
IT8074 - SERVICE ORIENTED ARCHITECTURE

PART B - 13 MARKS

Arunai Engineering College

Tiruvannamalai

DEPARTMENT OF

COMPUTER SCIENCE AND ENGINEERING

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

UNIT I XML

XML document structure – Well-formed and valid documents – DTD – XML Schema –

Parsing XML using DOM, SAX – XPath - XML Transformation and XSL – Xquery

Part - B

1. Explain in detail about the basic terms of XML Document Structure?

Markup Languages and Self-Describing Data:

➢ The markup languages in general and XML in particular really contain only two

kinds of information: markup elements and actual data that are given meaning

by these markup elements. Together, these are known as XML text.

Goal of XML and its intended use:

➢ XML can be used to encode any structured information, XML is good at

representing information that has an extensible, hierarchical format and

requires encoding of metadata. These three concepts form the basis of the XML

language’s structure and data model.

XML Syntax

Markup text rules:

• These special characters are known as delimiters. The XML language has four

special delimiters.

Example: A simple XML document that demonstrates the self-describing property of

XML.

Example: A Simple XML Document

<xml version=”1.0”>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<book category="Comics">

<title lang="en">Everyday Italian</title>

<author>Sherlock</author>

<year>2005</year>

<price>30.00</price>

 </book>

XML Document Structure

The major portions of an XML document include the following:

• The XML declaration

• The Document Type Declaration

• The element data

• The attribute data

• The character data or XML content

XML Declaration:

➢ The first part of an XML document is the declaration. The XML declaration is a

processing instruction of the form <?xml ...?>.

➢ XML document and indicates the version of XML also indicates the presence of

external markup declarations and character encoding.

➢ The XML declaration consists of a number of components. Table 2.2 lists these

various components and their specifications

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Standalone document declaration:

This defines whether an external DTD will be processed as part of the XML

document. When standalone is set to “yes”, only internal DTDs will be allowed. When

it is set to “no”, an external DTD is required and an internal DTD becomes an optional

feature.

Valid XML Declarations:

XML document complies with version 1.0.The
specification requires external markup declarations
that are encoded in UTF-8.

•The first declaration defines a well-

formed XML document,

•The second declaration defines a
well-formed and valid XML
document.

•The third declaration shows a more
complete definition that states a
typical use-case for XML.

Document Type Declaration:

➢ The Document Type Declaration (DOCTYPE) gives a name to the XML content

and provides guarantee for the document’s validity, either by including or

specifying a link to a Document Type Definition (DTD).

•Valid XML documents- We must declare the document type to which they fulfill.

•Well-formed XML documents – We can include the DOCTYPE to simplify the

task of the various tools that will be manipulating the XML document.

➢ A Document Type Declaration names the document type and identifies the

internal content by specifying the root element.

➢ The first declaration - use of an externally defined DTD subset.

➢ The second declaration - internally defined subset within the document.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

➢ The third declaration - provides a place for inclusion of an internally defined

DTD subset between the square brackets while also making use of an external

subset.

Eg: <!DOCTYPE shirt SYSTEM “shirt.dtd”>

➢ DTD is saved to a file named shirt.dtd, which saved in the same path as the XML

document.

Difference between External and Internal DTD subset:

➢ The only real difference between internally and externally defined DTD subsets is

that the DTD content itself is contained within the square brackets, in the case of

internal subsets, whereas external subsets save this content to a file for reference,

usually with a .dtd extension.

2. Explain in detail the various XML mark up contents (or) the basic elements of

XML.(Nov/Dec2016)

Markup and Content In general, six kinds of markup can occur in an XML document:

• Elements

• Entity references

• Comments

• Processing instructions

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Marked sections

• Document type declarations.

2.1 Elements:

➢ XML elements are either a matched pair of XML tags or single XML tags that are

“self-closing.”

For example : <shirt> </shirt>.

➢ When elements do not come in pairs, the element name is suffixed by the forward

slash. For example : <on_sale/>

➢ If no other matching element of the same name used in a different manner. These

“unmatched” elements are known as empty elements. The trailing “/>” in the

modified syntax indicates to a program processing the XML document that the

element is empty and no matching end tag should be required.

2.2 Attributes: Within elements, additional information can be communicated to XML

processors that modify the nature of the encapsulated content.

Attributes can be

• Required , Optional - contain freeform text or contain one of a set list of

enumerated values

• Fixed value- contain a specific value

2.3 Entity References:

Each entity has a unique name that is defined as part of an entity

declaration in a DTD or XML Schema. Entities are used by simply referring to them

by name. Entity references are delimited by an ampersand at the beginning and a

semicolon at the ending.

Difference between Internal and External Entities

Internal entities External entities

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Defined and used within the context of a
document

Defined in a source that is accessible via
a URI

Consists of simple string replacements Consists of entire XML documents or non-
XML text, such as binary files.

No need to define the type of file Must define the type of the file

 The Internal and External Entities can be general or parameter entities.

Character reference - Used to insert arbitrary Unicode characters into an XML

document. This allows international characters to be entered even if they can’t be

typed directly on a keyboard.

For example: ℞, U+211

2.4 Comments:

Comments can be placed anywhere in a document and are not considered to be

part of the textual content of an XML document.

The character sequence <!-- begins a comment and --> ends the comment

2.5 Processing Instructions:

Processing instructions (PIs) perform a similar function as comments in that

they are not a textual part of an XML document but provide information to

applications as to how the content should be processed.

Processing instructions have the following form:

<?instruction options?>

The instruction name, called the PI target, is a special identifier that the processing

application is intended to understand.

2.6 Marked CDATA Sections:

Some documents will contain a large number of characters and text that an

XML processor should ignore and pass to an application. These are known as

character data (or CDATA) sections. The CDATA section instructs the parser to

ignore all markup characters except the end of the CDATA markup instruction.

CDATA sections follow this general form:

<![CDATA[content]]>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

2.7 Document Type Definitions:

Document Type Definitions (DTDs) provide a means for defining what XML

markup can occur in an XML document. It provides a mechanism to guarantee that

a given XML document complies with a well-defined set of rules for document

structure and content.

2.8 XML Content

The content between XML elements is where most of the value lies in an XML

document. The XML content can consist of any data at all, including binary data.

3. Compare XML with SGML, HTML and Database files

Advantages of XML over SGML

XML SGML

XML permits well-formed documents to be
parsed without the need for a DTD

SGML implementations require some
DTD for processing

XML has much simpler syntax SGML syntax complex

The XML specification is very small, The SGML specification is very large
with large codes

Advantages of XML over HTML

• HTML was designed as a language to present hyperlinked, formatted information in

a Web browser.

• It has no capability to represent metadata, provide validation, support extensibility

by users, or support even the basic needs of e-business.

• The difference is that HTML is intended for consumption by humans, whereas XML

is meant for both machine and human consumption.

Advantages of XML over Databases and Flat Files

• XML is a structured document format that includes not only the data but also

metadata that describes that data’s content and context.

• They either represent simply the information to be exchanged without metadata

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Relational and object-oriented databases and formats can represent data as well as

metadata, but their formats are not text based.

• Most databases use binary format to represent their information.

4. Explain about the various XML content models

A content model provides a framework around which the extensibility

features of XML can be taken into advantage.

Types of XML Content models

• Open Content Model

• Closed Content Model

• Mixed Content Model

Open Content Model

• An “open” content model enables a user to add additional elements and

attributes to a document without them having to be explicitly declared in a DTD

or schema.

• An open content model, users can take full advantage of the extensibility of XML

without having to make changes to a DTD.

• In an open content model, all required elements must be present, but it is not

invalid for additional elements to also be present.

Closed Content Model

• A “closed” content model restricts elements and attributes to only those that

are specified in the DTD or schema.

• A DTD is a closed content model because it describes what may appear in the

content of the element.

• Closed models are helpful when implementing strict document exchange and

provide a means to guarantee that incoming data fulfill with data requirements.

Mixed Content Model

• A “mixed” content model, which enables individual elements to allow an

arbitrary mixture of text and additional elements.

• These mixed elements are useful when freeform fields, with possible XML or other

markup data are to be included.

5. Explain in detail about the Well formed and valid XML documents

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

An XML document with correct syntax is called "Well Formed".

An XML document validated against a DTD is both "Well Formed" and "Valid".

Rules of XML Structure (or) Well formed XML documents

a) All XML Elements Must Have a Closing Tag

• XML requires all tags to be closed.

• They can be closed by matching a beginning element tag with a closing tag,

or they can be closed by the use of empty elements.

b) XML Tags Are Case Sensitive

XML elements and attributes are case sensitive. This means that differences in

capitalization will be interpreted as different elements or attributes

In XML, the elements <shirt> and <Shirt> are different

c) All XML Elements Must Have Proper Nesting

XML requires that elements be nested in proper hierarchical order. Tags must be

closed in the reverse order in which they are opened.

<oxygen>
<nitrogen>These tags improperly nested
</oxygen>
</nitrogen>
Incorrect XML

<oxygen>
<nitrogen>These tags are properly nested
</nitrogen>
</oxygen>
Correct XML

d) All XML Documents Must Contain a Single Root Element

• XML documents must contain a single root element. All other elements in the

XML document are then nested within this root element.

• Once the root element is defined, any number of child elements can branch.

• The root element is the most important one in the document because it contains all

the other elements and reflects the document type as declared in the Document

Type Declaration.

<?xml version="1.0" encoding="UTF-8"?>

<note> //single root element

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 <from>John</from>

 <heading>Reminder</heading>

 <body>Wake up!</body>

</note>

e) Attribute Values Must Be Quoted

When attributes are used within XML elements, their values must be

surrounded by quotes. Although most systems accept single or double quotes for

attribute values, it is generally accepted to use double quotes around attribute values.

INCORRECT
<note date=12/11/2007>
 <to>Tove</to>
 <from>Jani</from>
</note>

CORRECT
<note date="12/11/2007">
 <to>Tove</to>
 <from>Jani</from>
</note>

f) Attributes May Only Appear Once in the Same Start Tag

Even though attributes may be optional, when they are present, they can

only appear once. By only allowing a single attribute name/value pair to be present,

the system avoids any conflicts or other errors.

g) Attribute Values Cannot Contain References to External Entities

The attribute values can make use of internally defined entities and

generally available entities, such as < and ".

h) All entities except amp, lt, gt, apos, and quot must be declared before they

are used.

The entities cannot be used before they are properly declared. Referring to an

undeclared entity would obviously result in an XML document that is not well formed

and proper.

XML Well formed and Valid Document: A well-formed XML document may in

addition be valid if it meets certain further constraints. An XML document is valid if

it has an associated document type declaration and if the document complies with

the constraints expressed in it. Only documents that refer to a DTD can be checked for

validity.

Example for well formed and Valid XML documents:

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

XML DTD(document type definition) (book.dtd)

 <!ELEMENT Books (title,author,pages,price,example)>

 <!ELEMENT title (#PCDATA) >

 <!ELEMENT author (#PCDATA)

 <!ELEMENT pages (#PCDATA) >

 <!ELEMENT price (#PCDATA) >

 <!ELEMENT example (#PCDATA) >

Well formed not valid XML document (bookdetails.xml)

 <?xml version='1.0' standalone='yes'?>

 <Books>

 <title>java book </title>

 <author>nick bore </author>

 <pages> 1020 </pages>

 <price> $20 </price>

 <example>xml - valid xml file</example>

 </Books>

 This appears to be valid because it follows the structural rules of the DTD.

However, because it does not contain a document type declaration, the parser has

no DTD to compare the document instance against in order to determine validity.

Therefore, it is well-formed, but not valid, or at least its validity cannot be

determined.

Well formed not valid XML document (bookdetails1.xml)

<?xml version='1.0' standalone='no'?>

<!DOCTYPE Books SYSTEM "book .dtd" >

 <Books>

 <title>java book </title>

 <author>nick bore </author>

 <pages> 1020 </pages>

 <example>xml - valid xml file</example>

 </Books>

 With the inclusion of a reference to a DTD, a validating parser can check this

instance. It will conclude, however, that there is a missing element, price , so this

document is well-formed but invalid.

Well formed and valid XML document (bookdetails2.xml)

<?xml version='1.0' standalone='no'?>

<!DOCTYPE Books SYSTEM "book .dtd" >

 <Books>

 <title>java book </title>

 <author>nick bore </author>

 <pages> 1020 </pages>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 <price> $20 </price>

 <example>xml - valid xml file</example>

 </Books>

 This document is well-formed and valid because it matches the structure

defined by the DTD, which is referenced in the document type declaration.

5. Explain about the various namespaces in XML. (Nov/Dec 17)

 XML is an open standard in which XML authors are free to create whatever

elements and attributes they wish, it’s unavoidable that multiple XML developers will

choose the same element and attribute names for their standards. This often results in

a conflict when trying to mix XML documents from different XML applications. To

overcome this XML namespaces can be useful to overcome this problem.

Namespace: A Namespace is a set of unique names. Namespace is a mechanism by

which element and attribute name can be assigned to group. The Namespace is

identified by URI(Uniform Resource Identifiers - string of characters which

identifies an Internet Resource).

Namespace Declaration:

 Within an XML document, namespaces can be declared using one of two

methods: a default declaration or an explicit declaration.

A Namspace is declared using reserved attributes. Such an attribute name must either

be xmlns or begin with xmlns: shown as below:

<element xmlns:name="URL">

Syntax

• The Namespace starts with the keyword xmlns.

• The word name is the Namespace prefix.

• The URL is the Namespace identifier.

Example:

 <?xml version="1.0" encoding="UTF-8"?>

 <cont:contact xmlns:cont="www.mec.com/profile">

 <cont:name>John</cont:name>

 <cont:company>MEC</cont:company>

 <cont:phone>123-4567</cont:phone>

 </cont:contact>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Using XML Namespaces:

The following sample XML document:

<Customer>

<Name>John Smith</Name>

</Customer>

This sample document contains the root element <Customer>, which contains a child

element called <Name>. We can clearly determine that the <Name> element contains

the name of the customer referred to by the <Customer> element.

Let’s have another sample XML document.

<Product>

<Name>Memory cards</Name>

</Product>

This document contains a <Product> element as the root element and a <Name>

element, which contains the name of the product.

The following XML document could be constructed from the previous two XML

documents to indicate that a customer has placed an order for a particular product:

<Customer>

<Name>John Smith</Name>

<Order>

<Product>

<Name>Memory cards</Name>

</Product>

</Order>

</Customer>

The user can easily distinguish the differences between the two <Name>

elements. The first <Name> element, which appears as a child of the <Customer>

element, contains the customer’s name. The second <Name> element, on the other

hand, contains the product’s name. But the parser can’t able to find the difference

we have to explicitly specify so that the parser can find the difference between these

two names.

Therefore, modifying the preceding XML document to specify the appropriate

namespaces turns it into this:

<Customer>

<cust:Name xmlns:cust=”customer-namespace-URI”>John Smith</cust:Name>

<Order>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<Product>

<prod:Name xmlns:prod=”product-namespace-URI”>Memory cards</prod:Name>

</Product>

</Order>

</Customer>

 Now, the XML parsers can easily tell the difference between any validation rules

between the customer’s <Name> element and the product’s <Name> element.

Default declaration of Namespace:

 A default namespace declaration specifies a namespace to use for all child

elements of the current element that do not have a namespace prefix associated

with them.

<Customer xmlns=”http://www.eps-software.com/po”>

<Name>Travis Vandersypen</Name>

<Order>

<Product>

<Name>Mobile Phones</Name>

</Product>

</Order>

</Customer

For this XML document, all child elements of the <Customer> element are specified

as belonging to the http://www.eps-software.com/po namespace.

Explicit declaration of Namespace:

 It may be necessary and more readable to explicitly declare an element’s

namespace. This is accomplished much the same way in which a default namespace

is declared, except a prefix is associated with the xmlns attribute.

<po:Customer xmlns:po=”http://www.eps-software.com/po”>

<po:Name>Travis Vandersypen</po:Name>

<po:Order>

<po:Product>

<po:Name>Hot Dog Buns</po:Name>

</po:Product>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

</po:Order>

</po:Customer>

We have used the prefix of po with the elements in this document to explicitly declare

the namespace.

The explicitly declaring namespaces becomes useful when we utilize elements from

different namespaces, :

<cust:Customer xmlns:cust=”http://www.eps-software.com/customer”

➥xmlns:ord=”http://www.eps-software.com/order”>

<cust:Name>Travis Vandersypen</cust:Name>

<ord:Order>

<ord:Product>

<ord:Name xmlns:prod=”product-namespace-URI”>Mobile Phones</ord:Name>

</ord:Product>

</ord:Order>

</cust:Customer>

 We can see that two different namespaces are referenced: one for customers

and one for orders. This allows a different set of rules to be applied for customer

names versus product names.

Identifying the Scope of Namespaces:

 By default, all child elements within a parent element , appear within the

parent’s namespace. This allows all child elements to “inherit” their parent element’s

namespace. However, this “inherited” namespace can be overwritten by specifying a

new namespace on a particular child element

<Customer xmlns=”http://www.eps-software.com/customer”>

<Name>Travis Vandersypen</Name>

<Order xmlns=”http://www.eps-software.com/order”>

<Product>

<Name>Mobile Phones </Name>

</Product>

</Order>

</Customer>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 The <Customer> element declares a default namespace located at

http://www.eps-software.com/customer. All elements contained within the

<Customer> element “inherit”, the namespace declared by the <Customer> element.

However, the <Order> element also declares a default namespace it is overwritten so

the child elements inherit the namespace declared by the <Order> element.

6. Explain in detail about the Document type Definition. With examples explain

internal and external DTD(Nov/Dec2016)

Document Type Definition:

 DTD stands for Document Type Definition. A Document Type Definition allows

the XML author to define a set of rules for an XML document to make it valid. An

XML document is considered “well formed” if that document is syntactically

correct according to the syntax rules of XML 1.0.

Features of DTD (or) Importance of DTD :

• The DTD will define the elements required by an XML document, such as the

elements that are optional, the number of times an element should (could)

occur, and the order in which elements should be nested.

• DTD markup also defines the type of data that will occur in an XML element

and the attributes that may be associated with those elements.

• A document, even if well formed, is not considered valid if it does not follow

the rules defined in the DTD.

Types of DTD:

• Internal DTD - residing within the body of a single XML document

• External DTD - referenced by the XML document

Example : Internal DTD

Internal DTD file is within the DTD elements in XML file:

<?xml version=”1.0”encoding=”UTF=8”?>

<!DOCTYPE student[

<!ElEMENT student(name,address,place)>

<!ELEMENT name(#PCDATA)>

<!ELEMENT address(#PCDATA)>

<!ELEMENT place(#PCDATA)>

]>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<student>

<name>ARUN</name>

<address>KK NAGAR</address>

<place>Villupuram</place>

</student>

The Document Type Declaration will appear between the XML declaration and the

start of the document itself.

Example : External DTD

DTD File: (student.dtd)

<!ElEMENT student(name,address,place)>

<!ELEMENT name(#PCDATA)>

<!ELEMENT address(#PCDATA)

<!ELEMENT place(#PCDATA)>

XML File:(externaldtd.xml)

<?xml version=”1.0” encoding=”UTF=8”?>

<!DOCTYPE student SYSTEM “student.dtd”>

<student>

<name>ARUN</name>

<address>KK NAGAR</address>

<place>Villupuram</place>

</student>

External DTD file is created and its name must be specified in the corresponding

XML file.

Structure of a Document Type Definition:

The structure of a DTD consists of :

• Document type declaration

• Elements

• Attributes

• Entities

• Other keywords

6.1 Document Type Declaration

There may be one Document Type Declaration per XML document.

Syntax:

<!DOCTYPE rootelement SYSTEM | PUBLIC DTDlocation [internalDTDelements] >

• Exclamation mark (!)- signify the beginning of the declaration.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• DOCTYPE - keyword used to denote this as a Document Type Definition.

• root element - name of the root element or document element of the XML

document.

• SYSTEM and PUBLIC - keywords used to designate that the DTD is contained

in an external document. SYSTEM keyword is used in cyclic with a URL to

locate the DTD. PUBLIC - specifies some public location that will usually be

some application-specific resource reference.

• internalDTDelements - internal DTD declarations. These declarations will

always be placed within opening ([) and closing (]) brackets.

6.2 DTD Elements: All elements in a valid XML document are defined with an

element declaration ,it defines the name and all allowed contents of an element.

Rules for declaring the DTD Elements:

• Element names must start with a letter or an underscore and may contain any

combination of letters.

• Element names must never start with the string “xml”.

• Colons should not be used in element names because they are normally used to

reference namespaces.

Syntax:

<!ELEMENT elementname rule >

• ELEMENT - tag name that specifies that this is an element definition.

• elementname - name of the element.

• rule - definition to which the element’s data content must conform.

Example : contactlist.dtd

<!ELEMENT contactlist (fullname, address, phone, email) >

<!ELEMENT fullname (#PCDATA)>

<!ELEMENT address (addressline1, addressline2)>

<!ELEMENT addressline1 (#PCDATA)>

<!ELEMENT addressline2 (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

<!ELEMENT email (#PCDATA)>

• The first element in the DTD, contactlist, is the document element which is the

parent element and contains the fullname, address, phone, and email as child

elements.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• The rule for all child element is each contains parsed character data (#PCDATA), which

means that the elements will contain marked-up character data that the XML parser will

interpret.

• The address element has two child elements: addressline1 and addressline2.

• This DTD defines an XML structure that is nested two levels deep. The root

element, contactlist, has four child elements. The address element is, in turn,

parent to two more elements.

Example: contactlist.xml

<?xml version=”1.0”?>

<!DOCTYPE contactlist SYSTEM “contactlist.dtd”>

<contactlist>

<fullname> Bobby </fullname>

<address>

<addressline1>101 South Street</addressline1>

<addressline2>Apartment #2</addressline2>

</address>

<phone>(405) 555-1234</phone>

<email>bs@mail.com</email>

</contactlist>

DTD Element Rules:

Content Rules - The content rules for .elements deal with the actual data that defined

elements may contain. These rules include the

• ANY rule

• EMPTY rule

• #PCDATA rule.

The ANY Rule

 An element may be defined using the ANY rule. The element may contain

other elements and/or normal character data. An element using the ANY rule

would appear as follows:

<!ELEMENT elementname ANY>

Example: <elementname> This is valid content </elementname>

The EMPTY Rule This rule is the exact opposite of the ANY rule. An element that

is defined with this rule will contain no data. However, an element with the EMPTY

This is a valid XML document

because it is well formed and

complies with the structural

definition laid out in the DTD.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

rule could still contain attributes .The following element is an example of the EMPTY

rule:

<!ELEMENT elementname EMPTY>

The #PCDATA Rule

 The #PCDATA rule indicates that parsed character data will be contained in

the element. Parsed character data is data that may contain normal markup and

will be interpreted and parsed by any XML parser accessing the document. The

following element demonstrates the #PCDATA rule:

<!ELEMENT elementname (#PCDATA)>

It is possible in an element using the #PCDATA rule to use the CDATA keyword to

prevent the character data from being parsed.

CDATA

<sample>

<data>

<![CDATA[<tag>This will not be parsed</tag>]]>

</data>

</sample>

All the data between <![CDATA[and]]> will be ignored by the parser and treated as

normal characters (markup ignored).

Structure Rules- This structure rules deal with how that data may be organized.

There are two types of structure rules

• Element only rule.

• Mixed rule.

The “Element Only” Rule

 It specifies that only elements may appear as children of the current

element. The following element definition demonstrates the “element only” rule:

<!ELEMENT elementname (element1, element2, element3)>

If there are options for which elements will appear, the listed elements should be

separated by the pipe symbol (|).The element defined here will have a single child

element: either element1 or element2.

<!ELEMENT elementname (element1 | element2)>

The “Mixed” Rule

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 It defines elements that may have both character data (#PCDATA) and child

elements in the data they contain. A list of options or a sequential list will be enclosed

by parentheses. Options will be separated by the pipe symbol (|), whereas sequential

lists will be separated by commas. The following element is an example of the “mixed”

rule:

<!ELEMENT elementname (#PCDATA | childelement1 | childelement2)*>

Example: <!ELEMENT Son (#PCDATA | Name | Age)*>

 This definition defines an element, Son, for which there may be character data,

elements, or both. A man might have a son, but he might not. If there is no son, then

normal character data (such as “N/A”) could be used to describe this condition.

DTD Element Symbols: The element symbols can be used to control the occurrence

of data.

Asterisk (*) - The data will appear zero or more times (0, 1, 2, …).

 Eg: <!ELEMENT children (name*)>

Comma (,) - Provides separation of elements in a sequence.

Eg: <!ELEMENT address (street, city, state, zip)>

Parentheses [()] - The parentheses are used to contain the rule for an element.

 Eg: <!ELEMENT address (street, city, (state |province), zip)>

Pipe (|) - Separates choices in a set of options.

 Eg: <!ELEMENT dessert (cake | pie)>

 The element dessert will have one child element: either cake or pie.

Plus sign (+) - Signifies that the data must appear one or more times (1, 2,3, …).

 Eg: <!ELEMENT appliances (refrigerator+)>

Question mark (?) - Data will appear either zero times or one time in the element.

 Eg: <!ELEMENT employment (company?)>

No symbol- When no symbol is used, the data must appear once in the XML file.

 Eg: <!ELEMENT contact (name)>

6.3 DTD Attributes

 XML attributes are name/value pairs that are used as metadata to describe

XML elements. Attributes are also defined in DTDs. Attribute definitions are

declared using the ATTLIST declaration. An ATTLIST declaration will define one or

more attributes for the element that it is referencing.

Syntax:

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<!ATTLIST elementname attributename type defaultbehavior defaultvalue>

• ATTLIST - tag name that specifies that this definition will be for an attribute

list.

• elementname - name of the element that the attribute will be attached to.

• attributename - actual name of the attribute.

• type - indicates which of the 10 valid kinds of attributes this attribute

definition.

• defaultbehavior –specifies whether the attribute will be required, optional, or

fixed in value.

• defaultvalue - value of the attribute if no value is explicitly set.

