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  UNIT II COMBINATIONAL CIRCUITS:  

INTRODUCTION: 

The digital system consists of two types of circuits, namely 

(i) Combinational circuits 

(ii) Sequential circuits 
 

Combinational circuit consists of logic gates whose output at any time is 
determined from the present combination of inputs. The logic gate is the most basic 
building block of combinational logic. The logical function performed by a 
combinational circuit is fully defined by a set of Boolean expressions. 

 

Sequential logic circuit comprises both logic gates and the state of storage 
elements such as flip-flops. As a consequence, the output of a sequential circuit depends 
not only on present value of inputs but also on the past state of inputs. 

In the previous chapter, we have discussed binary numbers, codes, Boolean 
algebra and simplification of Boolean function and logic gates. In this chapter, 
formulation and analysis of various systematic designs of combinational circuits will be 
discussed. 

 

A combinational circuit consists of input variables, logic gates, and output 
variables. The logic gates accept signals from inputs and output signals are generated 
according to the logic circuits employed in it. Binary information from the given data 
transforms to desired output data in this process. Both input and output are obviously 
the binary signals, i.e., both the input and output signals are of two possible states, logic 
1 and logic 0. 

 

Block diagram of a combinational logic circuit 

 

For n number of input variables to a combinational circuit, 2n possible 
combinations of binary input states are possible. For each possible combination, there is 
one and only one possible output combination. A combinational logic circuit can be 
described by m Boolean functions and each output can be expressed in terms of n input 
variables. 
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DESIGN PROCEDURE: 

Any combinational circuit can be designed by the following steps of design procedure. 

1. The problem is stated. 

2. Identify the input and output variables. 

3. The input and output variables are assigned letter symbols. 

4. Construction of a truth table to meet input -output requirements. 

5. Writing Boolean expressions for various output variables in terms of input 
variables. 

6. The simplified Boolean expression is obtained by any method of minimization— 
algebraic method, Karnaugh map method, or tabulation method. 

7. A logic diagram is realized from the simplified boolean expression using logic 
gates. 

 
The following guidelines should be followed while choosing the preferred form for 
hardware implementation: 

1. The implementation should have the minimum number of gates, with the gates 
used having the minimum number of inputs. 

2. There should be a minimum number of interconnections. 

3. Limitation on the driving capability of the gates should not be ignored. 

 

 
ARITHMETIC CIRCUITS – BASIC BUILDING BLOCKS:  

In this section, we will discuss those combinational logic building blocks that can 
be used to perform addition and subtraction operations on binary numbers. Addition 
and subtraction are the two most commonly used arithmetic operations, as the other 
two, namely multiplication and division, are respectively the processes of repeated 
addition and repeated subtraction. 

The basic building blocks that form the basis of all hardware used to perform the 
arithmetic operations on binary numbers are half-adder, full adder, half-subtractor, full- 
subtractor. 

 

 
Half-Adder: 

A half-adder is a combinational circuit that can be used to add two binary bits. It 
has two inputs that represent the two bits to be added and two outputs, with one 
producing the SUM output and the other producing the CARRY. 
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Block schematic of half-adder 

The truth table of a half-adder, showing all possible input combinations and the 
corresponding outputs are shown below. 

 
Inputs Outputs 

A B Carry (C) Sum (S) 

0 0 0 0 

0 1 0 1 

1 0 0 1 

1 1 1 0 
Truth table of half-adder 

 

K-map simplification for carry and sum: 
 

The Boolean expressions for the SUM and CARRY outputs are given by the 
equations, 

Sum, S = A’B+ AB’= AB 
Carry, C = A . B 

The first one representing the SUM output is that of an EX-OR gate, the second one 
representing the CARRY output is that of an AND gate. 

The logic diagram of the half adder is, 
 

 
 

Logic Implementation of Half-adder 
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Full-Adder: 

 

A full adder is a combinational circuit that forms the arithmetic sum of three 
input bits. It consists of 3 inputs and 2 outputs. 

Two of the input variables, represent the significant bits to be added. The third 
input represents the carry from previous lower significant position. The block diagram 
of full adder is given by, 

 

Block schematic of full-adder 

 

The full adder circuit overcomes the limitation of the half-adder, which can be 
used to add two bits only. As there are three input variables, eight different input 
combinations are possible. The truth table is shown below, 

 
Truth Table: 

 

Inputs Outputs 

A B Cin Sum (S) Carry (Cout) 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

To derive the simplified Boolean expression from the truth table, the Karnaugh map 
method is adopted as, 
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The Boolean expressions for the SUM and CARRY outputs are given by the 
equations, 

Sum, S = A’B’Cin+ A’BC’in + AB’C’in + ABCin 

Carry, Cout = AB+ ACin + BCin . 

 
The logic diagram for the above functions is shown as, 

 
 

Implementation of full-adder in Sum of Products 

 

The logic diagram of the full adder can also be implemented with two half- 
adders and one OR gate. The S output from the second half adder is the exclusive-OR of 
Cin and the output of the first half-adder, giving 

 
Sum = Cin   (A  B) [xy = x‘y+ xy‘] 

= Cin  (A‘B+AB‘) 

= C‘in  (A‘B+AB‘) + Cin (A‘B+AB‘)‘ [(x‘y+xy‘)‘= (xy+x‘y‘)] 

= C‘in (A‘B+AB‘) + Cin (AB+A‘B‘) 

= A‘BC‘in + AB‘C‘in + ABCin + A‘B‘Cin . 
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and the carry output is, 

Carry, Cout = AB+ Cin (A’B+AB’) 

= AB+ A‘BCin+ AB‘Cin 

= AB (Cin+1) + A‘BCin+ AB‘Cin [Cin+1= 1] 
= ABCin+ AB+ A‘BCin+ AB‘Cin 

= AB+ ACin (B+B‘) + A‘BCin 

= AB+ ACin+ A‘BCin 

= AB (Cin+1) + ACin+ A‘BCin [Cin+1= 1] 
= ABCin+ AB+ ACin+ A‘BCin 

= AB+ ACin+ BCin (A +A‘) 
= AB+ ACin+ BCin. 

 

Implementation of full adder with two half-adders and an OR gate 
 

Half -Subtractor: 
A half-subtractor is a combinational circuit that can be used to subtract one binary 

digit from another to produce a DIFFERENCE output and a BORROW output. The 
BORROW output here specifies whether a ‗1‘ has been borrowed to perform the 
subtraction. 

Block schematic of half-subtractor 
 

The truth table of half-subtractor, showing all possible input combinations and 
the corresponding outputs are shown below. 

 

Input Output 

A B Difference (D) Borrow (Bout) 

0 0 0 0 

0 1 1 1 

1 0 1 0 

1 1 0 0 
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K-map simplification for half subtractor: 
 

The Boolean expressions for the DIFFERENCE and BORROW outputs are given 
by the equations, 

Difference, D = A’B+ AB’= A  B 

Borrow, Bout = A’ . B 

The first one representing the DIFFERENCE (D)output is that of an exclusive-OR 
gate, the expression for the BORROW output (Bout) is that of an AND gate with input A 
complemented before it is fed to the gate. 

The logic diagram of the half adder is, 
 
 

Logic Implementation of Half-Subtractor 

 

Comparing a half-subtractor with a half-adder, we find that the expressions for 
the SUM and DIFFERENCE outputs are just the same. The expression for BORROW in 
the case of the half-subtractor is also similar to what we have for CARRY in the case of 
the half-adder. If the input A, ie., the minuend is complemented, an AND gate can be 
used to implement the BORROW output. 
Full Subtractor: 

A full subtractor performs subtraction operation on two bits, a minuend and a 
subtrahend, and also takes into consideration whether a ‗1‘ has already been borrowed 
by the previous adjacent lower minuend bit or not. 

As a result, there are three bits to be handled at the input of a full subtractor, 
namely the two bits to be subtracted and a borrow bit designated as Bin. There are two 
outputs, namely the DIFFERENCE output D and the BORROW output Bo. The 
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BORROW output bit tells whether the minuend bit needs to borrow a ‗1‘ from the next 
possible higher minuend bit. 

Block schematic of full-adder 
 

The truth table for full-subtractor is, 
Inputs Outputs 

A B Bin Difference(D) Borrow(Bout) 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 

K-map simplification for full-subtractor: 

The Boolean expressions for the DIFFERENCE and BORROW outputs are given 
by the equations, 

Difference, D = A’B’Bin+ A’BB’in + AB’B’in + ABBin 

Borrow, Bout = A’B+ A’Cin + BBin . 

