
4.1 ASynchronous Sequential Circuits

ASYNCHRONOUS SEQUENTIAL
CIRCUITS

UNIT 4

Analysis of asynchronous sequential machines, state assignment, asynchronous design problem

4.1 INTRODUCTION

A sequential circuit is specified by a time sequence of inputs, outputs and

internal states. In synchronous sequential circuits, the output changes whenever a

clock pulse is applied. The memory elements are clocked flip-flops.

Asynchronous sequential circuits do not use clock pulses. The memory

elements in asynchronous sequential circuits are either unclocked flip-flops (Latches)

or time-delay elements.

S.No Synchronous sequential circuits Asynchronous sequential circuits

1

Memory elements are clocked flip-

flops

Memory elements are either

unclocked flip-flops or time delay

elements.

2

The change in input signals can

affect memory element upon

activation of clock signal.

The change in input signals can

affect memory element at any

instant of time.

3

The maximum operating speed of

clock depends on time delays

involved. Therefore synchronous

circuits can operate slower than

asynchronous.

Because of the absence of clock, it

can operate faster than synchronous

circuits.

4 Easier to design More difficult to design Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.2 ASynchronous Sequential Circuits

Block diagram of Asynchronous sequential circuits

The block diagram of asynchronous sequential circuit is shown above. It

consists of a combinational circuit and delay elements connected to form feedback

loops. There are ‘n’ input variables, ‘m’ output variables, and ‘k’ internal states.

The delay elements provide short term memory for the sequential circuit. The

present-state and next-state variables in asynchronous sequential circuits are called

secondary variables and excitation variables, respectively.

When an input variable changes in value, the ‘y’ secondary variable does not

change instantaneously. It takes a certain amount of time for the signal to propagate

from the input terminals through the combinational circuit to the ‘Y’ excitation

variables where the new values are generated for the next state. These values

propagate through the delay elements and become the new present state for the

secondary variables.

In steady-state condition, excitation and secondary variables are same, but

during transition they are different.

To ensure proper operation, it is necessary for asynchronous sequential

circuits to attain a stable state before the input is changed to a new value. Because of

unequal delays in wires and combinational circuits, it is impossible to have two or

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.3 ASynchronous Sequential Circuits

more input variable change at exactly same instant. Therefore, simultaneous changes

of two or more input variables are avoided.

Only one input variable is allowed to change at any one time and the time

between input changes is kept longer than the time it takes the circuit to reach stable

state.

Types:

According to how input variables are to be considered, there are two types

Fundamental mode circuit

Pulse mode circuit.

Fundamental mode circuit assumes that:

The input variables change only when the circuit is stable.

Only one input variable can change at a given time.

Inputs are levels (0, 1) and not pulses.

Pulse mode circuit assumes that:

The input variables are pulses (True, False) instead of levels.

The width of the pulses is long enough for the circuit to respond to the input.

The pulse width must not be so long that it is still present after the new state

is reached.

4.2 Analysis of Fundamental Mode Circuits

The analysis of asynchronous sequential circuits consists of obtaining a table

or a diagram that describes the sequence of internal states and outputs as a function

of changes in the input variables. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.4 ASynchronous Sequential Circuits

4.2.1 Analysis procedure

The procedure for obtaining a transition table from the given circuit diagram

is as follows.

1. Determine all feedback loops in the circuit.

2. Designate the output of each feedback loop with variable Y1 and its

corresponding inputs y1, y2,….yk, where k is the number of feedback loops in

the circuit.

3. Derive the Boolean functions of all Y’s as a function of the external inputs and

the y’s.

4. Plot each Y function in a map, using y variables for the rows and the external

inputs for the columns.

5. Combine all the maps into one table showing the value of Y= Y1, Y2,….Yk

inside each square.

6. Circle all stable states where Y=y. The resulting map is the transition table.

4.2.2 Problems

1. An asynchronous sequential circuit is described by the following excitation and

output function,

Y= x1x2+ (x1+x2) y

Z= Y

a) Draw the logic diagram of the circuit.

b) Derive the transition table, flow table and output map.

c) Describe the behavior of the circuit.

Soln:

i) The logic diagram is shown as,

Logic diagram

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.5 ASynchronous Sequential Circuits

ii)

y x1 x2 x1x2 (x1+x2)y Y= x1x2+ (x1+x2)y Z= Y

0

0

0

0

0

0

1

1

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

1

1

1

1

1

0

0

1

1

0

1

0

1

0

0

0

1

0

1

1

1

0

1

1

1

0

1

1

1

Transition table:

Output map:

Output is mapped for all stable states. For unstable states output is mapped

unspecified.

Flow table:

Assign a= 0; b= 1

iii)

The circuit gives carry output of the full adder circuit.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.6 ASynchronous Sequential Circuits

2. Design an asynchronous sequential circuit that has two internal states and one

output. The excitation and output function describing the circuit are as follows:

Y1= x1x2+ x1y2+ x2y1

Y2= x2+ x1y1y2+ x1y1

Z= x2+ y1.

a) Draw the logic diagram of the circuit.

b) Derive the transition table, output map and flow table.

