
IT8076 SOFTWARE TESTING L T P C

 3 0 0 3

OBJECTIVES:

 To learn the criteria for test cases.

 To learn the design of test cases.

 To understand test management and test automation techniques.

To apply test metrics and measurements.

 UNIT I INTRODUCTION 9

Testing as an Engineering Activity – Testing as a Process – Testing Maturity Model- Testing

axioms – Basic definitions – Software Testing Principles – The Tester‘s Role in a Software

Development Organization – Origins of Defects – Cost of defects – Defect Classes – The Defect

Repository and Test Design –Defect Examples- Developer/Tester Support of Developing a

Defect Repository.

UNIT II TEST CASE DESIGN STRATEGIES 9

Test case Design Strategies – Using Black Box Approach to Test Case Design – Boundary Value

Analysis – Equivalence Class Partitioning – State based testing – Cause-effect graphing –
Compatibility testing – user documentation testing – domain testing - Random Testing –
Requirements based testing – Using White Box Approach to Test design – Test Adequacy

Criteria – static testing vs. structural testing – code functional testing – Coverage and Control

Flow Graphs – Covering Code Logic – Paths – code complexity testing – Additional White box

testing approaches- Evaluating Test Adequacy Criteria.

UNIT III LEVELS OF TESTING 9

The need for Levels of Testing – Unit Test – Unit Test Planning – Designing the Unit Tests –
The Test Harness – Running the Unit tests and Recording results – Integration tests – Designing

Integration Tests – Integration Test Planning – Scenario testing – Defect bash elimination

System Testing – Acceptance testing – Performance testing – Regression Testing –
Internationalization testing – Ad-hoc testing – Alpha, Beta Tests – Testing OO systems –
Usability and Accessibility testing – Configuration testing –Compatibility testing – Testing the

documentation – Website testing.

UNIT IV TEST MANAGEMENT 9

People and organizational issues in testing – Organization structures for testing teams – testing

services – Test Planning – Test Plan Components – Test Plan Attachments – Locating Test Items

– test management – test process – Reporting Test Results – Introducing the test specialist –
Skills needed by a test specialist – Building a Testing Group- The Structure of Testing Group-

.The Technical Training Program.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

UNIT V TEST AUTOMATION 9

Software test automation – skills needed for automation – scope of automation – design and

architecture for automation – requirements for a test tool – challenges in automation – Test

metrics and measurements – project, progress and productivity metrics

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students will be able to:

Design test cases suitable for a software development for different domains.

 Identify suitable tests to be carried out.

 Prepare test planning based on the document.

Document test plans and test cases designed

Use automatic testing tools

Develop and validate a test plan

TEXT BOOKS:

1. Srinivasan Desikan and Gopalaswamy Ramesh, ―Software Testing – Principles and

Practices‖, Pearson Education, 2006.

2. Ron Patton, ―Software Testing‖, Second Edition, Sams Publishing, Pearson Education, 2007.
AU Library.com

REFERENCES:

1. Ilene Burnstein, ―Practical Software Testing‖, Springer International Edition, 2003.

2. Edward Kit,‖ Software Testing in the Real World – Improving the Process‖, Pearson
Education, 1995.

3. Boris Beizer,‖ Software Testing Techniques‖ – 2nd Edition, Van Nostrand Reinhold, New
York, 1990.

4. Aditya P. Mathur, ―Foundations of Software Testing _ Fundamental Algorithms and
Techniques‖, Dorling Kindersley (India) Pvt. Ltd., Pearson Education, 2008.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1

ARUNAI ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
IT8076 -SOFTWARE TESTING (2017 Regulation)

UNIT I INTRODUCTION

Testing as an Engineering Activity – Testing as a Process – Testing Maturity

Model- Testing axioms –Basic definitions – Software Testing Principles – The

Tester‘s Role in a Software Development Organization – Origins of Defects – Cost
of defects – Defect Classes – The Defect Repository and Test Design –Defect

Examples- Developer/Tester Support of Developing a Defect Repository.

Software Testing : Introduction

IEEE Definition :

A process of analyzing a s/w item to detect the difference between existing and

required conditions (error /defect / bugs) and to evaluate the features of the s/w item

.