The logic diagram for the above functions is shown as, 
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Implementation of full-adder in Sum of Products 
 

The logic diagram of the full-subtractor can also be implemented with two half- 
subtractors and one OR gate. The difference,D output from the second half subtractor is 
the exclusive-OR of Bin and the output of the first half-subtractor, giving 

Difference,D= Bin   (A  B) [x  y = x‘y+ xy‘] 

= Bin  (A‘B+AB‘) 

= B‘in  (A‘B+AB‘) + Bin (A‘B+AB‘)‘ [(x‘y+xy‘)‘= (xy+x‘y‘)] 

= B‘in (A‘B+AB‘) + Bin (AB+A‘B‘) 

= A‘BB‘in + AB‘B‘in + ABBin + A‘B‘Bin . 

and the borrow output is, 

 
Borrow, Bout = A’B+ Bin (A’B+AB’)’ [(x‘y+xy‘)‘= (xy+x‘y‘)] 

= A‘B+ Bin (AB+A‘B‘) 

= A‘B+ ABBin+ A‘B‘Bin 

= A‘B (Bin+1) + ABBin+ A‘B‘Bin [Cin+1= 1] 

= A‘BBin+ A‘B+ ABBin+ A‘B‘Bin 

= A‘B+ BBin  (A+A‘) + A‘B‘Bin [A+A‘= 1] 

= A‘B+ BBin+ A‘B‘Bin 

= A‘B (Bin+1) + BBin+ A‘B‘Bin [Cin+1= 1] 

= A‘BBin+ A‘B+ BBin+ A‘B‘Bin 

= A‘B+ BBin+ A‘Bin (B +B‘) 

= A‘B+ BBin+ A‘Bin. 

 

 
Therefore, 

we can implement full-subtractor using two half-subtractors and OR gate as, 
 

Implementation of full-subtractor with two half-subtractors and an OR gate 
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Binary Adder (Parallel Adder): 
The 4-bit binary adder using full adder circuits is capable of adding two 4-bit 

numbers resulting in a 4-bit sum and a carry output as shown in figure below. 

4-bit binary parallel Adder 

 

Since all the bits of augend and addend are fed into the adder circuits 
simultaneously and the additions in each position are taking place at the same time, this 
circuit is known as parallel adder. 

 

Let the 4-bit words to be added be represented by, 

A3A2A1A0= 1111 and B3B2B1B0= 0011. 

 
 

The bits are added with full adders, starting from the least significant position, to 
form the sum it and carry bit. The input carry C0 in the least significant position must be 
0. The carry output of the lower order stage is connected to the carry input of the next 
higher order stage. Hence this type of adder is called ripple-carry adder. 

In the least significant stage, A0, B0 and C0 (which is 0) are added resulting in  
sum S0 and carry C1. This carry C1 becomes the carry input to the second stage.  
Similarly in the second stage, A1, B1 and C1 are added resulting in sum S1 and carry C2,  

in the third stage, A2, B2 and C2 are added resulting in sum S2 and carry C3, in the third 
stage, A3, B3 and C3 are added resulting in sum S3 and C4, which is the output carry.  
Thus the circuit results in a sum (S3S2S1S0) and a carry output (Cout). 

Though the parallel binary adder is said to generate its output immediately after 
the inputs are applied, its speed of operation is limited by the carry propagation delay 
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through all stages. However, there are several methods to reduce this delay. 
One of the methods of speeding up this process is look-ahead carry addition 

which eliminates the ripple-carry delay. 

 
Carry Propagation–Look-Ahead Carry Generator: 

In Parallel adder, all the bits of the augend and the addend are available for 
computation at the same time. The carry output of each full-adder stage is connected to 
the carry input of the next high-order stage. Since each bit of the sum output depends 
on the value of the input carry, time delay occurs in the addition process. This time 
delay is called as carry propagation delay. 

For example, addition of two numbers (0011+ 0101) gives the result as 1000. 
Addition of the LSB position produces a carry into the second position. This carry when 
added to the bits of the second position, produces a carry into the third position. This 
carry when added to bits of the third position, produces a carry into the last position. 
The sum bit generated in the last position (MSB) depends on the carry that was 
generated by the addition in the previous position. i.e., the adder will not produce 
correct result until LSB carry has propagated through the intermediate full-adders. This 
represents a time delay that depends on the propagation delay produced in an each 
full-adder. For example, if each full adder is considered to have a propagation delay of 

30nsec, then S3 will not react its correct value until 90 nsec after LSB is generated. 
Therefore total time required to perform addition is 90+ 30 = 120nsec. 

 

4-bit Parallel Adder 

The method of speeding up this process by eliminating inter stage carry delay is 
called look ahead-carry addition. This method utilizes logic gates to look at the lower 
order bits of the augend and addend to see if a higher-order carry is to be generated. It 
uses two functions: carry generate and carry propagate. 
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Full-Adder circuit 

 

Consider the circuit of the full-adder shown above. Here we define two 
functions: carry generate (Gi) and carry propagate (Pi) as, 

Carry generate, Gi = Ai Bi 

Carry propagate, Pi = Ai  Bi 

the output sum and carry can be expressed as, 

Si = Pi  Ci 

Ci+1 = Gi  PiCi 

Gi (carry generate), it produces a carry 1 when both Ai and Bi are 1, regardless of the 
input carry Ci. 

Pi (carry propagate) because it is the term associated with the propagation of the carry 
from Ci to Ci+1. 

The Boolean functions for the carry outputs of each stage and substitute for each 
Ci its value from the previous equation: 

C0= input carry 

C1= G0 + P0C0 

C2= G1 + P1C1 = G1 + P1 (G0 + P0C0) 

= G1 + P1G0 + P1P0C0 

C3= G2 + P2C2 = G2 + P2 (G1 + P1G0 + P1P0C0) 

= G2 + P2G1 + P2P1G0 + P2P1P0C0 
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Since the Boolean function for each output carry is expressed in sum of products, 
each function can be implemented with one level of AND gates followed by an OR gate. 
The three Boolean functions for C1, C2 and C3 are implemented in the carry look-ahead 
generator as shown below. Note that C3 does not have to wait for C2 and C1 to 
propagate; in fact C3 is propagated at the same time as C1 and C2. 

Logic diagram of Carry Look-ahead Generator 

 

Using a Look-ahead Generator we can easily construct a 4-bit parallel adder with 
a Look-ahead carry scheme. Each sum output requires two exclusive-OR gates. The 

output of the first exclusive-OR gate generates the Pi variable, and the AND gate 
generates the Gi variable. The carries are propagated through the carry look-ahead 
generator and applied as inputs to the second exclusive-OR gate. All output carries are 
generated after a delay through two levels of gates. Thus, outputs S1 through S3 have 
equal propagation delay times. 
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4-Bit Adder with Carry Look-ahead 
 

 

Binary Subtractor (Parallel Subtractor): 

The subtraction of unsigned binary numbers can be done most conveniently by 
means of complements. The subtraction A-B can be done by taking the 2‘s complement 
of B and adding it to A. The 2‘s complement can be obtained by taking the 1‘s 
complement and adding 1 to the least significant pair of bits. The 1‘s complement can be 
implemented with inverters and a 1 can be added to the sum through the input carry. Aru
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The circuit for subtracting A-B consists of an adder with inverters placed 
between each data input B and the corresponding input of the full adder. The input 
carry C0 must be equal to 1 when performing subtraction. The operation thus  
performed becomes A, plus the 1‘s complement of B, plus1. This is equal to A plus the 
2‘s complement of B. 

 

4-bit Parallel Subtractor 
 
 

 

Parallel Adder/ Subtractor: 
The addition and subtraction operation can be combined into one circuit with 

one common binary adder. This is done by including an exclusive-OR gate with each 
full adder. A 4-bit adder Subtractor circuit is shown below. 

4-Bit Adder Subtractor 
 

The mode input M controls the operation. When M= 0, the circuit is an adder and 
when M=1, the circuit becomes a Subtractor. Each exclusive-OR gate receives input M 
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and one of the inputs of B. When M=0, we have B 0= B. The full adders receive the  
value of B, the input carry is 0, and the circuit performs A plus B. When M=1, we have  
B 1= B‘ and C0=1. The B inputs are all complemented and a 1 is added through the  
input carry. The circuit performs the operation A plus the 2‘s complement of B. The 
exclusive-OR with output V is for detecting an overflow. 

 
Decimal Adder (BCD Adder): 

The digital system handles the decimal number in the form of binary coded 
decimal numbers (BCD). A BCD adder is a circuit that adds two BCD bits and produces 
a sum digit also in BCD. 