Soln:

i) The logic diagram is shown as,

Logic Diagram

ii)

y
1

y
2

x
1

x
2

x
1
x

2

x
1
y

2

x
2
y

1

x
1
y

1
y

2

x
1
y

1

Y
1

Y
2

Z
=

 x
2+

y
1

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

1

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

0

1

0

1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.7 ASynchronous Sequential Circuits

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

1

0

1

0

1

1

1

1

1

0

0

0

0

0

0

1

1

0

1

0

1

0

0

0

1

0

0

0

0

0

1

0

1

0

0

0

0

0

0

1

1

0

1

0

1

0

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

0

0

1

1

0

1

0

1

0

0

0

1

0

0

1

1

0

1

0

1

0

0

1

1

0

0

1

1

0

1

1

1

0

1

1

1

1

1

1

1

Transition table and Output map

Transition table Output map

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.8 ASynchronous Sequential Circuits

Primitive Flow table

3. An asynchronous sequential circuit is described by the excitation and output

functions,

Y= x1x2’+ (x1+x2’) y

Z= Y

a) Draw the logic diagram of the circuit.

b) Derive the transition table, output map and flow table.

Soln:

Logic diagram

ii)

y x1 x2 x2’ x1x2’ (x1+x2’)y Y= x1x2’+ (x1+x2’)y Z= Y

0

0

0

0

0

0

1

1

0

1

0

1

1

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

0

0

1

0

1

1

1

1

0

0

1

1

0

1

0

1

1

0

1

0

0

0

1

0

1

0

1

1

1

0

1

1

1

0

1

1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.9 ASynchronous Sequential Circuits

Transition table:

Output map:

Transition Table

Output is mapped for all stable states. For unstable states output is mapped

unspecified.

Output map

Flow table:

Assign a= 0; b= 1

4. An asynchronous sequential circuit is described by the excitation and output

functions, B= (A1’B2) b+ (A1+B2) C= B

a) Draw the logic diagram of the circuit.

b) Derive the transition table, output map and flow table.

Soln:

Logic Diagram

ii)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.10 ASynchronous Sequential Circuits

b A1 B2 A1’ (A1’B2)b A1+B2 B= (A1’B2) b+ (A1+B2) C= B

0

0

0

0

0

0

1

1

0

1

0

1

1

1

0

0

0

0

0

0

0

1

1

1

0

1

1

1

0

1

1

1

1

1

1

1

0

0

1

1

0

1

0

1

1

1

0

0

0

1

0

0

0

1

1

1

0

1

1

1

0

1

1

1

Transition table

Output map

Output is mapped for all stable states.

Flow table

Assign a= 0; b= 1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.11 ASynchronous Sequential Circuits

5. An asynchronous sequential circuit is described by the excitation and output

functions,

X= (Y1Z1’W2) x + (Y1’Z1W2’)

S=X’

a) Draw the logic diagram of the circuit

b) Derive the translation table and output map

Soln:

x

W
2

W
2
’

Y
1

Y
1
’

Z
1

Z
1
’

(Y
1
Z

1
’W

2
)

x

Y
1
’Z

1
W

2
’

X

S
=

 X
’

0

0

0

0

0

0

0

0

1

1

1

1

0

0

1

1

1

1

0

0

0

1

0

1

1

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

1

1

0

0

0

0

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

1

0

1

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

1

1

0

0

0

1

0

1

1

0

1

0

0

0

0

0

0

1

0

0

0

1

0

0

1

0

1

1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.12 ASynchronous Sequential Circuits

1

1

1

1

1

1

1

1

0

0

0

0

0

0

1

1

1

1

0

0

0

1

0

1

1

0

1

0

0

0

1

0

0

0

0

0

0

0

1

0

1

1

0

1

Transition table and Output map:

Transition table Output map

4.3 Analysis of Pulse Mode Circuits

Pulse mode asynchronous sequential circuits rely on the input pulses rather

than levels. They allow only one input variable to change at a time. They can be

implemented by employing a SR latch.

The procedure for analyzing an asynchronous sequential circuit with SR

latches can be summarized as follows:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.13 ASynchronous Sequential Circuits

1. Label each latch output with Yi and its external feedback path (if any) with yi

for

i = 1,2 ,..,, k.

2. Derive the Boolean functions for the Si and Ri inputs in each latch.

3. Check whether SR = 0 for each NOR latch or whether S'R' = 0 for each NAND

latch. If either of these condition is not satisfied, there is a possibility that the

circuit may not operate properly.

4. Evaluate Y = S + R’y for each NOR latch or Y = S' + Ry for each NAND latch.

5. Construct a map with the y’s representing the rows and the x inputs

representing the columns.

6. Plot the value of Y= Y1Y2 ……Yk in the map.

7. Circle all stable states such that Y = y. The resulting map is the transition

table.

The analysis of a circuit with latches will be demonstrated by means of the below

example.

1. Derive the transition table for the pulse mode asynchronous sequential circuit

shown below.