Definition 1:

Process of evaluating a system or its components with the intent to find whether it

satisfies the specified requirements or not.

Definition 2:

an investigation conducted to provide stakeholders with information about the quality

of the product or service.

Who is involved in Testing ?

Test Specialist

S/w Developer

Project leader Manager

End User

When to start the testing process?

Every Phase of SDLC

When to end the testing process?

When Testing Deadline comes

Completion of test case execution

Bug rate falls below certain level & no high priority bugs are identified

Management decision

Example : S/W Testing Automation Tools

Telerik Test Studio , Selenium , TestComplete , HP Quick Test Professional , Silk Test,

Win Runner ,Load Runner

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2

Testing as an Engineering Activity:-

Poor quality of software that can cause loss of life or property is no longer

acceptable to society .Failures can result in catastrophic losses. Conditions demand

software development staffs with interest and training in the areas of software products

and process quality. Highly qualified staffs ensures that software products are built on

time, within budget and are of the highest quality with respect to attributes such as

reliability, correctness, usability and ability to meet all user requirements.

The demand for high quality software’s and the need for well educated

software professionals there is a movement to change the way software is developed

and maintained.

The profession of software engineering is slowly emerging as a formal

engineering discipline .The movement towards this new profession is the focus of the

entire November /December 1999 issues of IEEE Software.

The education and training of engineers in each engineering discipline is

based on the teaching of related scientific principles, engineering processes, standards,

methods, tools, measurements. The goal and task force team is to define a body of

knowledge that covers the software engineering discipline, to discuss the nature of

education for this new profession and to define a code of ethics for the software

engineers

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3

Using Engineering Approach to software development implies that:-

The development process is well understood

project are planned

life cycle models are defined and adhered to

standards are in place for products and process

measurements are employed to evaluate products and process quality

Components are reused.

Validation and verification processes play a key role in quality determination

Engineers have proper education, training and certification

A test specialist is one whose education is based on the principles , practices

and processes that constitute the software engineering discipline, and whose specific

focus is on one area of that discipline – software testing . A test specialist who is

trained as an engineer should have knowledge of test related principles, processes,

measurements, standards, plans, tools and methods, and should learn how to apply

them to the testing tasks to be performed.

Role of Process in Software Quality:-

Process, in the software engineering domain , is the set of methods,

practices, standards , documents , activities , policies , and procedures that software

engineers use to develop and maintain a software system and its associated artifacts ,

such as project and test plans, design documents code and manuals

The software development process like most engineering artifacts must be

engineered . Software process improvement models that have had wide acceptance in

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4

industry are high level models, in the sense that they focus on the software process as

a whole and do not offer adequate support to evaluate and import specific software

development sub processes such as design and testing.

Testing as a Process:-

Process has been described as a series of phases, procedures, and steps that

result in the production of a software product. Embedded within this are several

processes.

Validation is the process of evaluating a software system or components during or

at the end of, the development cycle in order to determine whether it satisfies specified

requirements

Validation is usually associated with traditional execution based testing that is

exercising the code with test cases

Verification is the process of evaluating a software system or component to

determine whether the products of a given development phase satisfy the conditions

imposed at the start of that phase. Verification is usually associated with activities

such as inspections and reviews of software deliverables.

Difference Between Verification & Validation

Verification Validation

1. Verification is a static practice of

verifying documents, design, code and

program.

1. Validation is a dynamic mechanism

of validating and testing the actual

product.

2. It does not involve executing the code. 2. It always involves executing the code.

3. It is human based checking of

documents and files.

3. It is computer based execution of

program.

4. Verification uses methods like

inspections, reviews, walkthroughs, and

Desk-checking etc.

4. Validation uses methods like black

box (functional) testing, gray box

testing, and white box (structural)
testing etc.

5. Verification is to check whether the

software conforms to specifications.

5. Validation is to check whether

software meets the customer

expectations and requirements.

6. It can catch errors that validation

cannot catch. It is low level exercise.

6. It can catch errors that verification

cannot catch. It is High Level Exercise.

7. Target is requirements specification,

application and software architecture,

high level, complete design, and database

design etc.

7. Target is actual product-a unit, a

module, a bent of integrated modules,

and effective final product.