Consider the arithmetic addition of two decimal digits in BCD, together with an 
input carry from a previous stage. Since each input digit does not exceed 9, the output 
sum cannot be greater than 9+ 9+1 = 19; the 1 is the sum being an input carry. The 
adder will form the sum in binary and produce a result that ranges from 0 through 19. 

These binary numbers are labeled by symbols K, Z8, Z4, Z2, Z1, K is the carry. The 
columns under the binary sum list the binary values that appear in the outputs of the 4- 
bit binary adder. The output sum of the two decimal digits must be represented in BCD. 

 
 

Binary Sum BCD Sum  

Decimal 
K Z8 Z4 Z2 Z1 C S8 S4 S2 S1 

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 1 1 

0 0 0 1 0 0 0 0 1 0 2 

0 0 0 1 1 0 0 0 1 1 3 

0 0 1 0 0 0 0 1 0 0 4 

0 0 1 0 1 0 0 1 0 1 5 

0 0 1 1 0 0 0 1 1 0 6 

0 0 1 1 1 0 0 1 1 1 7 

0 1 0 0 0 0 1 0 0 0 8 

0 1 0 0 1 0 1 0 0 1 9 
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0 1 0 1 0 

0 1 0 1 1 

0 1 1 0 0 

0 1 1 0 1 

0 1 1 1 0 

0 1 1 1 1 

1 0 0 0 0 

1 0 0 0 1 

1 0 0 1 0 

1 0 0 1 1 

1 0 0 0 0 

1 0 0 0 1 

1 0 0 1 0 

1 0 0 1 1 

1 0 1 0 0 

1 0 1 0 1 

1 0 1 1 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 0 1 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

 
 

In examining the contents of the table, it is apparent that when the binary sum is 
equal to or less than 1001, the corresponding BCD number is identical, and therefore no 
conversion is needed. When the binary sum is greater than 9 (1001), we obtain a non- 
valid BCD representation. The addition of binary 6 (0110) to the binary sum converts it 
to the correct BCD representation and also produces an output carry as required. 

The logic circuit to detect sum greater than 9 can be determined by simplifying 
the boolean expression of the given truth table. 
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To implement BCD adder we require: 

 4-bit binary adder for initial addition 
 Logic circuit to detect sum greater than 9 and 

 One more 4-bit adder to add 01102 in the sum if the sum is greater than 9 or carry 
is 1. 

 
The two decimal digits, together with the input carry, are first added in the top4- 

bit binary adder to provide the binary sum. When the output carry is equal to zero, 
nothing is added to the binary sum. When it is equal to one, binary 0110 is added to 
the binary sum through the bottom 4-bit adder. The output carry generated from the 
bottom adder can be ignored, since it supplies information already available at the 
output carry terminal. The output carry from one stage must be connected to the 
input carry of the next higher-order stage. 

 

 
Block diagram of BCD adder 

 
 

Binary Multiplier: 

Multiplication of binary numbers is performed in the same way as in decimal 
numbers. The multiplicand is multiplied by each bit of the multiplier starting from the 
least significant bit. Each such multiplication forms a partial product. Such partial 
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products are shifted one position to the left. The final product is obtained from the sum 
of partial products. 

Consider the multiplication of two 2-bit numbers. The multiplicand bits are B1 

and B0, the multiplier bits are A1 and A0, and the product is C3, C2, C1 and C0. The first 
partial product is formed by multiplying A0 by B1B0. The multiplication of two bits such 
as A0 and B0 produces a 1 if both bits are 1; otherwise, it produces a 0. This is identical  
to an AND operation. Therefore the partial product can be implemented with AND 
gates as shown in the diagram below. 

 

The second partial product is formed by multiplying A1 by B1B0 and shifted one 
position to the left. The two partial products are added with two half adder (HA) 
circuits. 

 

 
2-bit by 2-bit Binary multiplier 

 

Usually there are more bits in the partial products and it is necessary to use full 
adders to produce the sum of the partial products. The least significant bit of the 
product does not have to go through an adder since it is formed by the output of the 
first AND gate. 

A combinational circuit binary multiplier with more bits can be constructed in a 
similar fashion. A bit of the multiplier is ANDed with each bit of the multiplicand in as 
many levels as there are bits in the multiplier. The binary output in each level of AND 
gates are added with the partial product of the previous level to form a new partial 
product. The last level produces the product. For J multiplier bits and K multiplicand 
bits we need (J x K) AND gates and (J-1) k-bit adders to produce a product of J+K bits. 

Consider a multiplier circuit that multiplies a binary number of four bits by a 
number of three bits. Let the multiplicand be represented by B3, B2, B1, B0 and the 
multiplier by A2, A1, and A0. Since K= 4 and J= 3, we need 12 AND gates and two 4-bit 
adders to produce a product of seven bits. The logic diagram of the multiplier is shown 
below. 
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4-bit by 3-bit Binary multiplier 
 
 
 

 

PARITY GENERATOR/ CHECKER: 

A Parity is a very useful tool in information processing in digital computers to 
indicate any presence of error in bit information. External noise and loss of signal 
strength causes loss of data bit information while transporting data from one device to 
other device, located inside the computer or externally. To indicate any occurrence of 
error, an extra bit is included with the message according to the total number of 1s in a 
set of data, which is called parity. 

If the extra bit is considered 0 if the total number of 1s is even and 1 for odd 
quantities of 1s in a set of data, then it is called even parity. On the other hand, if the 
extra bit is 1 for even quantities of 1s and 0 for an odd number of 1s, then it is called odd 
parity. 
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The message including the parity is transmitted and then checked at the 
receiving end for errors. An error is detected if the checked parity does not correspond 
with the one transmitted. The circuit that generates the parity bit in the transmitter is 
called a parity generator and the circuit that checks the parity in the receiver is called a 
parity checker. 

 
Parity Generator: 

A parity generator is a combination logic system to generate the parity bit at the 
transmitting side. A table illustrates even parity as well as odd parity for a message 
consisting of three bits. 

 

3-bit Message Odd Party 
bit 

Even Parity 
bit A B C 

0 0 0 1 0 

0 0 1 0 1 

0 1 0 0 1 

0 1 1 1 0 

1 0 0 0 1 

1 0 1 1 0 

1 1 0 1 0 

1 1 1 0 1 
Parity generator truth table for even and odd parity 

 

If the message bit combination is designated as A, B, C and Pe, Po are the even 
and odd parity respectively, then it is obvious from table that the boolean expressions  
of even parity and odd parity are 
Pe = ABC) and 

Po = (ABC)′. 
 

K-map Simplification: 

 
P= A’B’C+ A’BC’+ A’B’C’+ ABC 

= A’ (B’C+ BC’) + A (B’C’+ BC) 

= A’ (BC) + A (BC)’ 

= ABC) 
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Logic Diagram: 
 
 

3-bit even parity generator 
 

Parity Checker: 
The message bits with the parity bit are transmitted to their destination, where 

they are applied to a parity checker circuit. The circuit that checks the parity at the 
receiver side is called the parity checker. The parity checker circuit produces a check bit 
and is very similar to the parity generator circuit. If the check bit is 1, then it is assumed 
that the received data is incorrect. The check bit will be 0 if the received data is correct. 
The table shows the truth table for the even parity checker. 

 

4-Bit Received Parity Error 
Check (PEC) A B C D 

0 0 0 0 0 

0 0 0 1 1 

0 0 1 0 1 

0 0 1 1 0 

0 1 0 0 1 

0 1 0 1 0 

0 1 1 0 0 

0 1 1 1 1 

1 0 0 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 0 1 1 1 

1 1 0 0 0 

1 1 0 1 1 

1 1 1 0 1 

1 1 1 1 0 
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K-map Simplification: 
 

 
PEC= A’B’ (C’D+ CD’) + A’B (C’D’+ CD) + AB (C’D+ CD’) + AB’ (C’D’+ CD) 

= A’B’ (CD) + A’B (CD)’ + AB (CD) + AB’ (CD)’ 

= (A’B’+ AB) (CD) + (A’B+ AB’) (CD)’ 

= (AB)’ (CD) + (AB) (CD)’ 

= (AB)  (CD) 

 
Logic Diagram: 

4-bit even parity checker 
 

 

MAGNITUDE COMPARATOR: 
 

A magnitude comparator is a combinational circuit that compares two given 
numbers (A and B) and determines whether one is equal to, less than or greater than the 
other. The output is in the form of three binary variables representing the conditions   A 
= B, A>B and A<B, if A and B are the two numbers being compared. 

Block diagram of magnitude comparator 
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For comparison of two n-bit numbers, the classical method to achieve the 
Boolean expressions requires a truth table of 22n entries and becomes too lengthy and 
cumbersome. 

