’z’) ( x’+z’)] + x’ 

= x’x’y+ x’x’z’+ x’y’z’+ x’yz’+ x’z’z’+ y’z’z’+ x’ 

= x’y+ x’z’+ x’y’z’+ x’yz’+ x’z’+ y’z’+ x’ [x+ x = x], [x. x = x] 

= x’y+ x’z’+ x’z’ (y’+ y) + y’z’+ x’ [x+ x’= 1] 

= x’y+ x’z’+ x’z’ (1) + y’z’+ x’ 

= x’y+ x’z’+ y’z’+ x’ 

= x’y+ x’+ x’z’+ y’z’ 

= x’(y+1) + x’z+ y’z’ [y+1= 1] 

= x’ (1+z) + y’z’ [y+1= 1] 

= x’+ y’z’ 
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3. F= x (y’z’+ yz) 

F’= [x (y’z’+ yz)]’ 

= x’+ (y’z’+ yz)’ 

= x’+ (y’z’)’. (yz)’ 

= x’+ (y”+ z”) . (y’+ z’) 

= x’+ (y+ z) . (y’+ z’). 

 
4. F= xy’+ x’y 

F’= (xy’+ x’y)’ 

= (xy’)’. (x’y)’ 

= (x’+y) (x+y’) 

= x’x+ x’y’+ yx+ yy’ 

= x’y’+ xy. 

 
5. f = wx’y + xy’+ wxz 

f’ = (wx’y + xy’+ wxz)’ 

= (wx’y)’ (xy’)’ (wxz)’ 

= (w’+x+ y’) (x’+ y) (w’+ x’+ z’) 

= (w’x’+ w’y+ xx’+ xy+ x’y’+ yy’) (w’+ x’+ z’) 

= (w’x’+ w’y+ xy+ x’y’) (w’+ x’+ z’) 

= w’x’. w’+ w’y. w’+ xy. w’+ x’y’. w’+ w’x’. x’+w’y. x’+ xy. x’+ x’y’. x’+ 

w’x’. z’+ w’y. z’+ xy. z’+ x’y’.z’ 

= w’x’+ w’y+ w’xy+ w’x’y’+ w’x’+ w’x’y+ 0 + x’y’+ w’x’z’+ w’yz’+ xyz’+ x’y’z’ 

= w’x’+ w’y+ w’xy+ w’x’y’+ w’x’y+ x’y’+ w’x’z’+ w’yz’+ xyz’+ x’y’z’ 

= w’x’( 1+ y’+ y+ z’)+ w’y( 1+ x+ z’)+ x’y’(1+ z’)+ xyz’ 

= w’x’(1)+ w’y(1)+ x’y’(1)+ xyz’ 

= w’x’+ w’y+ x’y’+ xyz’ 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



Department of Information Technology

 

CANONICAL AND STANDARD FORMS:  
 

Minterms and Maxterms: 

A binary variable may appear either in its normal form (x) or in its complement 

form (x’). Now either two binary variables x and y combined with an AND operation. 

Since each variable may appear in either form, there are four possible combinations: 

x’y’, x’y, xy’ and xy 

Each of these four AND terms is called a ‘minterm’. 

In a similar fashion, when two binary variables x and y combined with an OR 

operation, there are four possible combinations: 

x’+ y’, x’+ y, x+ y’ and x+ y 

Each of these four OR terms is called a ‘maxterm’. 
 

The minterms and maxterms of a 3- variable function can be represented as in 

table below. 

Variables Minterms Maxterms 

x y z mi Mi 

0 0 0 x’y’z’ = m0 x+ y+ z= M0 

0 0 1 x’y’z = m1 x+ y+ z’= M1 

0 1 0 x’yz’ = m2 x+ y’+ z= M2 

0 1 1 x’yz = m3 x+ y’+ z’= M3 

1 0 0 xy’z’ = m4 x’+ y+ z= M4 

1 0 1 xy’z = m5 x’+ y+ z’= M5 

1 1 0 xyz’ = m6 x’+ y’+ z= M6 

1 1 1 xyz = m7 x’+ y’+ z’= M7 

 

 
Sum of Minterm: (Sum of Products) 

The logical sum of two or more logical product terms is called sum of products 

expression. It is logically an OR operation of AND operated variables such as: 
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Sum of Maxterm: (Product of Sums) 

A product of sums expression is a logical product of two or more logical sum 

terms. It is basically an AND operation of OR operated variables such as, 

Canonical Sum of product expression: 

If each term in SOP form contains all the literals then the SOP is known as 

standard (or) canonical SOP form. Each individual term in standard SOP form is called 

minterm canonical form. 