Example of a circuit with SR latches

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.14 ASynchronous Sequential Circuits

Soln:

There are two inputs x1 and x2 and two external feedback loops giving rise to

the secondary variables y1 and y2.

Step 1:

The Boolean functions for the S and R inputs in each latch are:

S1= x1y2 S2= x1x2

R1= x1’x2’ R2= x2’y1

Step 2:

Check whether the conditions SR= 0 is satisfied to ensure proper operation of the

circuit.

S1R1= x1y2 x1’x2’ = 0

S2R2= x1x2 x2’y1 = 0

The result is 0 because x1x1’ = x2x2’ = 0

Step 3:

Evaluate Y1 and Y2. The excitation functions are derived from the relation Y= S+ R’y.

Y1= S1+ R1’y1 = x1y2 +(x1’x2’)’ y1

= x1y2 +(x1+ x2) y1 = x1y2 +x1y1+ x2y1

Y2= S2+ R2’y2 = x1x2+ (x2’y1)’y2

= x1x2+ (x2+ y1’) y2 = x1x2+ x2y2+ y1’y2

y1 y2 x1 x2 x1y2 x1y1 x2y1 x1x2 x2y2 y1’y2 Y1 Y2

0

0

0

0

0

0

0

0

0

0

1

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

0

1

1

1

1

0

0

1

1

0

1

0

1

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

1

0

1

0

1

1

1

1

1

0

0

1

1

1

1

1

1

1

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

0

0

1

0

0

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.15 ASynchronous Sequential Circuits

1

1

0

0

1

1

0

1

0

0

1

1

0

1

0

1

0

0

0

0

1

1

0

1

1

1

1

1

1

1

1

1

0

0

1

1

0

1

0

1

0

0

1

1

0

0

1

1

0

1

0

1

0

0

0

1

0

1

0

1

0

0

0

0

0

1

1

1

0

1

0

1

Step 4:

Step 5:

Maps for Y1 and Y2.

Transition table

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.16 ASynchronous Sequential Circuits

4.4 RACES:

A race condition is said to exist in an asynchronous sequential circuit when

two or more binary state variables change value in response to a change in an input

variable.

Races are classified as:

i. Non-critical races

ii. Critical races.

Non-critical races:

If the final stable state that the circuit reaches does not depend on the order in

which the state variables change, the race is called a non-critical race.

If a circuit, whose transition table (a) starts with the total stable state y1y2x=

000 and then change the input from 0 to 1. The state variables must then change from

00 to 11, which define a race condition.

The possible transitions are:

00 11

00 01 11

00 10 11

In all cases, the final state is the same, which results in a non-critical condition. In (a),

the final state is (y1y2x= 111), and in (b), it is (y1y2x= 011).

Examples of Non-critical Races

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.17 ASynchronous Sequential Circuits

Critical races:

A race becomes critical if the correct next state is not reached during a state

transition. If it is possible to end up in two or more different stable states, depending

on the order in which the state variables change, then it is a critical race. For proper

operation, critical races must be avoided.

The below transition table illustrates critical race condition. The transition

table (a) starts in stable state (y1y2x= 000), and then change the input from 0 to 1. The

state variables must then change from 00 to 11. If they change simultaneously, the

final total stable state is 111. In the transition table (a), if, because of unequal

propagation delay, Y2 changes to 1 before Y1 does, then the circuit goes to the total

stable state 011 and remains there. If, however, Y1 changes first, the internal state

becomes 10 and the circuit will remain in the stable total state 101.

Hence, the race is critical because the circuit goes to different stable states,

depending on the order in which the state variables change.

Examples of Critical Races

4.5 CYCLES

Races can be avoided by directing the circuit through intermediate unstable

states with a unique state-variable change. When a circuit goes through a unique

sequence of unstable states, it is said to have a cycle.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.18 ASynchronous Sequential Circuits

Again, we start with y1y2 = 00 and change the input from 0 to 1. The transition

table (a) gives a unique sequence that terminates in a total stable state 101. The table

in (b) shows that even though the state variables change from 00 to 11, the cycle

provides a unique transition from 00 to 01 and then to 11, Care must be taken when

using a cycle that terminates with a stable state. If a cycle does not terminate with a

stable state, the circuit will keep going from one unstable state to another, making

the entire circuit unstable. This is demonstrated in the transition table (c).

Debounce Circuit:

Examples of Cycles

Input binary information in binary information can be generated manually be

means of mechanical switches. One position of the switch provides a voltage

equivalent to logic 1, and the other position provides a second voltage equivalent to

logic 0. Mechanical switches are also used to start, stop, or reset the digital system. A

common characteristic of a mechanical switch is that when the arm is thrown from

one position to the other the switch contact vibrates or bounces several times before

coming to a final rest. In a typical switch, the contact bounce may take several

milliseconds to die out, causing the signal to oscillate between 1 and 0 because the

switch contact is vibrating.