 

2-bit Magnitude Comparator: 
The truth table of 2-bit comparator is given in table below— 

Truth table: 

Inputs Outputs 

A3 A2 A1 A0 A>B A=B A<B 

0 0 0 0 0 1 0 

0 0 0 1 0 0 1 

0 0 1 0 0 0 1 

0 0 1 1 0 0 1 

0 1 0 0 1 0 0 

0 1 0 1 0 1 0 

0 1 1 0 0 0 1 

0 1 1 1 0 0 1 

1 0 0 0 1 0 0 

1 0 0 1 1 0 0 

1 0 1 0 0 1 0 

1 0 1 1 0 0 1 

1 1 0 0 1 0 0 

1 1 0 1 1 0 0 

1 1 1 0 1 0 0 

1 1 1 1 0 1 0 
 

K-map Simplification: 
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Logic Diagram: 
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4-bit Magnitude Comparator: 
2- bit Magnitude Comparator 

Let us consider the two binary numbers A and B with four digits each. Write the 
coefficient of the numbers in descending order as, 

A = A3A2A1A0 

B = B3 B2 B1 B0, 

Each subscripted letter represents one of the digits in the number. It is observed from 
the bit contents of two numbers that A = B when A3 = B3, A2 = B2, A1 = B1 and A0 = B0. 
When the numbers are binary they possess the value of either 1 or 0, the equality 
relation of each pair can be expressed logically by the equivalence function as 

 

 
Or, 

Xi = AiBi + Ai′Bi′ 
Xi = (A  B)′. 

for i = 1, 2, 3, 4. 
or, Xi ′ = A  B 

Or, Xi = (AiBi′ + Ai′Bi)′.  Aru
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where, 
Xi =1 only if the pair of bits in position i are equal (ie., if both are 1 or both are 0). 

To satisfy the equality condition of two numbers A and B, it is necessary that all 
Xi must be equal to logic 1. This indicates the AND operation of all Xi variables. In other 
words, we can write the Boolean expression for two equal 4-bit numbers. 

(A = B) = X3X2X1 X0. 

The binary variable (A=B) is equal to 1 only if all pairs of digits of the two numbers are 
equal. 

To determine if A is greater than or less than B, we inspect the relative 
magnitudes of pairs of significant bits starting from the most significant bit. If the two 
digits of the most significant position are equal, the next significant pair of digits is 
compared. The comparison process is continued until a pair of unequal digits is found. 
It may be concluded that A>B, if the corresponding digit of A is 1 and B is 0. If the 
corresponding digit of A is 0 and B is 1, we conclude that A<B. Therefore, we can derive 
the logical expression of such sequential comparison by the following two Boolean 
functions, 

 

(A>B) = A3B3′ +X3A2B2′ +X3X2A1B1′ +X3X2X1A0B0′ 
(A<B) = A3′B3 +X3A2′B2 +X3X2A1′B1 +X3X2X1A0′B0 

 
The symbols (A>B) and (A<B) are binary output variables that are equal to 1 when A>B 
or A<B, respectively. 

The gate implementation of the three output variables just derived is simpler 
than it seems because it involves a certain amount of repetition. The unequal outputs 
can use the same gates that are needed to generate the equal output. The logic diagram 
of the 4-bit magnitude comparator is shown below, 
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4-bit Magnitude Comparator 
 

The four x outputs are generated with exclusive-NOR circuits and applied to an 
AND gate to give the binary output variable (A=B). The other two outputs use the x 
variables to generate the Boolean functions listed above. This is a multilevel 
implementation and has a regular pattern. 
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CODE CONVERTERS:  

A code converter is a logic circuit that changes data presented in one type of 
binary code to another code of binary code. The following are some of the most 
commonly used code converters: 

i. Binary-to-Gray code 
ii. Gray-to-Binary code 

iii. BCD-to-Excess-3 
iv. Excess-3-to-BCD 
v. Binary-to-BCD 

vi. BCD-to-binary 
vii. Gray-to-BCD 

viii. BCD-to-Gray 

ix. 8 4 -2 -1 to BCD converter 
 

1. Binary to Gray Converters: 
The gray code is often used in digital systems because it has the advantage that 

only one bit in the numerical representation changes between successive numbers. The 
truth table for the binary-to-gray code converter is shown below, 

 

Truth table: 
 

Decimal 
Binary code Gray code 

B3 B2 B1 B0 G3 G2 G1 G0 

0 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 1 

2 0 0 1 0 0 0 1 1 

3 0 0 1 1 0 0 1 0 

4 0 1 0 0 0 1 1 0 

5 0 1 0 1 0 1 1 1 

6 0 1 1 0 0 1 0 1 

7 0 1 1 1 0 1 0 0 

8 1 0 0 0 1 1 0 0 

9 1 0 0 1 1 1 0 1 

10 1 0 1 0 1 1 1 1 

11 1 0 1 1 1 1 1 0 

12 1 1 0 0 1 0 1 0 

13 1 1 0 1 1 0 1 1 

14 1 1 1 0 1 0 0 1 

15 1 1 1 1 1 0 0 0 
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K-map simplification: 
 

 

 
Now, the above expressions can be implemented using EX-OR gates as,  
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Logic Diagram: 

 

2. Gray to Binary Converters: 

The truth table for the gray-to-binary code converter is shown below, 
 

Truth table: 
 Gray code Binary code 

G3 G2 G1 G0 B3 B2 B1 B0 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 

0 0 1 0 0 0 1 1 

0 0 1 1 0 0 1 0 

0 1 0 0 0 1 1 1 

0 1 0 1 0 1 1 0 

0 1 1 0 0 1 0 0 

0 1 1 1 0 1 0 1 

1 0 0 0 1 1 1 1 

1 0 0 1 1 1 1 0 

1 0 1 0 1 1 0 0 

1 0 1 1 1 1 0 1 

1 1 0 0 1 0 0 0 

1 1 0 1 1 0 0 1 

1 1 1 0 1 0 1 1 

1 1 1 1 1 0 1 0 

From the truth table, the logic expression for the binary code outputs can be written as, 
G3= ∑m (8, 9, 10, 11, 12, 13, 14, 15) 
G2= ∑m  (4, 5, 6, 7, 8, 9, 10, 11) 
G1= ∑m  (2, 3, 4, 5, 8, 9, 14, 15) 
G0= ∑m (1, 2, 4, 7, 8, 11, 13, 14) 

 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



Department of Information Technology

 

K-map Simplification: 

 
From the above K-map, 
B3= G3 

B2= G3‘G2+ G3G2‘ 
B2= G3G2 

B1= G3‘G2‘G1+ G3‘G2G1‘+ G3G2G1+ G3G2‘G1‘ 
= G3‘ (G2‘G1+ G2G1‘) + G3  (G2G1+ G2‘G1‘) 
= G3‘ (G2G1) + G3 (G2G1)‘ [xy = x‘y+ xy‘], [(xy)‘ = xy+ x‘y‘] 

B1= G3 G2G1 

B0= G3‘G2‘ G1‘G0+ G3‘G2‗G1G0‘+ G3G2G1‗G0+ G3G2G1 G0‘+ G3‘G2G1‘G0‘+ 
G3G2‗G1‘G0‘+ G3‘G2G1G0+ G3G2‗G1 G0. 

= G3‘G2‘ (G1‘G0+ G1G0‘) + G3G2 (G1‘G0+ G1G0‘) + G1‘G0‘ (G3‘G2+ G3G2‘) + 
G1G0 (G3‘G2+ G3G2‘). 

= G3‘G2‘ (G0G1) + G3G2 (G0G1) + G1‘G0‘ (G2G3) +G1G0 (G2G3). 