F (A, B, C) = AB’C+ ABC+ ABC’ 

 
Steps to convert general SOP to standard SOP form: 

1. Find the missing literals in each product term if any. 

2. AND each product term having missing literals by ORing the literal and its 

complement. 

3. Expand the term by applying distributive law and reorder the literals in the 

product term. 

4. Reduce the expression by omitting repeated product terms if any. 

 
Obtain the canonical SOP form of the function: 

1. Y(A, B) = A+ B 

= A. (B+ B’)+ B (A+ A’) 

= AB+ AB’+ AB+ A’B 

= AB+ AB’+ A’B. 
2. Y (A, B, C) = A+ ABC 

= A. (B+ B’). (C+ C’)+ ABC 

= (AB+ AB’). (C+ C’)+ ABC 

= ABC+ ABC’+ AB’C+ AB’C’+ ABC 

= ABC+ ABC’+ AB’C+ AB’C’ 

= m7+ m6+ m5+ m4 
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= ∑m (4, 5, 6, 7). 

3. Y (A, B, C) = A+ BC 

= A. (B+ B’). (C+ C’)+(A+ A’). BC 

= (AB+ AB’). (C+ C’)+ ABC+ A’BC 

= ABC+ ABC’+ AB’C+ AB’C’+ ABC+ A’BC 

= ABC+ ABC’+ AB’C+ AB’C’+ A’BC 

= m7+ m6+ m5+ m4+ m3 

= ∑m (3, 4, 5, 6, 7). 

 
4. Y (A, B, C) = AC+ AB+ BC 

= AC (B+ B’)+ AB (C+ C’)+ BC (A+ A’) 

= ABC+ AB’C+ ABC+ ABC’+ ABC+ A’BC 

= ABC+ AB’C+ ABC’+ A’BC 

= ∑m (3, 5, 6, 7). 

 
5. Y (A, B, C, D) = AB+ ACD 

= AB (C+ C’) (D+ D’) + ACD (B+ B’) 

= (ABC+ ABC’) (D+ D’) + ABCD+ AB’CD 

= ABCD+ ABCD’+ ABC’D+ ABC’D’+ ABCD+ AB’CD 

= ABCD+ ABCD’+ ABC’D+ ABC’D’+ AB’CD. 

 

Canonical Product of sum expression: 

If each term in POS form contains all literals then the POS is known as standard 

(or) Canonical POS form. Each individual term in standard POS form is called Maxterm 

canonical form. 

 F (A, B, C) = (A+ B+ C). (A+ B’+ C). (A+ B+ C’) 

 F (x, y, z) = (x+ y’+ z’). (x’+ y+ z). (x+ y+ z) 

 
Steps to convert general POS to standard POS form: 

 
1. Find the missing literals in each sum term if any. 

2. OR each sum term having missing literals by ANDing the literal and its 

complement. 

3. Expand the term by applying distributive law and reorder the literals in the 

sum term. 

4. Reduce the expression by omitting repeated sum terms if any. 
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Obtain the canonical POS expression of the functions: 

1. Y= A+ B’C 

= (A+ B’) (A+ C) [ A+ BC = (A+B) (A+C)] 

= (A+ B’+ C.C’) (A+ C+ B.B’) 

= (A+ B’+C) (A+ B’+C’) (A+ B+ C) (A+ B’+ C) 

= (A+ B’+C). (A+ B’+C’). (A+ B+ C) 

= M2. M3. M0 

= ∏M (0, 2, 3) 

 
2. Y= (A+B) (B+C) (A+C) 

= (A+B+ C.C’) (B+ C+ A.A’) (A+C+B.B’) 

= (A+B+C) (A+B+C’) (A+B+C) (A’+B+C) (A+B+C) (A+B’+C) 

= (A+B+C) (A+B+C’) (A’+B+C) (A+B’+C) 

= M0. M1. M4. M2 

= ∏M (0, 1, 2, 4) 

 
3. Y= A. (B+ C+ A) 

= (A+ B.B’+ C.C’). (A+ B+ C) 