ATTLIST Declaration

<!ATTLIST name

sex CDATA #REQUIRED

age CDATA #IMPLIED >

#REQUIRED- Indicates that the value of the attribute must be specified

#IMPLIED-Indicates that the value of the attribute is optional

#FIXED- Indicates that the attribute is optional, but if it is present, it must have a

specified set value that cannot be changed.

Default - This is not an actual default behavior type. The value of the default is

supplied in the DTD. Eg: <!ATTLIST children number CDATA “0”>

DTD Entities

 Entities in DTDs are storage unit. Entities are special markups that contain

content for insertion into the XML document. An entity’s content could be well-formed

XML, normal text, binary data, a database record, and so on.

Syntax:

<!ENTITY entityname [SYSTEM | PUBLIC] entitycontent>

• ENTITY - tag name that specifies that this definition will be for an entity.

• entityname -name by which the entity will be referred in the XML document.

• entitycontent -actual contents of the entity

• SYSTEM and PUBLIC - optional keywords.

Entities may either point to internal data or external data.

• Internal entities represent data that is contained completely within the DTD.

An XML element using the attribute list declared here would

appear as follows:

<name sex=”male” age=”30” >Michael </name>

The name element contains the value “Michael”. It also has two

attributes of Michael: sex, age.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• External entities point to content in another location via a URL. External data could

be anything from normal parsed text in another file, to a graphics or audio file, to an Excel

spreadsheet.

Example for Using Internal Entities

book.dtd

<?xml version=”1.0”?>

<!DOCTYPE library [

<!ENTITY cpy “Copyright 2000”>

<!ELEMENT library (book+)>

<!ELEMENT book (title copyright)>

<!ELEMENT title (#PCDATA)>

<!ELEMENT author (#PCDATA)>

<!ELEMENT copyright (#PCDATA)>

]>

bookdetails.xml

<library>

<book>

<title>XML Complete Reference</title>

<author>Ron</author>

<copyright>&cpy;</copyright>

</book>

<book>

<title>Java Complete Reference</title>

<author>Deitel</author>

<copyright>&cpy;</copyright>

</book>

</library>

Types of Entities:

• Predefined Entities

• External Entities

• Parameter Entities

Predefined Entities:

There are five predefined entities. These entities do not have to be declared in the DTD

In the copyright element of the XML document , this

entity is referenced by using &cpy;. When this

document is parsed, &cpy; will be replaced with

“Copyright 2000”

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Examples for using Predefined Entities

<icecream>

<flavor>Cherry Garcia</flavor>

<vendor>Ben & Jerry’s</vendor>

</icecream>

In this example, the ampersand in “Ben & Jerry’s” is replaced with the predefined

entity for an ampersand (&).

External Entities

 External entities are used to reference external content. The external entities

get their content by referencing it via a URL placed in the entitycontent portion of

the entity declaration. Either the SYSTEM keyword or the PUBLIC keyword is used

here to let the XML parser know that the content is external.

Examples for Using External Entities

<?xml version=”1.0”?>

<!DOCTYPE employees [

<!ENTITY bob SYSTEM “http://srvr/emps/bob.xml”>

<!ENTITY nancy SYSTEM “http://srvr/emps/nancy.xml”>

<!ELEMENT employees (clerk)>

<!ELEMENT clerk (#PCDATA)>

]>

<employees>

<clerk>&bob;</clerk>

<clerk>&nancy;</clerk>

</employees>

Non-Text External Entities and Notations

 Some external entities will contain non-text data, such as an image file. We do

not want the XML parser to attempt to parse these types of files. In order to stop the

XML parser, we use the NDATA keyword.

<!ENTITY myimage SYSTEM “myimage.gif” NDATA gif>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 A notation is a special declaration that identifies the format of non-text external

data so that the XML application will know how handle the data. Notations are

declared in the body of the DTD and have the following syntax:

<!NOTATION notationname [SYSTEM | PUBLIC] dataformat>

• notationname - name by which the notation will be referred in the XML document.

• dataformat - reference to a MIME type, ISO standard, or some other location that

can provide a definition of the data being referenced.

Example using External Non-Text Entities

<!NOTATION gif SYSTEM “image/gif” >

<!ENTITY employeephoto SYSTEM “images/employees/MichaelQ.gif” NDATA gif >

<!ELEMENT employee (name, sex, title, years) >

<!ATTLIST employee pic ENTITY #IMPLIED >

<employee pic=”employeephoto”>

</employee>

Parameter Entities

 The main difference between an internal entity and a parameter entity is that a

parameter entity may only be referenced inside the DTD. Parameter entities are in

effect entities specifically for DTDs.Parameter entities can be useful when you have to

use a lot of repetitive or lengthy text in a DTD.

Syntax:

<!ENTITY % entityname entitycontent>

 In the syntax, after the declaration, there is a space, a percent sign, and

another space before entityname. This alerts the XML parser that this is a parameter

entity and will be used only in the DTD. These types of entities, when referenced,

should begin with % and end with ;.

Example using Parameter Entities

<!ENTITY % pc “(#PCDATA)”>

<!ELEMENT name %pc;>

<!ELEMENT age %pc;>

<!ELEMENT weight %pc;>

DTD Drawbacks

• DTDs are composed of non-XML syntax

• DTDS are not object oriented. There is no inheritance in DTDs.

• DTDs do not support namespaces very well. For a namespace to be used, the

entire namespace must be defined within the DTD.

• DTDs have weak data typing and no support for the XML DOM.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• DTDs can be overridden there is possible for security issues.

7.Explain in detail about XML Schemas and XML files(Nov/Dec2016)

XML Schema

• A more powerful way of defining the structure and constraining the

contents of XML documents. An XML Schema definition is itself an XML

document

• An XML Schema describes the structure of an XML document, just like a DTD.

• Typically stored as a standalone .xsd file.

• XML (data) documents refer to external .xsd files

Use of XML Schema

• With XML Schema, XML files can carry a description of its own format.

• With XML Schema, independent groups of people can agree on a standard for

interchanging data.

• With XML Schema, we can verify data. It is easier to convert data between

different data types

XML Schema Definition

The XML Schema language is also referred to as XML Schema Definition (XSD).

XML Schema Structure

• Elements

• XSD Simple Elements

• XSD Complex Elements

• Attributes

• XSD Restrictions

7.1 Elements

Elements are the main building block of any XML document; they contain the data

and determine the structure of the document. An element can be defined within an

XML Schema (XSD) as follows:

<xs:element name="x" type="y"/>

name -name that will appear in the XML document.

type - provides the description of what can be contained within the element when it

appears in the XML document.

XSD - The <schema> Element :

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

The <schema> element is the root element of every XML Schema.

<?xml version="1.0"?>

<xs:schema>

...

...

</xs:schema>

The <schema> element may contain some attributes such as namespace and other

attributes.

Example Schema declaration:

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

targetNamespace="http://www.w3schools.com"

xmlns=http://www.w3schools.com

elementFormDefault="qualified">

</xs:schema>

• Specifies that the elements and data types that come from the

"http://www.w3.org/2001/XMLSchema" namespace should be prefixed with

xs:

• Indicates that the elements defined by this schema (note, to, from, heading,

body.) come from the "http://www.w3schools.com" namespace.

• Indicates that the default namespace is "http://www.w3schools.com".

• Indicates that any elements used by the XML instance document which were

declared in this schema must be namespace qualified.

7.2 XSD Simple Elements

 A simple element is an XML element that contains only text. It cannot contain

any other elements or attributes. The text can be of many different types. It can be one

of the types included in the XML Schema definition (boolean, string, date, etc.), or it

can be a custom type

http://www.w3schools.com/

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Defining a Simple Element
Syntax:

<xs:element name="xxx" type="yyy"/>
where xxx is the name of the element and yyy is the data type of the element.
XML Schema built-in data types.
The most common types are:

• xs:string

• xs:decimal

• xs:integer

• xs:boolean

• xs:date

• xs:time

Example: details.xml

<lastname>John</lastname>

<age>36</age>

<dateborn>1970-03-27</dateborn>

The corresponding simple element definitions: details.xsd

<xs:element name="lastname" type="xs:string"/>

<xs:element name="age" type="xs:integer"/>

<xs:element name="dateborn" type="xs:date"/>

Default and Fixed Values for Simple Elements

A default value is automatically assigned to the element when no other value is

specified. In the following example the default value is "red":

<xs:element name="color" type="xs:string" default="red"/>

A fixed value is also automatically assigned to the element, and you cannot specify

another value. In the following example the fixed value is "red":

<xs:element name="color" type="xs:string" fixed="red"/>

XSD Attributes

 Simple elements cannot have attributes. If an element has attributes, it is

considered to be of a complex type. But the attribute itself is always declared as a

simple type.

Defining an Attribute

Syntax:

<xs:attribute name="xxx" type="yyy"/>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

where xxx is the name of the attribute and yyy specifies the data type of the attribute.

Example: Here is an XML element with an attribute:

<lastname lang="EN">Smith</lastname>

The corresponding attribute definition:

<xs:attribute name="lang" type="xs:string"/>

Default and Fixed Values for Attributes

Attributes may have a default value OR a fixed value specified.

In the following example the default value is "EN":

<xs:attribute name="lang" type="xs:string" default="EN"/>

In the following example the fixed value is "EN":

<xs:attribute name="lang" type="xs:string" fixed="EN"/>

Optional and Required Attributes

Attributes are optional by default. To specify that the attribute is required, use the

"use" attribute:

<xs:attribute name="lang" type="xs:string" use="required"/>

7.3 XSD Restrictions/Facets:

 Restrictions are used to define acceptable values for XML elements or

attributes. Restrictions on XML elements are called facets.

Restrictions on Values

 The following example defines an element called "age" with a restriction. The

value of age cannot be lower than 0 or greater than 120:

<xs:element name="age">

 <xs:simpleType>

 <xs:restriction base="xs:integer">

 <xs:minInclusive value="0"/>

 <xs:maxInclusive value="120"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Restrictions on a Set of Values

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 To limit the content of an XML element to a set of acceptable values, we would

use the enumeration constraint. The example below defines an element called "car"

with a restriction. The only acceptable values are: Audi, Golf, BMW:

<xs:element name="car">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="Audi"/>

 <xs:enumeration value="Golf"/>

 <xs:enumeration value="BMW"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Restrictions on a Series of Values

 To limit the content of an XML element to define a series of numbers or letters

that can be used, we would use the pattern constraint.

The example below defines an element called "letter" with a restriction. The only

acceptable value is ONE of the LOWERCASE letters from a to z:

<xs:element name="letter">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:pattern value="[a-z]"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

Restrictions on Whitespace Characters

 To specify how whitespace characters should be handled, we would use the

whiteSpace constraint. The whiteSpace constraint is set to "preserve", which means

that the XML processor WILL NOT remove any white space characters:

<xs:element name="address">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:whiteSpace value="preserve"/>

 </xs:restriction>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 </xs:simpleType>

</xs:element>

Restrictions on Length

 To limit the length of a value in an element, we would use the length,

maxLength, and minLength constraints.

The value must be minimum five characters and maximum eight characters:

<xs:element name="password">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:minLength value="5"/>

 <xs:maxLength value="8"/>

 </xs:restriction>

 </xs:simpleType>

</xs:element>

7.4 XSD Complex Elements

A complex element contains other elements and/or attribute.

There are four kinds of complex elements:

• Empty elements

• Elements that contain only other elements

• Elements that contain only text

• Elements that contain both other elements and text

Note: Each of these elements may contain attributes as well!

Defining a Complex Element

The complex XML element, "employee", which contains only other elements:

<employee>

 <firstname>John</firstname>

 <lastname>Smith</lastname>

</employee>

We can define a complex element in an XML Schema two different ways:

1. The "employee" element can be declared directly by naming the element, like this:

<xs:element name="employee">

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

 Here only the "employee" element can use the specified complex type. Note that

the child elements, "firstname" and "lastname", are surrounded by the <sequence>

indicator. This means that the child elements must appear in the same order as they

are declared.

2. The "employee" element can have a type attribute that refers to the name of the

complex type to use:

<xs:element name="employee" type="personinfo"/>

<xs:complexType name="personinfo">

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

</xs:complexType>

Here not only the employee element all child elements can refer to the same complex

type

XSD Empty Elements

An empty complex element cannot have contents, only attributes.

An empty XML element:

<product prodid="1345" />

The XSD for the empty XML element product

<xs:element name="product" type="prodtype"/>

<xs:complexType name="prodtype">

 <xs:attribute name="prodid" type="xs:positiveInteger"/>

</xs:complexType>

XSD Elements Only

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

An "elements-only" complex type contains an element that contains only other

elements. An XML element, "person", that contains only other elements:

<person>

 <firstname>John</firstname>

 <lastname>Smith</lastname>

</person>

We can define the "person" element in a schema, like this:

<xs:element name="person">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="firstname" type="xs:string"/>

 <xs:element name="lastname" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

XSD Text-Only Elements

 A complex text-only element can contain text and attributes.

This type contains only simple content (text and attributes), therefore we add a

simpleContent element around the content. When using simple content, we must

define an extension OR a restriction within the simpleContent

Example of an XML element, "shoesize", that contains text-only:

<shoesize country="france">35</shoesize>

The following example declares a complexType, "shoesize".

<xs:element name="shoesize">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:integer">

 <xs:attribute name="country" type="xs:string" />

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

</xs:element>

Complex Types with Mixed Content

An XML element, "letter", that contains both text and other elements:

<letter>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 Dear Mr.<name>John Smith</name>.

 Your order <orderid>1032</orderid>

 will be shipped on <shipdate>2001-07-13</shipdate>.

</letter>

The following schema declares the "letter" element:

<xs:element name="letter">

 <xs:complexType mixed="true">

 <xs:sequence>

 <xs:element name="name" type="xs:string"/>

 <xs:element name="orderid" type="xs:positiveInteger"/>

 <xs:element name="shipdate" type="xs:date"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

XSD Indicators

We can control HOW elements are to be used in documents with indicators.There are

seven indicators:

Order indicators: used to define the order of the elements.

• All

• Choice

• Sequence

Occurrence indicators: used to define how often an element can occur.

• maxOccurs

• minOccurs

Group indicators: used to define related sets of elements.

• Group name

• attributeGroup name

Example for creating a Document type Definition , XML Schema Definition and

XML for the Employee Details

DTD for Employee Information (employee.dtd)

<!ELEMENT Employee_Info (Employee)*>

<!ELEMENT Employee (Name, Department, Telephone, Email)>

<!ELEMENT Name (#PCDATA)>

<!ELEMENT Department (#PCDATA)>

<!ELEMENT Telephone (#PCDATA)>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<!ELEMENT Email (#PCDATA)>

<!ATTLIST Employee Employee_Number CDATA #REQUIRED>

XML Schema definition for Employee Information（employee.xsd）

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" >

<xs:element name="Employee_Info" type="EmployeeInfoType" />

<xs:complexType name="EmployeeInfoType">

<xs:sequence>

<xs:element ref="Employee" minOccurs="0" maxOccurs="unbounded" />

 </xs:sequence>

</xs:complexType>

<xs:element name="Employee" type="EmployeeType" />

<xs:complexType name="EmployeeType">

<xs:sequence >

<xs:element ref="Name" />

<xs:element ref="Department" />

<xs:element ref="Telephone" />

<xs:element ref="Email" />

</xs:sequence>

<xs:attribute name="Employee_Number" type="xs:int" use="required"/>

</xs:complexType>

<xs:element name="Name" type="xs:string" />

<xs:element name="Department" type="xs:string" />

<xs:element name="Telephone" type="xs:string" />

<xs:element name="Email" type="xs:string" />

</xs:schema>

Valid XML Document for XML Schema (employee.xml)

<?xml version="1.0"?>

<Employee_Info

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="employee.xs">

 <Employee Employee_Number="105">

 <Name>John</Name>

 <Department>HR Department</Department>

 <Telephone>03-1452-4567</Telephone>

 <Email>john@xmltr.co.jp</Email>

 </Employee>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 <Employee Employee_Number="109">

 <Name>Alex</Name>

 <Department>Sales Department</Department>

 <Telephone>03-6459-98764</Telephone>

 <Email>alex@xmltr.co.jp</Email>

 </Employee>

</Employee_Info>

8. Explain in detail about the XPath(or) How can we find the elements from the

XML file. (Nov/Dec2016)

XPath

 The XML Path Language (XPath) is a standard for creating expressions that

can be used to find specific pieces of information within an XML document.

XPath expressions are used by both XSLT (for which XPath provides the core

functionality) and XPointer to locate a set of nodes.

 XPath expressions have the ability to locate nodes based on the nodes’ type,

name, or value or by the relationship of the nodes to other nodes within the XML

document. XPath expression can also return any of the following:

• A node set

• A Boolean value

• A string value

• A numeric value

XPath Processing

 The XML Path Language is, used to select the desired set of nodes from

XML documents. Each pattern describes a set of matching nodes to select from a

hierarchical XML document. The XML Path Language navigates a hierarchical tree of

nodes within an XML document to select the set of nodes.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

XPath Terminology Nodes:

In XPath, there are seven kinds of nodes:

• element

• attribute

• text

• namespace

• processing-instruction

• comment,

• document nodes.

XML documents are treated as trees of nodes. The topmost element of the tree is

called the root element.

Example :bookdetails.xml
<?xml version="1.0" encoding="UTF-8"?>

<bookstore>

 <book>

 <title lang="en">Harry Potter</title>

 <author>J K. Rowling</author>
 <year>2005</year>

 <price>29.99</price>

 </book>

</bookstore>

Xpath details of the XML document
 Nodes in the XML document

<bookstore> (root element node)

<author>J K. Rowling</author> (element node)

lang="en" (attribute node)

Atomic values
Atomic values are nodes with no children or

parent.

 J K. Rowling

 "en"

Items

Items are atomic values or nodes.

Relationship of Nodes
Parent

Each element and attribute has one

parent.From above example; the book

element is the parent of the title, author,

year, and price.

Children

Element nodes may have zero, one or

more children. From above example; the

title, author, year, and price elements are

all children of the book element:

Siblings
Nodes that have the same parent. From above

example; the title, author, year, and price elements

are all siblings:

Ancestors

A node's parent, parent's parent, etc.From above
example;; the ancestors of the title element are the

book element and the bookstore element:

Descendants

A node's children, children's children, etc.From

above example; descendants of the bookstore

element are the book, title, author, year, and price
elements:

Selecting Nodes

 XPath uses path expressions to select nodes in an XML document. The

node is selected by following a path or steps. The most useful path expressions are

listed below:

Expression Description

nodename Selects all nodes with the name "nodename"

/ Selects from the root node

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

// Selects nodes in the document from the current node that match
the selection no matter where they are

. Selects the current node

.. Selects the parent of the current node

@ Selects attributes

Predicates

Predicates are used to find a specific node or a node that contains a specific value.

Predicates are always embedded in square brackets.

Example XML document (bookdetails.xml)

<?xml version="1.0" encoding="UTF-8"?>

<bookstore>

<book>

 <title lang="en">Harry Potter</title>

 <price>29.99</price>

</book>

<book>

 <title lang="en">Learning XML</title>

 <price>39.95</price>

</book>

</bookstore>

Example for Path Expressions

Path Expression Result

/bookstore/book[1] Selects the first book element that is the child of the
bookstore element.

//title[@lang='en'] Selects all the title elements that have a "lang" attribute
with a value of "en"

/bookstore/book[price>35.00] Selects all the book elements of the bookstore element
that have a price element with a value greater than
35.00

XPath Axes - An axis defines a node-set relative to the current node.

AxisName Result

ancestor Selects all ancestors (parent, grandparent, etc.) of the current
node

ancestor-or-self Selects all ancestors (parent, grandparent, etc.) of the current
node and the current node itself

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

attribute Selects all attributes of the current node

child Selects all children of the current node

descendant Selects all descendants (children, grandchildren, etc.) of the
current node

descendant-or-self Selects all descendants (children, grandchildren, etc.) of the
current node and the current node itself

following Selects everything in the document after the closing tag of the
current node

following-sibling Selects all siblings after the current node

namespace Selects all namespace nodes of the current node

parent Selects the parent of the current node

preceding Selects all nodes that appear before the current node in the
document, except ancestors, attribute nodes and namespace
nodes

preceding-sibling Selects all siblings before the current node

self Selects the current node

Location Path Expression A location path can be absolute or relative.

An absolute location path: /step/step/...

A relative location path: step/step/...

Each step is evaluated against the nodes in the current node-set. A step consists of:

• An Axis (defines the tree-relationship between the selected nodes and the

current node)

• A Node-Test (identifies a node within an axis)

• Zero Or More Predicates (to further refine the selected node-set)

Syntax for a location step

axisname::nodetest[predicate]

Examples for Axes

Example Result

child::book Selects all book nodes that are children of the current node

attribute::lang Selects the lang attribute of the current node

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

child::* Selects all element children of the current node

attribute::* Selects all attributes of the current node

To receive the result using XML path, a “location path” is needed to locate the result

nodes. These location paths select the resulting node set relative to the current

context. A location path has many location steps. Each step is further comprised of

three pieces:

• An axis- The axis portion of the location step identifies the hierarchical

relationship for the desired nodes from the current context.

• A node test- The node test portion of a location step indicates the type of node

desired for the results. Every axis has a principal node type: If an axis is an

element, the principal node type is element; otherwise, it is the type of node the

axis can contain. Here’s a list of these node tests:

o comment()

o node()

o processing-instruction()

o text()

• A predicate- The predicate portion of a location step filters a node set on the

specified axis to create a new node set. A forward axis predicate contains the

current context node and nodes that follow the context node. A reverse axis

predicate contains the current context node and nodes that precede the context

node.

XPath Operators

Below is a list of the operators that can be used in XPath expressions:

Operator Description Example

| Computes two node-sets //book | //cd

+ Addition 6 + 4

- Subtraction 6 - 4

* Multiplication 6 * 4

div Division 8 div 4

= Equal price=9.80

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

or or price=9.80 or price=9.70

and and price>9.00 and price<9.90

mod Modulus (division remainder) 5 mod 2

XPath Functions

XPath functions are used to evaluate XPath expressions and can be divided into one of

four main groups:

• Boolean

• Node set

• Number

• String

9. Explain how XPointer and Xlink are used with XPath to find the individual

elements and to link it with other XML files in the XML

 Xpointers address the individual parts of an XML document. The node tests

for an XPointer are, the most part, the same as for an XPath node test. However, in

addition to the node tests already listed for XPath expressions, XPointer

provides two more important node tests:

• point()

• range()

Location set in XPath

 For an XPath expression, the result from a location step is known as a node

set; for an XPointer expression, the result is known as a location set. Four of the

functions that return location sets, id(), root(), here(), and origin().

Function Description

id() Selects all nodes with the specified ID

root() Selects the root element as the only location in a location set

here() Selects the current element location in a location set

origin() Selects the current element location for a node using an out-of-line link

Points

XPointer points to allow a context node to be specified and an index position indicating

how far from the context node the desired point is. Two different types of points can be

represented using XPointer points:

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Node points

• Character points

 Node points are location points in an XML document that are nodes that

contain child nodes. If 0 is specified for the index, the point is considered to be

immediately before any child nodes. A node point could be considered to be the gap

between the child nodes of a container node.

 When the origin node is a text node, the index position indicates the

number of characters. These location points are referred to as character points.

Ranges

An XPointer range defines just that—a range consisting of a start point and an

endpoint. A range will contain the XML between the start point and endpoint but does

not necessarily have to consist of neat subtrees of an XML document.

XPointer Range Functions

Function Description

end-point() Selects a location set consisting of the endpoints of the desired

location steps

range-inside() Selects the range(s) covering each location in the location-set

argument

range-to() Selects a range that completely covers the locations within

the location-set argument

start-point() Selects a location set consisting of the start points of the

desired location steps

Example:

<novel copyright=“public domain”>

 <title>The Wonderful Wizard of Oz</title>

 <author>L. Frank Baum</author>

 <year>1990</year>

</novel>

Syntax for using the Xpointer

xpointer(//title[position() =1]/text ()/point() [position ()=3])

 Initially finds the document’s first title element, then it takes its text node child.

Within this text node, it selects the point between the third and fourth character.

Apply it to this example, it would point to the space after The.

XLink

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 The XML Linking Language, allows a link to another document to be

specified on any element within an XML document. The XML Linking Language

creates a link to another resource through the, not through the actual elements use

of attributes specified on elements themselves.

XLink Syntax

Example of how to use XLink to create links in an XML document:

<?xml version="1.0" encoding="UTF-8"?>

<homepages xmlns:xlink="http://www.w3.org/1999/xlink">

 <homepage xlink:type="simple" xlink:href="http://www.w3schools.com">Visit

W3Schools</homepage>

 <homepage xlink:type="simple" xlink:href="http://www.w3.org">Visit

W3C</homepage>

</homepages>

To get access to the XLink features we must declare the XLink namespace. The

XLink namespace is: "http://www.w3.org/1999/xlink".

The xlink:type and the xlink:href attributes in the <homepage> elements come from

the XLink namespace.

The xlink:type="simple" creates a simple "HTML-like" link (means "click here to go

there").

The xlink:href attribute specifies the URL to link to.

XLink Example

The following XML document contains XLink features:

<?xml version="1.0" encoding="UTF-8"?>

<bookstore xmlns:xlink="http://www.w3.org/1999/xlink">

<book title="Harry Potter">

 <description

 xlink:type="simple"

 xlink:href="/images/HPotter.gif"

 xlink:show="new">

 As his fifth year at Hogwarts School of Witchcraft and

 Wizardry approaches, 15-year-old Harry Potter is.......

 </description>

</book>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<book title="XQuery Kick Start">

 <description

 xlink:type="simple"

 xlink:href="/images/XQuery.gif"

 xlink:show="new">

 XQuery Kick Start delivers a concise introduction

 to the XQuery standard.......

