
4.1 ASynchronous Sequential Circuits 
 

 

ASYNCHRONOUS SEQUENTIAL 
CIRCUITS 

UNIT 4 
 
 
 
 

 

Analysis of asynchronous sequential machines, state assignment, asynchronous design problem 
 

 
4.1 INTRODUCTION 

A sequential circuit is specified by a time sequence of inputs, outputs and 

internal states. In synchronous sequential circuits, the output changes whenever a 

clock pulse is applied. The memory elements are clocked flip-flops. 

Asynchronous sequential circuits do not use clock pulses. The memory 

elements in asynchronous sequential circuits are either unclocked flip-flops (Latches) 

or time-delay elements. 

 

S.No Synchronous sequential circuits Asynchronous sequential circuits 

 
1 

Memory elements are clocked flip- 

flops 

Memory elements are either 

unclocked flip-flops or time delay 

elements. 

 
2 

The change in input signals can 

affect memory element upon 

activation of clock signal. 

The change in input signals can 

affect memory element at any 

instant of time. 

 
 

3 

The maximum operating speed of 

clock depends on time delays 

involved. Therefore synchronous 

circuits can operate slower than 

asynchronous. 

 
Because of the absence of clock, it 

can operate faster than synchronous 

circuits. 
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4.2 ASynchronous Sequential Circuits 
 

 

 

 
Block diagram of Asynchronous sequential circuits 

 
 

The block diagram of asynchronous sequential circuit is shown above. It 

consists of a combinational circuit and delay elements connected to form feedback 

loops. There are ‘n’ input variables, ‘m’ output variables, and ‘k’ internal states. 

The delay elements provide short term memory for the sequential circuit. The 

present-state and next-state variables in asynchronous sequential circuits are called 

secondary variables and excitation variables, respectively. 

When an input variable changes in value, the ‘y’ secondary variable does not 

change instantaneously. It takes a certain amount of time for the signal to propagate 

from the input terminals through the combinational circuit to the ‘Y’ excitation 

variables where the new values are generated for the next state. These values 

propagate through the delay elements and become the new present state for the 

secondary variables. 

In steady-state condition, excitation and secondary variables are same, but 

during transition they are different. 

To ensure proper operation, it is necessary for asynchronous sequential 

circuits to attain a stable state before the input is changed to a new value. Because of 

unequal delays in wires and combinational circuits, it is impossible to have two or 
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4.3 ASynchronous Sequential Circuits 
 

 

more input variable change at exactly same instant. Therefore, simultaneous changes 

of two or more input variables are avoided. 

Only one input variable is allowed to change at any one time and the time 

between input changes is kept longer than the time it takes the circuit to reach stable 

state. 

 
Types: 

According to how input variables are to be considered, there are two types 

Fundamental mode circuit 

Pulse mode circuit. 

 

Fundamental mode circuit assumes that: 

The input variables change only when the circuit is stable. 

Only one input variable can change at a given time. 

Inputs are levels (0, 1) and not pulses. 

 

Pulse mode circuit assumes that: 

The input variables are pulses (True, False) instead of levels. 

The width of the pulses is long enough for the circuit to respond to the input. 

The pulse width must not be so long that it is still present after the new state 

is reached. 

 
4.2 Analysis of Fundamental Mode Circuits 

The analysis of asynchronous sequential circuits consists of obtaining a table 

or a diagram that describes the sequence of internal states and outputs as a function 

of changes in the input variables. Aru
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4.4 ASynchronous Sequential Circuits 
 

 

4.2.1 Analysis procedure 

The procedure for obtaining a transition table from the given circuit diagram 

is as follows. 

1. Determine all feedback loops in the circuit. 

2. Designate the output of each feedback loop with variable Y1 and its 

corresponding inputs y1, y2,….yk, where k is the number of feedback loops in 

the circuit. 

3. Derive the Boolean functions of all Y’s as a function of the external inputs and 

the y’s. 

4. Plot each Y function in a map, using y variables for the rows and the external 

inputs for the columns. 

5. Combine all the maps into one table showing the value of Y= Y1, Y2,….Yk 

inside each square. 

6. Circle all stable states where Y=y. The resulting map is the transition table. 

 

4.2.2 Problems 

1. An asynchronous sequential circuit is described by the following excitation and 

output function, 

Y= x1x2+ (x1+x2) y 

Z= Y 

a) Draw the logic diagram of the circuit. 

b) Derive the transition table, flow table and output map. 

c) Describe the behavior of the circuit. 

Soln: 

i) The logic diagram is shown as, 
 

Logic diagram 
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ii) 
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Transition table: 

 

Output map: 

Output is mapped for all stable states. For unstable states output is mapped 

unspecified. 