A debounce circuit is a circuit which removes the series of pulses that result

from a contact bounce and produces a single smooth transition of the binary signal

from 0 to 1 or from 1 to 0. One such circuit consists of a single-pole, double-throw

switch connected to an SR latch, as shown below. The center contact is connected to

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.19 ASynchronous Sequential Circuits

ground that provides a signal equivalent to logic 0. When one of the two contacts, A

or B, is not connected to ground through the switch, it behaves like a logic-1 signal.

When the switch is thrown from position A to position B and back, the outputs of the

latch produce a single pulse as shown, negative for Q and positive for Q'. The switch

is usually a push button whose contact rests in position A. When the pushbutton is

depressed, it goes to position B and when released, it returns to position A.

Debounce Circuit

The operation of the debounce circuit is as follows: When the switch resets in

position A, we have the condition S = 0, R = 1 and Q = 1, Q' = 0. When the switch is

moved to position B, the ground connection causes R to go to 0, while S becomes a 1

because contact A is open. This condition in turn causes output Q to go to 0 and Q' to

go to 1. After the switch makes an initial contact with B, it bounces several times. The

output of the latch will be unaffected by the contact bounce because Q' remains 1

(and Q remains 0) whether R is equal to 0 (contact with ground) or equal to 1 (no

contact with ground). When the switch returns to position A, S becomes 0 and Q

returns to 1. The output again will exhibit a smooth transition, even if there is a

contact bounce in position A.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.20 ASynchronous Sequential Circuits

4.6 DESIGN OF FUNDAMENTAL MODE SEQUENTIAL CIRCUITS

The design of an asynchronous sequential circuit starts from the statement of

the problem and concludes in a logic diagram. There are a number of design steps

that must be carried out in order to minimize the circuit complexity and to produce a

stable circuit without critical races.

The design steps are as follows:

1. State the design specifications.

2. Obtain a primitive flow table from the given design specifications.

3. Reduce the flow table by merging rows in the primitive flow table.

4. Assign binary state variables to each row of the reduced flow table to obtain

the transition table. The procedure of state assignment eliminates any possible

critical races.

5. Assign output values to the dashes associated with the unstable states to

obtain the output maps.

6. Simplify the Boolean functions of the excitation and output variables and

draw the logic diagram.

1. Design a gated latch circuit with inputs, G (gate) and D (data), and one output, Q.

Binary information present at the D input is transferred to the Q output when G

is equal to 1. The Q output will follow the D input as long as G= 1. When G goes

to 0, the information that was present at the D input at the time of transition

occurred is retained at the Q output. The gated latch is a memory element that

accepts the value of D when G= 1 and retains this value after G goes to 0, a

change in D does not change the value of the output Q.

Soln:

Step 1:

From the design specifications, we know that Q= 0 if DG= 01

and Q= 1 if DG= 11

because D must be equal to Q when G= 1.

When G goes to 0, the output depends on the last value of D. Thus, if the

transition is from 01 to 00 to 10, then Q must remain 0 because D is 0 at the time of

the transition from 1 to 0 in G.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.21 ASynchronous Sequential Circuits

If the transition of DG is from 11 to 10 to 00, then Q must remain 1. This

information results in six different total states, as shown in the table.

State
Inputs Output

Comments
D G Q

a 0 1 0 D= Q because G= 1

b 1 1 1 D= Q because G= 1

c 0 0 0 After state a or d

d 1 0 0 After state c

e 1 0 1 After state b or f

f 0 0 1 After state e

Step 2: A primitive flow is a flow table with only one stable total state in each

row. It has one row for each state and one column for each input combination.

Step 3:

Primitive flow table

The primitive flow table has only stable state in each row. The table can be

reduced to a smaller number of rows if two or more stable states are placed in the

same row of the flow table. The grouping of stable states from separate rows into

one common row is called merging. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.22 ASynchronous Sequential Circuits

States that are candidates for merging

Thus, the three rows a, c, and d can be merged into one row. The second row

of the reduced table results from the merging of rows b, e, and f of the primitive flow

table.

Reduced table- 1

The states c & d are replaced by state a, and states e & f are replaced by state b

Step 4:

Reduced table- 2

Assign distinct binary value to each state. This assignment converts the flow

table into a transition table. A binary state assignment must be made to ensure that

the circuit will be free of critical races.

Assign 0 to state a, and 1 to state b in the reduced state table.

Transition table and output map

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.23 ASynchronous Sequential Circuits

Step 5:

Gated-Latch Logic diagram

The diagram can be implemented also by means of an SR latch. Obtain the

Boolean function for S and R inputs.

y Y S R

0
0
1
1

0
1
0
1

0
1
0
x

x
0

1
0

SR Latch excitation table

From the information given in the transition table and from the latch

excitation table conditions, we can obtain the maps for the S and R inputs of the

latch.

Maps for S and R

The logic diagram consists of an SR latch using NOR latch and the gates

required to implement the S and R Boolean functions. With a NAND latch, we must

use the complemented values for S and R.

S’ = (DG)’ and R’ = (D’G)’

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.24 ASynchronous Sequential Circuits

 Logic diagram with NOR latch Logic diagram with NAND latch

2. Design a negative-edge triggered T flip-flop. The circuit has two inputs, T

(toggle) and G (clock), and one output, Q. the output state is complemented if T=

1 and the clock changes from 1 to 0 (negative-edge triggering). Otherwise, under

any other input condition, the output Q remains unchanged.