 </description>

</book>

</bookstore>

XLink Attribute Reference

Attribute Value Description

xlink:actuate onLoad
onRequest
other
none

Defines when the linked resource is read and shown:
• onLoad - the resource should be loaded and

shown when the document loads
• onRequest - the resource is not read or shown

before the link is clicked

xlink:href URL Specifies the URL to link to

xlink:show embed
new
replace
other
none

Specifies where to open the link. Default is "replace"

xlink:type simple
extended
locator
arc
resource
title
none

Specifies the type of link

Simple Links

 A simple link consists of a xlink:type attribute with a value of simple and,

optionally, an xlink:href attribute with a specified value. A simple link may have any

content, and even no content. They link exactly two resources together: one local and

one remote.

Extended Links

 Extended links gives the ability to specify relationships between an unlimited

number of resources, both local and remote. In addition,these links can involve

multiple paths between the linked resources.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

10. Explain how XML can be parsed using Document Object Model

Document Object Model (DOM) (NOV/DEC 2017)

The Document Object Model (DOM) provides a way of representing an XML

document in memory so that it can be manipulated by the software. DOM is a

standard application programming interface (API) that makes it easy for

programmers to access elements and delete, add, or edit content and attributes.

DOM is a tree structure that represents elements, attributes, and content.

Simple XML Document
<?xml version="1.0" encoding="UTF"?>
<purchase-order>
<customer>James Bond</customer>
<merchant>Spies R Us</merchant>
<items>
<item>Night vision camera</item>
<item>Vibrating massager</item>
</items>
</purchase-order>

Fig .Tree structure representing the XML document

Node Parents, Children, and Siblings:

The nodes in the node tree have a hierarchical relationship to each other. The

terms parent, child, and sibling are used to describe the relationships. Parent nodes

have children. Children on the same level are called siblings (brothers or sisters).

• In a node tree, the top node is called the root

• Every node, except the root, has exactly one parent node

• A node can have any number of children

• A leaf is a node with no children

• Siblings are nodes with the same parent

DOM Interfaces:

DOM interfaces contain methods for obtaining the parent, children, and

siblings of any node. The DOM interfaces are defined in IDL so that they are language

neutral.

Interface Description

Node The primary interface for the DOM. It can be an element,
attribute, text, and so on

NodeList An ordered collection of Nodes.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

NamedNodeMap An unordered collection of Nodes that can be accessed by name
and used with attributes.

Document A Node representing an entire document. It contains the root
Node.

DocumentFragment A Node representing a piece of a document. It’s useful for
extracting or inserting a fragment into a document.

Element A Node representing an XML element.

Attr

A Node representing an XML attributes.

CharacterData A Node representing character data

Text A CharacterData node representing text.

Comment A CharacterData node representing a comment.

DOMException An exception raised upon failure of an operation.

DOMImplementation

Methods for creating documents and determining whether
an implementation has certain features.

DOM based XML Processing

The primary goal of any XML processor is to parse the given XML document.

Java has a rich source of in-built APIs for parsing the given XML document.

 It is parsed in two ways:

1. Tree based Parsing (DOM)

2. Event based Parsing (SAX).

• The XML DOM contains methods (functions) to traverse XML trees, access, insert,

and delete nodes.

• However, before an XML document can be accessed and manipulated, it must be

loaded into an XML DOM object.

• An XML parser reads XML, and converts it into an XML DOM object that can be

accessed with JavaScript.Most browsers have a built-in XML parser

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Steps involved in Parsing using DOM

Following are the steps used while parsing a document using DOM Parser.

• Import XML-related packages.

• Create a DocumentBuilder

• Create a Document from a file or stream

• Extract the root element

• Examine attributes

• Examine sub-elements

Fig. DOM Parser in Action

DOM XML Parser Example

XML File: staff.xml

<?xml version="1.0"?>

<company>

 <staff id="1001">

 <firstname>Raj</firstname>

 <lastname>Kumar</lastname>

 <role>Executive</ role>

 <salary>100000</salary>

 </staff>

 <staff id="2001">

 <firstname>Krishna</firstname>

 <lastname>Ram</lastname>

 < role >Manager</ role>

 <salary>200000</salary>

 </staff>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

</company>

ReadXMLFile.java

import javax.xml.parsers

import org.w3c.dom;

import java.io.File;

public class ReadXMLFile

{

 public static void main(String argv[])

 {

 try

 {

 File fXmlFile = new File(“staff.xml");

//Create a DocumentBuilder

 DocumentBuilderFactory dbFactory = DocumentBuilderFactory.newInstance();

 DocumentBuilder dBuilder = dbFactory.newDocumentBuilder();

 Document doc = dBuilder.parse(fXmlFile);

 doc.getDocumentElement().normalize();

 System.out.println("Root element :" + doc. getDocumentElement(). getNodeName());

 NodeList nList = doc.getElementsByTagName("staff");

 System.out.println("----------------------------");

 for (int temp = 0; temp < nList.getLength(); temp++)

 {

 Node nNode = nList.item(temp);

 System.out.println("\nCurrent Element :" + nNode.getNodeName());

 if (nNode.getNodeType() == Node.ELEMENT_NODE)

 {

 Element el = (Element) nNode;

 System.out.println("Staff id : " + el.getAttribute("id"));

System.out.println("FName:"+el.getElementsByTagName("firstname").item(0)getTextContent());

 System.out.println("LName : "

el.getElementsByTagName("lastname").item(0).getTextContent());

 System.out.println("Designation: " +

el.getElementsByTagName("role").item(0).getTextContent());

 System.out.println("Salary : " + el.getElementsByTagName("salary").item(0).getTextContent());

} } }

catch (Exception e)

{

 e.printStackTrace();

}

}

}

Output:

Root element :company

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Current Element :staff

Staff id : 1001

First Name : Raj

Last Name : Kumar

Designation : Executive

Salary : 100000

Current Element :staff

Staff id : 2001

First Name : Krishna

Last Name : Ram

Designation : Manager

Salary : 200000

DOM Traversal:

Traversal is a convenient way to walk through a DOM tree and select specific

nodes. This is useful when you want to find certain elements and perform operations

on them.

Example

<!DOCTYPE html>

<html>

<body>

<p id="demo"></p>

<script>

var x, i ,xmlDoc;

var txt = "";

var text = "<book>" +

"<title>XML Services</title>" +

"<author> Deitel </author>" +

"<year>2005</year>" +

"</book>";

parser = new DOMParser();

xmlDoc = parser.parseFromString(text,"text/xml");

// documentElement always represents the root node

x = xmlDoc.documentElement.childNodes;

for (i = 0; i < x.length ;i++)

{

 txt += x[i].nodeName + ": " + x[i].childNodes[0].nodeValue + "
";

}

document.getElementById("demo").innerHTML = txt;

</script>

</body>

</html>
Load the XML string into xmlDoc

Get the child nodes of the root element

For each child node, output the node name and the node

value of the text node

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Output:

title: XML Services

author: Deitel

year: 2005

11. Explain SAX based parsing with example.(Nov/Dec 2016 & 17)

SAX is an API that can be used to parse XML documents. A parser is a

program that reads data a character at a time and returns manageable pieces of data.

SAX provides a framework for defining event listeners, or handlers. The handlers

are registered with the SAX framework in order to receive events. Events can

include start of document, start of element, end of element, and so on.

The SAX Parser generates a stream of events ,the kinds of events are:

• The start of the document is encountered

• The end of the document is encountered

• The start tag of an element is encountered

• The end tag of an element is encountered

• Character data is encountered

• A processing instruction is encountered

Example:

Employee-Detail.xml

<?xml version = "1.0" ?>

<Employee-Detail>

 <Employee>

 <Emp_Id> 11032 </Emp_Id>

 <Emp_Name> Hari </Emp_Name>

 <Emp_E-mail> hari@gmail.com </Emp_E-mail>

 </Employee>

 <Employee>

 <Emp_Id> 11022 </Emp_Id>

 <Emp_Name> Ashok </Emp_Name>

 <Emp_E-mail> ashok@gmail.com </Emp_E-mail>

 </Employee>

 <Employee>

 <Emp_Id> 11011 </Emp_Id>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 <Emp_Name> Elavarasan </Emp_Name>

 <Emp_E-mail> ela@pec.in </Emp_E-mail>

 </Employee>

</Employee-Detail>

EmployeeDetails.java

import javax.xml.parsers.*;

import org.xml.sax.*;

import org.xml.sax.helpers.*;

import java.io.*;

public class EmployeeDetails

{

public static void main(String[] args) throws IOException

{

BufferedReader bf = new BufferedReader(new InputStreamReader

(System.in));

System.out.print("Enter XML file name:");

String xmlFile = bf.readLine();

EmployeeDetails detail = new EmployeeDetails(xmlFile);

}

public EmployeeDetails(String str)

{

try

{

File file = new File(str);

if (file.exists())

{

SAXParserFactory parserFact = SAXParserFactory.newInstance();

SAXParser parser = parserFact.newSAXParser();

System.out.println("XML Data: ");

DefaultHandler dHandler = new DefaultHandler()

{

boolean id;

boolean name;

boolean mail;

public void startElement(String uri, String localName, String

element_name, Attributes attributes)throws SAXException

{

if (element_name.equals("Emp_Id"))

{

id = true;

}

if (element_name.equals("Emp_Name"))

{

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

name = true;

}

if (element_name.equals("Emp_E-mail"))

{

mail = true;

}

}

public void characters(char[] ch, int start, int len) throws SAXException

{

String str = new String (ch, start, len);

if (id)

{

System.out.println("Emp_Id: "+str);

id = false;

}

if (name)

{

System.out.println("Name: "+str);

name = false;

}

if (mail)

{

System.out.println("E-mail: "+str);

mail = false;

} } };

parser.parse(str, dHandler);

}

else

{

System.out.println("File not found!");

} }

catch (Exception e)

{

System.out.println("XML File hasn't any elements");

e.printStackTrace();

} } }

Output:

H:\WT LAB\Programs\Ex8>java EmployeeDetails

Enter XML file name:Employee-Detail.xml

XML Data:

Emp_Id: 11032

Name: Hari

E-mail: hari@gmail.com

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Emp_Id: 11022

Name: Ashok

E-mail: ashok@gmail.com

Emp_Id: 11011

Name: Elavarasan

E-mail: ela@pec.in

Disadvantages of SAX Parser:

• SAX parsing is “single pass,” so we can’t back up to an earlier part of the

document any more than you can back up from a serial data stream.

• SAX implementations are read-only parsers. They do not provide the ability to

manipulate a document or its structure.

• There is no formal specification for SAX.

12. Differentiate DOM and SAX based XML Parsing (Nov/Dec 2016)

SAX DOM

DOM is an in-memory tree structure of an

XML document or document fragment.

SAX much simpler than DOM. SAX

parsers tend to be smaller than DOM

implementations.

DOM is a natural object model of an XML

document, but it’s not always practical.

There is no need to model every possible

type of object that can be found in an XML

document.

Large documents can take up a lot of

memory. DOM might not describe the

specific document efficiently.

SAX is an event-based API. Instead of

loading an entire document into memory all

at once, SAX parsers read documents and

notify a client program when elements, text,

comments, and other data of interest are

found.

DOM contains many interfaces, each

containing many methods.

SAX is a much lower level in API when

compared with DOM. SAX is comprised of a

handful of classes and interfaces.

The DOM parses XML in space SAX parses XML in time

DOM parser hands you an entire

document and allows you to traverse it

any way you like. This can take a lot of

memory

SAX can be significantly more efficient for

large documents. SAX parsers sends events

continuously

13. Explain in detail about transforming the XML documents

Transforming XML Documents

XML provides a vendor-independent, data-exchange mechanism used among

mailto:ela@pec.in

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

applications or companies. We would like to convert XML data to a different format.

For example, if a supplier provides a list of parts as an XML document, we might like

to convert the XML document to use a different set of elements that are supported by

our internal applications the XML Stylesheet Language (XSL) solves this problem of

document conversion.

XSL Technologies

XSL has two independent languages:

• The XSL Transformation Language (XSLT) - used to convert an XML document to

another format.

• The XSL Formatting Object Language (XSL-FO) - provides a way of describing the

presentation of an XML document.

Fig. Publishing documents using XSLT

XSL Transformation Language -Using XSLT style sheets

• XSLT provides the mechanism for converting an XML document to another

format. This is accomplished by applying an XSLT style sheet to the XML

document.

• The style sheet contains conversion rules for accessing and transforming the

input XML document to a different output format.

• An XSLT processor is responsible for applying the rules defined in the style

sheet to the input XML document.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Example:

The figure shows the output of the XML document representation in the web

browser.

Emp.xml

<?xml version = "1.0" ?>

<?xml-stylesheet href="emp.xsl" type="text/xsl"?>

<Employee-Detail>

<Employee>

<Emp_Id> 11032 </Emp_Id>

<Emp_Name> Hari </Emp_Name>

<Emp_E-mail> harideivasigamani@gmail.com </Emp_E-mail>

</Employee>

<Employee>

<Emp_Id> 11022 </Emp_Id>

<Emp_Name> Ashok Kumar</Emp_Name>

<Emp_E-mail> ashokkumar782@gmail.com </Emp_E-mail>

</Employee>

<Employee>

</Employee-Detail>

We will apply the style sheet in a client-side Web browser. The XML document makes

a reference to a style sheet using the following code:

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<?xml-stylesheet type=”text/xsl” href=”book_view.xsl”?>

Emp.xsl

<?xml version="1.0" ?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

version="1.0">

<xsl:output method="html" indent="yes"/>

<xsl:template match="/">

<html>

<title>XSLT Style Sheet</title>

<body>

<h1><p align="center">Employee Details</p></h1>

<xsl:apply-templates/>

</body>

</html>

</xsl:template>

<xsl:template match="Employee-Detail">

<table border="2" width="50%" align="center">

<tr bgcolor="LIGHTBLUE">

<td>Emp_Id</td>

<td>Emp_Name</td>

<td>Emp_E-mail</td>

</tr>

<xsl:for-each select="Employee">

<tr>

<td><i><xsl:value-of select="Emp_Id"/></i></td>

<td><xsl:value-of select="Emp_Name"/></td>

<td><xsl:value-of select="Emp_E-mail"/></td>

</tr>

</xsl:for-each>

</table>

</xsl:template>

</xsl:stylesheet>

Output:

In the transformation process, XSLT uses XPath to define parts of the source

document that should match one or more predefined templates. When a match is

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

found, XSLT will transform the matching part of the source document into the result

document.

Implementing Server-Side XSLT Processing

A number of server-side technologies are available, including Common Gateway

Interface (CGI), ColdFusion, Hypertext Processor (PHP),.The server-side processing can

be done with Microsoft’s Active Server Pages (ASP) and Sun Microsystems’ JavaServer

Pages (JSP).

Advanced Features of XSLT

Looping

The XSLT element <xsl:for-each> is used for looping through a list of

elements. This is very useful when you have a collection of related items and you’d

like to process them in a sequential fashion.

Syntax

<xsl:for-each select=node-set-expression>

<!-- content -->

</xsl:for-each>

Sorting

In XSLT, the <xsl:sort> element is used for sorting the XML data. It is possible to

sort based on a single key or multiple keys.

Syntax

<xsl:sort

select = string-expression

order = { “ascending” | “descending” }

data-type = { “text” | “number” }

case-order = {“upper-first” | “lower-first” }

lang = { nmtoken } />

The <xsl:sort> element is used in conjunction with the <xsl:for-each> element.

For example, the following code snippet sorts the book titles in alphabetical order:

<!-- Sort by the book title -->

<xsl:for-each select=”booklist/book” >

<xsl:sort select=”title” />

<!-- insert table rows and table data -->

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

</xsl:for-each>

XSL Formatting Objects

XSL-FO was designed to assist with the printing and displaying of XML

data. The main importance is on the document layout and structure. This

includes the dimensions of the output document, including page headers, footers, and

margins.

XSL-FO also allows the developer to define the formatting rules for the content,

such as font, style, color, and positioning. XSL-FO is a sophisticated version of

Cascading Style Sheets (CSS).

XSL-FO documents are well-formed XML documents. An XSL-FO formatting engine

processes XSL-FO documents.

Two techniques for creating XSL-FO documents.

• Develop the XSL-FO file with the included data.

• Dynamically create the XSL-FO file using an XSLT translation.

Basic Document Structure

An XML-FO document follows the syntax rules of XML; as a result, it is well

formed.XSL-FO elements use the following namespace:

http://www.w3.org/1999/XSL/Format

The following code snippet shows the basic document setup for XSL-FO:

<?xml version=”1.0” encoding=”utf-8”?>

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<!-- layout master set -->

<!-- page masters: size and layout -->

<!-- page sequences and content -->

</fo:root>

The element <fo:root> is the root element for the XSL-FO document. An XSL-FO

document can contain the following components:

• Page master

• Page master set

http://www.w3.org/1999/XSL/Format

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Page sequences

Page Master: <fo:page-master> The page master describes the page size and layout.

The <fo:simple-page-master> element can also be used to describe an A4 letter (height

210 mm and width 297 mm):

<fo:simple-page-master master-name=”A4-example”

page-height=”210mm”

page-width=”297mm”

margin-top=”0.5in”

margin-bottom=”0.5in”

margin-left=”0.5in”

margin-right=”0.5in”>

</fo:simple-page-master>

Each page is divided into five regions. Regions serve as containers for the document

content.

During the definition of a page master,
you specify the size of the regions using
the following elements:

• <fo:region-before>
• <fo:region-after>
• <fo:region-body>
• <fo:region-start>
• <fo:region-end>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

The region-before and region-after areas are commonly used for page headers

and footers. The region-body area is the center of the page and contains the main

content. The region-start and region-end sections are commonly used for left and

right sidebars, respectively.

Page Master Set: <fo:page-master-set>

A document can be composed of multiple pages, each with its own

dimensions. The page master set refers to the collection of page masters.

Page Sequences: <fo:page-sequence>

A page sequence defines a series of printed pages. Each page sequence refers

to a page master for its dimensions. The page sequence contains the actual content for

the document. The <fo:page-sequence> element contains

• <fo:static-content> - This element is used for page headers and footers.

Example: We can define a header for the company name and page number,

and this information will appear on every page.

• <fo:flow> elements- This element contains a collection of text blocks. It

is similar to a collection of paragraphs. A body of text is defined using this.

o The <fo:block> element is a child element of <fo:flow>. It contains

free-flowing text that will wrap to the next line in a document if it

overflows.

Example:

<?xml version=”1.0” encoding=”utf-8”?>

<fo:root xmlns:fo=”http://www.w3.org/1999/XSL/Format”>

<!-- layout master set -->

<fo:layout-master-set>

<!-- page masters: size and layout -->

<fo:simple-page-master master-name=”simple”

page-height=”11in”

page-width=”8.5in”

margin-top=”1in”

margin-bottom=”1in”

margin-left=”1.25in”

margin-right=”1.25in”>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<fo:region-body margin-top=”0.5in”/>

<fo:region-before extent=”3cm”/>

<fo:region-after extent=”1.5cm”/>

</fo:simple-page-master>

</fo:layout-master-set>

<!-- page sequences and content -->

<fo:page-sequence master-name=”simple”>

<fo:flow flow-name=”xsl-region-body”>

<!-- this defines a level 1 heading with orange background -->

<fo:block font-size=”18pt”

font-family=”sans-serif”

line-height=”24pt”

space-after.optimum=”15pt”

background-color=”orange”

color=”white”

text-align=”center”

padding-top=”3pt”>

Ez Books Online

</fo:block>

<!-- Paragraph that contains info about the company -->

<fo:block font-size=”12pt”

font-family=”sans-serif”

line-height=”15pt”

space-after.optimum=”14pt”

text-align=”justify”>

Welcome to Ez Books Online, the world’s smallest online book store.

Our company’s mission is to sell books on Java, Thrillers and Romance.

We have something for everyone...so we think. Feel free to browse our

catalog and if you find a book of interest then send us an e-mail.

Thanks for visiting!

</fo:block>

</fo:flow>

</fo:page-sequence>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

</fo:root>

Using Graphics

XSL-FO also allows for the insertion of external graphic images. The graphic

formats supported are dependent on the XSL-FO formatting engine. The Apache-FOP

formatting engine supports the popular graphics formats: GIF, JPEG, and BMP.

The following code fragment inserts the image smiley.jpg:

<fo:block text-align=”center”>

<fo:external-graphic src=”smiley.jpg” width=”200px” height=”200px”/>

</fo:block>

Tables

XSL-FO has rich support for structuring tabular data.

Comparing HTML Table Elements and XSL-FO Table Elements

HTML Element XSL-FO Element

TABLE fo:table-and-caption

Not applicable fo:table

CAPTION fo:table-caption

COL fo:table-column

COLGROUP Not applicable

TH fo:table-header

TBODY fo:table-body

TFOOT fo:table-footer

TD fo:table-cell

TR fo:table-row

Code fragment to define the basic structure of the table:

<fo:table>

<!-- define column widths -->

<fo:table-column column-width=”120pt”/>

<fo:table-column column-width=”200pt”/>

<fo:table-column column-width=”80pt”/>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<fo:table-header>

<fo:table-row>

<fo:table-cell>

<fo:block font-weight=”bold”>Author</fo:block>

</fo:table-cell>

<fo:table-cell>

<fo:block font-weight=”bold”>Title</fo:block>

</fo:table-cell>

<fo:table-cell>

<fo:block font-weight=”bold”>Price (USD)</fo:block>

</fo:table-cell>

</fo:table-row>

</fo:table-header>

<!-- insert table body and rows here -->

</fo:table>

Generating XSL-FO Tables Using XSLT

If we wanted to list 500 books. The document would be extremely large. The file,

booklist.xml, contains a list of the books. We can develop an XSL style sheet that will

automatically construct the XSL-FO document.

Fig. Generating XSL-FO tables with XSLT.

14. Give a brief note on modeling the database in XML

Integrating XML with relational database:

This can be performed by the following methods namely:

• Database mapping -provides a mapping between the XML document and

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

the database fields. The system dynamically converts SQL result sets to XML

documents

• Native xml support-It actually stores the XML data in the document in its

native format. Each product uses its own proprietary serialization technique

to store the data.

Converting XML to relational database

Native XML

Modeling the database in XML:

When we model a database, we provide an external representation of the

database contents. We can develop a servlet that uses JDBC. The servlet will make the

appropriate query to the database and use Java Database Connectivity (JDBC) API

result set metadata to create the elements.

We can use the XML data binding features of Java Architecture for

XML Binding (JAXB). JAXB provides a framework for representing XML documents as

Java objects.

Marshalling and Unmarshalling in JAXB

In the JAXB framework, we can parse XML documents into a suitable Java

object. This technique is referred to as unmarshaling. The JAXB framework also

provides the capability to generate XML documents from Java objects, which is

referred to as marshaling.

Properties of JAXB

• Using JAXB, an application can parse an XML document by simply unmarshaling

the data from an input stream.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• JAXB allows us to define Java objects that map to XML documents, so we can

easily retrieve data.

• The JAXB framework also ensures the type safety of the data.

JAXB binding schema:

The JAXB binding schema contains instructions on how to bind the XML schema to a

Java class. The steps followed are:

1. Review the database schema.

2. Construct the desired XML document.

3. Define a schema for the XML document.

4. Create the JAXB binding schema.

5. Generate the JAXB classes based on the schema.

6. Develop a Data Access Object (DAO).

7. Develop a servlet for HTTP access.

Reviewing the Database Schema:

The database schema for employee details is given below:

Field Type

empid NUMBER

name VARCHAR2

designation VARCHAR2

department VARCHAR2

salary NUMBER

Constructing the Desired XML Document

The desired output XML document is employee details. XML document provides

a custom mapping of the database fields to XML element names.

Database Field XML Element Name

empid <eid>

name <ename>

designation <edesgn>

dept <edept>

salary <esalary>

An employee detail is described with a root element of <employee>, as shown in the

following code:

<employee>

<eid>101</eid>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<ename>Mathew</ename>

<edesgn>Senior Executive</edesgn>

<edept>Production </edept>

<esalary>100000<esalary>

</employee>

We can also create a collection of employee details . This collection can be modeled

using a <employee_list> element, as shown here:

<employee_list>

< employee _property> … </ employee _property>

< employee _property> … </ employee _property>

… …

</ employee _list>

Defining a Schema for the XML Document

Based on the desired document format, we can create a schema definition. here we

define the Document Type Definition (DTD). The DTD schema format was chosen

because JAXB 1.0 (early access) only supports DTDs.

employeedetails.dtd

<!ELEMENT employee_list (employee)*>

<!ELEMENT employee (eid,ename,edesgn,edept)>

<!ELEMENT eid (#PCDATA)>

<!ELEMENT ename (#PCDATA)>

<!ELEMENT edesgn (#PCDATA)>

<!ELEMENT edept (#PCDATA)>

<!ELEMENT esalary (#PCDATA)>

Creating the JAXB Binding Schema

The JAXB binding schema is an XML document that contains instructions on

how to bind a DTD to a Java class. Using the JAXB binding schema, we can define the

names of the generated Java classes, map element names to specific properties in the

Java class, and provide the mapping rules for attributes.

employeedetails.xjs

<?xml version=”1.0” encoding=”ISO-8859-1” ?>

<!DOCTYPE xml-java-binding-schema SYSTEM

➥”http://java.sun.com/dtd/jaxb/1.0-ea/xjs.dtd”>

<xml-java-binding-schema version=”1.0-ea”>

<options package=”xmlunleashed.ch10.jaxb”/>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<element name=”employee_list” type=”class” root=”true”>

<content property=”list”/>

</element>

<element name=”salary” type=”value” convert=”double”/>

</xml-java-binding-schema>

Generating the JAXB Classes Based on Schemas:

JAXB provides a schema compiler for generating the Java source files. The

schema compiler takes as input the DTD and the JAXB binding schema.

Now pass the DTD (employeedetails.dtd) and binding schema (employeedetails.xjs) to

the JAXB schema compiler with the xjc command.

java com.sun.tools.xjc.Main rental_property.dtd rental_property.xjs -d

source_code

This command generates source code in the source_code directory. The following files

are generated:

• EmployeeList.java. This file models the <employee_list> element.

• Employee.java. This file models the <employee> element.