8. Verification is done by QA team to

ensure that the software is as per the

specifications in the SRS document.

8. Validation is carried out with the

involvement of testing team.

9. It generally comes first-done before

validation.

9. It generally follows after verification.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5

Testing is generally described as a process as a group of procedures carried out
to evaluate some aspects of a piece of software.

Testing can be described as a process used for revealing defects in software, and
establishing that the software has attained a specified degree of quality with respect to

selected attributes.

Testing and Debugging are two different activities.

Debugging process begins after localization has been carried out and the tester

has noted that the software is nit behaving as specified

Debugging or Fault Localization is the process of

(1) Locating the fault or defect

(2) Repairing the code , and

(3) Retesting the code

Testing as a process has economic, technical and managerial aspects.

Economic aspects are related to the reality that resources and time are available to

the testing group on a limited basis

Technical Aspect of testing are relate to the techniques, methods, measurements,

and tools used to insure that the software under test is a defect free and reliable as

possible for the conditions and constraints under which it must operate

Managerial Aspect – Minimally that means that an organizational policy for testing

must be defined and documented. Testing must be planned, testers should be trained,

the process should have associated quantifiable goals that can be measured and

monitored.

Testing Maturity Model - Introduction

To know about Testing , one must find answer for following queries

Where do we begin to learn more about testing ?

What areas of testing are important?

Which topics need to be addressed first?

TMM gives answer for all the questions listed.

Testing Maturity Model - Definition
TMM is a learning tools ,or framework to learn about testing. It introduces both the

technical and managerial aspects of testing. It evolve testing process both in the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6

personal and organizational levels. It follows staged architecture for process

improvement models.

It has five levels that prescribe a maturity hierarchy and an evolutionary path to test

process improvement. Each level has (Except Level 1)

A set of maturity goals - The maturity goals identify testing improvement

goals that must be addressed in order to achieve maturity at that level.

Supporting maturity subgoals - They define the scope, boundaries and

needed accomplishments for a particular level.

Activities, tasks and responsibilities (ATR) - address implementation and

organizational adaptation issues at each TMM level. Supporting activities and

tasks are identified, and responsibilities are assigned to appropriate groups.

Internal Structure of TMM maturity model

Testing Maturity Model - 5-level structure

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7

Level 1—Initial: (No maturity goals)

testing is a chaotic process; it is ill-defined
Not distinguished from debugging.
The objective of testing is to show the software works

Software products are often released without quality assurance.
lack of resources, tools and properly trained staff.

Level 2—Phase Definition:

Goal 1: Develop testing and debugging goals;

Goal 2: Initiate a testing planning process;

Goal 3: Institutionalize basic testing techniques and methods
testing is separated from debugging and is defined as a phase that follows coding.

It is a planned activity; however, test planning at level 2 may occur after coding for
reasons related to the immaturity of the testing process.

use of black box and white box testing strategies, and a validation cross-reference

matrix

Testing is multileveled - unit, integration, system, and acceptance levels.
Level 3—Integration

Goal 1: Establish a software test organization;
Goal 2: Establish a technical training program;
Goal 3: Integrate testing into the software life cycle;

Goal 4: Control and monitor testing

testing is integrated into the entire software life cycle
There is a test organization, and testing is recognized as a professional activity.

There is a technical training organization with a testing focus

Testing is monitored to ensure it is going according to plan and actions can be
taken if deviations occur

Level 4—Management and Measurement
Goal 1: Establish an organization wide review program;

Goal 2: Establish a test measurement program;

Goal 3: Software quality evaluation
process that is measured and quantified. Reviews at all phases of the development

process are now recognized as testing/quality control activities.

Software products are tested for quality attributes such as reliability, usability,
and maintainability.

Test cases from all projects are collected and recorded in a test case database for

the purpose of test case reuse and regression testing. Defects are logged and given

a severity level.

Some of the deficiencies occurring in the test process are due to the lack of a

defect prevention philosophy. An extension of the V-model as shown in Figure can

be used to support the implementation of this goal

Level 5—Optimization/Defect Prevention/Quality Control

Goal 1: Defect prevention;
Goal 2: Quality control;
Goal 3: Test process optimization
the testing process is now said to be defined and managed; its cost and

effectiveness can be monitored. Defect prevention and quality control are

practiced. Automated tools totally support the running and rerunning of test cases

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

8

Extension of the V-model

Testing Axioms

Axioms: “rules of the road” or the “facts of life” for software testing and software

development.