Step 1:

Starting with the input condition TC= 11 and assign it to a. The circuit goes to

state b and output Q complements from 0 to 1 when C changes from 1 to 0 while T

remains a 1.

Another change in the output occurs when the circuit changes from state c to

state d. In this case, T=1, C changes from 1 to 0, and the output Q complements from

1 to 0. The other four states in the table do not change the output, because T is equal

to 0. If Q is initially 0, it stays at 0, and if initially at 1, it stays at 1 even though the

clock input changes.

State
Inputs Output

Comments
T G Q

a 1 1 0 Initial output is 0

b 1 0 1 After state a

c 1 1 1 Initial output is 1

d 1 0 0 After state c

e 0 0 0 After state d or f

f 0 1 0 After state e or a

g 0 0 1 After state b or h

h 0 1 1 After state g or c
Specifications of total states

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.25 ASynchronous Sequential Circuits

Step 2: Merging of the flow table

The information for the primitive flow table can be obtained directly from the

condition listed in the above table. We first fill in one square in each row belonging

to stable state in that row as listed in the table.

Then we enter dashes in those squares whose input differs by two variables

from the input corresponding to the stable state.

The unstable conditions are then determined by utilizing the information

listed under the comments in the above table.

Step 3: Compatible pairs

Primitive flow table

The rows in the primitive flow table are merged by first obtaining all

compatible pairs of states. This is done by means of the implication table.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.26 ASynchronous Sequential Circuits

Implication table

The implication table is used to find the compatible states. The only difference

is that when comparing rows, we are at liberty to adjust the dashes to fit any desired

condition. The two states are compatible if in every column of the corresponding

rows in the primitive flow table, there are identical or compatible pairs and if there is

no conflict in the output values.

A check mark () designates a square whose pair of states is compatible.

Those states that are not compatible are marked with a cross (x). The remaining

squares are recorded with the implied pairs that need further investigation.

The squares that contain the check marks define the compatible pairs:

(a, f) (b, g) (b, h) (c, h) (d, e) (d, f) (e, f) (g, h)

Step 4: Maximal compatibles

Having found all the compatible pairs, the next step is to find larger set of

states that are compatible. The maximal compatible is a group of compatibles that

contain all the possible combinations of compatible states. The maximal compatible

can be obtained from a merger diagram.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.27 ASynchronous Sequential Circuits

The merger diagram is a graph in which each state is represented by a dot

placed along the circumference of a circle. Lines are drawn between any two

corresponding dots that form a compatible pair. All possible compatibles can be

obtained from the merger diagram by observing the geometrical patterns in which

states are connected to each other.

 A line represents a compatible pair

 A triangle constitutes a compatible with three states

 An n-state compatible is represented in the merger diagram by an n-sided

polygon with all its diagonals connected.

Merger Diagram

The merger diagram is obtained from the list of compatible pairs derived

from the implication table. There are eight straight lines connecting the dots, one for

each compatible pair. The lines form a geometrical pattern consisting of two

triangles connecting (b, g, h) & (d, e, f) and two lines (a, f) & (c, h). The maximal

compatibles are:

(a, f) (b, g, h) (c, h) (d, e, f)

Reduced Flow table

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.28 ASynchronous Sequential Circuits

The reduced flow table is drawn. The compatible states are merged into one

row that retains the original letter symbols of the states. The four compatible set of

states are used to merge the flow table into four rows.

Final Reduced Flow table

Here we assign a common letter symbol to all the stable states in each merged

row. Thus, the symbol f is replaced by a; g & h are replaced by b, and similarly for

the other two rows.

Step 5: State Assignment and Transition table

Find the race-free binary assignment for the four stable states in the reduced

flow table. Assign a= 00, b= 01, c= 11 and d= 10.

Substituting the binary assignment into the reduced flow table, the transition

table is obtained. The output map is obtained from the reduced flow table.

Transition Table and Output Map

Transition table Output map Q= y2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.29 ASynchronous Sequential Circuits

Logic Diagram:

Maps for Latch Inputs

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.30 ASynchronous Sequential Circuits

3. Develop a state diagram and primitive flow table for a logic system that has two

inputs, X and Y, and a single output X, which is to behave in the following

manner. Initially, both inputs and output are equal to 0. Whenever X= 1 and Y=

0, the Z becomes 1 and whenever X= 0 and Y= 1, the Z becomes 0. When inputs

are zero, i.e. X= Y= 0 or inputs are one, i.e. X= Y= 1, the output Z does not

change; it remains in the previous state. The logic system has edge triggered

inputs without having a clock. The logic system changes state on the rising edges

of the two inputs. Static input values are not to have any effect in changing the Z

output.

Soln:

The conditions given are,

Initially both inputs X and Y are 0.

When X= 1, Y= 0; Z= 1

When X= 0, Y= 1; Z= 0

When X= Y= 0 or X= Y= 1, then Z does not change, it remains in the previous

state.