= G0G1 (G3‘G2‘ + G3G2) + G2G3 (G1‘G0‘+G1G0) 
= (G0G1) (G2G3)‘+ (G2G3) (G0G1) [xy = x‘y+ xy‘] 

B0= (G0G1)  (G2G3). 
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Now, the above expressions can be implemented using EX-OR gates as, 

Logic diagram of 4-bit gray-to-binary converter 

3. BCD –to-Excess-3 Converters: 
Excess-3 is a modified form of a BCD number. The excess-3 code can be derived 

from the natural BCD code by adding 3 to each coded number. 
For example, decimal 12 can be represented in BCD as 0001 0010. Now adding 3 to each 
digit we get excess-3 code as 0100 0101 (12 in decimal). With this information the truth 
table for BCD to Excess-3 code converter can be determined as, 

 
Truth Table: 
 

Decimal 
BCD code Excess-3 code 

B3 B2 B1 B0 E3 E2 E1 E0 

0 0 0 0 0 0 0 1 1 

1 0 0 0 1 0 1 0 0 

2 0 0 1 0 0 1 0 1 

3 0 0 1 1 0 1 1 0 

4 0 1 0 0 0 1 1 1 

5 0 1 0 1 1 0 0 0 

6 0 1 1 0 1 0 0 1 

7 0 1 1 1 1 0 1 0 

8 1 0 0 0 1 0 1 1 

9 1 0 0 1 1 1 0 0 

 
From the truth table, the logic expression for the Excess-3 code outputs can be written 
as, 

E3= ∑m  (5, 6, 7, 8, 9) + ∑d (10, 11, 12, 13, 14, 15) 
E2= ∑m  (1, 2, 3, 4, 9) + ∑d (10, 11, 12, 13, 14, 15) 
E1= ∑m  (0, 3, 4, 7, 8) + ∑d (10, 11, 12, 13, 14, 15) 
E0= ∑m  (0, 2, 4, 6, 8) + ∑d (10, 11, 12, 13, 14, 15) 
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K-map Simplification: 
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Logic Diagram: 
 

 
 

4. Excess-3 to BCD Converter: 

Truth table: 

 

 
 
 
 
 
 
 
 

 
 

12 1 1 0 0 1 0 0 1 

Decimal 
Excess-3 code BCD code 

E3 E2 E1 E0 B3 B2 B1 B0 

3 0 0 1 1 0 0 0 0 

4 0 1 0 0 0 0 0 1 

5 0 1 0 1 0 0 1 0 

6 0 1 1 0 0 0 1 1 

7 0 1 1 1 0 1 0 0 

8 1 0 0 0 0 1 0 1 

9 1 0 0 1 0 1 1 0 

10 1 0 1 0 0 1 1 1 

11 1 0 1 1 1 0 0 0 
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From the truth table, the logic expression for the Excess-3 code outputs can be written 
as, 

B3= ∑m (11, 12) + ∑d (0, 1, 2, 13, 14, 15) 
B2= ∑m  (7, 8, 9, 10) + ∑d (0, 1, 2, 13, 14, 15) 
B1= ∑m  (5, 6, 9, 10) + ∑d (0, 1, 2, 13, 14, 15) 
B0= ∑m (4, 6, 8, 10, 12) + ∑d (0, 1, 2, 13, 14, 15) 

 
K-map Simplification: 

 
 
 

Now, the above expressions the logic diagram can be implemented as, 
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Logic Diagram: 

 
 

5. BCD –to-Binary Converters: 

The steps involved in the BCD-to-binary conversion process are as follows: 
1. The value of each bit in the BCD number is represented by a binary equivalent or 

weight. 

2. All the binary weights of the bits that are 1‘s in the BCD are added. 
3. The result of this addition is the binary equivalent of the BCD number. 

Two-digit decimal values ranging from 00 to 99 can be represented in BCD by two 4-bit 
code groups. For example, 1910 is represented as, 

The left-most four-bit group represents 10 and right-most four-bit group represents 9. 
The binary representation for decimal 19 is 1910 = 110012. 
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BCD Code Binary 

B4 B3 B2 B1 B0 E D C B A 

0 0 0 0 0 0 0 0 0 0 

0 0 0 0 1 0 0 0 0 1 

0 0 0 1 0 0 0 0 1 0 

0 0 0 1 1 0 0 0 1 1 

0 0 1 0 0 0 0 1 0 0 

0 0 1 0 1 0 0 1 0 1 

0 0 1 1 0 0 0 1 1 0 

0 0 1 1 1 0 0 1 1 1 

0 1 0 0 0 0 1 0 0 0 

0 1 0 0 1 0 1 0 0 1 

1 0 0 0 0 0 1 0 1 0 

1 0 0 0 1 0 1 0 1 1 

1 0 0 1 0 0 1 1 0 0 

1 0 0 1 1 0 1 1 0 1 

1 0 1 0 0 0 1 1 1 0 

1 0 1 0 1 0 1 1 1 1 

1 0 1 1 0 1 0 0 0 0 

1 0 1 1 1 1 0 0 0 1 

1 1 0 0 0 1 0 0 1 0 

1 1 0 0 1 1 0 0 1 1 
 
 

K-map Simplification: 
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From the above K-map, 
 

A= B0 

 
B= B1B4‘+ B1’B4 

= B1B4 

 
C= B4’B2 + B2B1’ + B4B2’B1 

 
D= B4’B3 + B4B3’B2’ + B4B3’B1’ 

E= B4B3 + B4B2B1 

Now, from the above expressions the logic diagram can be implemented as, 
 

Logic Diagram: 
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6. Binary to BCD Converter: 
The truth table for binary to BCD converter can be written as, 

Truth Table: 

Decimal 
Binary Code BCD Code 

D C B A B4 B3 B2 B1 B0 

0 0 0 0 0 0 0 0 0 0 

1 0 0 0 1 0 0 0 0 1 

2 0 0 1 0 0 0 0 1 0 

3 0 0 1 1 0 0 0 1 1 

4 0 1 0 0 0 0 1 0 0 

5 0 1 0 1 0 0 1 0 1 

6 0 1 1 0 0 0 1 1 0 

7 0 1 1 1 0 0 1 1 1 

8 1 0 0 0 0 1 0 0 0 

9 1 0 0 1 0 1 0 0 1 

10 1 0 1 0 1 0 0 0 0 

11 1 0 1 1 1 0 0 0 1 

12 1 1 0 0 1 0 0 1 0 

13 1 1 0 1 1 0 0 1 1 

14 1 1 1 0 1 0 1 0 0 

15 1 1 1 1 1 0 1 0 1 

 
From the truth table, the logic expression for the BCD code outputs can be written as, 

B0= ∑m (1, 3, 5, 7, 9, 11, 13, 15) 
B1= ∑m  (2, 3, 6, 7, 12, 13) 
B2= ∑m  (4, 5, 6, 7, 14, 15) 
B3= ∑m (8, 9) 
B4= ∑m (10, 11, 12, 13, 14, 15) 

 
K-map Simplification: 
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From the above K-map, the logical expression can be obtained as, 
B0= A 
B1= DCB’+ D’B 
B2= D’C+ CB 
B3= DC’B’ 
B4= DC+ DB 
Now, from the above expressions the logic diagram can be implemented as, 

 

Logic Diagram: 
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7. Gray to BCD Converter: 
The truth table for gray to BCD converter can be written as, 

 
Truth Table: 

 

Gray Code BCD Code 

G3 G2 G1 G0 B4 B3 B2 B1 B0 

0 0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 1 

0 0 1 1 0 0 0 1 0 

0 0 1 0 0 0 0 1 1 

0 1 1 0 0 0 1 0 0 

0 1 1 1 0 0 1 0 1 

0 1 0 1 0 0 1 1 0 

0 1 0 0 0 0 1 1 1 

1 1 0 0 0 1 0 0 0 
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1 1 0 1 0 1 0 0 1 

1 1 1 1 1 0 0 0 0 

1 1 1 0 1 0 0 0 1 

1 0 1 0 1 0 0 1 0 

1 0 1 1 1 0 0 1 1 

1 0 0 1 1 0 1 0 0 

1 0 0 0 1 0 1 0 1 
 

K-map Simplification: 
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From the above K-map, the logical expression can be obtained as, 

B0= (G0G1)  (G2G3) 
B1= G’2G1+ G’3G2G’1 

B2= G’3G2+ G3G’2G’1 

B3= G3G2G’1 

B4= G3G’2+ G3G1 

Now, from the above expressions the logic diagram can be implemented as, 

 

Logic Diagram: 
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8. BCD to Gray Converter: 

The truth table for gray to BCD converter can be written as, 

Truth table: 
 

BCD Code (8421) Gray code 
B3 B2 B1 B0 G3 G2 G1 G0 

0 0 0 0 0 0 0 0 

0 0 0 1 0 0 0 1 

0 0 1 0 0 0 1 1 

0 0 1 1 0 0 1 0 
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0 1 0 0 0 1 1 0 

0 1 0 1 0 1 1 1 

0 1 1 0 0 1 0 1 

0 1 1 1 0 1 0 0 

1 0 0 0 1 1 0 0 

1 0 0 1 1 1 0 1 
 

K-map Simplification: 

 

Now, from the above expressions the logic diagram can be implemented as, 
 

Logic Diagram: Aru
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9. 8 4 -2 -1 to BCD Converter: 
The truth table for 8 4 -2 -1 to BCD converter can be written as, 

 

Truth Table: 
 