The Unified Modeling Language (UML) diagram are also generated for the Java

classes.Using the default schema-binding definition, the JAXB schema compiler

generates a property in the Java class for each XML element. In the event the XML

element contains subelements, the schema compiler will create a new class.

The partial source code for Employee.java is shown below:

import javax.xml.bind.*;

import javax.xml.bind.Validator;

import javax.xml.marshal.XMLScanner;

import javax.xml.marshal.XMLWriter;

import java.io.IOException;

import java.io.InputStream;

public class Employee extends MarshallableObject implements Element

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

{

private String _empid;

private String _ename;

private String _edesgn;

private String _edept;

private double_esalary;

public String getempid()

{

return _empid;

}

public void setempid(String _empid)

{

this._empid = _empid;

if (_empid == null)

 {

invalidate();

}

}

}

public void validateThis() throws LocalValidationException

{

… …

}

public void marshal(Marshaller m)throws IOException

{

// code to output the XML document

}

public void unmarshal(Unmarshaller u)throws UnmarshalException

{

// code to read in the XML document

}

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Developing a Data Access Object (DAO):

A Data Access Object (DAO) provides access to the backend database. The goal

of the DAO design pattern is to provide a higher level of abstraction for database

access. The DAO provides access to the backend database via public methods. The

DAO converts a result set to a collection of objects. The objects model the data stored

in the database.

By using a DAO, the implementation details of the database are hidden from

the application clients. The implementation details include the database schema and

database vendor.

Benefit of using the DAO

• Improved application maintenance.

• If the database schema changes, such as a column name modified, update only

the DAO. No modifications are required to the client programs.

• If change need for database implementation from Sybase to Oracle,

modifications are only required to the DAO. The clients can continue to use the

DAO without any modification.

• The DAO design pattern is widely used in the industry .

The partial code for EmployeeDAO.java.

import java.sql.DriverManager;

import java.sql.Connection;

import java.sql.Statement;

import java.sql.ResultSet;

import java.sql.SQLException;

public class EmployeeDAO

{

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

protected Connection myConn;

public EmployeeDAO(String driverName, String dbUrl,String user, String pass) throws

DAOException

{

try

{

// Load the driver

log(“Loading driver: “ + driverName);

Class.forName(driverName);

// Get a connection

log(“Connecting to the database: “ + dbUrl);

log(“User id: “ + user);

myConn = DriverManager.getConnection (dbUrl, user, pass);

log(“DB connection successful at “ + new java.util.Date());

}

catch (Exception exc)

{

throw new DAOException(exc);

}

}

//Get a list of employee properties from the database

public EmployeeList getEmployeeProperties() throws DAOException {

EmployeeList elist = new EmployeeList ();

java.util.List theList = elist.getList();

try

{

Statement myStmt = myConn.createStatement();

String rentalSql = “SELECT empid, name, designation, department,salary “FROM

employee”;

ResultSet myRs = myStmt.executeQuery(employeeSql);

EmployeeProperty temp= null;

// build a collection of JAXB EmployeeProperty objects

while (myRs.next())

 {

temp= createEmployeeProperty(myRs);

theList.add(temp);

}

// be sure to validate the new list

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

theList.validate();

myRs.close();

myStmt.close();

}

catch (Exception exc) {

throw new DAOException(exc);

}

return theRentalPropertyList;

}

/**

* Create a JAXB RentalProperty object based on the result set.

* This method provides the mapping between database schema and object

*/

protected EmployeeProperty createEmployeeProperty(ResultSet theRs)throws

DAOException

{

EmployeeProperty emp= new EmployeeProperty();

try {

emp.setempId(theRs.getString(“empid”));

emp.setName(theRs.getString(“name”));

emp.setDesignation(theRs.getString(“designation”));

emp.setDepartment(theRs.getString(“department”));

emp.setSalary(theRs.getString(“salary”));

}

catch (SQLException exc) {

throw new DAOException(exc);

}

return theProperty;

}

protected void log(Object message) {

System.out.println(“EmployeeDAO: “ + message);

}

}

Developing a Servlet for HTTP Access

We need to provide an HTTP interface for EmployeeDAO so that a Web browser can

interact with our system. Java servlets provides support for the HTTP protocol.

The servlet is responsible for creating an instance of EmployeeDAO. The servlet reads

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

JDBC parameters from the web.xml configuration file and constructs EmployeeDAO

accordingly.

web.xml file

<servlet>

<servlet-name>EmployeeServlet</servlet-name>

<servlet-class> EmployeeXMLServlet</servlet-class>

<init-param>

<param-name>driverName</param-name>

<param-value>sun.jdbc.odbc.JdbcOdbcDriver</param-value>

</init-param>

<init-param>

<param-name>dbUrl</param-name>

<param-value>jdbc:odbc:RentalPropertyDSN</param-value>

</init-param>

<init-param>

<param-name>user</param-name>

<param-value>test</param-value>

</init-param>

<init-param>

<param-name>pass</param-name>

<param-value>test</param-value>

</init-param>

<load-on-startup/>

</servlet>

The partial code for Servlet is given below:

public void doGet(HttpServletRequest request, HttpServletResponse response) throws

ServletException, IOException

{

ServletOutputStream out = null;

EmployeeList theList = null;

try {

// Set the content type to text/xml

response.setContentType(“text/xml”);

// Retrieve the servlet output stream

out = response.getOutputStream();

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

// Retrieve a list of rental properties

theList = myEmployeeDAO.getEmployeeProperties();

// Marshal the list as an XML document

theList.marshal(out);

}

15. With an example show how XSLT transform XML to HTML

Transforming XML data using XSLT

page.xml

<?xml version="1.0"?>

<?xml-stylesheet type="text/xsl" href="page.xsl"?>

<PAGE>

 <HEADING>page heading</HEADING>

 <ARTICLE>

 <TITLE>article title</TITLE>

 <DESCRIPTION>article description</DESCRIPTION>

 </ARTICLE>

 <ASIDE>

 <TITLE>side widget bar</TITLE>

 <ITEM>sidebar item</ITEM>

 </ASIDE>

 <FOOTER>page footer</FOOTER>

</PAGE>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Page.xsl

<?xml version="1.0" encoding="ISO-8859-1"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:output method="html"/>

 <xsl:template match="/">

 <html><body>

 <xsl:apply-templates/>

 </body></html>

 </xsl:template>

 <xsl:template match="/PAGE/HEADING">

 <h1 align="center"> <xsl:apply-templates/> </h1>

 </xsl:template>

 <xsl:template match="/PAGE/ARTICLE">

 <div style="float:left;width:70%;"><xsl:apply-templates/> </div>

 </xsl:template>

 <xsl:template match="/PAGE/ARTICLE/TITLE">

 <h3> <xsl:apply-templates/> </h3>

 </xsl:template>

 <xsl:template match="/PAGE/ARTICLE/DESCRIPTION">

 <p> <xsl:apply-templates/> </p>

 </xsl:template>

 <xsl:template match="/PAGE/ASIDE/TITLE">

 <div style="float:left;width:30%;"><h3> <xsl:apply-templates/> </h3></div>

 </xsl:template>

 <xsl:template match="ITEM">

 <p> <xsl:apply-templates/> </p>

 </xsl:template>

 <xsl:template match="/PAGE/FOOTER">

 <div style="clear:both;"></div>

 <h1 align="center"> <xsl:apply-templates/> </h1>

 </xsl:template>

</xsl:stylesheet>

C# console application for accessing the XML

Transform.cs

using System;

using System.Xml;

using System.Xml.Xsl;

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

namespace XSLTransform{

 class myclass{

 static void Main(string[] args){

 XslTransform myXslTransform;

 myXslTransform = new XslTransform();

 myXslTransform.Load("page.xsl");

 myXslTransform.Transform("page.xml");

 }

 }

}

Output:

<html>

<body>

 <h1 align="center">page heading</h1>

 <div style="float:left;width:70%;">

 <h3>article title</h3>

 <p>article description</p>

 </div>

 <div style="float:left;width:30%;">

 <h3>side widget bar</h3>

 <p>sidebar item</p>

 </div>

 <div style="clear:both;"></div>

 <h1 align="center">page footer</h1>

</body>

</html>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

UNIT – II SERVICE ORIENTED ARCHITECTURE (SOA) BASICS

Characteristics of SOA, Comparing SOA with Client-Server and Distributed

architectures – Benefits of SOA -- Principles of Service orientation – Service layers.

PART - B

1. Write briefly on Characteristics of Contemporary SOA. (MAY/JUN 2012)

Definition:

Contemporary SOA is an extended variation of service-oriented architecture

which builds increasingly powerful XML and Web services support into current

technology platforms.

Common characteristics of Contemporary SOA

Contemporary SOA builds upon the primitive SOA model by leveraging industry

and technology advancements with the following primary characteristics

• Contemporary SOA is at the core of the services-oriented computing

platform.

• Contemporary SOA increase quality of service.

• Contemporary SOA is fundamentally autonomous.

• Contemporary SOA is based on open standards.

• Contemporary SOA supports vendor diversity.

• Contemporary SOA fosters intrinsic interoperability.

• Contemporary SOA promotes discovery.

• Contemporary SOA promotes federation.

• Contemporary SOA promotes architectural compos ability.

• Contemporary SOA fosters inherent reusability.

• Contemporary SOA emphasizes extensibility.

• Contemporary SOA supports a service-oriented business modeling

paradigm.

• Contemporary SOA implements layers of abstraction.

• Contemporary SOA promotes loose coupling throughout the

enterprise.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Contemporary SOA Promotes organizational agility.

• Contemporary SOA is a building block.

• Contemporary SOA is an evolution.

• Contemporary SOA is still maturing.

• Contemporary SOA is an achievable ideal.

a. Contemporary SOA is at the core of the services-oriented computing platform.

• When a product, design, or technology is prefixed with “SOA” it is something

that was created in support of an architecture based on service-

orientation principles.

• Contemporary SOA represents an architecture that promotes service-

orientation through the use of Web services

b. Contemporary SOA increase quality of service.

Contemporary SOA is striving to fill the QoS gaps of the primitive SOA model with the

following requirements,

• In a secure manner

• Reliably

• With appropriate performance

• Protecting business integrity

• Executing exception logic in case of failure.

c. Contemporary SOA is fundamentally autonomous.

Autonomous principle

• Represents the ability of a service to carry out its logic independently

of outside influences.

• Message-level autonomy- Messages are “intelligence-heavy” and control

the way they are processed by recipients

• Autonomy concept is expanded to solution environment and the

enterprise i.e. applications.

Levels of autonomy

• Runtime autonomy-represents the amount of control a service has

over its execution environment at runtime.

• Design-time autonomy- represents the amount of governance control

a service owner has over the service design.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Primary benefits

• Increased reliability

• Behavioral predictability

d. Contemporary SOA is based on open standards

• Based on open standards, messages travel between services via a set of

protocols that is globally standardized and accepted

• Messages format is standardized, too.

• SOAP, WSDL, XML, and XML schema allow messages to be fully self-

contained

• For services to communicate, they only need to know of each other’s

service description. This supports loose-coupling

Figure 1. Standard open technologies are used within and outside of solution

boundaries.

e. Contemporary SOA supports vendor diversity

• The communications framework bridges the heterogeneity within and

between corporations

• Integration technologies encapsulate legacy logic through service

adapters.

• Platform neutral communication such as .NET solution J2EE solution.

Figure 2. Disparate technology platforms do not prevent service-oriented

solutions from interoperating.

f. Contemporary SOA promotes discovery

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Universal description discovers and integration (UDDI) provided for service

registries.

• Some SOA systems used UDDI service registry or directory to manage

service descriptions.

• Services are supplemented with communication meta data by which they can

be effectively discovered and interpreted.

• Store Meta data in a service registry or profile documents

Figure 3. Registries enable a mechanism for the discovery of services.

g. Contemporary SOA fosters intrinsic interoperability

The design characteristics required to facilitate interoperability are

• Standardization

• Scalability

• Behavioral predictability

• Reliability

Figure 4. Intrinsically interoperable services enable unforeseen integration

opportunities.

h. Contemporary SOA promotes federation

• Establishing and standardizing the ability to encapsulate legacy and non-

legacy application logic and by exposing it via an open, common standard

communications framework.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Communication channels are all uniform and standardized.

Figure 5. Services enable standardized federation of disparate legacy

systems.

i. Contemporary SOA promotes architectural composability

• Supports the automation of flexible, adaptable business process by composing

loosely coupled services.

• Flexible service contracts to allow different types of data exchange requirements

for similar functions

• Services are effective composition participants, regardless of the size and

complexity of the composition.

• Ensures services are able to participate in multiple compositions to solve

multiple larger problems-related to reusability principle

Advantages

• Composite applications faster than writing a program from scratch.

• Building new services and application becomes quicker and cheaper .

Figure 6. Different solutions can be composed of different extensions and can

continue to interoperate as long as they support the common extensions

required.

j. Contemporary SOA fosters inherent reusability

• Service-oriented design principles encourage reuse of software

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Services can be composed into larger services which in turn can be reused

• Services contain and express logic and can be positioned as reusable enterprise

resources

• Reusable services have the following characteristics:

• Defined by an agnostic functional context

• Logic is highly generic

• Has a generic and extensible contract

• Can be accessed concurrently

Figure 7. Inherent reuse accommodates unforeseen reuse opportunities.

k. Contemporary SOA emphasizes extensibility

• When encapsulating functionality through a service description, you are

encouraged to think beyond a point-to-point solution.

• Extensibility can be achieved less significantly due to loosely coupled

relationship fostered among all services.

Figure 8. Extensible services can expand functionality with minimal impact.

SOA Definition after discussing these 11 Characteristics:

Contemporary SOA represents an open, extensible, federated, compostable

architecture that promotes service-orientation and is comprised of autonomous,

QOS-capable, vendor diverse, interoperable, discoverable, and potentially reusable

services, implemented as web services.

l. Contemporary SOA supports a service-oriented business modeling paradigm

• Partitioning business logic into services that can be composed has significant

implications as to how business processes can be modeled.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• BPM models, entity models and other forms of business intelligence can be

accurately represented through coordinated composition of business-centric

services.

Figure 9. A collection (layer) of services encapsulating business process logic.

m. Contemporary SOA implements layers of abstraction

• SOA introduce layers of abstraction by positioning services as the sole

access points to a Variety of resources and processing logic.

• The abstraction is targeted at business and application logic and the

functionality is offered via the service interfaces.

Figure 10. Application logic created with proprietary technology can be

abstracted through a dedicated service layer.

n. Contemporary SOA promotes loose coupling throughout the enterprise

• The loose coupling concept is achieved by implementing standardized

service abstraction layers when service-orientation principles are applied to

both business modeling and technical design.

• Each domain are allowed to evolve more independently which result in an better

accommodate business and technology-related change-quality environment

known as organizational agility.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Figure 11. Through the implementation of service layers that abstract business

and application logic, the loose coupling paradigm can be applied to the

enterprise as a whole.

o. Contemporary SOA Promotes organizational agility

• Organizational agility refers to efficiency with which an organization can

respond to change.

• High dependency between parts of an enterprise means that changing software

is more complicated and expansive

• Leveraging service business representation, service abstraction, and loose

coupling promotes agility

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Figure 12. A loosely coupled relationship between business and application

technology allows each end to more efficiently respond to changes in the other.

p. Contemporary SOA is a building block

• Services are composed into larger services.

• Multiple SOA applications can be pulled into service-oriented integration

technologies to help build a service-oriented Enterprise (SOE).

• An SOA consists of services within services, to the point that a solution

based on SOA itself is one of many services within an SOE.

Definition of SOA after applying the above characteristics:

SOA can establish an abstraction of business logic and technology, resulting in

a loose coupling between these domains’. These changes foster service-orientation in

support of a service-oriented enterprise.

q. Contemporary SOA is an evolution

• SOA is a distinct architecture from the previous.

• It is influenced by concepts in service-orientation and web services

• Promotes reuse, encapsulation, componentization, and distribution of

application logic like previous technologies

r. Contemporary SOA is still maturing

• Standards organization and vendors are continuing to develop new SOA

technologies.

• They are extended to support the creation of enterprise SOA solutions.

s. Contemporary SOA is an achievable ideal

• Many organizations begin with a single application and then begin

leveraging service into other applications

• Changing to SOA requires cultural changes in an organization

2. Compare SOA with client-server and distributed internet architectures.

(NOV/DEC 2011) (NOV/DEC 2012) (MAY/JUN 2013) (May/June 2014)(Nov/Dec

2014)

SOA vs. client-server Architecture:

Client-server architecture is architecture in which one piece of software requests or

receives information from another.

Client-server architecture:

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

1. Single-tier client-server architecture

Single-tier client-server architecture is an environment in which bulky

mainframe back-ends server served the thin clients.

 Thin –client model:

In a thin client model, all of the application processing and data management

is carried out on the server. The client is simply responsible for running the

presentation software.

Types of communication

• Synchronous communication - Allow the client and server to wait for each other

to transfer the message. That is, the client will not continue until the server has

received the message.

• Asynchronous communication- Allow the server to continuously receive message

from the client without waiting for the server to respond.

 Disadvantage

Places a heavy processing load on both the server and the network.

2.Two-tier client-server architecture

Two-tier client-server architecture consists of multiple fat clients, each with its own

connection to a database on a central server.

Fat-client model:

• In fat-client model, the server is only responsible for data management.

• The software on the client implements the application logic and the

interactions with the system user.

Operation of Two-tier client-server architecture

• The client accepts user requests and performs the bulk of application logic that

produces database requests and transmits them to the server.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• The server accepts the requests, performs the data access logic, and transmits

the results to the client.

• The client accepts the results and presents them to the end user.

Characteristics of Two-tier client-server architecture

The primary characteristics of the two tier client server architecture is given below

which is compared to SOA

• Application logic

• Application architecture

• Technology

• Security

• Administration

 Application logic:

 Client Server Architecture - The application or business logic either resides on the

client or on the database server in the form of stored procedures.

SOA - The processing logic is partitioned into autonomous units which facilitate

design qualities, future compos ability and reusability.

 Application architecture

 Client server architecture

• Client is responsible for the bulk of processing

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• 80/20 ratio is used as a rule of thumb.

• Communication is predictably synchronous

• Client establish its own database connection-persistent

• Client –side executables are fully stateful

• Client is independently responsible for its actions; server doesn’t track set of

clients or ensure that cached data stays up to date.

• Consume a steady chunk of PC memory

• All available resources are offered to the application

 SOA:

• Processing in SOA is highly distributed.

• Communication between services and requestor can be synchronous or

asynchronous

• SOA provides stateless and autonomous nature or services

• Server tracks its client, takes actions to keep their cached states “current “.

Client can trust its cached data. Further processing is made easier by

reducing the need for runtime caching of state information

 Technology

Client server architecture

Front end

• 4GL programming languages, such as Visual Basic and power builder, is

used

• Provides the ability to create aesthetically rich and more interactive

user interfaces

• Traditional 3GL languages, such as c++, were also still used,

• Required for rigid performance

 Back end

• Database vendors, such as Oracle, Informix, IBM, Sybase, and Microsoft,

provided robust RDBMSs that could manage multiple connections.

SOA

Front end

• Newer versions of older programming languages, such as Visual Basic, are

used to create web services.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Contemporary SOA established the XML data representation architecture,

along with a SOAP messaging framework, and service architecture

comprised of the ever- expanding web services platform.

Back end

• Relational database are used.

Security

 Client server architecture

• Client-server security is simple

• Security is controlled within the client executable

• Corporate data is protected via a single point of authentication, establishing

a single connection between client and server

SOA

• SOA security is complex with respect to degree of security measure.

Administration

 Client server architecture

• Administration process is highly burden

• Maintenance costs are large associated with the distributed and maintenance of

application logic across user workstations.

 SOA

• Administration process is simple and flexible.

• Distributed back-end accommodate scalability for application and database

servers

SOA vs. distributed Internet Architecture

SOA is viewed as a form of distributed Internet Architecture because the

previous types of distributed Architecture are also designed as SOAs.

Distributed Internet Architecture

1. Multi-tier client-server Architecture

Multi-tier architecture (often referred to as n-tier architecture) is a client-server

architecture in which the presentation, the application processing, and the data

management are logically separate processes.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

RPC

Client-server remote procedure call (RPC) connections are used for remote

communication between components residing on the client workstations and

servers.

Advantages

• Better load balancing:

o More evenly distributed processing.(e.g., application logic distributed

between several servers.)

• More scalable:

o Only servers experiencing high demand need be upgraded.

o Multiple concurrent requests are processed

Disadvantages

• Heavily loaded network:

• More distributed processing necessities more data exchanges

• Difficult to program and test due to increased complexity.

 2. Distributed Internet architecture

• In the mid-to-late 90s, the multi-tiered client-server environment

incorporates Internet technology.

• Custom software client component are replaced with the browser.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• A new physical tier, web server, is introduced.

• Replaces RPC protocols by HTTP for client and server communication

• In the middle 2000s, it become the computing platform for custom

developed enterprise solutions

Issues

The issues that are raised in the client-server and the distributed Internet

architecture comparisons are discussed in a comparison between multi-tier client-

server and SOA.

• Application logic

• Application processing

• Technology

• Security

• Administration

Application Logic

Distributed Internet architecture

• All application logic is placed on the server side and client-side scripts are

downloaded from the web server upon request.

• Components are tightly coupled

o Little processing is wasted to locate component at runtime

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

o Very difficult to alter the network after implementation

• Services exchange information uses RPC-style message structures which are

accompanied by a wide range of meta information, processing instructions, and

policy rules.

• Reusability is strictly allowed.

 SOA

• Provider logic resides on the server end where it is broken down into separate

units.

• Components are loosely coupled.

• Support a composition model, which aggregate assemblies which are used for

reuse and extensibility.

• The messaging framework used by SOA service for exchanging information is

more sophisticated, bulker, and tends to result in less individual transmissions.

• Reusability and cross-application interoperability is done on a deep level by

promoting the creation of solution-agnostic services.

Application Processing

Distributed Internet Architecture

Distributed Internet Architecture promotes the use of proprietary communication

protocols(DCOM,CORBA)

 SOA

• SOA relies on message-based communication

• Message use serialization, transmission, de-serialization of SOAP message

containing XML payloads

• RPC communication is faster than SOAP and SOAP processing overhead is a

significant design issue

• Messaging framework supports a wide range message exchange patterns

• Asynchronous patterns encouraged

• Support for stateless services is supported by context management options(WS-

Coordination, WS-BPEL)

Technology

 Distributed Internet Architecture

Distributed Internet Architecture now includes XML data representation

 SOA

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 XML and web services are optional for Distributed Internet Architecture but not for

SOA

Security

 Distributed Internet Architecture

•Traditional security architecture incorporates delegation and impersonation as well

as encryption.

 SOA

• SOAs depart from this model by relying heavily on WS-Security to provide

security logic on the messaging level

• SOAP messages carry headers where security logic can be stored.

Administration

Distributed Internet Architecture

Maintaining component-based applications involves:

• Keeping track of individual components

• Tracing local and remote communication problems

• Monitoring server resource demands

• Standard database administrative tasks

Distributed Internet Architecture introduces the web server and its physical

environment.

 SOA

SOA requires additional runtime administration:

• Problems with messaging frameworks

• Additional administration of a private or public registry of services

3. Explain what are the benefits of using SOA?

3. 1 Improved integration (and intrinsic interoperability)

SOA can result in the creation of solutions that consist of inherently

interoperable services .Utilizing solutions based on interoperable services is part of

service-oriented integration (SOI) and results in a service-oriented integration

architecture. The cost and effort of cross-application integration is significantly

lowered when applications being integrated are SOA-compliant.

3. 2 Inherent reuse

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Service-orientation promotes the design of services that are inherently reusable.

Building services to be inherently reusable results in a moderately increased

development effort and requires the use of design standards.

3. 3 Streamlined architectures and solutions

The concept of composition is another fundamental part of SOA. The WS-*

platform is based in its entirety on the principle of composability. Benefits of

streamlined solutions and architectures include the potential for reduced processing

overhead and reduced skill-set requirements (because technical resources require only

the knowledge of a given application, service, or service extension).

3. 4 Leveraging the legacy investment

The industry-wide acceptance of the Web services technology set has produced

a large adapter market, enabling many legacy environments to participate in service-

oriented integration architectures. The cost and effort of integrating legacy and

contemporary solutions is lowered.

3. 5 Establishing standardized XML data representation

On its most fundamental level, SOA is built upon and driven by XML. A

standardized data representation format (once fully established) can reduce the

underlying complexity of all affected application environments. With contemporary

SOA, establishing an XML data representation architecture becomes a necessity,

providing organizations the opportunity to achieve a broad level of standardization.

3. 6 Focused investment on communications infrastructure

SOA can centralize inter-application and intra-application communication as

part of standard IT infrastructure. This allows organizations to evolve enterprise-wide

infrastructure by investing in a single technology set responsible for communication.

3.7 “Best-of-breed” alternatives

A key feature of service-oriented enterprise environments is the support of

“best-of-breed” technology. Because SOA establishes a vendor-neutral

communications framework, it frees IT departments from being chained to a single

proprietary development and/or middleware platform. For any given piece of

automation that can expose an adequate service interface, you now have a choice as to

how you want to build the service that implements it.

3.8 Organizational agility

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Agility is a quality natural in just about any aspect of the enterprise. A simple

algorithm, a software component, a solution, a platform, a process—all of these parts

contain a measure of agility related to how they are constructed, positioned, and

leveraged.

4. Discuss in detail about the Common principles of service- orientation.

(NOV/DEC 2011) (MAY/JUN 2013)(May/June 2015)

A service-oriented architecture is an environment standardized according to the

principles of service-orientation in which a process that uses services (a service-

oriented process) can execute.

Separation of concerns:

“Separation of concerns” is an established software engineering theory based

on the idea of breaking down a large problem into a series of individual concerns.

• Allows the logic required to solve the problem to be decomposed into a collection

of smaller, related pieces. Each piece of logic addresses a specific concern.