Step 1:

The above state transitions are represented in the state diagram as,

State diagram

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.31 ASynchronous Sequential Circuits

Step 2:

A primitive flow table is constructed from the state diagram. The primitive

flow table has one row for each state and one column for each input combination.

Only one stable state exists for each row in the table. The stable state can be easily

identified from the state diagram. For example, state A is stable with output 0 when

inputs are 00, state C is stable with output 1 when inputs are 10 and so on.

We know that both inputs are not allowed to change simultaneously, so we

can enter dash marks in each row that differs in two or more variables from the

input variables associated with the stable state. For example, the first row in the flow

table shows a stable state with an input of 00. Since only one input can change at any

given time, it can change to 01 or 10, but not to 11. Therefore we can enter two

dashes in the 11 column of row A.

The remaining places in the primitive flow table can be filled by observing

state diagram. For example, state B is the next state for present state A when input

combination is 01; similarly state C is the next state for present state A when input

combination is 10.

Step 3:

Primitive flow table

The rows in the primitive flow table are merged by first obtaining all

compatible pairs of states. This is done by means of the implication table.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.32 ASynchronous Sequential Circuits

The squares that contain the check marks () define the compatible pairs:

(A, B) (A, D) (A, F) (B, D) (C, E) (C, F) (D, E) (E, F)

Step 4:

The merger diagram is obtained from the list of compatible pairs derived

from the implication table. There are eight straight lines connecting the dots, one for

each compatible pair. The lines form a geometrical pattern consisting of two

triangles connecting (A, B, D) & (C, E, F) and two lines (A, F) & (D, E). The maximal

compatibles are:

(A, B, D) (C, E, F) (A, F) (D, E)

Closed covering condition:

Merger diagram

The condition that must be satisfied for merging rows is that the set of chosen

compatibles must cover all the states and must be closed. The set will cover all the

states if it includes all the states of the original state table. The closure condition is

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.33 ASynchronous Sequential Circuits

satisfied if there are no implied states or if the implied states are included within the

set. A closed set of compatibles that covers all the states is called a closed covering.

If we remove (A, F) and (D, E), we are left with a set of two compatibles:

(A, B, D) (C, E, F)

All six states from the primitive flow table are included in this set. Thus, the set

satisfies the covering condition.

The reduced flow table is drawn as below.

Reduced flow table

Here we assign a common letter symbol to all the stable states in each merged

row. Thus, the symbol B & D is replaced by A; E & F are replaced by C.

Step 5:

Find the race-free binary assignment for the four stable states in the reduced

flow table. Assign A= 0 and C= 1

Substituting the binary assignment into the reduced flow table, the transition

table is obtained. The output map is obtained from the reduced flow table.

Transition table and output map

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.34 ASynchronous Sequential Circuits

Step 6:

Gated-Latch Logic diagram

4. Design a circuit with inputs X and Y to give an output Z= 1 when XY= 11 but

only if X becomes 1 before Y, by drawing total state diagram, primitive flow table

and output map in which transient state is included.

Soln:

Step 1:

The state diagram can be drawn as,

State table

Step 2:

A primitive flow table is constructed from the state table as,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.35 ASynchronous Sequential Circuits

Primitive flow table

Step 3:

The rows in the primitive flow table are merged by first obtaining all

compatible pairs of states. This is done by means of the implication table.

Implication table

The squares that contain the check marks () define the compatible pairs:

(A, B) (A, C) (A, D) (A, E) (B, D) (C, E)

Step 4:

The merger diagram is obtained from the list of compatible pairs derived

from the implication table. There are six straight lines connecting the dots, one for

each compatible pair. The lines form a geometrical pattern consisting of one triangle

connecting (A, B, D) & a line (C, E). The maximal compatibles are:

(A, B, D) (C, E)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.36 ASynchronous Sequential Circuits

Merger diagram

The reduced flow table is drawn as below.

Reduced flow table

Here we assign a common letter symbol to all the stable states in each merged

row. Thus, the symbol B & D is replaced by A; E is replaced by C.

Transition table

5. Design a circuit with primary inputs A and B to give an output Z equal to 1 when

A becomes 1 if B is already 1. Once Z= 1 it will remain so until A goes to 0. Draw

the total state diagram, primitive flow table for designing this circuit.

Soln:

Step 1:

The state diagram can be drawn as,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.37 ASynchronous Sequential Circuits

Step 2:

State diagram

A primitive flow table is constructed from the state table as,

Primitive flow table

6. Design an asynchronous sequential circuit that has two inputs X2 and X1 and one

output Z. When X1= 0, the output Z is 0. The first change in X2 that occurs while

X1 is 1 will cause output Z to be 1. The output Z will remain 1 until X1 returns to

0.