Gray Code BCD Code 

D C B A B4 B3 B2 B1 B0 

0 0 0 0 0 0 0 0 0 

0 1 1 1 0 0 0 0 1 

0 1 1 0 0 0 0 1 0 

0 1 0 1 0 0 0 1 1 

0 1 0 0 0 0 1 0 0 

1 0 1 1 0 0 1 0 1 

1 0 1 0 0 0 1 1 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 0 1 0 0 0 

1 1 1 1 0 1 0 0 1 

1 1 1 0 1 0 0 0 0 

1 1 0 1 1 0 0 0 1 

1 1 0 0 1 0 0 1 0 
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K-map Simplification: 

 
 
 

 

From the above K-map, the logical expression can be obtained as, 
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B0= A 
B1= A’B’CD+ (AB) (C’+D’) 
B2= D’CB’A’+ C’ (A+B) 
B3= D (ABC+ A’B’C’) 
B4= CD ( A’+B’) 

 
Logic Diagram: 
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DECODERS:  

A decoder is a combinational circuit that converts binary information from ‗n‘ 
input lines to a maximum of ‗2n‘ unique output lines. The general structure of decoder 
circuit is – 

General structure of decoder 

The encoded information is presented as ‗n‘ inputs producing ‗2n‘ possible 
outputs. The 2n output values are from 0 through 2n-1. A decoder is provided with 
enable inputs to activate decoded output based on data inputs. When any one enable 
input is unasserted, all outputs of decoder are disabled. 

 
Binary Decoder (2 to 4 decoder): 

A binary decoder has ‗n‘ bit binary input and a one activated output out of 2n 

outputs. A binary decoder is used when it is necessary to activate exactly one of 2n 

outputs based on an n-bit input value. 
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2-to-4 Line decoder 

Here the 2 inputs are decoded into 4 outputs, each output representing one of the 
minterms of the two input variables. 

 

Inputs Outputs 

Enable A B Y3 Y2 Y1 Y0 

0 x x 0 0 0 0 

1 0 0 0 0 0 1 

1 0 1 0 0 1 0 

1 1 0 0 1 0 0 

1 1 1 1 0 0 0 

 

As shown in the truth table, if enable input is 1 (EN= 1) only one of the outputs 
(Y0 – Y3), is active for a given input. 

The output Y0 is active, ie., Y0= 1 when inputs A= B= 0, 
Y1 is active when inputs, A= 0 and B= 1, 
Y2 is active, when input A= 1 and B= 0, 
Y3 is active, when inputs A= B= 1. 

 

3- to-8 Line Decoder: 
A 3-to-8 line decoder has three inputs (A, B, C) and eight outputs (Y0- Y7). Based 

on the 3 inputs one of the eight outputs is selected. 
The three inputs are decoded into eight outputs, each output representing one of 

the minterms of the 3-input variables. This decoder is used for binary-to-octal 
conversion. The input variables may represent a binary number and the outputs will 
represent the eight digits in the octal number system. The output variables are mutually 
exclusive because only one output can be equal to 1 at any one time. The output line 
whose value is equal to 1 represents the minterm equivalent of the binary number 
presently available in the input lines. 

 

Inputs Outputs 

A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7 

0 0 0 1 0 0 0 0 0 0 0 

0 0 1 0 1 0 0 0 0 0 0 

0 1 0 0 0 1 0 0 0 0 0 

0 1 1 0 0 0 1 0 0 0 0 

1 0 0 0 0 0 0 1 0 0 0 

1 0 1 0 0 0 0 0 1 0 0 

1 1 0 0 0 0 0 0 0 1 0 

1 1 1 0 0 0 0 0 0 0 1 
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3-to-8 line decoder 
 

 

BCD to 7-Segment Display Decoder: 

A seven-segment display is normally used for displaying any one of the decimal 
digits, 0 through 9. A BCD-to-seven segment decoder accepts a decimal digit in BCD 
and generates the corresponding seven-segment code. Aru
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Each segment is made up of a material that emits light when current is passed 
through it. The segments activated during each digit display are tabulated as— 

 

Digit Display Segments Activated 

 

0 

 

 

 

a, b, c, d, e, f 

 

1 

  

b, c 

 

2 

  

a, b, d, e, g 

 
 

3 

 

 

 
 

a, b, c, d, g 

 

4 

 

 

 

b, c, f, g 

 
 

5 

 

 

 
 

a, c, d, f, g 
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6 

 

 

 
 

a, c, d, e, f, g 

 

7 

 

 

 

a, b, c 

 

8 

 

 

 

a, b, c, d, e, f, g 

 

9 

 

 

 

a, b, c, d, f, g 

 
 

Truth table: 
 

 BCD code 7-Segment code 

Digit A B C D a b c d e f g 

0 0 0 0 0 1 1 1 1 1 1 0 

1 0 0 0 1 0 1 1 0 0 0 0 

2 0 0 1 0 1 1 0 1 1 0 1 

3 0 0 1 1 1 1 1 1 0 0 1 

4 0 1 0 0 0 1 1 0 0 1 1 

5 0 1 0 1 1 0 1 1 0 1 1 

6 0 1 1 0 1 0 1 1 1 1 1 

7 0 1 1 1 1 1 1 0 0 0 0 

8 1 0 0 0 1 1 1 1 1 1 1 

9 1 0 0 1 1 1 1 1 0 1 1 
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K-map Simplification: 
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Logic Diagram: 
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BCD to 7-segment display decoder 
 
 

Applications of decoders: 

1. Decoders are used in counter system. 
2. They are used in analog to digital converter. 
3. Decoder outputs can be used to drive a display system. 
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ENCODERS: 

An encoder is a digital circuit that performs the inverse operation of a decoder. 
Hence, the opposite of the decoding process is called encoding. An encoder is a 
combinational circuit that converts binary information from 2n input lines to a 
maximum of ‗n‘ unique output lines. 
The general structure of encoder circuit is – 

General structure of Encoder 
 

It has 2n input lines, only one which 1 is active at any time and ‗n‘ output lines. It 
encodes one of the active inputs to a coded binary output with ‗n‘ bits. In an encoder, 
the number of outputs is less than the number of inputs. 

Octal-to-Binary Encoder: 
It has eight inputs (one for each of the octal digits) and the three outputs that 

generate the corresponding binary number. It is assumed that only one input has a 
value of 1 at any given time. 

 

Inputs Outputs 

D0 D1 D2 D3 D4 D5 D6 D7 A B C 

1 0 0 0 0 0 0 0 0 0 0 

0 1 0 0 0 0 0 0 0 0 1 

0 0 1 0 0 0 0 0 0 1 0 

0 0 0 1 0 0 0 0 0 1 1 

0 0 0 0 1 0 0 0 1 0 0 

0 0 0 0 0 1 0 0 1 0 1 

0 0 0 0 0 0 1 0 1 1 0 

0 0 0 0 0 0 0 1 1 1 1 

The encoder can be implemented with OR gates whose inputs are determined 
directly from the truth table. Output z is equal to 1, when the input octal digit is 1 or 3 
or 5 or 7. Output y is 1 for octal digits 2, 3, 6, or 7 and the output is 1 for digits 4, 5, 6 or 
7. These conditions can be expressed by the following output Boolean functions: 

 
z= D1+ D3+ D5+ D7 
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y= D2+ D3+ D6+ D7 

x= D4+ D5+ D6+ D7 

The encoder can be implemented with three OR gates. The encoder defined in 
the below table, has the limitation that only one input can be active at any given time. If 
two inputs are active simultaneously, the output produces an undefined combination. 

For eg., if D3 and D6 are 1 simultaneously, the output of the encoder may be 111. 
This does not represent either D6 or D3. To resolve this problem, encoder circuits must 
establish an input priority to ensure that only one input is encoded. If we establish a 
higher priority for inputs with higher subscript numbers and if D3 and D6 are 1 at the 
same time, the output will be 110 because D6 has higher priority than D3. 

 

Octal-to-Binary Encoder 

Another problem in the octal-to-binary encoder is that an output with all 0‘s is 
generated when all the inputs are 0; this output is same as when D0 is equal to 1. The 
discrepancy can be resolved by providing one more output to indicate that atleast one 
input is equal to 1. 

 

Priority Encoder: 

A priority encoder is an encoder circuit that includes the priority function. In 
priority encoder, if two or more inputs are equal to 1 at the same time, the input having 
the highest priority will take precedence. 

In addition to the two outputs x and y, the circuit has a third output, V (valid bit 
indicator). It is set to 1 when one or more inputs are equal to 1. If all inputs are 0, there 
is no valid input and V is equal to 0. 
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The higher the subscript number, higher the priority of the input. Input D3, has 
the highest priority. So, regardless of the values of the other inputs, when D3 is 1, the 
output for xy is 11. 