• Implemented in different ways with different development platforms

Principles of Service orientation:

• Services are reusable

• Services share a formal contract

• Services are loosely coupled

• Services abstract underlying logic

• Services are compos able

• Services are autonomous

• Services are stateless

• Services are discoverable

1. Services are reusable:

• Service reusability is a design principle that is used to create services

(collection of related operations) that have the potential to be reused across the

enterprise resources. The more generic a services operations are, the more

reusable the service.

• Messaging also supports service reusability through the use of SOAP headers.

Reusability includes,

• Inter-application interoperability

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Composition

• Creation of cross-cutting or utility services

 Benefits

• Accommodate future requirements with less development effort.

• Reduce the need for creating wrapper services

• Reduction of cost by not just avoiding duplication of code

• Reducing risks by reusing well-tested code and runtime environments

2. Services share a formal contract:

Service contract provide a formal definition for all of the primary parts of an SOA

• The service endpoint

• Each service operation

• Every input and output message supported by each operation

• Rules and characteristics of the service and its operations

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 Benefits

• Provide semantic information of how a service accomplishes a particular

task.

• Services express their purpose and capabilities via a service contract.

• Shared among services-need careful maintenance and versioned

3. Services are loosely coupled:

• Loose coupling is a condition wherein a service acquires knowledge of

another services while still remaining independent of that services.

• It is achieved through the use of services contract that allow services to

interact within predefined parameters

Note: service contracts impose low consumer coupling requirements and are themselves

decoupled from their surrounding environment.

4. Services abstract underlying logic:

Service interface-level abstraction is this principle that allows a service details are

hidden from the potential customers.

Service provides the following,

• Simple task to perform

• Gateway to an entire automation solution

• Represent limitless amount of logic

• Act as a container for the operations that abstract the logic

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 Benefits

• Directly enables and preserves the previously described loosely coupled

relationship.

5. Services are composable:

• Services are effective composition participants, regardless of the size and

complexity of the composition. It is controlled by a parent process service that

compose process participants

• A service composition is an aggregate of services collectively composed to

automate a particular task or business process.

 Benefits

• Reusability

• Emphasis on the design of service operations

6. Services are autonomous:

• Autonomy allows the service to execute self-governance (self-controlling,

independent, and self-contained) of all its processing (how application logic

should be divided up into services and which operations should be grouped

together within a service context).

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• An autonomous service is a service whose ability to function is not

controlled or inhibited by other services.

Note: Does not necessarily grant a service exclusive ownership of the logic

encapsulates

Types of autonomy:

• Service-level autonomy: Service boundaries are distinct from each other,

but the service may share underlying resources. It governs the legacy system

but also shares resources with other legacy clients.

• Pure autonomy : When the underlying logic is built from the ground up in

support of the service which has complete control and ownership of that logic.

7. Services are stateless:

State refers to something’s particular condition. They are two primary conditions can

be invoked:

• Stateful : A Stateful services a service that is actively engaged in the process

of retaining or processing state information.

• Stateless : A stateless service is a service whose response does not require

access or use of information nor is contained in the input message.

 Statelessness is the preferred condition for services.

• Stateless services do scale better

• Promotes reusability and scalability

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

8. Services are discoverable:

• In SOA level, discoverability refers to the architectures ability to provide a

discovery mechanism, such as a service registry or directory.

• On a service level, the principle of discoverability refers to the design of an

individual service so that it can be as discoverable as possible.

 Benefits

• Avoids the accidental creation of redundant services or services that implement

redundant logic.

• One or more business processes and that SOA promotes the organization of

these services into specialized layers that abstract specific parts of enterprise

automation logic.

• Also by standardizing on SOA across an enterprise, a natural interoperability

emerges that transcends proprietary application platforms. This allows for

previously disparate environments to be composed in support of new and

evolving business automation processes.

5. How do Service orientation principles inter-relate with each other?

• Services are reusable = service reusability

• Services share a formal contract = service contract

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Services are loosely coupled = service loose coupling

• Services abstract underlying logic = service abstraction

• Services are composable = service composability

• Services are autonomous = service autonomy

• Services are stateless = service statelessness

• Services are discoverable = service discoverability

6.Explain in detail the Anatomy of Service oriented Architecture.

In SOA, we need to abstract the key components of the Web services framework

and study their relationships more closely. Then we position them into a logical view

wherein we subsequently re-examine our components within the context of SOA.

The Anatomy of Service oriented architecture includes the following

Components.

6.1 Logical components of the Web services framework

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Each Web service contains one or more operations. Each operation governs the

processing of a specific function the Web service is capable of performing. The

processing consists of sending and receiving SOAP messages,

By composing these parts, Web services form an activity through which they can

collectively automate a task

6.2 Logical components of automation logic

The following fundamental parts of the framework:

• SOAP messages

• Web service operations

• Web services

• activities

The latter three items represent units of logic that perform work and communicate

using SOAP messages.

• messages = units of communication

• operations = units of work

• services = units of processing logic (collections of units of work)

• processes = units of automation logic (coordinated aggregation of units of work)

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

6.3 Components of an SOA

The previously defined components establishes a level of enterprise logic

abstraction, as follows:

• message - the data required to complete some or all parts of a unit of work.

• operation- logic required to process messages in order to complete a unit of work

• service - logically grouped set of operations capable of performing related units of

work.

• process -contains the business rules that determine which service operations are

used to complete a unit of automation.

6.4 How components in an SOA inter-relate

• An operation sends and receives messages to perform work.

• An operation is therefore mostly defined by the messages it processes.

• A service groups a collection of related operations.

• A service is therefore mostly defined by the operations that comprise it.

• A process instance can compose services.

• A process instance is not necessarily defined by its services because it may only

require a subset of the functionality offered by the services.

• A process instance invokes a unique series of operations to complete its

automation.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Every process instance is therefore partially defined by the service operations it

uses.

7. Explain about Service Layer Abstraction in detail. (NOV/DEC 2011) (MAY/JUN

2012) (MAY/JUN 2013) (May/June 2015)(NOV/DEC 2017)

The service layer is between the application layer and the business process layer

Problems solved by layering services

What logic should be represented by services?

Enterprise logic can be divided into two primary domains

• Business logic

• Application logic

Services can be modeled to represent either or both types of logic, as long as the

principles of service-orientation can be applied.

How should services relate to existing application logic?

Existing legacy application logic needs to be exposed via services or whether

new logic is being developed in support of services number of constrains, limitations,

and environmental requirements

How can services best represent business process logic

When modeling service to represent business logic, the service representation of

business logic should be alignment with existing business models.

How can services be built and positioned to promote agility?

The key to building an agility SOA is in minimizing the dependencies each

service has within its own processing logic.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Layers of abstraction Each layer can abstract a specific aspect of the solution,

addressing to one of the issues that are identified. The three layers of abstraction

identified for SOA are:

• The application service layer

• The business service layer

• The orchestration service layer

1. APPLICATION SERVICE LAYER

The application service layer consists of application services that represent

technology specific logic.

Examples

Typically incarnations of application services are the

• Utility models

• Wrapper models

It consists of services that encapsulate some or all parts of a legacy

environment to expose legacy functionality to service requestors.

Characteristics

• Expose functionality within a specific processing context

• Draw upon available resources within a given platform

• Solution-agnostic

• Generic and reusable

• Achieve point-to-point integration with other application services

• Inconsistent in terms of the interface granularity they expose

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Mixture of custom-developed and third-party purchased services

Hybrid application services

Services that contain both application and business logic can be referred to as

hybrid application services or just hybrid services.

Application integration services

Application integration services that exist solely to enable integration between

systems often are referred to as application integration services or simply integration

services. It is implemented as controllers.

Proxy services

Proxy services, also known as an auto-generated WSDL, simply provide a WSDL

definition that mirrors an existing component interface.

2. BUSINESS SERVICE LAYER

The business service layer is comprised of business services, a direct

implemented of the business services model

Business services are ideally also controllers that compose application services

to execute their business logic

Types

Business service layer abstraction leads to the creation of two further business service

models:

1. Task-centric business service

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

A service encapsulation business logic specific to a task or business

process

• Limited reusability

2. Entity centric business service

A service encapsulates a specific business entity

• Highly reusability

Even though hybrid services contain both business and application logic, they

are not classified as business services.

3. ORCHESTRATION SERVICE LAYER

• The orchestration service layer consists of one or more process services that

compose business and application services according to business rules and

business logic embedded within process definitions.

• Orchestration abstracts business rules and services execution sequence logic

from other services, promoting agility and reusability.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

UNIT III WEB SERVICES (WS) AND STANDARDS

Web Services Platform – Service descriptions – WSDL – Messaging with SOAP – Service

discovery – UDDI – Service-Level Interaction Patterns – Orchestration and

Choreography

PART – B

1. Explain in detail about Web Services Platform

✓ XML along with HTTP forms the basis of web services. XML provides a language

which can be used between different platforms and programming languages

and still express complex messages and functions. The HTTP protocol is the

most used Internet protocol.

✓ Web services platform consists of the following components:

• UDDI (Universal Description, Discovery and Integration)

• WSDL (Web Services Description Language)

• SOAP (Simple Object Access Protocol)

UDDI

UDDI (Universal Description, Discovery and Integration) is a platform-independent,

XML based registry service where companies can register and search for Web services.

• UDDI is a directory for storing information about web services

• UDDI communicates via SOAP

• UDDI is a directory of web service interfaces described by WSDL

WSDL

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

WSDL (Web Services Description Language) is an XML-based language for locating and

describing Web services. WSDL definition describes how to access a web service and

what operations it will perform along with the message format and protocol details for

the web service. WSDL is a W3C standard.

SOAP

SOAP (Simple Object Access Protocol) is an XML-based communication protocol for

exchanging structured information between applications over HTTP, SMTP or any

other protocol. In other words, SOAP is a protocol for accessing a Web Service.

Web Services Architecture

• Service Discovery: This part of the architecture is responsible for centralizing

services into a common registry and providing easy publish/search

functionality. UDDI handles service discovery.

• Service Description: One of the most interesting features of Web Services is

that they are self-describing. This means that, once a Web Service is located, it

will let us know what operations it supports and how to invoke it. This is

handled by the Web Services Description Language (WSDL).

• Service Invocation: Invoking a Web Service involves passing messages

between the client and the server. SOAP (Simple Object Access Protocol)

specifies how we should format request messages to the server, and how the

server should format its response messages.

http://theopentutorials.com/totwp331/wp-content/uploads/web-services-platform_2488/2-ws-architecture.jpg

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Transport: Finally, all these messages must be transmitted somehow between

the server and the client. The protocol of choice for this part of the architecture

is HTTP (HyperText Transfer Protocol) – the protocol used to access

conventional web pages on the Internet. We could also use other protocols, but

HTTP is currently the most used one.

Web Services working

1. The Service Provider generates the WSDL describing the application or service

and registers the WDSL in UDDI directory or Service Registry.

2. The Service Requestor or client application which is in need of web service

contacts the UDDI and discovers the web service.

3. The client based on the web service description specified in the WSDL sends a

request for a particular service to the web service application listener in SOAP

message format.

4. The web service parses the SOAP message request and invokes a particular

operation on the application to process that particular request. The result is

packed in an appropriate SOAP response message format and sent to the client.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

5. The client parses the SOAP response message and retrieves the result or error

messages if any.

Server-side Components of Web Services Application

• Web service: This is the software or component that exposes a set of

operations. For example, if we are implementing our Web service in Java, our

service will be a Java class (and the operations will be implemented as Java

methods). Clients will invoke these operations by sending SOAP messages.

• SOAP Engine: Web service implementation does not know anything about

interpreting SOAP requests and creating SOAP responses. To do this, we need a

SOAP engine. This is a piece of software that handles SOAP requests and

responses. Apache Axis is an example of SOAP engine. The functionality of the

SOAP engine is usually limited to manipulating SOAP.

• Application Server: To actually function as a server that can receive requests

from different clients, the SOAP engine usually runs within an Application

Server. This is a piece of software that provides a ‘living space’ for applications

that must be accessed by different clients. The SOAP engine runs as an

application inside the application server. A good example is the Apache Tomcat

server – a Java Servlet and JSP container.

• HTTP Server: Many application servers already include some HTTP

functionality, so we can have Web services up and running by installing a SOAP

engine and an application server. However, when an application server lacks

HTTP functionality, we also need an HTTP Server. This is more commonly called

a ‘Web server’. It is a piece of software that knows how to handle HTTP

messages. A good example is the Apache HTTP Server, one of the most popular

web servers in the Internet.

http://theopentutorials.com/totwp331/wp-content/uploads/web-services-platform_2488/7-ws-server-side.jpg

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

2. Explain in detail about Service descriptions (with WSDL)?

There exists a loosely coupled form of communication between services
implemented as Web services. For this purpose, description documents are required
to accompany any service wanting to act as an ultimate receiver. The primary
service description document is the WSDL definition.

Figure. WSDL definitions enable loose coupling between services.

Service endpoints and service descriptions

A WSDL describes the point of contact for a service provider, also known as

the service endpoint or just endpoint. It provides a formal definition of the endpoint

interface (so that requestors wishing to communicate with the service provider know

exactly how to structure request messages) and also establishes the physical location

(address) of the service.

A WSDL service description (also known as WSDL service definition or just WSDL

definition) can be separated into two categories:

• Abstract description

• Concrete description

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Figure .WSDL document consisting of abstract and concrete parts that

collectively describe a service endpoint.

Abstract description

An abstract description establishes the interface characteristics of the Web

service without any reference to the technology used to host or enable a Web

service to transmit messages.

By separating this information, the integrity of the service description can be

preserved regardless of what changes might occur to the underlying technology

platform

• PortType

• Operation

• Message

• The parent portType section of an abstract description provides a high-level

view of the service interface by sorting the messages a service can process

into groups of functions known as operations.

• Each operation represents a specific action performed by the service. A

service operation is comparable to a public method used by components in

traditional distributed applications. Much like component methods, operations

also have input and output parameters.

• Because Web services rely exclusively on messaging-based communication,

parameters are represented as messages. Therefore, an operation consists of a

set of input and output messages.

Concrete description

• For a Web service to be able to execute any of its logic, it needs for its

abstract interface definition to be connected to some real, implemented

technology.

• Because the execution of service application logic always involves

communication, the abstract Web service interface needs to be connected to a

physical transport protocol.

This connection is defined in the concrete description portion of the WSDL file,

which consists of three related parts:

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• binding

• port

• service

• A WSDL description's binding describes the requirements for a service to

establish physical connections or for connections to be established with the

service.

• Binding represents one possible transport technology the service can use to

communicate. SOAP is the most common form of binding, but others also are

supported. A binding can apply to an entire interface or just a specific operation.

• The port, which represents the physical address at which a service can be

accessed with a specific protocol. This piece of physical implementation data

exists separately to allow location information to be maintained independently

from other aspects of the concrete description.

• The term service is used to refer to a group of related endpoints.

Metadata and service contracts

Policies can provide rules, preferences, and processing details above and

beyond what is expressed through the WSDL and XSD schema documents.

So now we have up to three separate documents that each describes an aspect of a

service:

• WSDL definition

• XSD schema

• policy

Service description documents can be collectively viewed as establishing a service

contract a set of conditions that must be met and accepted by a potential service

requestor to enable successful communication.

A service contract can refer to additional documents or agreements not expressed

by service descriptions. For example, a Service Level Agreement (SLA) agreed upon by

the respective owners of a service provider and its requestor can be considered part of

an overall service contract

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Figure. A service contract comprised of a collection of service descriptions and

possibly additional documents.

Semantic descriptions

The most challenging part of providing a complete description of a Web service is in

communicating its semantic qualities.

Examples of service semantics include:

• How a service behaves under certain conditions?

• How a service will respond to a specific condition?

• What specific tasks the service is most suited for?

• Most of the time service semantics are assessed by humans, either verbally by

discussing the qualities of a service with its owner, or by reading supplementary

documentation published alongside service descriptions.

• The ultimate goal is to provide sufficient semantic information in a structured

manner so that, in some cases, service requestors can go as far as to evaluate and

choose suitable service providers independently.

Service description advertisement and discovery

 The sole requirement for one service to contact another is access to the other

service's description. As the amount of services increases within and outside of

organizations, mechanisms for advertising and discovering service descriptions may

become necessary.

 For example, central directories and registries become an option to keep track of

the many service descriptions that become available. These repositories allow humans

(and even service requestors) to:

• Locate the latest versions of known service descriptions

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Discover new web services that meet certain criteria

 When the initial set of Web services standards emerged, UDDI formed part of the first

generation of Web services standards. Though not yet commonly implemented, UDDI

provides us with a registry model.

Private and public registries:

UDDI specifies a relatively accepted standard for structuring registries that

keep track of service descriptions . These registries can be searched manually and

accessed programmatically via a standardized API.

Figure. Service description locations centralized in a registry.

Public registries accept registrations from any organizations, regardless of whether

they have Web services to offer. Once signed up, organizations acting as service

provider entities can register their services.

Private registries can be implemented within organization boundaries to provide a

central repository for descriptions of all services the organization develops, leases, or

purchases.

Descriptions of the primary parts that comprise UDDI registry records:

Business entities and business services

• Each public registry record consists of a business entity containing basic profile

information about the organization (or service provider entity).

• Included in this record are one or more business service areas, each of which

provides a description of the services offered by the business entity. Business

services may or may not be related to the use of Web services.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Binding templates and tModels

• The WSDL definitions stored implementation information separately from the

actual interface design. This resulted in an interface definition that existed

independently from the transport protocols to which it was eventually bound.

• Registry records follow the same logic in that they store binding information

in a separate area, called the binding template.

• Each business service can reference one or more binding templates. The

information contained in a binding template may or may not relate to an actual

service.

For example, a binding template may simply point to the address of a Web site.

However, if a Web service is being represented, then the binding template references a

tModel. The tModel section of a UDDI record provides pointers to actual service

descriptions (Figure).

Figure . The basic structure of a UDDI business entity record.

3. Write in detail about SOAP with examples. (NOV/DEC 2011) (NOV/DEC 2012)

(NOV/DEC 2013) (May/June 2015)

The simple object access protocol (SOAP) is used to define a standard message

format which is used for communication between services running on different

operating systems.

VB

Application

Java

Application

SOAP Client SOAP Server

SOAP Message

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Characteristics

SOAP messaging framework has the following three characteristics that is

• Extensible

• Interoperable

• Independent

SOAP Message Format

Basic structure

SOAP message consists of four parts:

• SOAP envelope

• SOAP header

• SOAP body

• SOAP fault

SOAP envelope

• The SOAP <envelope> is the root element in every SOAP message, and

contains two child elements, an optional <Header> and a mandatory<Body>.

• Every SOAP message is packaged into a container known as an envelope. It

defines an overall framework for expressing what is in a message and who

should deal with it.

SOAP Header (optional)

Header determines how a recipient of a SOAP message should process the

message.

SOAP Body

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Body contains the actual message content which consists of XML formatted

data. The contents of a message body are often referred to as the message payload.

Header Blocks

The immediate child elements of the <header> element are called blocks. A

header block is an application-defined XML element, and represents a logical grouping

of data which can be targeted at SOAP nodes that might be encountered in the

message path from a sender to an ultimate receiver.

Header Processing

The attributes on the header blocks indicate how the header blocks are to be

processed by the SOAP nodes.

• SOAP messages are allowed to pass through many intermediaries before

reaching their destination.

• Intermediary=some unspecified routing application

• The final destination processes the body of the message

• Headers are allowed to be processed independently of the body

• Processed by intermediaries.

Message styles

The SOAP offers two messaging styles:

• RPC(Remote Procedure Call)-style

Creating tightly coupled, inter-object style interfaces for web services

components

It is also known as section 5 encoding

• Document-style

Developing loosely coupled, application-to-application and system-to-

system interfaces.

 It is also known as message-style or document-literal encoding

Attachments

SOAP attachments are used to send large quantities binary data with the SOAP

message which may not fit well into a XML SOAP element.

Faults

The SOAP fault element holds errors and status information for a SOAP

message. It appear as an immediate child of the body element.<faultcode> and

<faultstring> are required.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Anatomy of a SOAP message

<? xml version=”1.0”?>
<soap:Envelope
 xmlns:soap=http://www.w3.org/2001/12/soap-envelope
 soap:encoding style=http://www.w3.org/2001/12/soap-encoding>

<soap:header>
……
</soap:header>

<soap:body>
….

 <soap:fault>
 …….
 </soap:fault>

</soap:body>
</soap:envelope>

• Originators, recipients, and receivers of SOAP messages are all called SOAP

nodes.

Node type

http://www.w3.org/2001/12/soap-encoding

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

SOAP nodes types or labels are assigned depending on what form of processing

they are involved with in a given message processing scenario.

SOAP Concepts

• SOAP sender -SOAP node that generates and transmits a SOAP message

• SOAP receiver-SOAP node that receives and processes the SOAP message that

was generated by a SOAP sender

• SOAP intermediary-SOAP node that is considered a SOAP receiver as well as a

SOAP sender.

• Initial SOAP sender-It is the SOAP sender that generated the original SOAP

message

• Ultimate SOAP receiver-It is a SOAP receiver that is the final destination of a

SOAP message

SOAP Intermediaries

SOAP intermediaries are nodes that can process parts of a SOAP message as it

travels from origin to destination

SOAP message header blocks are intended to be processed in general by

intermediary nodes

Types of intermediaries

 SOAP intermediaries nodes are classified as

• Forwarding

• Active

Forwarding intermediaries

• Forwarding intermediaries are used to route message to other SOAP nodes,

based on header information.

• May do additional processing as described in a SOAP header

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Active intermediaries

Active intermediaries do additional processing to a message that is NOT

described in any of the message headers.

Message paths

The route taken by the message is called the SOAP message path. The set of

SOAP nodes through which the SOAP message passes, including the initial sender, the

ultimate receiver and one or more intermediaries, are called the SOAP message path

A message path is not predetermined. It is determined dynamically using

header clocks by intermediaries.

 A SOAP message path is comprised of a series of SOAP nodes, beginning with the

initial SOAP sender and ending with the ultimate SOAP receiver. Every node refers to a

physical installation of SOAP software’s, each with its own physical address.

4. Explain in detail about Service Discovery and how it is performed using the

UDDI?

Service Discovery:

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• The primary mechanism involved in performing Service Discovery is a service

registry, which contains relevant metadata about available and upcoming

services as well as pointers to the corresponding service contract documents

that can include SLAs. The communications quality of the metadata and service

contract documents play a significant role in how successful this process can

be carried out.

• After the discovery process is complete, the service developer or client

application should know the exact location of a Web service (URI), its

capabilities, and how to interface with it.

Service Registry:

An SOA registry supports the UDDI (Universal Description, Discovery and

Integration) specification, an XML– (Extensible Markup Language) based registry that

was developed for the purpose of making systems interoperable.

Publication of a service requires proper description of a Web service in terms of

business, service, and technical information. Once, the services are published the

registry will create the dependencies, associations and versions of these services and

metadata.

UDDI:

UDDI provides an industry standard means of organizing service description

pointers to accommodate the process of discovery through service registries. When

implemented, UDDI typically represents an enterprise-wide architectural component

positioned to provide a central discovery mechanism within and across SOAs.

Therefore, depending on the scope (application-level, enterprise-wide, etc.) of

the service-oriented architecture being designed, UDDI may become one of the

technologies established as part of the overall service-oriented environment.

While UDDI enables the discovery of service descriptions and is also one of the

core specifications identified by the WS-I Basic Profile, some organizations are

resorting to traditional directory-based approaches (such as LDAP) to keep track of

their service descriptions. Regardless, our service design processes take potential

discovery into account by promoting the creation of intuitive service interface designs

and the documentation of supplementary metadata

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Benefits of SOA Service Discovery

• Discovery of the service, its status, and its owner will be critical to achieve the

benefits of SOA reusability.

• Dynamic service registration and discovery becomes much more important in

these scenarios in order to avoid service interruption.

• Handling Fail over of service instances

• Load balancing across multiple instances of a Service

5. Explain in detail about Service-Level Interaction Patterns.

Definition:

Message exchange pattern defines the way that SOAP message are exchanged

between the web services requester and web service providers. It represents a set of

templates

Example

Request - response pattern.

Primitive MEPs

A common set of primitive MEPs have been in existence are listed below

• Request-response

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Fire-and-forgot

• Complex MEPs

i)Request-response

In a request-response message exchange the SOAP client sends a SOAP

request message to the service. The service responds with a SOAP response

message.

ii)Fire-and-forgot

Fire-and-forgot is a simple asynchronous message exchange pattern is based

on the unidirectional transmission of messages from a source to one or more

destinations. Response to a transmitted message is not permitted.

Types

• Single-destination pattern- A source sends a message to one destination only

• Multi-cast pattern- A source sends message to a predefined set of destination

• Broadcast pattern -Similar to the multi-cast pattern, except that the message

is sent out to a broader range of messaging models.

iii) Complex MEPs

Complex MEPs is a message pattern in which primitive MEPs are assembled to

create different types of messaging models

Example

• Publish-and-subscribe pattern

Publish-and-subscribe pattern

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Publish-and-subscribe pattern is a asynchronous MEP in which publishers

sends messages to all interested subscribers.

The steps involved are generally similar to the following

Step 1:

The subscriber sends a message to notify the publisher that it wants to receive

messages on a particular topic.

Step 2:

Upon the availability of the requested information, the publisher broadcast

messages on the particular topic to all of the topics subscribers.

MEPs and SOAP:

A MEPs specification MUST conform to the requirements for SOAP features

specifications are

• Provides a one-way message transfer

• Generate countless messages implements through SOAP header blocks

• Identify the MEP associated with a message with an optional parameter

MEPs and WSDL:

MEPs and WSDL service description coordinate the input and output messages

associated with an operation. The association of MEPs to WSDL operations embeds

expected conversational behavior into the interface definition

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Basic patterns supported by WSDL 1.1

WSDL specification provides support for four message exchange patterns are

1. Request-response operation: upon receiving a message, the service must

respond with a standard message or a fault message.

2. Solicit-response operation: upon submitting a message to a service

requestor, the service expects a standard response message or a fault

message.

3. One-way operation: the service expects a single message and is not

obligated to respond.