= (A+B+C) (A+B+C’) (A+B’+C) (A+ B’+C’) (A+B+C) 

= (A+B+C) (A+B+C’) (A+B’+C) (A+ B’+C’) 

= M0. M1. M2. M3 

= ∏M (0, 1, 2, 3) 

4. Y= (A+B’) (B+C) (A+C’) 

= (A+B’+C.C’) (B+C+ A.A’) (A+C’+ B.B’) 

= (A+B’+C) (A+B’+C’) (A+B+C) (A’+B+C) (A+B+C’) (A+B’+C’) 

= (A+B’+C) (A+B’+C’) (A+B+C) (A’+B+C) (A+B+C’) 

= M2. M3. M0. M4. M1 

= ∏M (0, 1, 2, 3, 4) 

 
5. Y= xy+ x’z 

= (xy+ x’) (xy+ z) Using distributive law, convert the function into OR terms. 

= (x+x’) (y+x’) (x+z) (y+z) [x+ x’=1] 

= (x’+y) (x+z) (y+z) 

= (x’+y+ z.z’) (x+z+y.y’) (y+z+ x.x’) 

= (x’+ y+ z) (x’+ y+ z’) (x+ y+ z) (x+ y’+ z) (x+ y+ z) (x’+ y+ z) 

= (x’+ y+ z) (x’+ y+ z’) (x+ y+ z) (x+ y’+ z) 
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= M4. M5. M0. M2 

= ∏M (0, 2, 4, 5). 

 
KARNAUGH MAP MINIMIZATION:  

The simplification of the functions using Boolean laws and theorems becomes 

complex with the increase in the number of variables and terms. The map method, first 

proposed by Veitch and slightly improvised by Karnaugh, provides a simple, 

straightforward procedure for the simplification of Boolean functions. The method is 

called Veitch diagram or Karnaugh map, which may be regarded as a pictorial 

representation of a truth table. 

The Karnaugh map technique provides a systematic method for simplifying and 

manipulation of Boolean expressions. A K-map is a diagram made up of squares, with 

each square representing one minterm of the function that is to be minimized. For n 

variables on a Karnaugh map there are 2n numbers of squares. Each square or cell 

represents one of the minterms. It can be drawn directly from either minterm (sum-of- 

products) or maxterm (product-of-sums) Boolean expressions. 

 
Two- Variable, Three Variable and Four Variable Maps 

Karnaugh maps can be used for expressions with two, three, four and five 

variables. The number of cells in a Karnaugh map is equal to the total number of 

possible input variable combinations as is the number of rows in a truth table. For three 

variables, the number of cells is 23 = 8. For four variables, the number of cells is 24 = 16. 
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Product terms are assigned to the cells of a K-map by labeling each row and each 

column of a map with a variable, with its complement or with a combination of  

variables & complements. The below figure shows the way to label the rows & columns 

of a 1, 2, 3 and 4- variable maps and the product terms corresponding to each cell. 

 
It is important to note that when we move from one cell to the next along any  

row or from one cell to the next along any column, one and only one variable in the 

product term changes (to a complement or to an uncomplemented form). Irrespective of 

number of variables the labels along each row and column must conform to a single 

change. Hence gray code is used to label the rows and columns of K-map as shown ow. 
 

 
 
 

 
 

Grouping cells for Simplification: 
 

The grouping is nothing but combining terms in adjacent cells. The simplification 

is achieved by grouping adjacent 1’s or 0’s in groups of 2i, where i = 1, 2, …, n and n is 

the number of variables. When adjacent 1’s are grouped then we get result in the sum of 

product form; otherwise we get result in the product of sum form. 
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Grouping Two Adjacent 1’s: (Pair) 

In a Karnaugh map we can group two adjacent 1’s. The resultant group is called 

Pair. 
 

 
 
 
 

 
 

Examples of Pairs 

Grouping Four Adjacent 1’s: (Quad) 

In a Karnaugh map we can group four adjacent 1’s. The resultant group is called 

Quad. Fig (a) shows the four 1’s are horizontally adjacent and Fig (b) shows they are 

vertically adjacent. Fig (c) contains four 1’s in a square, and they are considered adjacent 

to each other. 
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Examples of Quads 

 

The four 1’s in fig (d) and fig (e) are also adjacent, as are those in fig (f) because, 

the top and bottom rows are considered to be adjacent to each other and the leftmost 

and rightmost columns are also adjacent to each other. 