1. It’s Impossible to Test a Program Completely

due to four key reasons:

• The number of possible inputs is very large.

1. It’s Impossible to Test a Program Completely

2. Software Testing Is a Risk-Based Exercise

3. Testing Can’t Show That Bugs Don’t Exist

4. The More Bugs You Find, the More Bugs There Are

5. The Pesticide Paradox

6. Not All the Bugs You Find Will Be Fixed

7. When a Bug’s a Bug Is Difficult to Say

8. Product Specifications Are Never Final

9. Software Testers Aren’t the Most Popular Members of a Project Team

10. Software Testing Is a Disciplined Technical Profession

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

9

• The number of possible outputs is very large.

• The number of paths through the software is very large.
• The software specification is subjective

Ex: Microsoft Windows Calculator

Assume that you are assigned to test the Windows Calculator. You decide to start
with addition. You try 1+0=. You get an answer of 1. That’s correct. Then you try

1+1=. You get 2. How far do you go? The calculator accepts a 32-digit number, so

you must try all the possibilities up to

1+99999999999999999999999999999999=

Once you complete that series, you can move on to 2+0=, 2+1=, 2+2=, and so on.
Eventually you’ll get to

99999999999999999999999999999999+99999999999999999999999999999999=
Next you should try all the decimal values: 1.0+0.1, 1.0+0.2, and so on.

it’s impossible to completely test a program, even software as simple as a

calculator. If you decide to eliminate any of the test conditions because you feel

they’re redundant or unnecessary, or just to save time, you’ve decided not to test
the program completely.

2. Software Testing Is a Risk-Based Exercise

One key concept that software testers need to learn is how to reduce the huge

domain of possible tests into a manageable set, and how to make wise risk-

based decisions on what’s important to test and what’s not.

Above graph shows the relationship between the amount of testing performed

and the number of bugs found. If you attempt to test everything, the costs go
up dramatically and the number of missed bugs declines to the point that it’s

no longer cost effective to continue.

If you cut the testing short or make poor decisions of what to test, the costs

are low but you’ll miss a lot of bugs. The goal is to hit that optimal amount of

testing so that you don’t test too much or too little.

3. Testing Can’t Show That Bugs Don’t Exist

You’re an exterminator charged with examining a house for bugs. You inspect the

house and find evidence of bugs

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

10

House1 :

Findings :—maybe live bugs, dead bugs, or nests.
Conclusion :- You can safely say that the house has bugs.

House2 :
Findings :- no evidence of bugs. e no signs of an infestation.

Maybe you find a few dead bugs or old nests but you see nothing that tells you that

live bugs exist.

Conclusion : your search you didn’t find any live bugs. Unless you completely

dismantled the house down to the foundation, you can’t be sure that you didn’t
simply just miss them.

Software testing works exactly as the exterminator does. It can show that bugs exist, but

it can’t show that bugs don’t exist. You can perform your tests, find and report bugs, but

at no point can you guarantee that there are no longer any bugs to find.

4. The More Bugs You Find, the More Bugs There Are

Reasons

Programmers have bad days. Like all of us, programmers can have off days.
Code written one day may be perfect; code written another may be sloppy.
Programmers often make the same mistake. Everyone has habits. A

programmer who is prone to a certain error will often repeat it.

Some bugs are really just the tip of the iceberg. Very often the software’s design
or architecture has a fundamental problem. A tester will find several bugs that

at first may seem unrelated but eventually are discovered to have one primary

serious cause.

5. The Pesticide Paradox

The test process repeats each time around the loop. With each iteration, the software

testers receive the software for testing and run their tests. Eventually, after several
passes, all the bugs that those tests would find are exposed. Continuing to run them

won’t reveal anything new.

To overcome the pesticide paradox, software testers must continually write new and

different tests to exercise different parts of the program and find more bugs.