Soln:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.38 ASynchronous Sequential Circuits

Step 1:

Step 2:

Step 3:

The state diagram can be drawn as,

State diagram

A primitive flow table is constructed from the state table as,

Primitive flow table

The rows in the primitive flow table are merged by obtaining all compatible

pairs of states. This is done by means of the implication table.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.39 ASynchronous Sequential Circuits

Implication table

The squares that contain the check marks () define the compatible pairs:

(A, B) (A, C) (C, E) (D, F)

Step 4:

The merger diagram is obtained from the list of compatible pairs derived

from the implication table. There are four straight lines connecting the dots, one for

each compatible pair. It consists of four lines (A, B), (A, C), (C, E) and (D, F).

The maximal compatibles are:

Merger diagram

(A, B) (C, E) (D, F)

This set of maximal compatible covers all the original states resulting in the reduced

flow table.

The reduced flow table is drawn as below.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.40 ASynchronous Sequential Circuits

Flow table

Here we assign a common letter symbol to all the stable states in each merged

row. Thus, the symbol B is replaced by A; E is replaced by C and F is replaced by D.

Step 5:

Reduced Flow table

Find the race-free binary assignment for the four stable states in the reduced

flow table. Assign A= S0, C= S1 and D= S2.

Now, if we assign S0= 00, S1 = 01 and S2 = 10, then we need one more state S3=

11 to prevent critical race during transition of S0 S1 or S2 S1. By introducing S3

the transitions S1 S2 and S2 S1 are routed through S4.

Thus after state assignment the flow table can be given as,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.41 ASynchronous Sequential Circuits

Flow table with state assignment

Substituting the binary assignment into the reduced flow table, the transition

table is obtained. The output map is obtained from the reduced flow table.

K- Map simplification:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.42 ASynchronous Sequential Circuits

Logic Diagram:

7. Obtain a primitive flow table for a circuit with two inputs x1 and x2 and two

outputs z1 and z2 that satisfies the following four conditions.

i. When x1x2 = 00, output z1z2 = 00.

ii. When x1= 1 and x2 changes from 0 to 1, the output z1z2 = 01.

iii. When x2= 1 and x1 changes from 0 to 1, the output z1z2 = 10.

iv. Otherwise the output does not change.

Soln:

The state diagram can be drawn as,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.43 ASynchronous Sequential Circuits

State diagram

Step 2: A primitive flow table is constructed from the state table as,

Primitive flow table

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.44 ASynchronous Sequential Circuits

4.7 HAZARDS

Hazards are unwanted switching transients that may appear at the output of

a circuit because different paths exhibit different propagation delays.

Hazards occur in combinational circuits, where they may cause a temporary

false-output value. When this condition occurs in asynchronous sequential circuits, it

may result in a transition to a wrong stable state.

Hazards in Combinational Circuits:

A hazard is a condition where a single variable change produces a

momentary output change when no output change should occur.

Types of Hazards:

Static hazard

Dynamic hazard

4.7.1 Static Hazard

In digital systems, there are only two possible outputs, a ‘0’ or a ‘1’. The

hazard may produce a wrong ‘0’ or a wrong ‘1’. Based on these observations, there

are three types,

Static- 0 hazard,

Static- 1 hazard,

Static- 0 hazard:

When the output of the circuit is to remain at 0, and a momentary 1 output is

possible during the transmission between the two inputs, then the hazard is called a

static 0-hazard.

Static- 1 hazard:

When the output of the circuit is to remain at 1, and a momentary 0 output is

possible during the transmission between the two inputs, then the hazard is called a

static 1-hazard.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.45 ASynchronous Sequential Circuits

The below circuit demonstrates the occurrence of a static 1-hazard. Assume

that all three inputs are initially equal to 1 i.e., X1X2X3= 111. This causes the output of

the gate 1 to be 1, that of gate 2 to be 0, and the output of the circuit to be equal to 1.

Now consider a change of X2 from 1 to 0 i.e., X1X2X3= 101. The output of gate 1

changes to 0 and that of gate 2 changes to 1, leaving the output at 1. The output may

momentarily go to 0 if the propagation delay through the inverter is taken into

consideration.

The delay in the inverter may cause the output of gate 1 to change to 0 before

the output of gate 2 changes to 1. In that case, both inputs of gate 3 are momentarily

equal to 0, causing the output to go to 0 for the short interval of time that the input

signal from X2 is delayed while it is propagating through the inverter circuit.

Thus, a static 1-hazard exists during the transition between the input states

X1X2X3= 111 and X1X2X3= 101.

Circuit with static-1 hazard

Now consider the below network, and assume that the inverter has an

appreciably greater propagation delay time than the other gates. In this case there is

a static 0-hazard in the transition between the input states X1X2X3= 000 and X1X2X3=

010 since it is possible for a logic-1 signal to appear at both input terminals of the

AND gate for a short duration.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.46 ASynchronous Sequential Circuits

The delay in the inverter may cause the output of gate 1 to change to 1 before

the output of gate 2 changes to 0. In that case, both inputs of gate 3 are momentarily

equal to 0, causing the output to go to 1 for the short interval of time that the input

signal from X2 is delayed while it is propagating through the inverter circuit.

Thus, a static 0-hazard exists during the transition between the input states

X1X2X3= 000 and X1X2X3= 010.