4. Notification operation: the service sends a message and expects no

response

Patterns supported by WSDL 2.0

WSDL 2.0 specification extends MEP support to eight patters as follows

1. The in-out pattern, comparable to the request-response MEP

2. The out-in pattern, which is the reverse of the previous pattern where the

service provider initiate the exchange by transmitting the request

3. The in-only pattern, which essentially supports the standard fire-and-forgot

MEP

4. The out-only pattern, which is the reverse of the in-only pattern. it is used

primarily in support of event notification

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

5. The robust in-only pattern, a variation of the in-only pattern that provides the

option of launching a fault response message as a result of a transmission or

processing error

6. The robust out-only pattern, which is similar to the in-out pattern with one

exception. This variation introduces a rule stating that the delivery of a

response message is optional and should therefore not be expected by the

service requestor that originated the communication. This pattern also supports

the generation of a fault message.

7. The in-optional-out pattern, which is similar to the in-out pattern with one

exception. This variation introduces a rule stating that the delivery of a

response message is optional and should therefore not be expected by the

service requestor that originated the communication. This pattern also supports

the generation of a fault message.

8. The out-optional-in pattern is the reverse of the in-optional-out pattern, where

the incoming message is optional. Fault message generation is again supported.

6. Discuss in detail about Orchestration and Choreography. (NOV/DEC 2012)

(MAY/JUN 2013) (NOV/DEC 2013) (May/June 2015)

 1. ORCHESTRATION

Orchestration, also called as a heart of SOA, which facilitates connecting of

different processes/services without having to redevelop the solution that

originally automated the processes individually. It introduces workflow logic, consist of

numerous business rules, conditions, and events, which is abstracted and more easily

maintained.

Web services business process execution language or WS-BPEL is the industry

specification that standardizes orchestration.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Business protocols and process definition

• Business protocols Defines how participants can interoperate to achieve the

completion of a business task.

• Process definition -Encapsulates and expresses the details of the workflow

logic.

• Process services A process service is the process itself represented as a service.

It coordinates and exposes functionality from the partner services.

• Partner services

• Partner services or partner links is the services allowed to interact with

the process service.

• The process service, after first being invoked by a partner service, then

invokes another partner service.

Basic activities and structured activities

• WS-BPEL breaks down workflow logic into a series of predefined primitive

activities

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Basic activities represent fundamental workflow

• Invoke

• Receive

• Reply

• Throw

• Wait

Structured activities are created by assembling other activities using logics

• Sequence

• Switch

• While

• Flow

• Pick

Sequences, flows, and links

• Sequences -Sequences align a group of related activities in a list that

determines sequential execution order.

• Flows- Flows also contains group of related activities but activities can be

executed concurrently. The flow does not finish till the time all the activities are

completed.

• Links-Links are used to establish formal dependencies between activities that

are part of a flow. Links are also knows as synchronization dependencies.

Orchestration and activities

An activity is a generic term that can be applied to any logical unit of work

completed by a service-oriented solution. The scope of a single orchestration,

therefore, can be classified as a complex, and most likely, long-running activity.

Orchestration and coordination

Orchestration, as represented by WS-BPEL, can fully utilize the WS-

Coordination context management framework by incorporating the WS-

BusinessActivity coordination type. This specification defines coordination protocols

designed to support complex, long-running activities.

Orchestration and SOA

Through the use of orchestrations, service-oriented solution environments

achieves the following characteristics

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Composability

• Interoperability

• Extensibility

• Vendor diversity

 Orchestration is a key ingredient to achieving a state of federation within an

organization that contains various applications based on disparate computing

platforms. Advancements in middleware allow orchestration engines themselves to

become fully integrated in service-oriented environments.

 2. CHOREOGRAPHY (MAY/JUN 2013)

Choreography is a complex activity comprised as a service composition and a

series of MEPs. The web services choreography description language (WS-CDL) is the

specification that represents the Choreography.

Collaboration

An important characteristic of choreographies is that they are intended for

public message exchanges. The goal is to establish a kind of organized collaboration

between services representing different service entities, only no one entity

(organization) necessarily controls the collaboration logic. Choreographies therefore

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

provide the potential for establishing universal interoperability patterns for common

inter-organization business tasks

Roles and participants

Roles

Roles establish what the service does and what the service can do within the

context of a particular business task.

Participants

Participants are the roles that bounded to WSDL definitions, and those related

are grouped.

Relationships and channels

Relationship

Relationship defines potential exchange between two roles in choreography.

Every relationship consequently consists of exactly two roles.

Channels

Channels define the characteristics of the message exchange between two

specific roles.

Further, to facilitate more complex exchanges involving multiple participants,

channel information can actually be passed around in a message. This allows one

service to send another the information required for it to be communicated with by

other services. This is a significant feature of the WS-CDL specification, as it fosters

dynamic discovery and increases the number of potential participants within large-

scale collaborative tasks.

Interaction and work units

Interaction

Interaction encapsulates the actual logic behind a message exchange.

Work units

Work units are the rules and constrains that must be adhered to for an

interaction to successfully completed

Reusability, composability, and modularity

Reusability

Designed choreography can be applied to different business tasks comprised of

the same fundamental actions.

Modularity

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Choreography can be assembled from independent modules that can represent

distinct sub-task.

Composability

Choreography composes a set of non-specific services to accomplish a task.

Orchestrations and choreographies:

Although orchestrations and choreographies look very similar to each other there

are significant differences among them.

• An orchestration expresses organization specific business workflow

• An organization controls the logic behind an orchestration even if it involves

external businesses

• Choreography is not owned by a single entity, it acts as a community

interchange pattern used for collaborative purpose by services from different

provider entities.

Choreography and SOA

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Choreography can assist in the realization of SOA across organization

boundaries. It support the following SOA characteristics

• Compos ability

• Reusability

• Extensibility

• Increase organizational agility

• Discoverability

• Choreography is a complex activity comprised of a service composition and a series

of MEPs.

• Choreographies consist of multiple participants that can assume different roles

and that have different relationships.

• Choreographies are reusable, composable, and can be modularized.

• The concept of choreography extends the SOA vision to standardize cross-

organization collaboration.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

UNIT IV WEB SERVICES EXTENSIONS

WS-Addressing - WS-Reliable Messaging - WS-Policy – WS-Coordination – WS -

Transactions - WS-Security – Examples

PART - B

1. Explain in detail about WS-Addressing.

The WS-Addressing specification implements these addressing features by providing

two types of SOAP headers (explained shortly). Though relatively simple in nature,

these addressing extensions are integral to SOA's underlying messaging mechanics.

Many other WS-* specifications implicitly rely on the use of WS-Addressing.

Figure. Addressing turns messages into autonomous units of communication.

Endpoint references

✓ Traditional Web applications had different ways of managing and

communicating session identifiers. The most common approach was to append

the identifier as a query string parameter to the end of a URL. While easy to

develop, this technique resulted in application designs that lacked security and

were non-standardized.

✓ The concept of addressing introduces the endpoint reference, an extension used

primarily to provide identifiers that pinpoint a particular instance of a service

(as well as supplementary service metadata). The endpoint reference is expected

to be almost always dynamically generated and can contain a set of

supplementary properties.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Figure A SOAP message containing a reference to the instance of the

service that sent it.
An endpoint reference consists of the following parts:

o address The URL of the Web service.

o reference properties A set of property values associated with the Web service

instance. (In our previous In Plain English example, the "attention" line used in

the first scenario is representative of the reference ID property.)

o reference parameters A set of parameter values that can be used to further

interact with a specific service instance.

o service port type and port type Specific service interface information giving the

recipient of the message the exact location of service description details

required for a reply.

o policy A WS-Policy compliant policy that provides rules and behavior

information relevant to the current service interaction (policies are explained

later in this chapter).

✓ Additional parts exist, which mostly identify corresponding WSDL information.

With the exception of the address, all parts are optional.

Message information headers

In sophisticated service-oriented solutions, services often require the flexibility to

break a fixed pattern. For example, they may want to dynamically determine the

nature of a message exchange. The extensions provided by WS-Addressing were

broadened to include new SOAP headers that establish message exchange-related

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

characteristics within the messages themselves. This collection of standardized

headers is known as the message information (or MI) headers

Figure. A SOAP message with message information headers specifying exactly

how the recipient service should respond to its arrival.
The MI headers provided by WS-Addressing include:

o destination The address to which the message is being sent.

o source endpoint An endpoint reference to the Web service that generated the

message.

o reply endpoint This important header allows a message to dictate to which

address its reply should be sent.

o fault endpoint Further extending the messaging flexibility is this header, which

gives a message the ability to set the address to which a fault notification

should be sent.

o message id A value that uniquely identifies the message or the retransmission

of the message (this header is required when using the reply endpoint header).

o relationship Most commonly used in request-response scenarios, this header

contains the message id of the related message to which a message is replying

(this header also is required within the reply message).

o action A URI value that indicates the message's overall purpose (the equivalent

of the standard SOAP HTTP action value).

✓ Outfitting a SOAP message with these headers further increases its position as

an independent unit of communication. Using MI headers, SOAP messages now

can contain detailed information that defines the messaging interaction

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

behavior of the service in receipt of the message. The net result is standardized

support for the use of unpredictable and highly flexible message exchanges,

dynamically creatable and therefore adaptive and responsive to runtime

conditions.

✓ Historically, many of the details pertaining to how a unit of communication

arrives at point B after it is transmitted from point A was left up to the

individual protocols that controlled the transportation layer. While this level of

technology-based abstraction is convenient for developers, it also leads to

restrictions as to how communication between two units of processing logic can

be achieved.

✓ The standardized SOAP headers introduced by WS-Addressing remove much of

this protocol-level dependence. These headers put the SOAP message itself in

charge of its own destiny by further increasing its ability to act as a standalone

unit of communication.

Addressing and SOA

✓ Addressing achieves an important low-level, transport standardization within

SOA, further promoting open standards that establish a level of transport

technology independence. The use of endpoint references and MI headers

deepens the intelligence embedded into SOAP messages, increasing message-

level autonomy.

Figure 7.5. Addressing relating to other parts of SOA.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

✓ Empowering a message with the ability to self-direct its payload, as well as the

ability to dictate how services receiving the message should behave,

significantly increases the potential for Web services to be intrinsically

interoperable. It places the task-specific logic into the message and promotes a

highly reusable and generic service design standard that also facilitates the

discovery of additional service metadata.

✓ Further, the use of MI headers increases the range of interaction logic within

complex activities and even encourages this logic to be dynamically determined.

This, however, can be a double-edged sword. Even though MI headers can

further increase the sophistication of service-oriented applications, their misuse

(or overuse) can lead to some wildly creative and complex service activities.

2. Explain Web Service Reliable messaging in detail with necessary diagrams.

The benefits of a loosely coupled messaging framework come at the cost of a

loss of control over the actual communications process. After a Web service transmits

a message, it has no immediate way of knowing:

• whether the message successfully arrived at its intended destination

• whether the message failed to arrive and therefore requires a retransmission

• whether a series of messages arrived in the sequence they were intended to

Reliable messaging addresses these concerns by establishing a measure of

quality assurance that can be applied to other activity management frameworks

WS-ReliableMessaging provides a framework capable of guaranteeing:

• that service providers will be notified of the success or failure of message

transmissions

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• that messages sent with specific sequence-related rules will arrive as intended (or

generate a failure condition)

Although the extensions introduced by reliable messaging govern aspects of

service activities. Reliable messaging does not employ a coordinator service to keep

track of the state of an activity. All reliability rules are implemented as SOAP headers

within the messages themselves.

7.2.1 RM Source, RM Destination, Application Source, and Application

Destination

WS-ReliableMessaging makes a distinction between the parts of a solution that

are responsible for initiating and perform a message transmission. It “send,”

“transmit,” “receive,” and “deliver,” the messages. These are used for reliable

messaging framework from the overall SOA.

Application source/Service/Application logic

It sends the message to the RM source, the physical processor or node that

performs the actual wire transmission.

RM destination/ target processor/node

It receives the message and subsequently delivers it to the application

destination.

7.2.2 Sequences

A sequence establishes the order in which messages should be delivered. Each

message that is part of a sequence is labeled with a message number that identifies

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

the position of the message within the sequence. The final message in a sequence is

further tagged with a last message identifier.

7.2.3 Acknowledgements

A core part of the reliable messaging framework is a notification system used to

communicate conditions from the RM destination to the RM source. Upon receipt of

the message containing the last message identifier, the RM destination issues a

sequence acknowledgement (Figure 7.9). The acknowledgement message indicates to

the RM source which messages were received. It is up to the RM source to determine if

the messages received are equal to the original messages transmitted. The RM source

may retransmit any of the missing messages, depending on the delivery assurance

used.

An RM source does not need to wait until the RM destination receives the last

message before receiving an acknowledgement. RM sources can request that

additional acknowledgements be transmitted at any time by issuing request

acknowledgements to RM destinations (Figure 7.10). Additionally, RM destinations

have the option of transmitting negative acknowledgements that immediately indicate

to the RM source that a failure condition has occurred (Figure 7.11).

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

7.2.4 Delivery assurances

The nature of a sequence is determined by a set of reliability rules known as

delivery assurances. Delivery assurances are predefined message delivery patterns

that establish a set of reliability policies.

The following delivery assurances are supported:

The AtMostOnce delivery assurance promises the delivery of one or zero

messages. If more than one of the same message is delivered, an error condition

occurs (Figure 7.12).

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

The AtLeastOnce delivery assurance allows a message to be delivered once or

several times. The delivery of zero messages creates an error condition (Figure 7.13).

The ExactlyOnce delivery assurance guarantees that a message only will be

delivered once. An error is raised if zero or duplicate messages are delivered (Figure

7.14).

The InOrder delivery assurance is used to ensure that messages are delivered in

a specific sequence (Figure 7.15). The delivery of messages out of sequence triggers an

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

error. Note that this delivery assurance can be combined with any of the previously

described assurances.

7.2.5 Reliable messaging and addressing

WS-Addressing is closely tied to the WS-ReliableMessaging framework. In fact,

it’s interesting to note that the rules around the use of the WS-Addressing message id

header were altered specifically to accommodate the WS-ReliableMessaging

specification. Originally, message id values always had to be unique, regardless of the

circumstance. However, the delivery assurances supported by WS-ReliableMessaging

required the ability for services to retransmit identical messages in response to

communication errors. The subsequent release of WS-Addressing, therefore, allowed

retransmissions to use the same message ID.

7.2.6 Reliable messaging and SOA

Reliable messaging brings to service-oriented solutions a tangible quality of

service (Figure 7.16). It introduces a flexible system that guarantees the delivery of

message sequences supported by comprehensive fault reporting. This elevates the

robustness of SOAP messaging implementations and eliminates the reliability

concerns most often associated with any messaging frameworks.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

3. Explain about WS-Policy with code example. (MAY/JUN 2012) (Nov/Dec 2014)

WS-policy defines a framework for allowing web services to express their

constraints and requirements in relation to security, processing, or message

content.

Goal:

It provides the mechanisms needed to enable web services applications to

specify polices.

Specification

The WS-policy framework is comprised of the following three specifications:

• WS-policy

• WS-policyassertions

• WS-policyAttachements

The policy element

The policy element establishes the root construct used to contain the various

policy assertions that comprise the policy.

Policy assertions

• A policy assertion represents an individual preference, requirement, capability,

or other characteristics

• It is basic building block of a policy expression

• An XML element with a well-known name and meaning.

Standard policy assertions

WS-policy assertions define four general policy assertions for any subject.

Policy assertions

description

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Wsp:textencoding Specifies a character encoding

Wsp:language Specifies a natural language

Wsp:specversion Specifies a version of a particular specification

Wsp:messagepredicate It can be tested against the message

The usage attribute

The usage attribute to indicate whether a given policy assertion is required. It

values form part of the overall policy rules.

Value meaning

Wsp:required the assertion must be applied, otherwise an error results

Wsp:rejected the assertion is not supported and, if present,will failure

Wsp:optional the assertion may be made of subject, but not required

The preference attributes

The preference attribute is

• Used to specify the services preference as an integer value

• Larger integer=>higher preference

• Omitted preference attribute is interpreted as a 0

Policy operators

A policy operator is used to combine multiple assertions in different ways.

Policy

operator

description

Wsp:all requires that all the child elements be satisfied

Wsp:exactlyone requires that exactly one child element be satisfied

Wsp:oneormore at least one of its child element be satisfied

The exactlyone element

Policy assertions combined using the exactlyone operator requires exactly one

of the behaviours represented by the assertions.

The all element

Policy assertions combined using the all operator requires all the behaviours

represented by the assertions.

Policy attachments

Policy attachments are a mechanism for associating policy expressions with

subjects. It specifically defines mechanisms for:

• XML elements

• WSDL definitions

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• UDDI entries

Attributes

• Wsp:policyURLs-list of URLs

• Wsp:policypres-list of Qnames

The policyattachment element

The policy attachment element binds an endpoint to a policy expression.

• AppliesTo construct is positioned as the parent of the subject elements.

• PolicyReference element then follows the appliesto construct to identify the

policy assertions that will be used.

Example

<wsp:policyAttachment>

<wsp:AppliesTo>

<wsa:EndpointReference xmlns=”...”>

<was:serviceName>s:someservice</wsa:servicename>

</wsa:Endpointreferenc>

</wsp:appliesTo>

<wsse:security>

<ds:signature>....</ds:signature>

</wsse:security>

</wsp:policyAttachment>

The policyReference element

The policyReference element is used to link an lement with one or more policies.

Each policyReference element contains a URI attribute that points to one policy

document or a specific policy assertion within the document.

The policyURIs attribute

The policyURIs attribute is used to link an element with one or more policies.

Each policyURIs element contains multiple URI attribute that points to one policy

document or a specific policy assertion within the document.

4. Explain about WS-Coordination with code example. (NOV/DEC 2012)(Nov/Dec

2014)

WS-coordination is a framework for coordinating distributed activities

• Coordinator

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

o Activation service for creating coordination instance.

o Registration service for registering participating applications.

o Additional protocol specific services.

• Set of coordination protocols

The coordination context element

The coordination context is used to carry information about active coordination

to participants,

• Information inside context is coordination protocol specific

• Context format is not mandated by the standard

• Typically passed in SOAP headers

Structure

<Envelope

Xmlns=http://schemas.xmlsoap.org/soap/envelope/

Xmlns:wsc=http://schemas.xmlsoap.org/ws/2002/08/wscoor”

Xmlns:wsc=http://schemas.xmlsoap.org/ws/2002/07/utility”

<header>

<wsc:coordinationcontext>

<wsu:identifier>....</wsu:identifier>

<wsu:expires>...</wsu:expires>

<wsc:coordinationType>....</ wsc:coordinationType>

<wsc:registrationservice>

.............

</ wsc:registrationservice>

</ wsc:coordinationcontext>

</header>

<body>...</body>

</Envelope>

The identifier and expires elements

• Identifier- The identifier elements is used to associate a unique ID value with

the current activity

http://schemas.xmlsoap.org/soap/envelope/
http://schemas.xmlsoap.org/ws/2002/08/wscoor
http://schemas.xmlsoap.org/ws/2002/07/utility

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• Expires - The expires element sets an expiry date that establishes the extent of

the activity’s possible lifespan.

The coordination type element

• The specific protocols that establish the rules and constraints of the activity are

identified within the coordination type element.

• The coordination type element is used to represent the WS-business activity and

WS-atomic transaction coordination types section.

Designating the WS-business activity coordination type

The coordination type element is assigned the WS-atomic transaction

coordination type identifier, which communicates the fact that the headers context

information is part of a short running transaction.

Structure

<wsc:coordinationType>

http://schemas.xmlsoap.org/ws/2003/09/wsat

</ wsc:coordinationType>

The registration service element

The registration service construct simply hosts the endpoint address of the

registration service. It uses the address element also provide by the utility schema.

Structure

The value inside address tag containing a URL pointing to the location of the

registration service.

<wsc:registrationservice>

<wsu:address> http://www.xmltc.com/bpel/reg </wsu:address>

</wsc:registrationservice>

5. Explain in detail about Atomic Transaction Process with suitable diagrams.

(NOV/DEC 2011) (MAY/JUN 2013)

http://schemas.xmlsoap.org/ws/2003/09/wsat
http://www.xmltc.com/bpel/reg

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Atomic transaction:
An atomic transaction is a series of database operation either all occur, or nothing
occur. It implements commit and rollback features to enable cross-service transaction
support.

ACID transactions
 The acronym ACID refers to the four key properties of a transaction:

1. Atomicity
It follows an all or nothing rule. Either all changes or no changes

succeed.
2. Consistency

System restored to a constant state after completion.
3. Isolation

Multiple transaction don’t interface
4. Durability

Changes made as part of transaction survive subsequent failures.

Transaction protocols

The atomic transaction defines the following protocols
1. Completion protocol-Used to initiate the commit or abort states of the

transaction.

2. Durable 2PC protocol-Used by services for representing permanent data

repositories’ should register.

3. Volatile 2PC protocol-Used by services for managing non-persistent data.

The atomic transaction coordinator

When ES-atomic transaction protocols are used, the coordinator controller

service can be referred to as an atomic transaction coordinator used to manage the

participants of the transaction process and in deciding the transactions ultimate

outcome.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

The atomic transaction process

The atomic transaction coordinator is responsible for deciding the outcome of a
transaction based on feedback it receives from all of the transaction participants.

Feedback collection

The feedback collection is divided into two phases

1. Prepare phase
2. Commit phase

Prepare phase

• All participants are notified by the coordinator to prepare and then issue a vote

The Coordinator requesting that transaction participants prepare to vote

• Vote consists of either a “commit” or “abort” request.

The transaction participants voting on the outcome of the atomic transaction
participants prepare to vote

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Commit phase

• Based on voting of the participants, the coordinator decides whether to

commit or abort the transaction, and notifies the result to all the

participants.

Atomic transactions and SOA

The atomic transactional capabilities lead to a robust execution environment for

SOA activities, they promote interoperability when extended into integrated

environments. This allows the scope of an activity to span different solutions built with

different vendor platforms, while still being assured a guaranteed all-or-nothing

outcome. The WS-AtomicTransaction is supported by the affected applications, this

option broadens the application of the two-phase commit protocol beyond traditional

application boundaries (thus, supporting service interoperability).

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

6. Explain about WS-Security with code example. (NOV/DEC 2011 & 17)

WS-security, also known as web services security or WSS, is a flexible and

extensible framework to SOAP to apply security to web services.

Why WS-security?

 The WS-security is used to implement

• Message-level security measures

o Protect message contents during transport and during processing by

service intermediaries.

• Authentication and authorization control

o Protect service provides from malicious requestors.

WS-security specification

The WS-security framework is comprised of numerous specification, some are

listed below:

• WS-security

• XML-encryption

• XML-signature

WS-security elements

The security element (WS-security)

The security header block contains the security-related information for the

message targeted at a specific receiver.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

It consists of the following child elements

• XML-encryption and XML-signature constructs

• Token elements provided by the WS-security specification itself

Syntax

<envelope>

<header>

....

<wsse:security actor=”...”mustunderstand=”...”>

....

</wsse:security>

.....

</header>

<body>

....

</body>

</envelope>

The usernameToken, username, and password elements (WS-security)

The <usernameToken> is a way of providing a username and optional password

information for authentication and authorization purpose.

Example

<wsse:UsernameToken>

<wsse:username>

Joe

<//wsse:username>

<wsse:password>

ILoveJava

</wsse:password>

</wsse:usernameToken>

The binarySecurityToken element (WS-security)

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

The binarySecurityToken element defines a security token that is binary

encoded. It has two attributes that are used to interpret it

• valueType - identifies the type of the security token

• encodingType - indicates how the security token is encoded.

Syntax

<BinarySecurityToken Id=....

EncodingType=....

ValueType=.../>

The securityTokenRefrence element (WS-security)

The securityTokenReference element provides a pointer to a token that exist

outside of the SOAP message document.

Syntax

<securityTokenReference Id=”...”>

<reference URI=”...”/>

</securityTokenReference>

XML-Encryption Elements

The XML-Encryption elements are used to define how to encrypt the contents of

an XML element.

The EncryptionData element (XML-Encryption)

The EncryptionData element hosts the encryption portion of an XML document.

If located at the root of an XML document, the entire document contents are

encrypted.

Type attribute

Type attribute indicates what is included in the encrypted content

The cipherData, CipherValue, and CipherReference elements (XML-Encryption)

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

The cipherdata is a mandatory element that provides the encrypted data. It

consists of the,

• cipherValue- hosting the character representing the encrypted text.

• cipherReference- provides a pointer to the encrypted values.

XML-signature elements

The XML-signature elements provides message integrity and authentication

information about the originator of the message.

Element

description

CanonicalizationMethod This element identifies the type of “canonicalization

algorithm” used to detect and represent subtle variables in

the document content.

DigestMethod Identifies the algorithm used to create the signature.

DigestValue It represents the document being signed

KeyInfo It contains public key information of message sender.

Signature The root element, housing all information for the digital

signature.

SignatureMethod The algorithm used to produce the digital signature. The

digest and canonicalization algorithms are taken into

account when creating signature.

SignatureValue The actual value of the digital signature.

SignedInfo A construct that hosts elements with information relevant to

the signaturevalue element, which resides outside of this

construct.

Reference Each document that is signed by the same digital signature

is represented by e reference construct that hosts digest and

optional transformation details.

Basic structure

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

The basic structure

of the XML signature is as

follows:

<signature>

<signedinfo>

<canonicalizationmethod/

>

<signaturemethod/>

<reference>

<transforms>

<digestmethod>

<digestValue>

</reference>

<reference/>

</signedinfo>

<signaturevalue/>

<keyinfo/>

<object/>

</signature>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

UNIT V SERVICE ORIENTED ANALYSIS AND DESIGN

SOA delivery strategies – Service oriented analysis – Service Modelling – Service

oriented design – Standards and composition guidelines -- Service design – Business

process design – Case Study

PART – B

1. Explain in detail about SOA Delivery Strategies

• Delivery strategies are arranging the stages into different sequences based on

organizational priorities.