 
Grouping Eight Adjacent 1’s: (Octet) 

In a Karnaugh map we can group eight adjacent 1’s. The resultant group is called Octet. 

 
 

Simplification of Sum of Products Expressions: (Minimal Sums) 

The generalized procedure to simplify Boolean expressions as follows: 

1. Plot the K-map and place 1’s in those cells corresponding to the 1’s in the sum 

of product expression. Place 0’s in the other cells. 

2. Check the K-map for adjacent 1’s and encircle those 1’s which are not adjacent 

to any other 1’s. These are called isolated 1’s. 

3. Check for those 1’s which are adjacent to only one other 1 and encircle such 

pairs. 
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4. Check for quads and octets of adjacent 1’s even if it contains some 1’s that  

have already been encircled. While doing this make sure that there are 

minimum number of groups. 

5. Combine any pairs necessary to include any 1’s that have not yet been 

grouped. 

6. Form the simplified expression by summing product terms of all the groups. 

 
Three- Variable Map: 

 

1. Simplify the Boolean expression, 

F(x, y, z) = ∑m (3, 4, 6, 7). 

Soln: 
 

F = yz+ xz’ 

 
 

2. F(x, y, z) = ∑m (0, 2, 4, 5, 6). 

Soln: 

 
F = z’+ xy’ 

3. F = A’C + A’B + AB’C + BC 

Soln: 

= A’C (B+ B’) + A’B (C+ C’) + AB’C + BC (A+ A’) 

= A’BC+ A’B’C + A’BC + A’BC’ + AB’C + ABC + A’BC 

= A’BC+ A’B’C + A’BC’ + AB’C + ABC 

= m3+ m1+ m2+ m5+ m7 
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= ∑ m (1, 2, 3, 5, 7) 
 

F = C + A’B 

 
 
4. AB’C + A’B’C + A’BC + AB’C’ + A’B’C’ 

Soln: 

= m5 + m1 + m3 + m4 + m0 

= ∑ m (0, 1, 3, 4, 5) 
 
 

F = A’C + B’ 

 
Four - Variable Map: 

 

1. Simplify the Boolean expression, 

Y = A’BC’D’ + A’BC’D + ABC’D’ + ABC’D + AB’C’D + A’B’CD’ 

Soln: 
 

 

Therefore,      Y= A’B’CD’+ AC’D+ BC’ 
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2. F (w, x, y, z) = ∑ m(0, 1, 2, 4, 5, 6, 8, 9, 12, 13, 14) 

Soln: 
 

Therefore, 

F= y’+ w’z’+ xz’ 

3. F= A’B’C’+ B’CD’+ A’BCD’+ AB’C’ 

= A’B’C’ (D+ D’) + B’CD’ (A+ A’) + A’BCD’+ AB’C’ (D+ D’) 

= A’B’C’D+ A’B’C’D’+ AB’CD’+ A’B’CD’+ A’BCD’+ AB’C’D+ AB’C’D’ 

= m1+ m0+ m10+ m2+ m6+ m9+ m8 

= ∑ m (0, 1, 2, 6, 8, 9, 10) 

Therefore, 
F= B’D’+ B’C’+ A’CD’. 
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4. Y= ABCD+ AB’C’D’+ AB’C+ AB 

= ABCD+ AB’C’D’+ AB’C (D+D’)+ AB (C+C’) (D+D’) 

= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ (ABC+ ABC’) (D+ D’) 

= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ ABCD+ ABCD’+ ABC’D+ ABC’D’ 

= ABCD+ AB’C’D’+ AB’CD+ AB’CD’+ ABCD’+ ABC’D+ ABC’D’ 

= m15+ m8+ m11+ m10+ m14+ m13+ m12 

= ∑ m (8, 10, 11, 12, 13, 14, 15) 

 

Therefore, 

Y= AB+ AC+ AD’. 

 
 

5. Y (A, B, C, D)= ∑ m (7, 9, 10, 11, 12, 13, 14, 15) 

 

Therefore, 
Y= AB+ AC+ AD+BCD. 
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6. Y= A’B’C’D+ A’BC’D+ A’BCD+ A’BCD’+ ABC’D+ ABCD+ AB’CD 

= m1+ m5+ m7+ m6+ m13+ m15+ m11 

= ∑ m (1, 5, 6, 7, 11, 13, 15) 
 
 

 
In the above K-map, the cells 5, 7, 13 and 15 can be grouped to form a quad as 

indicated by the dotted lines. In order to group the remaining 1’s, four pairs have to be 

formed. However, all the four 1’s covered by the quad are also covered by the pairs. So, 

the quad in the above k-map is redundant. 