Flow table: 

Assign a= 0; b= 1 
 

 

iii) 

The circuit gives carry output of the full adder circuit. 
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4.6 ASynchronous Sequential Circuits 
 

 

2. Design an asynchronous sequential circuit that has two internal states and one 

output. The excitation and output function describing the circuit are as follows: 

Y1= x1x2+ x1y2+ x2y1 

Y2= x2+ x1y1y2+ x1y1 

Z= x2+ y1. 

a) Draw the logic diagram of the circuit. 

b) Derive the transition table, output map and flow table. 

Soln: 

i) The logic diagram is shown as, 
 

Logic Diagram 
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Transition table and Output map 
 

Transition table Output map 
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4.8 ASynchronous Sequential Circuits 
 

 

Primitive Flow table 
 

 
 

3. An asynchronous sequential circuit is described by the excitation and output 

functions, 

Y= x1x2’+ (x1+x2’) y 

Z= Y 

a) Draw the logic diagram of the circuit. 

b) Derive the transition table, output map and flow table. 

Soln: 
 

 

Logic diagram 

ii) 
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4.9 ASynchronous Sequential Circuits 
 

 

Transition table: 
 

 

 
Output map: 

Transition Table 

Output is mapped for all stable states. For unstable states output is mapped 

unspecified. 

 

Output map 

Flow table: 

Assign a= 0; b= 1 
 

 

 

4. An asynchronous sequential circuit is described by the excitation and output 

functions,  B= (A1’B2) b+ (A1+B2) C= B 

a) Draw the logic diagram of the circuit. 

b) Derive the transition table, output map and flow table. 

Soln: 
 

 

Logic Diagram 

ii) 
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Transition table 
 

 
 

Output map 

Output is mapped for all stable states. 
 

Flow table 

Assign a= 0; b= 1 
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5. An asynchronous sequential circuit is described by the excitation and output 

functions, 

X= (Y1Z1’W2) x + (Y1’Z1W2’) 

S=X’ 

a) Draw the logic diagram of the circuit 

b) Derive the translation table and output map 

Soln: 
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Transition table and Output map: 
 

Transition table Output map 
 
 
 
 
 

 

4.3 Analysis of Pulse Mode Circuits 

Pulse mode asynchronous sequential circuits rely on the input pulses rather 

than levels. They allow only one input variable to change at a time. They can be 

implemented by employing a SR latch. 

The procedure for analyzing an asynchronous sequential circuit with SR 

latches can be summarized as follows: 
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4.13 ASynchronous Sequential Circuits 
 

 

1. Label each latch output with Yi and its external feedback path (if any) with yi 

for 

i = 1,2 ,..,, k. 

2. Derive the Boolean functions for the Si and Ri inputs in each latch. 

3. Check whether SR = 0 for each NOR latch or whether S'R' = 0 for each NAND 

latch. If either of these condition is not satisfied, there is a possibility that the 

circuit may not operate properly. 

4. Evaluate Y = S + R’y for each NOR latch or Y = S' + Ry for each NAND latch. 

5. Construct a map with the y’s representing the rows and the x inputs 

representing the columns. 

6. Plot the value of Y= Y1Y2 ……Yk in the map. 

7. Circle all stable states such that Y = y. The resulting map is the transition 

table. 

The analysis of a circuit with latches will be demonstrated by means of the below 

example. 

 
1. Derive the transition table for the pulse mode asynchronous sequential circuit 

shown below. 

Example of a circuit with SR latches 
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4.14 ASynchronous Sequential Circuits 
 

 

Soln: 

There are two inputs x1 and x2 and two external feedback loops giving rise to 

the secondary variables y1 and y2. 

Step 1: 

The Boolean functions for the S and R inputs in each latch are: 
 

S1= x1y2 S2= x1x2 

R1= x1’x2’ R2= x2’y1 

Step 2: 

Check whether the conditions SR= 0 is satisfied to ensure proper operation of the 

circuit. 

S1R1= x1y2 x1’x2’ = 0 

S2R2= x1x2 x2’y1 = 0 

The result is 0 because x1x1’ = x2x2’ = 0 

 
Step 3: 

Evaluate Y1 and Y2. The excitation functions are derived from the relation Y= S+ R’y. 

Y1= S1+ R1’y1 = x1y2 +(x1’x2’)’ y1 

= x1y2 +(x1+ x2) y1 = x1y2 +x1y1+ x2y1 

Y2= S2+ R2’y2 = x1x2+ (x2’y1)’y2 

= x1x2+ (x2+ y1’) y2 = x1x2+ x2y2+ y1’y2 
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Step 4: 

 
 
 
 
 
 
 
 
 

 
Step 5: 

 
Maps for Y1 and Y2. 
 

 
 

Transition table 
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4.4 RACES: 

A race condition is said to exist in an asynchronous sequential circuit when 

two or more binary state variables change value in response to a change in an input 

variable. 

Races are classified as: 

i. Non-critical races 

ii. Critical races. 