SOA delivery lifecycle phases

• The lifecycle of an SOA delivery project is simply comprised of a series of steps

that need to be completed to construct the services for a given service-oriented

solution.

10.1.1. Basic phases of the SOA delivery lifecycle

• Development projects for service-oriented solutions are, on the surface, much

like other custom development projects for distributed applications.

• Web services are designed, developed, and deployed alongside standard

components and the usual supporting cast of front- and back-end technologies.

• When we dig a bit deeper under the layers of service-orientation, though, we'll

find that to properly construct and position services as part of SOA, traditional

project cycles require some adjustments.

• The main reason we make this distinction is because it is during the analysis

and design stages that the SOA characteristics and service-orientation

principles are incorporated into the solution being built. So much so, that they

warrant unique analysis and design processes that is distinctly "service-

oriented."

• The service phases are primarily concerned with the delivery of services that

implement the results of service-oriented analysis and design efforts.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Common phases of an SOA delivery lifecycle.

10.1.2. Service-oriented analysis

• It is in this initial stage that we determine the potential scope of our SOA.

Service layers are mapped out, and individual services are modeled as service

candidates that comprise a preliminary SOA.

• A formal step-by-step service modeling process is dedicated to the service-

oriented analysis phase.

10.1.3. Service-oriented design

• When we know what it is we want to build, we need to determine how it should

be constructed. Service-oriented design is a heavily standards-driven phase

that incorporates industry conventions and service-orientation principles into

the service design process.

• This phase, therefore, confronts service designers with key decisions that

establish the hard logic boundaries encapsulated by services. The service layers

designed during this stage can include the orchestration layer, which results in

a formal business process definition.

• Four formal step-by-step design processes are dedicated to the service-oriented

design phase.

10.1.4. Service development

• Next, of course, is the actual construction phase. Here development platform-

specific issues come into play, regardless of service type. Specifically, the choice

of programming language and development environment will determine the

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

physical form services and orchestrated business processes take, in accordance

with their designs.

10.1.5. Service testing

• Given their generic nature and potential to be reused and composed in

unforeseeable situations, services are required to undergo rigorous testing prior

to deployment into a production environment.

10.1.6. Service deployment

• The implementation stage brings with it the joys of installing and configuring

distributed components, service interfaces, and any associated middleware

products onto production servers.

10.1.7. Service administration

• After services are deployed, standard application management issues come to

the fore front.

• These are similar in nature to the administration concerns for distributed,

component-based applications, except that they also may apply to services as a

whole (as opposed to services belonging to a specific application environment).

10.1.8. SOA delivery strategies

• The lifecycle stages identified in the previous sections represent a simple,

sequential path to building individual services.

To organize stages into a process

• accommodate our preferences with regards to which types of service layers we

want to deliver

• coordinate the delivery of application, business, and process services

• support a transition toward a standardized SOA while helping us fulfill

immediate, project-specific requirements

• The last item on this list poses the greatest challenge. The success of SOA

within an enterprise is generally dependent on the extent to which it is

standardized when it is phased into business and application domains.

However, the success of a project delivering a service-oriented solution generally

is measured by the extent to which the solution fulfills expected requirements

within a given budget and timeline.

• To address this problem, we need a strategy. This strategy must be based on an

organization's priorities to establish the correct balance between the delivery of

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

long-term migration goals with the fulfillment of short-term requirements. Three

common strategies have emerged, each addressing this problem in a different

manner.

✓ top-down

✓ bottom-up

✓ agile (or meet-in-the-middle)

• These paths differ in priorities and practical considerations. The following three

sections provide process descriptions and explore the pros and cons of each

approach.

• How you approach the creation of a service-oriented environment ultimately

determines what you will end up with. The strategies discussed here, therefore,

will confront you with some important decision-making. Choosing the right

approach will determine the extent to which your service-oriented modeling and

design efforts can realize the full potential of SOA.

2. Explain in detail about the top-down strategy of SOA Delivery Strategies

• This strategy is very much an "analysis first" approach that requires not only

business processes to become service-oriented, but also promotes the creation

(or realignment) of an organization's overall business model. This process is

therefore closely tied to or derived from an organization's existing business

logic.

• The top-down strategy supports the creation of all three of the service layers we

discussed in the previous chapter. It is common for this approach to result in

the creation of numerous reusable business and application services.

10.2.1. Process

• The top-down approach will typically contain some or all of the steps illustrated

and described in Figure. Note that this process assumes that business

requirements have already been collected and defined.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Figure. Common top-down strategy process steps.

 Step 1: Define relevant enterprise-wide ontology

✓ Part of what an ontology establishes is a classification of information sets

processed by an organization. This results in a common vocabulary, as well as

a definition of how these information sets relate to each other.

✓ Larger organizations with multiple business areas can have several ontologies,

each governing a specific division of business. It is expected that these

specialized ontologies all align to support an enterprise-wide ontology.

✓ If such a business vocabulary does not yet exist for whatever information sets

a solution is required to work with, then this step requires that it be defined.

A significant amount of up-front information gathering and high-level

business analysis effort may therefore be required.

Step 2: Align relevant business models (including entity models) with new or

revised ontology

✓ After the ontology is established, existing business models may need to be

adjusted (or even created) to properly represent the vocabulary provided by

the ontology in business modeling terms. Entity models in particular are of

importance, as they can later be used as the basis for entity-centric business

services.

Step 3: Perform service-oriented analysis

✓ A service-oriented analysis phase, such as the one described in Chapters 11

and 12, is completed.

Step 4: Perform service-oriented design

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

✓ The service layers are formally defined as part of a service-oriented design

process, such as the one described in Chapters 13 through 16.

Step 5: Develop the required services

✓ Services are developed according to their respective design specifications and

the service descriptions created in Step 4.

Step 6: Test the services and all service operations

✓ The testing stage requires that all service operations undergo necessary

quality assurance checks. This typically exceeds the amount of testing

required for the automation logic being implemented because reusable

services will likely need to be subjected to testing beyond the immediate scope

of the solution.

Step 7: Deploy the services

✓ The solution is finally deployed into production. An implementation

consideration beyond those we originally identified as part of this step is the

future reuse potential of the service.

✓ To facilitate multiple service requestors, highly reusable services may require

extra processing power and may have special security and accessibility

requirements that will need to be accommodated.

10.2.2. Pros and cons

• The top-down approach to building SOA generally results in a high quality

service architecture. The design and parameters around each service are

thoroughly analyzed, maximizing reusability potential and opportunities for

streamlined compositions. All of this lays the groundwork for a standardized

and federated enterprise where services maintain a state of adaptability, while

continuing to unify existing heterogeneity.

• The obstacles to following a top-down approach usually are associated with

time and money. Organizations are required to invest significantly in up-front

analysis projects that can take a great deal of time (proportional to the size of

the organization and the immediate solution), without showing any immediate

results.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

3. Explain in detail about the bottom-up strategy of SOA Delivery Strategies

• This approach essentially encourages the creation of services as a means of

fulfilling application-centric requirements.

• Web services are built on an "as needed" basis and modeled to encapsulate

application logic to best serve the immediate requirements of the solution.

Integration is the primary motivator for bottom-up designs, where the need to

take advantage of the open SOAP communications framework can be met by

simply appending services as wrappers to legacy systems.

10.3.1. Process

• A typical bottom-up approach follows a process similar to the one explained in

Figure. Note that this process assumes that business requirements have

already been collected and defined.

Figure. Common bottom-up strategy process steps.

Step 1: Model required application services

✓ This step results in the definition of application requirements that can be

fulfilled through the use of Web services. Typical requirements include the

need to establish point-to-point integration channels between legacy systems

or B2B solutions. Other common requirements emerge out of the desire to

replace traditional remote communication technology with the SOAP

messaging communications framework.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

✓ For solutions that employ the bottom-up strategy to deliver highly service-

centric solutions, application services also will be modeled to include specific

business logic and rules. In this case, it is likely that two application service

layers will emerge, consisting of hybrid and utility services. Those services

classified as reusable may act as generic application endpoints for integration

purposes, or they may be composed by parent hybrid services.

Step 2: Design the required application services

✓ Some of the application services modeled in Step 1 may be delivered by

purchasing or leasing third-party wrapper services or perhaps through the

creation of auto-generated proxy services. These services may provide little

opportunity for additional design. Custom application services, though, will

need to undergo a design process wherein existing design standards are

applied to ensure a level of consistency. Chapter 15 provides a design process

specifically for reusable application services.

Step 3: Develop the required application services

✓ Application services are developed according to their respective service

descriptions and applicable design specifications.

Step 4: Test the services

✓ Services, their associated solution environment, and underlying legacy logic

are tested to ensure that processing requirements can be met. Performance

and stress testing measures often are used to set the processing parameters

of legacy systems exposed via wrapper services. Security testing is also an

important part of this stage.

Step 5: Deploy the services

✓ The solution and its application services are deployed into production.

Implementation considerations for application services frequently include

performance and security requirements.

10.3.2. Pros and cons

• The majority of organizations that currently are building Web services apply the

bottom-up approach.

o The primary reason behind this is that organizations simply add Web

services to their existing application environments to leverage the Web

services technology set.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

o The architecture within which Web services are added remains

unchanged, and service-orientation principles are therefore rarely

considered.

• As a result, the term that is used to refer to this approach"the bottom-up

strategy"is somewhat of a misnomer.

o The bottom-up strategy is really not a strategy at all. Nor is it a valid

approach to achieving contemporary SOA. This is a realization that will

hit many organizations as they begin to take service-orientation, as an

architectural model, more seriously.

o Although the bottom-up design allows for the efficient creation of Web

services as required by applications, implementing a proper SOA at a

later point can result in a great deal of retro-fitting or even the

introduction of new standardized service layers positioned over the top of

the non-standardized services produced by this approach.

4. Explain in detail about the agile strategy of SOA Delivery Strategies

• The challenge remains to find an acceptable balance between incorporating

service-oriented design principles into business analysis environments without

having to wait before integrating Web services technologies into technical

environments.

• For many organizations it is therefore useful to view these two approaches as

extremes and to find a suitable middle ground.

• This is possible by defining a new process that allows for the business-level

analysis to occur concurrently with service design and development. Also

known as the meet-in-the-middle approach, the agile strategy is more complex

than the previous two simply because it needs to fulfill two opposing sets of

requirements.

10.4.1. Process

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• The process steps shown in Figure demonstrate an example of how an agile

strategy can be used to reach the respective goals of the top-down and bottom-

up approaches.

Figure. A sample agile strategy process.

 Step 1: Begin the top-down analysis, focusing first on key parts of the ontology

and related business entities

✓ The standard top-down analysis begins but with a narrower focus. The parts

of the business models directly related to the business logic being automated

receive immediate priority.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Step 2: When the top-down analysis has sufficiently progressed, perform service-

oriented analysis

✓ While Step 1 is still in progress, this step initiates a service-oriented analysis

phase. Depending on the magnitude of analysis required to complete Step 1, it

is advisable to give that step a good head start. The further along it

progresses, the more service designs will benefit.

✓ After the top-down analysis has sufficiently progressed, model business

services to best represent the business model with whatever analysis results

are available. This is a key decision point in this process. It may require an

educated judgment call to determine whether the on-going top-down analysis

is sufficiently mature to proceed with the creation of business service models.

This consideration must then be weighed against the importance and urgency

of pending project requirements.

Step 3: Perform service-oriented design

✓ The chosen service layers are defined, and individual services are designed as

part of a service-oriented design process

Steps 4, 5, and 6: Develop, test, and deploy the services

✓ Develop the services and submit them to the standard testing and deployment

procedures.

Step 7: As the top-down analysis continues to progress, revisit business services

✓ Perform periodic reviews of all business services to compare their design

against the current state of the business models.

✓ Make a note of discrepancies and schedule a redesign for those services most

out of alignment. This typically will require an extension to an existing service

for it to better provide the full range of required capabilities.

✓ When redesigned, a service will need to again undergo standard development,

testing, and deployment steps.

✓ To preserve the integrity of services produced by this approach, the concept of

immutable service contracts needs to be strictly enforced. After a contract is

published, it cannot be altered.

✓ Unless revisions to services result in extensions that impose no restrictions on

an existing contract (such as the addition of new operations to a WSDL

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

definition), Step 7 of this process likely will result in the need to publish new

contract versions and the requirement for a version management system.

10.4.2. Pros and cons

• This strategy takes the best of both worlds and combines it into an approach for

realizing SOA that meets immediate requirements without jeopardizing the

integrity of an organization's business model and the service-oriented qualities

of the architecture.

• While it fulfills both short and long-term needs, the net result of employing this

strategy is increased effort associated with the delivery of every service. The fact

that services may need to be revisited, redesigned, redeveloped, and redeployed

will add up proportionally to the amount of services subjected to this retasking

step.

• Additionally, this approach imposes maintenance tasks that are required to

ensure that existing services are actually kept in alignment with revised

business models. Even with a maintenance process in place, services still run

the risk of misalignment with a constantly changing business model.

5. Explain in detail about the Service-Oriented Analysis

• The process of determining how business automation requirements can be

represented through service-orientation is the domain of the service-oriented

analysis.

11.1.1. Objectives of service-oriented analysis

• The primary questions addressed during this phase are:

o What services need to be built?

o What logic should be encapsulated by each service?

• The extent to which these questions are answered is directly related to the

amount of effort invested in the analysis. Many of the issues we discussed in

the past two chapters can be part of this stage. Specifically, the determination

of which service layers to build and how to approach their delivery are critical

decision points that will end up forming the structure of the entire service-

oriented environment.

• The overall goals of performing a service-oriented analysis are as follows:

✓ Define a preliminary set of service operation candidates.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

✓ Group service operation candidates into logical contexts. These contexts

represent service candidates.

✓ Define preliminary service boundaries so that they do not overlap with any

existing or planned services.

✓ Identify encapsulated logic with reuse potential.

✓ Ensure that the context of encapsulated logic is appropriate for its intended

use.

✓ Define any known preliminary composition models.

11.1.2. The service-oriented analysis process

• Introducing a new analysis process into an existing IT environment can be a

tricky thing.

• Every organization has developed its own approach to analyzing business

automation problems and solutions, and years of effort and documentation will

have already been invested into well-established processes and modeling

deliverables.

• The process described in this section is not intended to supplant existing

procedures. Instead, it proposes a sequence of supplementary steps, specific to

the delivery of a service-oriented solution.

• Service-oriented analysis can be applied at different levels, depending on which

of the SOA delivery strategies are used to produce services. As explained in the

previous chapter, the chosen strategy will determine the layers of abstraction

that comprise the service layers of a solution environment.

• From an analysis perspective, each layer has different modeling requirements.

For example, the nature of the analysis required to define application services is

different from what is needed to model the business service layer.

• Therefore, as previously mentioned, a key prerequisite of this process is the

choice of SOA delivery strategy. Other questions that should be answered prior

to proceeding with the service-oriented analysis include:

o What outstanding work is needed to establish the required business

model(s) and ontology?

o What modeling tools will be used to carry out the analysis?

o Will the analysis be part of an SOA transition plan?

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• The service-oriented analysis process is a sub-process of the overall SOA

delivery lifecycle. The steps shown in Figure are common tasks associated with

this phase and are described further in the following sections.

Figure. A high-level service-oriented analysis process.

Step 1: Define business automation requirements

• Through whatever means business requirements are normally collected, their

documentation is required for this analysis process to begin. Given that the

scope of our analysis centers around the creation of services in support of a

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

service-oriented solution, only requirements related to the scope of that solution

should be considered.

• Business requirements should be sufficiently mature so that a high-level

automation process can be defined. This business process documentation will

be used as the starting point of the service modeling process described in Step

3.

Step 2: Identify existing automation systems

• Existing application logic that is already, to whatever extent, automating any of

the requirements identified in Step 1 needs to be identified. While a service-

oriented analysis will not determine how exactly Web services will encapsulate

or replace legacy application logic, it does assist us in scoping the potential

systems affected.

• The details of how Web services relate to existing systems are ironed out in the

service-oriented design phase. For now, this information will be used to help

identify application service candidates during the service modeling process

described in Step 3.

Step 3: Model candidate services

• A service-oriented analysis introduces the concept of service modelinga process

by which service operation candidates are identified and then grouped into a

logical context. These groups eventually take shape as service candidates that

are then further assembled into a tentative composite model representing the

combined logic of the planned service-oriented application.

6. Explain in detail about the Service Modeling of Service-Oriented Analysis

• A service modeling process is essentially an exercise in organizing the

information we gathered in Steps 1 and 2 of the parent service-oriented analysis

process.

• Sources of the information required can be diverse, ranging from various

existing business model documents to verbally interviewing key personnel that

may have the required knowledge of a relevant business area. As such, this

process can be structured in many different ways.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• The process described in this section is best considered a starting point from

which you can design your own to fit within your organization's existing

business analysis platforms and procedures.

12.1.1. "Services" versus "Service Candidates"

• The primary goal of the service-oriented analysis stage is to figure out what it is

we need to later design and build in subsequent project phases. It is therefore

helpful to continually remind ourselves that we are not actually implementing a

design at this stage. We are only performing an analysis that results in a

proposed separation of logic used as input for consideration during the service-

oriented design phase. In other words, we are producing abstract candidates

that may or may not be realized as part of the eventual concrete design.

• The reason this distinction is so relevant is because once our candidates are

submitted to the design process, they are subjected to the realities of the

technical architecture in which they are expected to reside. Once constraints,

requirements, and limitations specific to the implementation environment are

factored in, the end design of a service may be a significant departure from the

corresponding original candidate.

• So, at this stage, we do not produce services; we create service candidates.

Similarly, we do not define service operations; we propose service operation

candidates. Finally, service candidates and service operation candidates are the

end-result of a process called service modeling.

12.1.2. Process description

• Up next is a series of 12 steps that comprise a proposed service modeling

process (Figure). Specifically, this particular process provides steps for the

modeling of an SOA consisting of application, business, and orchestration

service layers.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Figure. A sample service modeling process.

 Step 1: Decompose the business process

✓ Take the documented business process and break it down into a series of

granular process steps. It is important that a process's workflow logic be

decomposed into the most granular representation of processing steps, which

may differ from the level of granularity at which the process steps were

originally documented.

Step 2: Identify business service operation candidates

✓ Some steps within a business process can be easily identified as not belonging

to the potential logic that should be encapsulated by a service candidate.

✓ Examples include:

o Manual process steps that cannot or should not be automated.

o Process steps performed by existing legacy logic for which service candidate

encapsulation is not an option.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

✓ By filtering out these parts we are left with the processing steps most relevant

to our service modeling process.

Step 3: Abstract orchestration logic

✓ If you have decided to build an orchestration layer as part of your SOA, then

you should identify the parts of the processing logic that this layer would

potentially abstract. (If you are not incorporating an orchestration service layer,

then skip this step.)

✓ Potential types of logic suitable for this layer include:

o business rules

o conditional logic

o exception logic

o sequence logic

✓ For example, some processing step descriptions consist of a condition and an

action (if condition x occurs, then perform action y). In this case, only remove

the condition and leave the action.

✓ Also note that some of the identified workflow logic likely will be dropped

eventually. This is because not all processing steps necessarily become service

operations. Remember that at this point, we are only creating candidates. When

we enter the service-oriented design phase, practical considerations come into

play. This may result in the need to remove some of the candidate operations,

which would also require that corresponding workflow logic be removed from

the orchestration layer as well.

Step 4: Create business service candidates

✓ Review the processing steps that remain and determine one or more logical

contexts with which these steps can be grouped. Each context represents a

service candidate. The contexts you end up with will depend on the types of

business services you have chosen to build.

✓ For example, task-centric business services will require a context specific to the

process, while entity-centric business services will introduce the need to group

processing steps according to their relation to previously defined entities.

✓ It is important that you do not concern yourself with how many steps belong to

each group. The primary purpose of this exercise is to establish the required set

of contexts.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

✓ Also it is encouraged that entity-centric business service candidates be

equipped with additional operation candidates that facilitate future reuse.

✓ Therefore, the scope of this step can be expanded to include an analysis of

additional service operation candidates not required by the current business

process, but added to round out entity services with a complete set of reusable

operations.

Step 5: Refine and apply principles of service-orientation

✓ To make our service candidates truly worthy of an SOA, we must take a closer

look at the underlying logic of each proposed service operation candidate.

✓ This step gives us a chance to make adjustments and apply key service-

orientation principles. This is where the study we performed in the Native Web

service support for service-orientation principles section of Chapter 8 becomes

useful. As you may recall, we identified the following four key principles as

those not intrinsically provided through the use of Web services:

o reusability

o autonomy

o statelessness

o discoverability

✓ Of these four, only the first two are important to us at the service modeling

stage. The latter two on this list are addressed in the service-oriented design

process. Therefore, our focus in this step is also to ensure that each service

operation candidate we identify is potentially reusable and as autonomous as

possible.

Step 6: Identify candidate service compositions

✓ Identify a set of the most common scenarios that can take place within the

boundaries of the business process. For each scenario, follow the required

processing steps as they exist now.

✓ This exercise accomplishes the following:

o It gives you a good idea as to how appropriate the grouping of your process

steps is.

o It demonstrates the potential relationship between orchestration and

business service layers.

o It identifies potential service compositions.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

o It highlights any missing workflow logic or processing steps.

Step 7: Revise business service operation grouping

✓ Based on the results of the composition exercise in Step 6, revisit the grouping

of your business process steps and revise the organization of service operation

candidates as necessary. It is not unusual to consolidate or create new groups

(service candidates) at this point.

Step 8: Analyze application processing requirements

✓ By the end of Step 6, you will have created a business-centric view of your

services layer. This view could very well consist of both application and

business service candidates, but the focus so far has been on representing

business process logic.

✓ This next series of steps is optional and more suited for complex business

processes and larger service-oriented environments. It requires that you more

closely study the underlying processing requirements of all service candidates

to abstract any further technology-centric service candidates from this view that

will complete a preliminary application services layer. To accomplish this, each

processing step identified so far is required to undergo a mini-analysis.

✓ Specifically, what you need to determine is:

o What underlying application logic needs to be executed to process the action

described by the operation candidate.

o Whether the required application logic already exists or whether it needs to

be newly developed.

o Whether the required application logic spans application boundaries. In

other words, is more than one system required to complete this action?

Step 9: Identify application service operation candidates

✓ Break down each application logic processing requirement into a series of steps.

Be explicit about how you label these steps so that they reference the function

they are performing. Ideally, you would not reference the business process step

for which this function is being identified.

Step 10: Create application service candidates

✓ Group these processing steps according to a predefined context. With

application service candidates, the primary context is a logical relationship

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

between operation candidates. This relationship can be based on any number of

factors, including:

o association with a specific legacy system

o association with one or more solution components

o logical grouping according to type of function

✓ Various other issues are factored in once service candidates are subjected to

the service-oriented design process. For now, this grouping establishes a

preliminary application service layer.

Step 11: Revise candidate service compositions

✓ Revisit the original scenarios you identified in Step 5 and run through them

again. Only, this time, incorporate the new application service candidates as

well. This will result in the mapping of elaborate activities that bring to life

expanded service compositions. Be sure to keep track of how business service

candidates map to underlying application service candidates during this

exercise.

Step 12: Revise application service operation grouping

✓ Going through the motions of mapping the activity scenarios from Step 11

usually will result in changes to the grouping and definition of application

service operation candidates. It will also likely point out any omissions in

application-level processing steps, resulting in the addition of new service

operation candidates and perhaps even new service candidates.

7. Explain in detail about the Service-Oriented Design.

• Service-oriented design is the process by which concrete physical service

designs are derived from logical service candidates and then assembled into

abstract compositions that implement a business process.

13.1.1. Objectives of service-oriented design

• The primary questions answered by this phase are:

✓ How can physical service interface definitions be derived from the service

candidates modeled during the service-oriented analysis phase?

✓ What SOA characteristics do we want to realize and support?

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

✓ What industry standards and extensions will be required by our SOA to

implement the planned service designs and SOA characteristics?

• To address these questions, the design process actually involves further

analysis. This time our focus is on environmental factors and design standards

that will shape our services.

• The overall goals of performing a service-oriented design are as follows:

✓ Determine the core set of architectural extensions.

✓ Set the boundaries of the architecture.

✓ Identify required design standards.

✓ Define abstract service interface designs.

✓ Identify potential service compositions.

✓ Assess support for service-orientation principles.

✓ Explore support for characteristics of contemporary SOA.

13.1.2. "Design standards" versus "Industry standards"

• The term "standards" is used frequently in this chapter. It is easy to confuse its

context, so we often qualify it. Design standards represent custom standards

created by an organization to ensure that services and SOAs are built according

to a set of consistent conventions. Industry standards are provided by

standards organizations and are published in Web services and XML

specifications.

13.1.3. The service-oriented design process

• As with the service-oriented analysis, we first establish a parent process that

begins with some preparatory work. This leads to a series of iterative processes

that govern the creation of different types of service designs and, ultimately, the

design of the overall solution workflow (Figure 13.1).

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Figure. A high-level service-oriented design process.

Step 1: Compose SOA

✓ A fundamental quality of SOA is that each instance of a service-oriented

architecture is uniquely composable. Although most SOAs will implement a

common set of shared technologies based on key XML and first-generation Web

services specifications, the modular nature of the WS-* specification landscape

allows for extensions to this core architecture to be added as required.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

✓ This step consists of the following three further steps

1. Choose service layers

2. Position core SOA standards

3. Choose SOA extensions

Steps 2 to 4: Design services

✓ These steps are represented by the following three separate processes

• Entity-centric business service design process.

• Application service design process.

• Task-centric business service design process.

✓ Our primary input for each of these service design processes is the

corresponding service candidates we produced in the service modeling process

during the service-oriented analysis.

Step 5: Design service-oriented business process

✓ Upon establishing an inventory of service designs, we proceed to create our

orchestration layerthe glue that binds our services with business process logic.

This step results in the formal, executable definition of workflow logic, which

translates into the creation of a WS-BPEL process definition

13.1.4. Prerequisites

• Before we get into the details of the service-oriented design process, we should

make sure that we have a sufficient understanding of key parts of the

languages required to design services.