Therefore, the simplified expression will be, 

Y = A’C’D+ A’BC+ ABD+ ACD. 

7. Y= ∑ m (1, 5, 10, 11, 12, 13, 15) 

 

Therefore, Y= A’C’D+ ABC’+ ACD+ AB’C. 
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8. Y= A’B’CD’+ ABCD’+ AB’CD’+ AB’CD+ AB’C’D’+ ABC’D’+ A’B’CD+ A’B’C’D’ 

 

Therefore, Y= AD’+ B’C+ B’D’ 

 

 

9. F (A, B, C, D) = ∑ m (0, 1, 4, 8, 9, 10) 

Therefore, F= A’C’D’+ AB’D’+ B’C’. 

 

Simplification of Sum of Products Expressions: (Minimal Sums) 
 

1. Y= (A+ B+ C’) (A+ B’+ C’) (A’+ B’+ C’) (A’+ B+ C) (A+ B+ C) 

= M1. M3. M7. M4. M0 

=∏ M (0, 1, 3, 4, 7) 

= ∑ m (2, 5, 6) 
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Y’ = B’C’+ A’C+ BC. 

Y= Y” = (B’C’+ A’C+ BC)’ 

= (B’C’)’. (A’C)’. (BC)’ 

= (B”+ C”). (A”+C’). (B’+ C’) 
Y = (B+ C). (A+C’). (B’+ C’) 

 
 

2. Y= (A’+ B’+ C+ D) (A’+ B’+ C’+ D) (A’+ B’+ C’+ D’) (A’+ B+ C+ D) (A+ B’+ C’+ D) 

(A+ B’+ C’+ D’) (A+ B+ C+ D) (A’+ B’+ C+ D’) 

= M12. M14. M15. M8. M6. M7. M0. M13 

= ∏M (0, 6, 7, 8, 12, 13, 14, 15) 

 

Y’ = B’C’D’+ AB+ BC 

Y= Y” = (B’C’D’+ AB+ BC)’ 

= (B’C’D’)’. (AB)’. (BC)’ 

= (B”+ C”+D”). (A’+B’). (B’+ C’) 

= (B+ C+ D). (A’+ B’). (B’+ C’) 

Therefore, Y= (B+ C+ D). (A’+ B’). (B’+ C’) 
 

3. F(A, B, C, D)= ∏M (0, 2, 3, 8, 9, 12, 13, 14, 15) 
 

Y’ = A’B’D’+ A’B’C+ ABD+ AC’ 
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Y= Y” = (A’B’D’+ A’B’C+ ABD+ AC’)’ 

= (A’B’D’)’. (A’B’C)’. (ABD)’. (AC’)’ 

= (A”+ B”+ D”). (A”+ B”+C’). (A’+ B’+ D’). (A’+ C”) 

= (A+ B+ D). (A+ B+ C’). (A’+ B’+ D’). (A’+ C) 

Therefore, Y= (A+ B+ D). (A+ B+ C’). (A’+ B’+ D’). (A’+ C) 

 
 

4. F(A, B, C, D)= ∑m (0, 1, 2, 5, 8, 9, 10) 

= ∏M (3, 4, 6, 7, 11, 12, 13, 14, 15) 
 
 

Y’ = BD’+ CD+ AB 

 
Y= Y” = (BD’+ CD+ AB)’ 

= (BD’)’. (CD)’. (AB)’ 

= (B’+ D”). (C’+ D’). (A’+ B’) 

= (B’+ D). (C’+ D’). (A’+ B’) 

 
Therefore, Y= (B’+ D). (C’+ D’). (A’+ B’) 

 
 

Don’t care Conditions: 
A don’t care minterm is a combination of variables whose logical value is not 

specified. When choosing adjacent squares to simplify the function in a map, the don’t 

care minterms may be assumed to be either 0 or 1. When simplifying the function, we 

can choose to include each don’t care minterm with either the 1’s or the 0’s, depending 

on which combination gives the simplest expression. 