 

Non-critical races: 

If the final stable state that the circuit reaches does not depend on the order in 

which the state variables change, the race is called a non-critical race. 

If a circuit, whose transition table (a) starts with the total stable state y1y2x= 

000 and then change the input from 0 to 1. The state variables must then change from 

00 to 11, which define a race condition. 

The possible transitions are: 
 

00 11  

00 01 11 

00 10 11 

In all cases, the final state is the same, which results in a non-critical condition. In (a), 

the final state is (y1y2x= 111), and in (b), it is (y1y2x= 011). 

Examples of Non-critical Races 
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Critical races: 

A race becomes critical if the correct next state is not reached during a state 

transition. If it is possible to end up in two or more different stable states, depending 

on the order in which the state variables change, then it is a critical race. For proper 

operation, critical races must be avoided. 

The below transition table illustrates critical race condition. The transition 

table (a) starts in stable state (y1y2x= 000), and then change the input from 0 to 1. The 

state variables must then change from 00 to 11. If they change simultaneously, the 

final total stable state is 111. In the transition table (a), if, because of unequal 

propagation delay, Y2 changes to 1 before Y1 does, then the circuit goes to the total 

stable state 011 and remains there. If, however, Y1 changes first, the internal state 

becomes 10 and the circuit will remain in the stable total state 101. 

Hence, the race is critical because the circuit goes to different stable states, 

depending on the order in which the state variables change. 

 

Examples of Critical Races 
 
 

 

4.5 CYCLES 

Races can be avoided by directing the circuit through intermediate unstable 

states with a unique state-variable change. When a circuit goes through a unique 

sequence of unstable states, it is said to have a cycle. 
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Again, we start with y1y2 = 00 and change the input from 0 to 1. The transition 

table (a) gives a unique sequence that terminates in a total stable state 101. The table 

in (b) shows that even though the state variables change from 00 to 11, the cycle 

provides a unique transition from 00 to 01 and then to 11, Care must be taken when 

using a cycle that terminates with a stable state. If a cycle does not terminate with a 

stable state, the circuit will keep going from one unstable state to another, making 

the entire circuit unstable. This is demonstrated in the transition table (c). 

 

 
Debounce Circuit: 

Examples of Cycles 

 

Input binary information in binary information can be generated manually be 

means of mechanical switches. One position of the switch provides a voltage 

equivalent to logic 1, and the other position provides a second voltage equivalent to 

logic 0. Mechanical switches are also used to start, stop, or reset the digital system. A 

common characteristic of a mechanical switch is that when the arm is thrown from 

one position to the other the switch contact vibrates or bounces several times before 

coming to a final rest. In a typical switch, the contact bounce may take several 

milliseconds to die out, causing the signal to oscillate between 1 and 0 because the 

switch contact is vibrating. 

A debounce circuit is a circuit which removes the series of pulses that result 

from a contact bounce and produces a single smooth transition of the binary signal 

from 0 to 1 or from 1 to 0. One such circuit consists of a single-pole, double-throw 

switch connected to an SR latch, as shown below. The center contact is connected to 
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ground that provides a signal equivalent to logic 0. When one of the two contacts, A 

or B, is not connected to ground through the switch, it behaves like a logic-1 signal. 

When the switch is thrown from position A to position B and back, the outputs of the 

latch produce a single pulse as shown, negative for Q and positive for Q'. The switch 

is usually a push button whose contact rests in position A. When the pushbutton is 

depressed, it goes to position B and when released, it returns to position A. 

 

Debounce Circuit 
 
 

The operation of the debounce circuit is as follows: When the switch resets in 

position A, we have the condition S = 0, R = 1 and Q = 1, Q' = 0. When the switch is 

moved to position B, the ground connection causes R to go to 0, while S becomes a 1 

because contact A is open. This condition in turn causes output Q to go to 0 and Q' to 

go to 1. After the switch makes an initial contact with B, it bounces several times. The 

output of the latch will be unaffected by the contact bounce because Q' remains 1 

(and Q remains 0) whether R is equal to 0 (contact with ground) or equal to 1 (no 

contact with ground). When the switch returns to position A, S becomes 0 and Q 

returns to 1. The output again will exhibit a smooth transition, even if there is a 

contact bounce in position A. 
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4.6 DESIGN OF FUNDAMENTAL MODE SEQUENTIAL CIRCUITS 

The design of an asynchronous sequential circuit starts from the statement of 

the problem and concludes in a logic diagram. There are a number of design steps 

that must be carried out in order to minimize the circuit complexity and to produce a 

stable circuit without critical races. 

 
The design steps are as follows: 

1. State the design specifications. 

2. Obtain a primitive flow table from the given design specifications. 

3. Reduce the flow table by merging rows in the primitive flow table. 

4. Assign binary state variables to each row of the reduced flow table to obtain 

the transition table. The procedure of state assignment eliminates any possible 

critical races. 