D2 has the next priority level. The output is 10, if D2= 1 provided D3= 0. The 
output for D1 is generated only if higher priority inputs are 0, and so on down the 
priority levels. 

 
Truth table: 

 

Inputs Outputs 

D0 D1 D2 D3 x y V 

0 0 0 0 x x 0 

1 0 0 0 0 0 1 

x 1 0 0 0 1 1 

x x 1 0 1 0 1 

x x x 1 1 1 1 

Although the above table has only five rows, when each don‘t care condition is 
replaced first by 0 and then by 1, we obtain all 16 possible input combinations. For 
example, the third row in the table with X100 represents minterms 0100 and 1100. The 
don‘t care condition is replaced by 0 and 1 as shown in the table below. 

Modified Truth table: 
 

Inputs Outputs 

D0 D1 D2 D3 x y V 

0 0 0 0 x x 0 

1 0 0 0 0 0 1 

0 1 0 0 
0 1 1 

1 1 0 0 

0 0 1 0    

0 
1 

1 
0 

1 
1 

0 
0 

1 0 1 

1 1 1 0    

0 0 0 1    

0 0 1 1    

0 1 0 1    

0 1 1 1 1 1 1 
1 0 0 1    

1 0 1 1    

1 1 0 1    

1 1 1 1    
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K-map Simplification: 

 
 
 

The priority encoder is implemented according to the above Boolean functions. 

 
4- Input Priority Encoder 
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MULTIPLEXER: (Data Selector) 
 

A multiplexer or MUX, is a combinational circuit with more than one input line, 
one output line and more than one selection line. A multiplexer selects binary 
information present from one of many input lines, depending upon the logic status of 
the selection inputs, and routes it to the output line. Normally, there are 2n input lines 
and n selection lines whose bit combinations determine which input is selected. The 
multiplexer is often labeled as MUX in block diagrams. 

A multiplexer is also called a data selector, since it selects one of many inputs 
and steers the binary information to the output line. 

 
Block diagram of Multiplexer 

 

2-to-1- line Multiplexer: 

The circuit has two data input lines, one output line and one selection line, S. 
When S= 0, the upper AND gate is enabled and I0 has a path to the output. 
When S=1, the lower AND gate is enabled and I1 has a path to the output. 

 

Logic diagram 

The multiplexer acts like an electronic switch that selects one of the two sources. 

Truth table: 

 
 

S Y 

0 I0 

1 I1 
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4-to-1-line Multiplexer: 
A 4-to-1-line multiplexer has four (2n) input lines, two (n) select lines and one 

output line. It is the multiplexer consisting of four input channels and information of 
one of the channels can be selected and transmitted to an output line according to the 
select inputs combinations. Selection of one of the four input channel is possible by two 
selection inputs. 

Each of the four inputs I0 through I3, is applied to one input of AND gate. 
Selection lines S1 and S0 are decoded to select a particular AND gate. The outputs of the 
AND gate are applied to a single OR gate that provides the 1-line output. 

 

 
4-to-1-Line Multiplexer 

 

Function table: 
 

S1 S0 Y 

0 0 I0 

0 1 I1 

1 0 I2 

1 1 I3 

 
To demonstrate the circuit operation, consider the case when S1S0= 10. The AND 

gate associated with input I2 has two of its inputs equal to 1 and the third input 
connected to I2. The other three AND gates have atleast one input equal to 0, which 
makes their outputs equal to 0. The OR output is now equal to the value of I2, providing 
a path from the selected input to the output. 
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The data output is equal to I0 only if S1= 0 and S0= 0; Y= I0S1‘S0‘. 
The data output is equal to I1 only if S1= 0 and S0= 1; Y= I1S1‘S0. 
The data output is equal to I2 only if S1= 1 and S0= 0; Y= I2S1S0‘. 
The data output is equal to I3 only if S1= 1 and S0= 1; Y= I3S1S0. 

When these terms are ORed, the total expression for the data output is, 

Y= I0S1’S0’+ I1S1’S0 +I2S1S0’+ I3S1S0. 

As in decoder, multiplexers may have an enable input to control the operation of 
the unit. When the enable input is in the inactive state, the outputs are disabled, and 
when it is in the active state, the circuit functions as a normal multiplexer. 

 

Quadruple 2-to-1 Line Multiplexer: 
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This circuit has four multiplexers, each capable of selecting one of two input 
lines. Output Y0 can be selected to come from either A0 or B0. Similarly, output Y1 may 
have the value of A1 or B1, and so on. Input selection line, S selects one of the lines in 
each of the four multiplexers. The enable input E must be active for normal operation. 

Although the circuit contains four 2-to-1-Line multiplexers, it is viewed as a 
circuit that selects one of two 4-bit sets of data lines. The unit is enabled when E= 0. 
Then if S= 0, the four A inputs have a path to the four outputs. On the other hand, if 
S=1, the four B inputs are applied to the outputs. The outputs have all 0‘s when E= 1, 
regardless of the value of S. 

 

Application: 

The multiplexer is a very useful MSI function and has various ranges of 
applications in data communication. Signal routing and data communication are the 
important applications of a multiplexer. It is used for connecting two or more sources to 
guide to a single destination among computer units and it is useful for constructing a 
common bus system. One of the general properties of a multiplexer is that Boolean 
functions can be implemented by this device. 

 

Implementation of Boolean Function using MUX: 

Any Boolean or logical expression can be easily implemented using a 
multiplexer. If a Boolean expression has (n+1) variables, then ‗n‘ of these variables can 
be connected to the select lines of the multiplexer. The remaining single variable along 
with constants 1 and 0 is used as the input of the multiplexer. For example, if C is the 
single variable, then the inputs of the multiplexers are C, C‘, 1 and 0. By this method 
any logical expression can be implemented. 

In general, a Boolean expression of (n+1) variables can be implemented using a 
multiplexer with 2n inputs. 

1. Implement the following boolean function using 4: 1 multiplexer, 
F (A, B, C) = ∑m (1, 3, 5, 6). 

Solution: 
Variables, n= 3 (A, B, C) 
Select lines= n-1 = 2 (S1, S0) 
2n-1 to MUX i.e., 22 to 1 = 4 to 1 MUX 

Input lines= 2n-1 = 22 = 4 (D0, D1, D2, D3) 
 

Implementation table: 

Apply variables A and B to the select lines. The procedures for implementing the 
function are: 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



Department of Information Technology

 

i. List the input of the multiplexer 
ii. List under them all the minterms in two rows as shown below. 

The first half of the minterms is associated with A‘ and the second half with A. The 
given function is implemented by circling the minterms of the function and applying 
the following rules to find the values for the inputs of the multiplexer. 

1. If both the minterms in the column are not circled, apply 0 to the corresponding 
input. 

2. If both the minterms in the column are circled, apply 1 to the corresponding 
input. 

3. If the bottom minterm is circled and the top is not circled, apply C to the input. 

4. If the top minterm is circled and the bottom is not circled, apply C‘ to the input. 
 

 

Multiplexer Implementation: 
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2. F (x, y, z) = ∑m (1, 2, 6, 7) 

Solution: 

Implementation table: 
 

 
Multiplexer Implementation: 

 
 

3. F ( A, B, C) = ∑m (1, 2, 4, 5) 
Solution: 

Variables, n= 3 (A, B, C) 
Select lines= n-1 = 2 (S1, S0) 
2n-1 to MUX i.e., 22 to 1 = 4 to 1 MUX 
Input lines= 2n-1 = 22 = 4 (D0, D1, D2, D3) 

Implementation table: 
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Multiplexer Implementation: 

 
 
 
 

4. F( P, Q, R, S)= ∑m (0, 1, 3, 4, 8, 9, 15) 
 

Solution: 
Variables, n= 4 (P, Q, R, S) 
Select lines= n-1 = 3 (S2, S1, S0) 
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX 
Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7) 

 
Implementation table: 
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Multiplexer Implementation: 
 

 
 

5. Implement the Boolean function using 8: 1 and also using 4:1 multiplexer 
F (A, B, C, D) = ∑m (0, 1, 2, 4, 6, 9, 12, 14) 

 
Solution: 

 

Variables, n= 4 (A, B, C, D) 
Select lines= n-1 = 3 (S2, S1, S0) 
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX 
Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7) 

 
Implementation table: 
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Multiplexer Implementation (Using 8: 1 MUX): 

 
Using 4: 1 MUX: 

 

6. F (A, B, C, D) = ∑m (1, 3, 4, 11, 12, 13, 14, 15) 
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Solution: 
Variables, n= 4 (A, B, C, D) 
Select lines= n-1 = 3 (S2, S1, S0) 
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX 
Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7) 