Figure. Three core specifications associated with service design.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

8. Explain in detail about the SOA Standards and Composition Guidelines.

• Defining architecture is a common step within the delivery lifecycle of any form

of automation solution project. It establishes application boundaries, the

supporting technology set, and target deployment environments.

• However, SOA brings with it unique characteristics that differ from traditional

architectural models. This also leads to a unique approach to defining the

architecture itself.

Steps to composing SOA

• Regardless of the shape or size of your SOA, it will consist of a number of

technology components that establish an environment in which your services

will reside (Figure). The fundamental components that typically comprise an

SOA include:

o an XML data representation architecture

o Web services built upon industry standards

o a platform capable of hosting and processing XML data and Web services

Figure. The most fundamental components of an SOA.

• However, to support and realize the principles and characteristics we've

explored as being associated with both the primitive and contemporary types of

SOA requires some additional design effort.

• Common questions that need to be answered at this stage include:

o What types of services should be built, and how should they be organized

into service layers?

o How should first-generation standards be positioned to best support SOA?

o What features provided by available extensions are required by the SOA?

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• These issues lead to an exercise in composition, as we make choices that

determine what technologies and architectural components are required and

how these parts are best assembled.

• Provided in Figure and further described in the following sections is an informal

set of steps for composing a service-oriented architecture. Depending on your

goals and the nature of your technical environment, additional considerations

likely will be needed.

Figure 14.2. Suggested steps for composing a preliminary SOA.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Step 1: Choose service layers

✓ Composing an SOA requires that we first decide on a design configuration for

the service layers that will comprise and standardize logic representation within

our architecture. This step is completed by studying the candidate service

layers produced during the service-oriented analysis phase and exploring

service layers and service layer configuration scenarios. Some guidelines are

provided in the Considerations for choosing service layers section.

Step 2: Position core standards

✓ Next, we need to assess which core standards should comprise our SOA and

how they should be implemented to best support the features and requirements

of our service-oriented solution. The Considerations for positioning core SOA

standards section provides an overview of how each of the core XML and Web

services specifications commonly is affected by principles and characteristics

unique to SOA.

Step 3: Choose SOA extensions

✓ This final part of our "pre-service design process" requires that we determine

which contemporary SOA characteristics we want our service-oriented

architecture to support. This will help us decide which of the available WS-*

specifications should become part of our service-oriented environment. The

Considerations for choosing SOA extensions section provides some guidelines

for making these determinations.

9. Explain in detail about the SOA Service design.

• The ultimate goal of these processes is to achieve a balanced service design.

Typically this constitutes a Web service that accommodates real-world

requirements and constraints, while still managing to:

o encapsulate the required amount of logic

o conform to service-orientation principles

o meet business requirements

• Given the four main types of service layers we identified previously, following is

a suggested design sequence:

1. Entity-centric business services

2. Application services

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

3. Task-centric business services

4. Process services

• This sequence is actually more of a guideline, as in reality, the service design

process is not always that clear cut.

• For example, after creating an initial set of application service designs, you

proceed to build task-centric services. Only while incorporating various

operations, you realize that additional application service-level features are

required to carry them out.

• This results in you having to revisit the application service designs to determine

if you should add operations or entirely new services.

15.1.1. Design standards

• It is important to note that a firm set of design standards is critical to achieving

a successful SOA. Because the design we are defining as part of this phase is

concrete and permanent, every service produced needs to be as consistent as

possible.

• Otherwise, many key SOA benefits, such as reusability, composability, and

especially agility, will be jeopardized. It is therefore assumed that prior to

starting this phase, design standards are already in place.

• In previous service-oriented analysis process, design standards were not as

heavily emphasized. This is primarily because service candidates can continue

to be modified and refined after corresponding services have been developed

and implemented, without significant impact. Standards are still relevant to

service-oriented analysis, but not as much as they are integral to service-

oriented design.

15.1.2. About the process descriptions

• The sample processes in this section consist of generic sets of steps that

highlight the primary considerations for creating service designs. This is our

last chance to ensure a service properly expresses its purpose and capabilities.

• As part of each abstract service description we create, the following parts are

formally defined:

o definition of all service operations

o definition of each operation's input and output messages

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

o definition of associated XSD schema types used to represent message

payloads

15.1.3. Prerequisites

• Service design processes approach the creation of the service interface from a

hand coding perspective. This means that many references to the WSDL and

XSD schema markup languages are made throughout the process descriptions.

• Further, to support our processes, numerous interspersed case study examples

provide actual WSDL and XSD schema markup samples. Reading through the

WSDL and XSD tutorials provided in Chapter 13 therefore is recommended to

best understand the process descriptions and associated examples.

The Service-Oriented Design Process

Step 1: Compose SOA

Each instance of a service-oriented architecture is uniquely composable which

is used to implement a common set of shared technologies based on key XML and

first-generation web services specification

The step consists of the following three steps

1. Choose service layers
o Existing services, SOA applications, ect.
o Enterprise standards
o Composition performance consideration

2. Position core SOA standards
o Industry standards
o Will you use UDDI?

3. Choose SOA extensions
o Which extensions will you use in which compositions?

Step 2: Entity-centric business service design process

• Entity services are also known as entity-centric business services

• Establish the business service layer

o Based on its functional boundary and context on one or more related

business entities

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Step 3: Application (utility) services design process

• Utility services are also known as application services

• Establish the utility services layer.

Step 4: Task-centric business service design process

• Task services are also known as task-centric business services.

• Complete the business service layer(s)

• The primary input is the corresponding service candidates we produced in the

service modeling process during the service-oriented analysis.

Step 5: Design service-oriented business process

The formal, executable definitions of workflow logic are translated into the creation of

a WS-BPEL process definition.

10. Explain in detail about the Business Process Design.

• The orchestration service layer provides a powerful means by which

contemporary service-oriented solutions can realize some key benefits. The

most significant contribution this sub-layer brings to SOA is an abstraction of

logic and responsibility that alleviates underlying services from a number of

design constraints.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

• For example, by abstracting business process logic:

o Application and business services can be freely designed to be process-

agnostic and reusable.

o The process service assumes a greater degree of statefulness, thus further

freeing other services from having to manage state.

o The business process logic is centralized in one location, as opposed to being

distributed across and embedded within multiple services.

• WS-BPEL stands for web services business process Execution Language.

WS-BPEL is an XML based language. Enabling user to describe business

process activities as web services and define how they can be connected to

accomplish specific tasks.

• Composition is based on pre-modeled workflow.

• In WS-BPEL everything is a service.

WS-BPEL family tree

WS-BPEL 2.0 is a revision of the original acronym BPEL4WS 1.0 and 1.1.

WS-BPEL terminology

• Activities

WSFL XLANG
(IBM 2001) (Microsoft 2001)

SAP and Sibel + BPEL4WS 1.0 + BEA Systems
Systems

 BPEL4WS 1.1

 WS-BPEL 2.0 (Current Standard)

WSDL XML

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

➢ Message exchange or intermediate result transformation

• Process-the composition result

➢ A process consists of a set of activities.

The structure of WS-BPEL process

• A WS-BPEL process definition is represented at runtime by the process service.

• Services that participate in WS-BPEL defined processes are considered partner

services and are established as part of the process definition.

• Numerous activity elements are provided by WS-BPEL to implement various

types of process logic.

The common WS-BPEL process definition structures are given below:

The process element

An <process> element is the root element and must have a name attribute for

assigning the name value. It is used to establish the process definition-related

namespaces.

The child elements of <process> are listed in the following section.

Process definition skeleton

<process name=”TimesheetSubmissiomProcess”

targetNamespace=http://www.xmltc.com/tls/process/

xmlns=http://schemas.xmlsoap.org/ws/2003/03/business-process/

xmlns:bpl=http://www.xmltc.com/tls/process/

xmlns:emp=http://www.xmltc.com/tls/employee/

xmlns:inv=http://www.xmltc.com/tls/invoice/

http://www.xmltc.com/tls/process/
http://schemas.xmlsoap.org/ws/2003/03/business-process/
http://www.xmltc.com/tls/process/
http://www.xmltc.com/tls/employee/
http://www.xmltc.com/tls/invoice/

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

xmlns:tst=http://www.xmltc.com/tls/timesheet/

xmlns:not=http://www.xmltc.com/tls/notification/

<partnerLinks>

........

</partnerLinks>

<variables>

.............

</variable>

<sequence>

........

</sequence>

.......

</process>

The partnerLinks and partnerLinks elements

The partnerLinks define the services that are orchestrated by the process. It

contains a set of <partnerLink> element each represent the communication exchange

between two partners-the process service being one partner and another service being

the other.

The partnerLink element

The partnerLink element therefore contains the following attributes

• myRole

• Used when the process service is invoked by a partner client service.

• Process service acts as the service provider.

• partnerRole

• Identifies the partner service that the process service will be invoking

• Partner service acts as the service provider.

Example

<partnerLink>

<partnerLink name=”ClientStartUplink”

partnerLinkType=”wsdl:ClientStartUpPLT”myRole=”Client”/>

</partnerLink>

The partnerLinkType element

The partnerLinkType elements identify the WSDL portType elements refrenced

by the partnerLink elements within the process definition.

http://www.xmltc.com/tls/timesheet/
http://www.xmltc.com/tls/notification/

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

It contains one role element for each role the service can play, so it will have either one

or two child role elements.

The variables element

Variables hold the data that constitute the state of a BPEL business process during

runtime.

Attributes

• MessageType

Allow for the variable to contain an entire WSDL-defined message.

• Element

Refer to an XSD element construct.

• Type

Used to just represent an XSD simpleType, such as string or integer.

Example

<variables>

<variable name=”myVar1”messageType=”myNS:myWSDLMessageDataType”/>

<variable name=”myVar1”element=”myNS:myXMLElement”/>

<variable name=”myVar2”type=”xsd:string”/>

<variable name=”myVar2”type=”myNS:myComplexType”/>

</variables>

WS-BPEL Functions

a) The getVariableProperty function

The getVariableProperty function allows global property values to be retrived

from variables. It simply accepts the variable and property names as input and

returns the requested value.

Syntax

getVariableProperty (variable name, property name)

Example

getVariableProperty (TicketApproval’,’Class’)

b) The getVariableData function

The getVariableData function has a mandatory variable name parameter and

two optional arguments that can be used to specify a part of the variable data.

Syntax

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

getVariableData (variable name, part name, location path)

Example

getVariableData (‘input’,’payload’,’/tns:TimesheetType/Hours/...’)

Basic Activities

a) The invoke element

The <invoke> activity is used to invoke the web service operations provided by

partners.

Attributes

Attributes specify the details of the invocation. There are five common

attributes equipped with invoke element

Attribute Description

partnerLink
this element names the partner service via its corresponding

partner Link

portType
the element used to identify the portType element of the partner

service

operation
the partner service operation to which the process service will need

to send its request.

inputVariable

the input message that will b used to communicate with the partner

service operation. Note that it is referred to as a variable because it

is referencing a WS-BPEL variable element with a messageType

attribute.

outputVariable

this element is used when communication is based on the request-

response MEP. The return value is stored in a separate variable

element.

Example

The invoke element identifying the target partner service details.

<invoke name=”ValidateWeeklyHours”

partnerLink=”Employee”

portType=”emp:EmployeeInterface”

operation=”GetWeeklyHoursLimit”

inputVariable=”EmployeeHoursRequest”

outputVariable=”EmployeeHoursResponse”/>

b) The receive element

A <receive> activity is used to receiverequests in a BPEL business process to

provide services to its partners. The process block until the message is received.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Attributes

The attributes value relates the expected incoming communication.

Attribute

Description

partnerLink the client partner identified in the corresponding partnerLink

construct

portType the process service portType that will be waiting to receive the

request message from the partner service.

Operation the process service operation that will be receiving the request

Variable the process definition variable construct in which the incoming

request message will be stored

createInstance

when this attribute is set to “yes” the receipt of this particular

request may be responsible for creating a new instance of the

process.

Example

<receive name=”receiveInput”

partnerLink=”client”

portType=’tns:TimesheetSubmissionInterface”

operation=”ClientSubmission”

createInstance=”yes”/>

c) The reply element

A <reply> activity is used to send a response to a request previously accepted

through a <receive> activity. Responses are used for synchronous request/reply

interactions.

Example

The following examples show the reply message for the above receive element.

<reply partnerLink=”client”

portType=”tns:TimesheetSubmissionInterface”

operation=”Submit”

variable=”TimesheetSubmissionResponse”/>

Structured Activity

a) The sequence element

The sequence construct is to organize a series of activities so that they are

executed in a predefined, sequential order. Nesting of sequence is allowed.

Structure

A skeleton sequence constructs containing only some of the many activity

elements provided by WS-BPEL

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<sequence>

<receive>....</receive>

<assign>....</assign>

<invoke>....</invoke>

<reply>....</reply>

b) The switch, case, and otherwise elements

The switch statement is a control statement that handles multiple selections by

passing:

• Control to one of the case statements within its body.

• Control is transferred to the corresponding case statement whose condition

attribute is true. If all the preceding case conditions fail, then the otherwise

construct is executed.

Structure

<switch>

<case

condition=”getVariableData(‘EmployeeResponseMessage’,ResponseParameter’)=

0”>

....

</case>

<otherwise>

....

</otherwise>

</switch>

Flow

The <flow> activity provides concurrent execution of enclosed activities and

their synchronization.

While

The while construct executes the contained activity as long/until a given

conditions becomes true.

Pick

The pick construct will block and wait for one event from a given set of

events(an event is an incoming message or a time-out alarm)

If /else

The If/Else construct selects exactly one branch from a set of choice.

Scope

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Scopes define behavior contexts for activities. They provide local partner links,

message exchanges, variables, correlation sets, fault handlers, compensation

handlers, termination handlers, and event handlers for activities.

The assign, copy, from, and to elements

The <assign> activity is used to:

• Copy data from on variable to another

• Construct and insert new data using expressions and literal values

• Copy partner link endpoint references

Example

Within this assign construct, the contents of the

TimesheetSubmissionFailedMessage variable are copied to two different message

variables.

<assign>

<copy>

<from vvariable=”TimsheetSubmissionFailedMessage”/>

<to variable=”EmployeeNotificationMessage”/>

</copy>

</assign>

The faultHandlers, catch, and catchall element

Fault handlers are used to react to fault that occur while the business process

activities are executing. The faultHandlers constructs contain multiple catch element

and a catchall child constructs.

Catch

The <catch> activity is used to specify faults that are to be caught and handled.

At least one <catch> activity needs to be specified.

CatchAll

The <catchAll> activity is used to catch all faults. It is optional.

Syntax

<faultHandlers>

<catch faultName=”somethingBadHappened”

faultVariable=”TimesheetFault”>

....

</catch>

<catchAll>

Activity

</catchAll>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

</faultHandlers>

The compensationHandler element

The compensationHandler element is used to define compensation activities.

Compensation handlers gather all activities that have to be carried out to compensate

another activity.

Syntax

<compensationHandler>

Activity

</compensationHandler>

The <coorrelationSets> element

A correlation set is a set of properties share by messages and used for

correlation. It is used to associate a message with a business process instance. Each

correlation set has a name attribute.

Syntax

<coorrelationSets>?

<correlationSet name=”NCName” properties=’QName-list”/>+

</coorrelationSets>

The <empty> element

An activity that does nothing is defined by the <empty> tag.

Syntax

<empty standard-attributes>

Standard-elements

</empty>

Example

<empty/>

The <wait> element

A <wait> activity is used to specify a delay for a certain period of time or until a

certain deadline is reached.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

11. Discuss the TLS analysts and architects embark on designing a

corresponding WS-BPEL process definition

Figure 16.4. The original TLS Timesheet Submission Process.

➢ As part of completing the previous service design processes, TLS now has the

inventory of service designs displayed in Figure 16.5.

➢ The other service designs are provided here to help demonstrate the WS-BPEL

partner links we define later on.

Figure 16.5. Service designs created so far.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

➢ TLS also digs out the original composition diagram (Figure 16.6) that shows how

these four services form a hierarchical composition, spearheaded by the Timesheet

Submission Process Service TLS plans to build.

Figure 16.6. The original service composition defined during the service modeling

stage.

➢ Finally, TLS architects revive the original service candidate created for the

Timesheet Submission Process Service (Figure 16.7).

Figure 16.7. The Timesheet Submission Process Service candidate.

➢ With all of this information in hand, TLS proceeds with the business process

design.

Step 1: Map out interaction scenarios

➢ TLS maps out a series of different service interaction scenarios using activity

diagrams. Following are examples of two scenarios.

➢ Figure 16.8 illustrates the interaction between services required to successfully

complete the Timesheet Submission Process with a valid timesheet submission.

Note that in this scenario, the Notification Service is not used.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Figure 16.8. A successful completion of the Timesheet Submission Process.

➢ Figure 16.9 demonstrates a scenario in which the timesheet document is rejected

by the Timesheet Service. This occurs because the timesheet failed to receive

proper authorization.

Figure 16.9. A failure condition caused by an authorization rejection.

➢ The result of mapping out interaction scenarios establishes that the process service

has one potential client partner service and four potential partner services from

which it may need to invoke up to five operations (Figure 16.10).

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Step 2: Design the process service interface

➢ It looks like the Timesheet Submission Process Service interface will be pretty

straightforward. It only requires one operation used by a client to initiate the

process instance (Figure 16.11).

Figure 16.11. Timesheet Submission Process Service design.

➢ Example 16.18. The abstract service definition for the Timesheet Submission

Process Service.

 <xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/">

Initiates the Timesheet Submission Process.

 <name="tns:TimesheetSubmissionInterface"/>

Step 3: Formalize partner service conversations

➢ Now that the Timesheet Submission Process Service has an interface, TLS can

begin to work on the corresponding process definition. It begins by looking at the

information it gathered in Step 1. As you may recall, TLS determined the process

service as having one potential client partner service and four potential partner

services from which it may need to invoke up to five operations.

➢ Roles are assigned to each of these services, labeled according to how they relate to

the process service. These roles are then formally defined by appending existing

service WSDL definitions with a partnerLinkType construct.

➢ Example 16.19 shows how the Employee Service definition is amended to

incorporate the WS-BPEL partnerLinkType construct and its corresponding

namespace.

Example 16.19. The revised Employee service definitions construct.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

<xmlns:plnk= "http://schemas.xmlsoap.org/ws/2003/05/partner-

link/">

 ...

➢ This is formalized within the process definition through the creation

of partnerLink elements that reside within the partnerLinks construct. TLS

analysts and architects work with a process modeling tool to drag and

drop partnerLink objects, resulting in the following code being generated.

➢ Example 16.20. The partnerLinks construct containing partnerLink elements for

each of the process partner services.

<partnerLinks>

 <partnerLink name="client"

 partnerLinkType="bpl:TimesheetSubmissionProcessType"

 myRole="TimesheetSubmissionProcessServiceProvider"/>

 <partnerLink name="Invoice"

 partnerLinkType="inv:InvoiceType"

 partnerRole="InvoiceServiceProvider"/>

 <partnerLink name="Timesheet"

 partnerLinkType="tst:TimesheetType"

 partnerRole="TimesheetServiceProvider"/>

 <partnerLink name="Employee"

 partnerLinkType="emp:EmployeeType"

 partnerRole="EmployeeServiceProvider"/>

 <partnerLink name="Notification"

 partnerLinkType="not:NotificationType"

 partnerRole="NotificationServiceProvider"/>

partnerLinks>

➢ Next the input and output messages of each partner service are assigned to

individual variable elements, as part of the variables construct. A variable element

also is added to represent the Timesheet Submission Process Service Submit

operation that is called by the HR client application to kick off the process.

➢ Example 16.21. The variables construct containing individual variable elements

representing input and output messages from all partner services and for the

process service itself.

<variables>

 <variable name="ClientSubmission"

 messageType="bpl:receiveSubmitMessage"/>

 <variable name="EmployeeHoursRequest"

 messageType="emp:getWeeklyHoursRequestMessage"/>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

 <variable name="EmployeeHoursResponse"

 messageType="emp:getWeeklyHoursResponseMessage"/>

 <variable name="EmployeeHistoryRequest"

 messageType="emp:updateHistoryRequestMessage"/>

 <variable name="EmployeeHistoryResponse"

 messageType="emp:updateHistoryResponseMessage"/>

 <variable name="InvoiceHoursRequest"

 messageType="inv:getBilledHoursRequestMessage"/>

 <variable name="InvoiceHoursResponse"

 messageType="inv:getBilledHoursResponseMessage"/>

 <variable name="TimesheetAuthorizationRequest"

 messageType="tst:getAuthorizedHoursRequestMessage"/>

 <variable name="TimesheetAuthorizationResponse"

 messageType="tst:getAuthorizedHoursResponseMessage"/>

 <variable name="NotificationRequest"

 messageType="not:sendMessage"/>

variables>

Step 4: Define process logic

➢ The TLS team now creates a process definition that expresses the original

workflow logic and processing requirements, while accounting for the two

service interaction scenarios identified earlier. The remainder of this example

explores the details of this process definition.

➢ A visual representation of the process logic about to be defined in WS-BPEL

syntax is displayed in Figure 16.12.

Figure 16.12. A descriptive, diagrammatic view of the process definition logic.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

➢ Established first is a receive element that offers the Submit operation of the

Timesheet Submission Process Service to an external HR client as the means by

which the process is instantiated.

➢ Example 16.22. The receive element providing an entry point by which the

process can be initiated.

<receive xmlns=

 "http://schemas.xmlsoap.org/ws/2003/03/business-process/"

 name="receiveInput"

 partnerLink="client"

 portType="tns:TimesheetSubmissionInterface"

 operation="Submit"

 variable="ClientSubmission"

 createInstance="yes"/>

➢ Example 16.23. The assign and copy constructs hosting a from element that

retrieves customer billing information from the message stored in the

ClientSubmission variable and a to element that is used to assign these values

to the InvoiceHoursRequest variable.

<assign name="GetInvoiceID">

 <copy>

 <from variable="ClientSubmission" part="payload"

 query="/TimesheetType/BillingInfo"/>

 <to variable="InvoiceHoursRequest"

 part="RequestParameter"/>

 copy>

assign>

➢ Example 16.24. The invoke element containing a series of attributes that

provide all of the information necessary for the orchestration engine to locate

and instantiate the Invoice Service.

<invoke name="ValidateInvoiceHours"

 partnerLink="Invoice"

 operation="GetBilledHours"

 inputVariable="InvoiceHoursRequest"

 outputVariable="InvoiceHoursResponse"

 portType="inv:InvoiceInterface"/>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

➢ Example 16.25. The switch construct hosting a case element that uses

the getVariableData function within its condition attribute to compare hours

billed against hours recorded.

<switch name="BilledHoursMatch">

 <case condition=

 "getVariableData('InvoiceHoursResponse',

 'ResponseParameter') !=

 getVariableData('input','payload',

 '/tns:TimesheetType/Hours/...')">

 case>

switch>

➢ If the condition (billed hours is not equal to invoiced hours) is not met, then the

hours recorded on the submitted timesheet document are considered valid, and

the process moves to the next step.

➢ If the condition is met, a fault is thrown using the throw element. This

circumstance sends the overall business activity to the faultHandlers construct,

which resides outside of the main process flow. This is the scenario portrayed in

the second of the two activity diagrams assembled by TLS in Step 1 and is

explained later in this example.

➢ What TLS has just defined is a pattern consisting of the following steps:

1. Use the assign, copy, from, and to elements to retrieve data from the

ClientSubmission variable and assign it to a variable containing an outbound

message.

2. Use the invoke element to interact with a partner service by sending it the

outbound message and receiving its response message.

3. Use the switch and case elements to retrieve and validate a value from the

response message.

4. Use the throw element to trigger a fault, if validation fails.

➢ Example 16.26. The faultHandlers construct used in this process.

<faultHandlers>

 ...

faultHandlers>

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

➢ Although individual catch elements could be used to trap specific faults, TLS

simply employs a catchAll construct, as all three thrown faults require the same

exception handling logic.

➢ The tasks performed by the fault handler routine are:

1. Update employee profile history.

2. Send notification to manager.

3. Send notification to employee.

➢ To implement these three tasks, the same familiar assign and invoke elements

are used. Figure 16.13 shows an overview of the fault handling process logic.

Figure 16.13. A visual representation of the process logic within

the faultHandlers construct.

➢ Next, the second assign construct retrieves the EmployeeID value from the

same ClientSubmission variable, which the Notification Service ends up using

to send a message to the employee.

➢ The very last element in the construct, terminate, halts all further processing.

Step 5: Align interaction scenarios and refine process (optional)

➢ TLS analysts and architects revise their original activity diagrams so that they

accurately reflect the manner in which process logic was modeled using WS-

BPEL. However, in reviewing the interaction scenarios and their current process

model, they recognize a key refinement that could significantly optimize the

process definition they just created.

➢ The three primary tasks performed by this process:

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

1. Validate recorded timesheet hours with hours billed on invoice.

2. Confirm authorization of timesheet.

3. Ensure that hours submitted are equal to or less than the weekly hours limit.

➢ As shown in Figure 16.14, the process has been designed so that these three

tasks execute sequentially (one begins only after the former ends). Although this

approach is useful when dependencies between tasks exist, it is determined

that there are no such dependencies between these three tasks.

Figure 16.14. Sequential, synchronous execution of process activities.

➢ Therefore, they all can be executed at the same time, the only condition being

that the process cannot continue beyond these tasks until all have completed.

This establishes a parallel processing model.

➢ By utilizing the WS-BPEL flow construct, TLS can model the three activities to

execute concurrently (Figure 16.15), resulting in significant performance gains.

It is further determined that the same form of optimization can be applied to the

process logic within the fault handling routine, as neither of those activities

have inter-dependencies either.

IT8074 - Service Oriented Architecture Arunai Engineering College

13 Marks Department Of CSE

Figure 16.15. Concurrent execution of process activities using the flow construct.

➢ Finally, while reviewing the structure of the fault handling routine, a further

refinement is suggested. Because the last two activities invoke the same

Notification Service, they can be collapsed into a while construct that loops

twice through the invoke element.