5. Assign output values to the dashes associated with the unstable states to 

obtain the output maps. 

6. Simplify the Boolean functions of the excitation and output variables and 

draw the logic diagram. 

 
1. Design a gated latch circuit with inputs, G (gate) and D (data), and one output, Q. 

Binary information present at the D input is transferred to the Q output when G 

is equal to 1. The Q output will follow the D input as long as G= 1. When G goes 

to 0, the information that was present at the D input at the time of transition 

occurred is retained at the Q output. The gated latch is a memory element that 

accepts the value of D when G= 1 and retains this value after G goes to 0, a 

change in D does not change the value of the output Q. 

Soln: 

Step 1: 

From the design specifications, we know that Q= 0 if DG= 01 

and Q= 1 if DG= 11 

because D must be equal to Q when G= 1. 

When G goes to 0, the output depends on the last value of D. Thus, if the 

transition is from 01 to 00 to 10, then Q must remain 0 because D is 0 at the time of 

the transition from 1 to 0 in G. 
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If the transition of DG is from 11 to 10 to 00, then Q must remain 1. This 

information results in six different total states, as shown in the table. 

State 
Inputs Output 

Comments 
D G Q 

a 0 1 0 D= Q because G= 1 

b 1 1 1 D= Q because G= 1 

c 0 0 0 After state a or d 

d 1 0 0 After state c 

e 1 0 1 After state b or f 

f 0 0 1 After state e 

 
Step 2: A primitive flow is a flow table with only one stable total state in each 

row. It has one row for each state and one column for each input combination. 
 

 
Step 3: 

Primitive flow table 

 
 

The primitive flow table has only stable state in each row. The table can be 

reduced to a smaller number of rows if two or more stable states are placed in the 

same row of the flow table. The grouping of stable states from separate rows into  

one common row is called merging. Aru
na
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States that are candidates for merging 

Thus, the three rows a, c, and d can be merged into one row. The second row 

of the reduced table results from the merging of rows b, e, and f of the primitive flow 

table. 

Reduced table- 1 

The states c & d are replaced by state a, and states e & f are replaced by state b 
 

 

 
Step 4: 

Reduced table- 2 

 
 

Assign distinct binary value to each state. This assignment converts the flow 

table into a transition table. A binary state assignment must be made to ensure that 

the circuit will be free of critical races. 

Assign 0 to state a, and 1 to state b in the reduced state table. 

 

Transition table and output map 
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Step 5: 
 

Gated-Latch Logic diagram 

The diagram can be implemented also by means of an SR latch. Obtain the 

Boolean function for S and R inputs. 

y Y S R 

0 
0 
1 
1 

0 
1 
0 
1 

0 
1 
0 
x 

x 
0 

1 
0 

SR Latch excitation table 

From the information given in the transition table and from the latch 

excitation table conditions, we can obtain the maps for the S and R inputs of the 

latch. 

Maps for S and R 

The logic diagram consists of an SR latch using NOR latch and the gates 

required to implement the S and R Boolean functions. With a NAND latch, we must 

use the complemented values for S and R. 

S’ = (DG)’ and R’ = (D’G)’ 
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 Logic diagram with NOR latch Logic diagram with NAND latch 
 
 

2. Design a negative-edge triggered T flip-flop. The circuit has two inputs, T 

(toggle) and G (clock), and one output, Q. the output state is complemented if T= 

1 and the clock changes from 1 to 0 (negative-edge triggering). Otherwise, under 

any other input condition, the output Q remains unchanged. 

Step 1: 

Starting with the input condition TC= 11 and assign it to a. The circuit goes to 

state b and output Q complements from 0 to 1 when C changes from 1 to 0 while T 

remains a 1. 

Another change in the output occurs when the circuit changes from state c to 

state d. In this case, T=1, C changes from 1 to 0, and the output Q complements from 

1 to 0. The other four states in the table do not change the output, because T is equal 

to 0. If Q is initially 0, it stays at 0, and if initially at 1, it stays at 1 even though the 

clock input changes. 

 

State 
Inputs Output 

Comments 
T G Q 

a 1 1 0 Initial output is 0 

b 1 0 1 After state a 

c 1 1 1 Initial output is 1 

d 1 0 0 After state c 

e 0 0 0 After state d or f 

f 0 1 0 After state e or a 

g 0 0 1 After state b or h 

h 0 1 1 After state g or c 
Specifications of total states 
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Step 2: Merging of the flow table 

The information for the primitive flow table can be obtained directly from the 

condition listed in the above table. We first fill in one square in each row belonging 

to stable state in that row as listed in the table. 

Then we enter dashes in those squares whose input differs by two variables 

from the input corresponding to the stable state. 

The unstable conditions are then determined by utilizing the information 

listed under the comments in the above table. 
 