6. Not All the Bugs You Find Will Be Fixed

reasons why you might choose not to fix a bug:

• There’s not enough time. In every project there are always too many software features,

too few people to code and test them, and not enough room left in the schedule to

finish. If you’re working on a tax preparation program, April 15 isn’t going to move—
you must have your software ready in time.

• It’s really not a bug. Maybe you’ve heard the phrase, “It’s not a bug, it’s a feature!” It’s

not uncommon for misunderstandings, test errors, or spec changes to result in would-

be bugs being dismissed as features.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

11

• It’s too risky to fix. You might make a bug fix that causes other bugs to

appear. Under the pressure to release a product under a tight schedule, it might be too

risky to change the software. It may be better to leave in the known bug to avoid the
risk of creating new, unknown ones.

• It’s just not worth it. This may sound harsh, but it’s reality. Bugs that would occur
infrequently or bugs that appear in little-used features may be dismissed.

7. When a Bug’s a Bug Is Difficult to Say

rules to define a bug

1. The software doesn’t do something that the product specification says it should do.
2. The software does something that the product specification says it shouldn’t do.
3. The software does something that the product specification doesn’t mention.

4. The software doesn’t do something that the product specification doesn’t mention
but should.
5. The software is difficult to understand, hard to use, slow, or—in the software tester’s

eyes—will be viewed by the end user as just plain not right.

8. Product Specifications Are Never Final

You’re halfway through the planned two year development cycle, and your main
competitor releases a product very similar to yours but with several desirable features

that your product doesn’t have.

Do you continue with your spec as is and release an inferior product in another
year?

Or, does your team regroup, rethink the product’s features, rewrite the product
spec, and work on a revised product?

9. Software Testers Aren’t the Most Popular Members of a Project Team

The goal of a software tester is to find bugs, find them as early as possible, and make

sure they get fixed.

Find bugs early.

Temper your enthusiasm

Don’t always report bad news

10. Software Testing Is a Disciplined Technical Profession

If software testers were used, they were frequently untrained and brought into

the project late to do some “ad-hoc banging on the code to see what they might find.”

Times have changed.

The software industry has progressed to the point where professional software

testers are mandatory. It’s now too costly to build bad software.

Basic Definitions:-

1. Error :-
A Error is a mistake, misconception, or misunderstanding on the part of a

software developers. Developers we include software Engineers, programming analysts

and testers. It is the terminology of the developer. For Eg, a developer may understand

a design notation, or a programmer might type a variable name incorrectly.

2. Faults / Defect :-

A fault(Defects) is introduced into the software as the result of an error. It is an

anomaly in the software that may cause it to behave incorrectly , and not according to

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

12

its specification , Faults or defects are sometimes called as “bugs”. It is the terminology

of the tester.

3. Failures

A failure is the inability of a software or component to perform its required

functions within specified performance requirements. It is the terminology of the

customer. Error leads to Defect , Defect leads to Failure.

A Fault in the code does not always produce a failure. In fact, faulty software may

operate over a long period of time without exhibiting any in correct behavior. When the

proper conditions occur the fault will manifest itself as a failure.

1.. The input to the software must cause the faulty statements to be executed

2. The faulty statements must produce different results than the correct statements.

This event produces an incorrect internal state for the software.

3. The incorrect internal state must propagate to the output, so that the result of the

fault is observable

4. Test Cases:-

Detecting defects in a piece of software is for the tester to select a set of input data

and then execute the software with the input data under a particular set of conditions.

To check the software is success or failed the tester need to know the output of the

software, input of the software and soon

A test case in a practical sense is a test related item which contains the following

information:-

A set of test inputs :- These are data items received from an external source by the

code under test. The external source can be hardware , software or human.

Execution Condition:- These are conditions required for running the test, for example

, a certain state of database, or a configuration of hardware devices

Expected Outputs:- These are the specified results to be produced by the code under

test

Ex: biggest of 3 Numbers

Test

Case Id

Test I/p Expected

O/P

Actual

O/p

Result

:Pass/Fail

TC1 A=10 B=20 C=50 C IS BIG

TC2 A=110 B=20 C=50 A IS BIG

TC3 A=10 B=120 C=50 B IS BIG

5. Test :-

A test is a group of related test cases, or a group of related test cases and test

procedures(steps needed to carry out a test)

A group of related tests is sometimes referred to as a test set. A group of related

tests that are associated with the database, and are usually run together is sometimes

referred to as test suite

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

13

6. Test Oracle:-

A test oracle is a document, or piece of software that allows testers to

determine whether a test has been passed or failed.