Circuit with static-0 hazard

A hazard can be detected by inspection of the map of the particular circuit. To

illustrate, consider the map in the circuit with static 0-hazard, which is a plot of the

function implemented. The change in X2 from 1 to 0 moves the circuit from minterm

111 to minterm 101. The hazard exists because the change in input results in a

different product term covering the two minterrns.

Maps demonstrating a Hazard and its Removal

The minterm 111 is covered by the product term implemented in gate 1 and

minterm 101 is covered by the product term implemented in gate 2. Whenever the

circuit must move from one product term to another, there is a possibility of a

momentary interval when neither term is equal to 1, giving rise to an undesirable 0

output.

The remedy for eliminating a hazard is to enclose the two minterms in

question with another product term that overlaps both groupings. This situation is

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.47 ASynchronous Sequential Circuits

shown in the map above, where the two terms that causes the hazard are combined

into one product term. The hazard- free circuit obtained by this combinational is

shown below.

Hazard-free Circuit

The extra gate in the circuit generates the product term X1X4. The hazards in

combinational circuits can be removed by covering any two minterms that may

produce a hazard with a product term common to both. The removal of hazards

requires the addition of redundant gates to the circuit.

4.7.2 Dynamic Hazard

A dynamic hazard is defined as a transient change occurring three or more

times at an output terminal of a logic network when the output is supposed to

change only once during a transition between two input states differing in the value

of one variable.

Now consider the input states X1X2X3= 000 and X1X2X3= 100. For the first

input state, the steady state output is 0; while for the second input state, the steady

state output is 1. To facilitate the discussion of the transient behavior of this network,

assume there are no propagation delays through gates G3 and G5 and that the

propagation delays of the other three gates are such that G1 can switch faster than G2

and G2 can switch faster than G4.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.48 ASynchronous Sequential Circuits

Circuit with Dynamic hazard

When X1 changes from 0 to 1, the change propagates through gate G1 before

gate G2 with the net effect that the inputs to gate G3 are simultaneously 1 and the

network output changes from 0 to 1. Then, when X1 change propagates through gate

G2, the lower input to gate G3 becomes 0 and the network output changes back to 0.

Finally, when the X1= 1 signal propagates through gate G4, the lower input to

gate G5 becomes 1 and the network output again changes to 1. It is therefore seen

that during the change of X1 variable from 0 to 1 the output undergoes the sequence,

0 1 0 1, which results in three changes when it should have undergone

only a single change.

4.7.3 Essential Hazard

An essential hazard is caused by unequal delays along two or more paths that

originate from the same input. An excessive delay through an inverter circuit in

comparison to the delay associated with the feedback path may cause such a hazard.

Essential hazards elimination:

Essential hazards can be eliminated by adjusting the amount of delays in the

affected path. To avoid essential hazards, each feedback loop must be handled with

individual care to ensure that the delay in the feedback path is long enough

compared with delays of other signals that originate from the input terminals.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.49 ASynchronous Sequential Circuits

4.8 Design Of Hazard Free Circuits

1. Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (1, 3, 6, 7, 13, 15)

Soln:

a) K-map Implementation and grouping

F=A’B’D+ A’BC+ ABD

b) Hazard- free realization

The first additional product term A’CD, overlapping two groups (group 1 &

2) and the second additional product term, BCD, overlapping the two groups

(group 2 & 3).

F=A’B’D+ A’BC+ ABD+ A’CD+ BCD

2. Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (0, 2, 6, 7, 8, 10, 12).

Soln:

a) K-map Implementation and grouping

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.50 ASynchronous Sequential Circuits

F= B’D’+ A’BC+ AC’D’

b) Hazard- free realization

The additional product term, A’CD’ overlapping two groups (group 1 & 2) for

hazard free realization. Group 1 and 3 are already overlapped hence they do not

require additional minterm for grouping.

F= B’D’+ A’BC+ AC’D’+ A’CD’

3. Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (1, 3, 4, 5, 6, 7, 9, 11, 15).

a) K-map Implementation and grouping

F= CD+ A’B+ B’D

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.51 ASynchronous Sequential Circuits

b) Hazard- free realization

The additional product term, A’D overlapping two groups (group 2 & 3) for

hazard free realization. Group 1 and 2 are already overlapped hence they do not

require additional minterm for grouping.

F= CD+ A’B+ B’D+ A’D

4. Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (0, 2, 4, 5, 6, 7, 8, 10, 11, 15).

Soln:

a) K-map Implementation and grouping

F= B’D’+ A’B+ ACD

b) Hazard- free realization

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4.52 ASynchronous Sequential Circuits

F= B’D’+ A’B+ ACD+ A’C’D’+ BCD+ AB’C

5. Design a hazard-free circuit to implement the following function.

F (A, B, C, D) = ∑m (0, 1, 5, 6, 7, 9, 11).

a) K-map Implementation and grouping

F= AB’D+ A’BC+ A’BD+ A’B’C’

b) Hazard- free realization:

F= AB’D+ A’BC+ A’BD+ A’B’C’+ A’C’D+ B’C’D

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