 
 

Step 3: Compatible pairs 

Primitive flow table 

The rows in the primitive flow table are merged by first obtaining all 

compatible pairs of states. This is done by means of the implication table. 
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Implication table 

The implication table is used to find the compatible states. The only difference 

is that when comparing rows, we are at liberty to adjust the dashes to fit any desired 

condition. The two states are compatible if in every column of the corresponding 

rows in the primitive flow table, there are identical or compatible pairs and if there is 

no conflict in the output values. 

A check mark ( ) designates a square whose pair of states is compatible.  

Those states that are not compatible are marked with a cross (x). The remaining 

squares are recorded with the implied pairs that need further investigation. 

The squares that contain the check marks define the compatible pairs: 

(a, f) (b, g)   (b, h)   (c, h)   (d, e)  (d, f) (e, f) (g, h) 

 
Step 4: Maximal compatibles 

Having found all the compatible pairs, the next step is to find larger set of 

states that are compatible. The maximal compatible is a group of compatibles that 

contain all the possible combinations of compatible states. The maximal compatible 

can be obtained from a merger diagram. 
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The merger diagram is a graph in which each state is represented by a dot 

placed along the circumference of a circle. Lines are drawn between any two 

corresponding dots that form a compatible pair. All possible compatibles can be 

obtained from the merger diagram by observing the geometrical patterns in which 

states are connected to each other. 

 A line represents a compatible pair 

 A triangle constitutes a compatible with three states 

 An n-state compatible is represented in the merger diagram by an n-sided 

polygon with all its diagonals connected. 

Merger Diagram 

The merger diagram is obtained from the list of compatible pairs derived 

from the implication table. There are eight straight lines connecting the dots, one for 

each compatible pair. The lines form a geometrical pattern consisting of two 

triangles connecting (b, g, h) & (d, e, f) and two lines (a, f) & (c, h). The maximal 

compatibles are: 

(a, f) (b, g, h) (c, h) (d, e, f) 
 

Reduced Flow table 
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The reduced flow table is drawn. The compatible states are merged into one 

row that retains the original letter symbols of the states. The four compatible set of 

states are used to merge the flow table into four rows. 

Final Reduced Flow table 

 

Here we assign a common letter symbol to all the stable states in each merged 

row. Thus, the symbol f is replaced by a; g & h are replaced by b, and similarly for 

the other two rows. 

 
Step 5: State Assignment and Transition table 

Find the race-free binary assignment for the four stable states in the reduced 

flow table. Assign a= 00, b= 01, c= 11 and d= 10. 

Substituting the binary assignment into the reduced flow table, the transition 

table is obtained. The output map is obtained from the reduced flow table. 

Transition Table and Output Map 

 

Transition table Output map Q= y2 
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Logic Diagram: 
 

Maps for Latch Inputs 
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3. Develop a state diagram and primitive flow table for a logic system that has two 

inputs, X and Y, and a single output X, which is to behave in the following 

manner. Initially, both inputs and output are equal to 0. Whenever X= 1 and Y= 

0, the Z becomes 1 and whenever X= 0 and Y= 1, the Z becomes 0. When inputs 

are zero, i.e. X= Y= 0 or inputs are one, i.e. X= Y= 1, the output Z does not 

change; it remains in the previous state. The logic system has edge triggered 

inputs without having a clock. The logic system changes state on the rising edges 

of the two inputs. Static input values are not to have any effect in changing the Z 

output. 

Soln: 

The conditions given are, 

Initially both inputs X and Y are 0. 

When X= 1, Y= 0; Z= 1 

When X= 0, Y= 1; Z= 0 

When X= Y= 0 or X= Y= 1, then Z does not change, it remains in the previous 

state. 

Step 1: 

The above state transitions are represented in the state diagram as, 
 
 

State diagram 
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Step 2: 

A primitive flow table is constructed from the state diagram. The primitive 

flow table has one row for each state and one column for each input combination. 

Only one stable state exists for each row in the table. The stable state can be easily 

identified from the state diagram. For example, state A is stable with output 0 when 

inputs are 00, state C is stable with output 1 when inputs are 10 and so on. 

We know that both inputs are not allowed to change simultaneously, so we 

can enter dash marks in each row that differs in two or more variables from the 

input variables associated with the stable state. For example, the first row in the flow 

table shows a stable state with an input of 00. Since only one input can change at any 

given time, it can change to 01 or 10, but not to 11. Therefore we can enter two 

dashes in the 11 column of row A. 

The remaining places in the primitive flow table can be filled by observing 

state diagram. For example, state B is the next state for present state A when input 

combination is 01; similarly state C is the next state for present state A when input 

combination is 10. 