 
Implementation table: 

 

 
Multiplexer Implementation: 

 
 

7. Implement the Boolean function using 8: 1 multiplexer. 
F (A, B, C, D) = A’BD’ + ACD + B’CD + A’C’D. 

Solution: 

Convert into standard SOP form, 
= A‘BD‘ (C‘+C) + ACD (B‘+B) + B‘CD (A‘+A) + A‘C‘D (B‘+B) 
= A‘BC‘D‘ + A‘BCD‘+ AB‘CD + ABCD +A‘B‘CD + AB‘CD +A‘B‘C‘D+ A‘BC‘D 
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= A‘BC‘D‘ + A‘BCD‘+ AB‘CD + ABCD +A‘B‘CD +A‘B‘C‘D+ A‘BC‘D 
= m4+ m6+ m11+ m15+ m3+ m1+ m5 
= ∑m (1, 3, 4, 5, 6, 11, 15) 

 

Implementation table: 

 
 

 

Multiplexer Implementation: 
 

 

8. Implement the Boolean function using 8: 1 multiplexer. 
F (A, B, C, D) = AB’D + A’C’D + B’CD’ + AC’D. 

Solution: 
Convert into standard SOP form, 

= AB‘D (C‘+C) + A‘C‘D (B‘+B) + B‘CD‘ (A‘+A) + AC‘D (B‘+B) 
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= AB‘C‘D + AB‘CD+ A‘B‘C‘D + A‘BC‘D +A‘B‘CD‘ + AB‘CD‘ +AB‘C‘D+ ABC‘D 
= AB‘C‘D + AB‘CD+ A‘B‘C‘D + A‘BC‘D +A‘B‘CD‘ + AB‘CD‘+ ABC‘D 
= m9+ m11+ m1+ m5+ m2+ m10+ m13 
= ∑m (1, 2, 5, 9, 10, 11, 13). 

Implementation Table: 
 

 

Multiplexer Implementation: 

 
9. Implement the Boolean function using 8: 1 and also using 4:1 multiplexer 

F (w, x, y, z) = ∑m (1, 2, 3, 6, 7, 8, 11, 12, 14) 
 

Solution: 
Variables, n= 4 (w, x, y, z) 
Select lines= n-1 = 3 (S2, S1, S0) 
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2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX 
Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7) 

 

Implementation table: 
 

 
 

Multiplexer Implementation (Using 8:1 MUX): 

 
 
 
 
 
(Using 4:1 MUX): 
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10. Implement the Boolean function using 8: 1 multiplexer 
F (A, B, C, D) = ∏m (0, 3, 5, 8, 9, 10, 12, 14) 

Solution: 

Variables, n= 4 (A, B, C, D) 
Select lines= n-1 = 3 (S2, S1, S0) 
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX 
Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7) 

 
Implementation table: 

 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



Department of Information Technology

 

Multiplexer Implementation: 
 

 
11. Implement the Boolean function using 8: 1 multiplexer 

F (A, B, C, D) = ∑m (0, 2, 6, 10, 11, 12, 13) + d (3, 8, 14) 
Solution: 

Variables, n= 4 (A, B, C, D) 
Select lines= n-1 = 3 (S2, S1, S0) 
2n-1 to MUX i.e., 23 to 1 = 8 to 1 MUX 
Input lines= 2n-1 = 23 = 8 (D0, D1, D2, D3, D4, D5, D6, D7) 

Implementation Table: 
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Multiplexer Implementation: 

 
 

12. An 8×1 multiplexer has inputs A, B and C connected to the selection inputs S2, S1, 
and S0 respectively. The data inputs I0 to I7 are as follows 
I1=I2=I7= 0; I3=I5= 1; I0=I4= D and I6= D'. 
Determine the Boolean function that the multiplexer implements. 

Multiplexer Implementation: 
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Implementation table: 
 

 
F (A, B, C, D) = ∑m (3, 5, 6, 8, 11, 12, 13). 

DEMULTIPLEXER:  

Demultiplex means one into many. Demultiplexing is the process of taking 
information from one input and transmitting the same over one of several outputs. 

A demultiplexer is a combinational logic circuit that receives information on a 
single input and transmits the same information over one of several (2n) output lines. 

 
 

 
 

 

 

Block diagram of demultiplexer 

The block diagram of a demultiplexer which is opposite to a multiplexer in its 
operation is shown above. The circuit has one input signal, ‗n‘ select signals and 2n 

output signals. The select inputs determine to which output the data input will be 
connected. As the serial data is changed to parallel data, i.e., the input caused to appear 
on one of the n output lines, the demultiplexer is also called a ―data distributer‖  or a 

―serial-to-parallel converter‖ . 
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1-to-4 Demultiplexer: 

A 1-to-4 demultiplexer has a single input, Din, four outputs (Y0 to Y3) and two 
select inputs (S1 and S0). 

Logic Symbol 
 

The input variable Din has a path to all four outputs, but the input information is 
directed to only one of the output lines. The truth table of the 1-to-4 demultiplexer is 
shown below. 

 

Enable S1 S0 Din Y0 Y1 Y2 Y3 

0 x x x 0 0 0 0 

1 0 0 0 0 0 0 0 

1 0 0 1 1 0 0 0 

1 0 1 0 0 0 0 0 

1 0 1 1 0 1 0 0 

1 1 0 0 0 0 0 0 

1 1 0 1 0 0 1 0 

1 1 1 0 0 0 0 0 

1 1 1 1 0 0 0 1 
 
 

Truth table of 1-to-4 demultiplexer 
 

From the truth table, it is clear that the data input, Din is connected to the output 
Y0, when S1= 0 and S0= 0 and the data input is connected to output Y1 when S1= 0 and 
S0= 1. Similarly, the data input is connected to output Y2 and Y3 when S1= 1 and S0= 0 
and when S1= 1 and S0= 1, respectively. Also, from the truth table, the expression for 
outputs can be written as follows, 
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Y0= S1’S0’Din 

Y1= S1’S0Din 

Y2= S1S0’Din 

Y3= S1S0Din 

Logic diagram of 1-to-4 demultiplexer 
 

Now, using the above expressions, a 1-to-4 demultiplexer can be implemented 
using four 3-input AND gates and two NOT gates. Here, the input data line Din, is 
connected to all the AND gates. The two select lines S1, S0 enable only one gate at a time 

and the data that appears on the input line passes through the selected gate to the 
associated output line. 

 

1-to-8 Demultiplexer: 

A 1-to-8 demultiplexer has a single input, Din, eight outputs (Y0 to Y7) and three 
select inputs (S2, S1 and S0). It distributes one input line to eight output lines based on 
the select inputs. The truth table of 1-to-8 demultiplexer is shown below. 

 

Din S2 S1 S0 Y7 Y6 Y5 Y4 Y3 Y2 Y1 Y0 

0 x x x 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 1 

1 0 0 1 0 0 0 0 0 0 1 0 

1 0 1 0 0 0 0 0 0 1 0 0 
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1 0 1 1 0 0 0 0 1 0 0 0 

1 1 0 0 0 0 0 1 0 0 0 0 

1 1 0 1 0 0 1 0 0 0 0 0 

1 1 1 0 0 1 0 0 0 0 0 0 

1 1 1 1 1 0 0 0 0 0 0 0 

Truth table of 1-to-8 demultiplexer 

From the above truth table, it is clear that the data input is connected with one of 
the eight outputs based on the select inputs. Now from this truth table, the expression 
for eight outputs can be written as follows: 

Y0= S2‘S1‘S0‘Din Y4= S2 S1‘S0‘Din 

Y1= S2‘S1‘S0Din Y5= S2 S1‘S0Din 

Y2= S2‘S1S0‘Din Y6= S2 S1S0‘Din 

Y3= S2‘S1S0Din Y7= S2S1S0Din 

Now using the above expressions, the logic diagram of a 1-to-8 demultiplexer can be 
drawn as shown below. Here, the single data line, Din is connected to all the eight AND 
gates, but only one of the eight AND gates will be enabled by the select input lines. For 
example, if S2S1S0= 000, then only AND gate-0 will be enabled and thereby the data 
input, Din will appear at Y0. Similarly, the different combinations of the select inputs, the 
input Din will appear at the respective output. 
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Logic diagram of 1-to-8 demultiplexer 

1. Design 1:8 demultiplexer using two 1:4 DEMUX. 
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2. Implement full subtractor using demultiplexer. 
 

Inputs Outputs 

A B Bin Difference(D) Borrow(Bout) 

0 0 0 0 0 

0 0 1 1 1 

0 1 0 1 1 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 0 

1 1 0 0 0 

1 1 1 1 1 
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