 
1. F (x, y, z) = ∑m (0, 1, 2, 4, 5)+ ∑d (3, 6, 7) Aru
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F (x, y, z) = 1 

 
2. F (w, x, y, z) = ∑m (1, 3, 7, 11, 15)+ ∑d (0, 2, 5) 

F (w, x, y, z) = w’x’+ yz 

 
 

3. F (w, x, y, z) = ∑m (0, 7, 8, 9, 10, 12)+ ∑d (2, 5, 13) 
 

 
 

F (w, x, y, z) = w’xz+ wy’+ x’z’. 

4. F (w, x, y, z) = ∑m (0, 1, 4, 8, 9, 10)+ ∑d (2, 11) 

Soln: 

 

 
F (w, x, y, z) = wx’+ x’y’+ w’y’z’. 
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5. F( A, B, C, D) = ∑m (0, 6, 8, 13, 14)+ ∑d (2, 4, 10) 

Soln: 
 
 

 

 
 

F( A, B, C, D) = CD’+ B’D’+ A’B’C’D’. 
 

Five- Variable Maps: 

A 5- variable K- map requires 25= 32 cells, but adjacent cells are difficult to 

identify on a single 32-cell map. Therefore, two 16 cell K-maps are used. 

If the variables are A, B, C, D and E, two identical 16- cell maps containing B, C,  

D and E can be constructed. One map is used for A and other for A’. 

In order to identify the adjacent grouping in the 5- variable map, we must 

imagine the two maps superimposed on one another ie., every cell in one map is 

adjacent to the corresponding cell in the other map, because only one variable changes 

between such corresponding cells. 

Five- Variable Karnaugh map (Layer Structure) 
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Thus, every row on one map is adjacent to the corresponding row (the one 

occupying the same position) on the other map, as are corresponding columns. Also, 

the rightmost and leftmost columns within each 16- cell map are adjacent, just as they 

are in any 16- cell map, as are the top and bottom rows. 

Typical subcubes on a five-variable map 

However, the rightmost column of the map is not adjacent to the leftmost  

column of the other map. 

 
 
 

1. Simplify the Boolean function 

F (A, B, C, D, E) = ∑m (0, 2, 4, 6, 9, 11, 13, 15, 17, 21, 25, 27, 29, 31) 

Soln: 

 

F (A, B, C, D, E) = A’B’E’+ BE+ AD’E 
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2. F (A, B, C, D, E) = ∑m (0, 5, 6, 8, 9, 10, 11, 16, 20, 24, 25, 26, 27, 29, 31) 

Soln: 
 

 
F (A, B, C, D, E) = C’D’E’+ A’B’CD’E+ A’B’CDE’+ AB’D’E’+ ABE+ BC’ 

 
 

3. F (A, B, C, D, E) = ∑m ( 1, 4, 8, 10, 11, 20, 22, 24, 25, 26)+∑d (0, 12, 16, 17) 

Soln: 

 

 
F (A, B, C, D, E) = B’C’D’+ A’D’E’+ BC’E’+ A’BC’D+ AC’D’+ AB’CE’ 
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4. F (A, B, C, D, E) = ∑m (0, 1, 2, 6, 7, 9, 12, 28, 29, 31) 

Soln: 

 
 

F (A, B, C, D, E) = BCD’E’+ ABCE+ A’B’C’E’+ A’C’D’E+ A’B’CD 

 

5. F (x1, x2, x3, x4, x5) = ∑m (2, 3, 6, 7, 11, 12, 13, 14, 15, 23, 28, 29, 30, 31 ) 
Soln: 

 

F (x1, x2, x3, x4, x5) = x2x3+ x3x4x5+ x1’x2’x4+ x1’x3’x4x5 
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6. F (x1, x2, x3, x4, x5) = ∑m (1, 2, 3, 6, 8, 9, 14, 17, 24, 25, 26, 27, 30, 31 )+ ∑d (4, 5) 
Soln: 

 
 

F (x1, x2, x3, x4, x5) = x2x3’x4’+ x2x3x4x5’+ x3’x4’x5+ x1x2x4+ x1’x2’x3x5’+ x1’x2’x3’x4 

 

LOGIC GATES 

BASIC LOGIC GATES: 

Logic gates are electronic circuits that can be used to implement the most 

elementary logic expressions, also known as Boolean expressions. The logic gate is the 

most basic building block of combinational logic. 