 

 
Step 3: 

Primitive flow table 

 
 

The rows in the primitive flow table are merged by first obtaining all 

compatible pairs of states. This is done by means of the implication table. 
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The squares that contain the check marks ( ) define the compatible pairs: 

(A, B) (A, D) (A, F) (B, D) (C, E) (C, F) (D, E) (E, F) 

 

Step 4: 

The merger diagram is obtained from the list of compatible pairs derived 

from the implication table. There are eight straight lines connecting the dots, one for 

each compatible pair. The lines form a geometrical pattern consisting of two 

triangles connecting (A, B, D) & (C, E, F) and two lines (A, F) & (D, E). The maximal 

compatibles are: 

(A, B, D) (C, E, F) (A, F) (D, E) 
 

 

 
Closed covering condition: 

Merger diagram 

The condition that must be satisfied for merging rows is that the set of chosen 

compatibles must cover all the states and must be closed. The set will cover all the 

states if it includes all the states of the original state table. The closure condition is 
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satisfied if there are no implied states or if the implied states are included within the 

set. A closed set of compatibles that covers all the states is called a closed covering. 

If we remove (A, F) and (D, E), we are left with a set of two compatibles: 

 
(A, B, D) (C, E, F) 

 
All six states from the primitive flow table are included in this set. Thus, the set 

satisfies the covering condition. 

The reduced flow table is drawn as below. 
 

Reduced flow table 

Here we assign a common letter symbol to all the stable states in each merged 

row. Thus, the symbol B & D is replaced by A; E & F are replaced by C. 

 

 

Step 5: 

Find the race-free binary assignment for the four stable states in the reduced 

flow table. Assign A= 0 and C= 1 

Substituting the binary assignment into the reduced flow table, the transition 

table is obtained. The output map is obtained from the reduced flow table. 

Transition table and output map 
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Step 6: 
 

 

 

Gated-Latch Logic diagram 
 
 

4. Design a circuit with inputs X and Y to give an output Z= 1 when XY= 11 but 

only if X becomes 1 before Y, by drawing total state diagram, primitive flow table 

and output map in which transient state is included. 

Soln: 

Step 1: 

The state diagram can be drawn as, 
 

State table 
 
 

Step 2: 

A primitive flow table is constructed from the state table as, 
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Primitive flow table 
 
 

Step 3: 

The rows in the primitive flow table are merged by first obtaining all 

compatible pairs of states. This is done by means of the implication table. 
 

Implication table 

 

The squares that contain the check marks ( ) define the compatible pairs: 

(A, B) (A, C) (A, D) (A, E) (B, D) (C, E) 

 

Step 4: 

The merger diagram is obtained from the list of compatible pairs derived 

from the implication table. There are six straight lines connecting the dots, one for 

each compatible pair. The lines form a geometrical pattern consisting of one triangle 

connecting (A, B, D) & a line (C, E). The maximal compatibles are: 

(A, B, D) (C, E) 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



4.36 ASynchronous Sequential Circuits 
 

 

 

 
 

Merger diagram 

 

The reduced flow table is drawn as below. 
 

Reduced flow table 

Here we assign a common letter symbol to all the stable states in each merged 

row. Thus, the symbol B & D is replaced by A; E is replaced by C. 

Transition table 
 
 
 
 

5. Design a circuit with primary inputs A and B to give an output Z equal to 1 when 

A becomes 1 if B is already 1. Once Z= 1 it will remain so until A goes to 0. Draw 

the total state diagram, primitive flow table for designing this circuit. 

Soln: 

Step 1: 

The state diagram can be drawn as, 
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Step 2: 

State diagram 

 
 

A primitive flow table is constructed from the state table as, 
 

Primitive flow table 
 
 

6. Design an asynchronous sequential circuit that has two inputs X2 and X1 and one 

output Z. When X1= 0, the output Z is 0. The first change in X2 that occurs while 

X1 is 1 will cause output Z to be 1. The output Z will remain 1 until X1 returns to 

0. 

Soln: 
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Step 1: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 2: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Step 3: 

 

The state diagram can be drawn as, 
 

State diagram 

 
 

A primitive flow table is constructed from the state table as, 
 

Primitive flow table 

 
 

The rows in the primitive flow table are merged by obtaining all compatible 

pairs of states. This is done by means of the implication table. 
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Implication table 

 

The squares that contain the check marks ( ) define the compatible pairs: 

(A, B) (A, C) (C, E) (D, F) 

 

Step 4: 

The merger diagram is obtained from the list of compatible pairs derived 

from the implication table. There are four straight lines connecting the dots, one for 

each compatible pair. It consists of four lines (A, B), (A, C), (C, E) and (D, F). 
 

 
The maximal compatibles are: 

Merger diagram 

(A, B) (C, E) (D, F) 

This set of maximal compatible covers all the original states resulting in the reduced 

flow table. 

The reduced flow table is drawn as below. 
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Flow table 

 

Here we assign a common letter symbol to all the stable states in each merged 

row. Thus, the symbol B is replaced by A; E is replaced by C and F is replaced by D. 
 

 
Step 5: 

Reduced Flow table 

 
 

Find the race-free binary assignment for the four stable states in the reduced 

flow table. Assign A= S0, C= S1 and D= S2. 
 

 
Now, if we assign S0= 00, S1 = 01 and S2 = 10, then we need one more state S3= 

11 to prevent critical race during transition of S0         S1 or S2 S1. By introducing S3 

the transitions S1 S2 and S2 S1 are routed through S4. 

Thus after state assignment the flow table can be given as, 
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Flow table with state assignment 

 

Substituting the binary assignment into the reduced flow table, the transition 

table is obtained. The output map is obtained from the reduced flow table. 

K- Map simplification: 
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Logic Diagram: 
 

 
 

7. Obtain a primitive flow table for a circuit with two inputs x1 and x2 and two 

outputs z1 and z2 that satisfies the following four conditions. 

i. When x1x2 = 00, output z1z2 = 00. 

ii. When x1= 1 and x2 changes from 0 to 1, the output z1z2 = 01. 

iii. When x2= 1 and x1 changes from 0 to 1, the output z1z2 = 10. 

iv. Otherwise the output does not change. 

Soln: 

The state diagram can be drawn as, 
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State diagram 

Step 2: A primitive flow table is constructed from the state table as, 
 

Primitive flow table 
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4.7 HAZARDS 

Hazards are unwanted switching transients that may appear at the output of 

a circuit because different paths exhibit different propagation delays. 

Hazards occur in combinational circuits, where they may cause a temporary 

false-output value. When this condition occurs in asynchronous sequential circuits, it 

may result in a transition to a wrong stable state. 

 
Hazards in Combinational Circuits: 

A hazard is a condition where a single variable change produces a 

momentary output change when no output change should occur. 

 

Types of Hazards: 

Static hazard 

Dynamic hazard 

 
4.7.1 Static Hazard 

In digital systems, there are only two possible outputs, a ‘0’ or a ‘1’. The 

hazard may produce a wrong ‘0’ or a wrong ‘1’. Based on these observations, there 

are three types, 

Static- 0 hazard, 

Static- 1 hazard, 

 
Static- 0 hazard: 

When the output of the circuit is to remain at 0, and a momentary 1 output is 

possible during the transmission between the two inputs, then the hazard is called a 

static 0-hazard. 

 
Static- 1 hazard: 

When the output of the circuit is to remain at 1, and a momentary 0 output is 

possible during the transmission between the two inputs, then the hazard is called a 

static 1-hazard. 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



4.45 ASynchronous Sequential Circuits 
 

 

 

 
 

 

The below circuit demonstrates the occurrence of a static 1-hazard. Assume 

that all three inputs are initially equal to 1 i.e., X1X2X3= 111. This causes the output of 

the gate 1 to be 1, that of gate 2 to be 0, and the output of the circuit to be equal to 1. 

Now consider a change of X2 from 1 to 0 i.e., X1X2X3= 101. The output of gate 1 

changes to 0 and that of gate 2 changes to 1, leaving the output at 1. The output may 

momentarily go to 0 if the propagation delay through the inverter is taken into 

consideration. 

The delay in the inverter may cause the output of gate 1 to change to 0 before 

the output of gate 2 changes to 1. In that case, both inputs of gate 3 are momentarily 

equal to 0, causing the output to go to 0 for the short interval of time that the input 

signal from X2 is delayed while it is propagating through the inverter circuit. 

Thus, a static 1-hazard exists during the transition between the input states 

X1X2X3= 111 and X1X2X3= 101. 

Circuit with static-1 hazard 
 

Now consider the below network, and assume that the inverter has an 

appreciably greater propagation delay time than the other gates. In this case there is 

a static 0-hazard in the transition between the input states X1X2X3= 000 and X1X2X3= 

010 since it is possible for a logic-1 signal to appear at both input terminals of the 

AND gate for a short duration. 
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The delay in the inverter may cause the output of gate 1 to change to 1 before 

the output of gate 2 changes to 0. In that case, both inputs of gate 3 are momentarily 

equal to 0, causing the output to go to 1 for the short interval of time that the input 

signal from X2 is delayed while it is propagating through the inverter circuit. 

Thus, a static 0-hazard exists during the transition between the input states 

X1X2X3= 000 and X1X2X3= 010. 

Circuit with static-0 hazard 
 
 

A hazard can be detected by inspection of the map of the particular circuit. To 

illustrate, consider the map in the circuit with static 0-hazard, which is a plot of the 

function implemented. The change in X2 from 1 to 0 moves the circuit from minterm 

111 to minterm 101. The hazard exists because the change in input results in a 

different product term covering the two minterrns. 

 

 

Maps demonstrating a Hazard and its Removal 

 

The minterm 111 is covered by the product term implemented in gate 1 and 

minterm 101 is covered by the product term implemented in gate 2. Whenever the 

circuit must move from one product term to another, there is a possibility of a 

momentary interval when neither term is equal to 1, giving rise to an undesirable 0 

output. 