There are three basic logic gates, namely the OR gate, the AND gate and the NOT 

gate. Other logic gates that are derived from these basic gates are the NAND gate, the 

NOR gate, the EXCLUSIVE- OR gate and the EXCLUSIVE-NOR gate. 
 

GATE SYMBOL OPERATION TRUTH TABLE 

 
NOT 

(7404) 

 
 

 

NOT gate (Invertion), produces 

an inverted output pulse for a 

given input pulse. 

 

 

 
 

AND 

(7408) 

 
 

 

AND gate performs logical 

multiplication. The output is 

HIGH only when all the inputs 

are HIGH. When any of the 

inputs are low, the output is 

LOW. 
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OR 

(7432) 

 
 

 

OR gate performs logical 

addition. It produces a HIGH 

on the output when any of the 

inputs are HIGH. The output is 

LOW only when all inputs are 

LOW. 

 

 

 
 

NAND 

(7400) 

 

 

 

It is a universal gate. When any 

of the inputs are LOW, the 

output will be HIGH. LOW 

output occurs only when all 

inputs are HIGH. 

 

 

 
 

NOR 

(7402) 

 
 

 

It is a universal gate. LOW 

output occurs when any of its 

input is HIGH. When all its 

inputs are LOW, the output is 

HIGH. 

 

 

 
 

EX- OR 

(7486) 

 
 

 

 
 
The output is HIGH only when 

odd number of inputs is HIGH. 

 

 

 
 
EX- NOR 

 

 

 
The output is HIGH only when 

even number of inputs is HIGH. 

Or when all inputs are zeros. 

 

 

 

UNIVERSAL GATES: 

The NAND and NOR gates are known as universal gates, since any logic 

function can be implemented using NAND or NOR gates. This is illustrated in the 

following sections. 

 
a) NAND Gate: 

The NAND gate can be used to generate the NOT function, the AND function, 
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the OR function and the NOR function. 

i) NOT function: 

By connecting all the inputs together and creating a single common input. 
 

 

NOT function using NAND gate 

 

ii) AND function: 

By simply inverting output of the NAND gate. i.e., 

 

AND function using NAND gates 

 

 

 

iii) OR function: 

By simply inverting inputs of the NAND gate. i.e., 

OR function using NAND gates 
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Bubble at the input of NAND gate indicates inverted input. 

 

 

iv) NOR function: 

By inverting inputs and outputs of the NAND gate. 
 

 

 

NOR function using NAND gates 

 

b) NOR Gate: 

Similar to NAND gate, the NOR gate is also a universal gate, since it can be used 

to generate the NOT, AND, OR and NAND functions. 

 
i) NOT function: 

By connecting all the inputs together and creating a single common input. 

 

NOT function using NOR gates 
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ii) OR function: 

By simply inverting output of the NOR gate. i.e., 

 

OR function using NOR gates 

 
 

iii) AND function: 

By simply inverting inputs of the NOR gate. i.e., 
 

AND function using NOR gates 

 

Bubble at the input of NOR gate indicates inverted input. 

 

Truth table 
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iv) NAND Function: 

By inverting inputs and outputs of the NOR gate. 

NAND function using NOR gates 

 

 

Conversion of AND/OR/NOT to NAND/NOR: 

1. Draw AND/OR logic. 

2. If NAND hardware has been chosen, add bubbles on the output of each AND 

gate and bubbles on input side to all OR gates. 

If NOR hardware has been chosen, add bubbles on the output of each OR gate 

and bubbles on input side to all AND gates. 

3. Add or subtract an inverter on each line that received a bubble in step 2. 

4. Replace bubbled OR by NAND and bubbled AND by NOR. 

5. Eliminate double inversions. 

 
1. Implement Boolean expression using NAND gates: 

 

 

 

Original Circuit: 
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Soln:      

NAND Circuit: 

 
 
 

 

 
 

:  
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2. Implement Boolean expression for EX-OR gate using NAND gates. 
 

Soln: 

gate. 

 

 
Adding bubbles on the output of each AND gates and on the inputs of each OR 

 
 
 
 
 
 
 
 
 
 
 

Adding an inverter on each line that received bubble, 

 
 

Eliminating double inversion, 
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Replacing inverter and bubbled OR with NAND, we have 
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