The remedy for eliminating a hazard is to enclose the two minterms in 

question with another product term that overlaps both groupings. This situation is 
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shown in the map above, where the two terms that causes the hazard are combined 

into one product term. The hazard- free circuit obtained by this combinational is 

shown below. 

Hazard-free Circuit 

 

The extra gate in the circuit generates the product term X1X4. The hazards in 

combinational circuits can be removed by covering any two minterms that may 

produce a hazard with a product term common to both. The removal of hazards 

requires the addition of redundant gates to the circuit. 

 
4.7.2 Dynamic Hazard 

 
A dynamic hazard is defined as a transient change occurring three or more 

times at an output terminal of a logic network when the output is supposed to 

change only once during a transition between two input states differing in the value 

of one variable. 

Now consider the input states X1X2X3= 000 and X1X2X3= 100. For the first 

input state, the steady state output is 0; while for the second input state, the steady 

state output is 1. To facilitate the discussion of the transient behavior of this network, 

assume there are no propagation delays through gates G3 and G5 and that the 

propagation delays of the other three gates are such that G1 can switch faster than G2 

and G2 can switch faster than G4. 
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Circuit with Dynamic hazard 

When X1 changes from 0 to 1, the change propagates through gate G1 before 

gate G2 with the net effect that the inputs to gate G3 are simultaneously 1 and the 

network output changes from 0 to 1. Then, when X1 change propagates through gate 

G2, the lower input to gate G3 becomes 0 and the network output changes back to 0. 

Finally, when the X1= 1 signal propagates through gate G4, the lower input to 

gate G5 becomes 1 and the network output again changes to 1. It is therefore seen 

that during the change of X1 variable from 0 to 1 the output undergoes the sequence, 

0 1 0 1, which results in three changes when it should have undergone 

only a single change. 

 

 

 

4.7.3 Essential Hazard 

An essential hazard is caused by unequal delays along two or more paths that 

originate from the same input. An excessive delay through an inverter circuit in 

comparison to the delay associated with the feedback path may cause such a hazard. 

Essential hazards elimination: 

Essential hazards can be eliminated by adjusting the amount of delays in the 

affected path. To avoid essential hazards, each feedback loop must be handled with 

individual care to ensure that the delay in the feedback path is long enough 

compared with delays of other signals that originate from the input terminals. 
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4.8 Design Of Hazard Free Circuits 

1.  Design a hazard-free circuit to implement the following function. 

F (A, B, C, D) = ∑m (1, 3, 6, 7, 13, 15) 

Soln: 

a) K-map Implementation and grouping 
 

 
F=A’B’D+ A’BC+ ABD 

 

b) Hazard- free realization 

The first additional product term A’CD, overlapping two groups (group 1 & 

2) and the second additional product term, BCD, overlapping the two groups 

(group 2 & 3). 

 

 

 
F=A’B’D+ A’BC+ ABD+ A’CD+ BCD 

 

2. Design a hazard-free circuit to implement the following function. 

F (A, B, C, D) = ∑m (0, 2, 6, 7, 8, 10, 12). 

Soln: 

a) K-map Implementation and grouping 
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F= B’D’+ A’BC+ AC’D’ 

 

b) Hazard- free realization 

The additional product term, A’CD’ overlapping two groups (group 1 & 2) for 

hazard free realization. Group 1 and 3 are already overlapped hence they do not 

require additional minterm for grouping. 

 

F= B’D’+ A’BC+ AC’D’+ A’CD’ 

 

3. Design a hazard-free circuit to implement the following function. 

F (A, B, C, D) = ∑m (1, 3, 4, 5, 6, 7, 9, 11, 15). 

a) K-map Implementation and grouping 
 

F= CD+ A’B+ B’D 
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b) Hazard- free realization 

The additional product term, A’D overlapping two groups (group 2 & 3) for 

hazard free realization. Group 1 and 2 are already overlapped hence they do not 

require additional minterm for grouping. 

F= CD+ A’B+ B’D+ A’D 

 
 

4. Design a hazard-free circuit to implement the following function. 

F (A, B, C, D) = ∑m (0, 2, 4, 5, 6, 7, 8, 10, 11, 15). 

Soln: 

a) K-map Implementation and grouping 
 

F= B’D’+ A’B+ ACD 

 
b) Hazard- free realization 
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F= B’D’+ A’B+ ACD+ A’C’D’+ BCD+ AB’C 

 
 

5. Design a hazard-free circuit to implement the following function. 

F (A, B, C, D) = ∑m (0, 1, 5, 6, 7, 9, 11). 

a) K-map Implementation and grouping 
 

F= AB’D+ A’BC+ A’BD+ A’B’C’ 

 

b ) Hazard- free realization: 
 

 
F= AB’D+ A’BC+ A’BD+ A’B’C’+ A’C’D+ B’C’D 
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