A program, or a document that produces or specifies the expected outcome

of a test, can serve as an oracle. Example include a specification, design documents,

set of requirements.

Other sources are regression test suites. The suite usually contains components with

correct results for previous versions of software.

7. Test Bed:-

A test bed is an environment that contains all the hardware and software

needed to test a software components or a software system.

This include testing environment, eg :- simulators, emulators memory checkers,

hardware probes, software tools etc

8. Software Quality :-

Two concise definition for quality are found in the IEEE standards Glossary

of Software Engg Terminology

a. Quality relates to the degree to which a system, system component, or process

meets specified requirements

b. Quality relates to the degree to which a system, system components , or process

meets customer or user needs, or expectations

Software artifacts we can measure the degree to which they posses a given quality

attribute with quality metrics.

9. Metrics:-

A metrics is a quantitative measure of the degree to which a system, system

component or process possesses a given attribute. There are product and process

metrics. A very commonly used example software products metrics is software size,

usually measured in Lines Of Code(LOC)

10. Quality Metrics:-

Is a quantitative measurement of the degree to which an Item possesses a

given quality attribute. Quality attributes with brief explanation are the following :-

i. Correctness:- the degree to which the system performs its intended function

ii. Reliability :- the degree to which the software is expected to perform its required

function under stated conditions for a stated period of time

iii. Usability :- related to the degree of effort needed to learn , operate, prepare input,

and interpret output of the software.

iv. Integrity:- Relates to the system’s ability to withstand both intentional and

accidental attacks

v. Portability:- Relates to the ability of the software to be transferred from one

environment to another.

vi. Maintainability:- the effort needed to make change in the software

vii. Interoperability: - the effort needed to link or couple one system to another.

Testability attribute is of more interest to developers/testers than to clients. It can

be expressed in the following two ways:-

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

14

a) The amount of effort needed to test the software to ensure it performs according to

specified requirements (relates the number of test cases needed)

b) The ability of the software to reveal defects under testing conditions (some s/w is

designed in such a way that defects are well hidden during ordinary testing conditions)

11. Software Quality Assurance Group:-

SQA group in an organization has ties to quality issues. The Software

Quality Assurance group SQA is a team of people with necessary training and skills to

ensure that all necessary actions are taken during the development process so that the

resulting software conforms to established technical requirements

12. Reviews:-
Dynamic execution based testing techniques that can be used to detect defects

and evaluate software quality, review are types of static testing techniques that can be

used to evaluate the quality of the software artifacts such as requirement documents

, a test plan, a design document ,a code component.
A review is a group meeting whose purpose is to evaluate a software

artifact or a set of software artifacts.

Software Testing Principles:-

Principle: Fundamental to the objective of testing, namely , to provide quality

products to customers. The Fundamental principles of testing are as follows

1. The Goal of testing is to find defects before customers find them out.

Ex: The Incomplete Car

2. Exhaustive testing is not possible; program testing can only show the

presence of defects , never their absence. Ex: Dijkstra’s Doctrine

3. Testing applies all through the software life cycle and is not end of cycle

activity. Ex: Test in time:-

4. Understand the reason behind the test. Ex: The Cat and the Saint

5. Test the tests first. Ex: Patient & Doctor

6. Test Develop immunity and have to be revised constantly.

Ex: The Pesticide Paradox

7. Defect occurs in convoys or clusters and testing should focus on these

convoys Ex: The Convoy and the Rags

8. Testing encompasses defect prevention. Ex: The Policeman on the Bridge

9. Testing is a fine balance of defect prevention and a defect detection.

Ex: The Ends of the pendulum

10. Intelligent and well planned automation is key to realizing the benefits

of testing. Ex: Automation Syndrome

11. Testing requires talented, committed people who believe in themselves

and work in teams Ex: Men in Black

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1. The Incomplete Car:-

Above conversation concludes that the car is not tested properly , so customer finding

the fault. “Testing Should Focus on Finding Defects before Customers Find Them”

2. Dijkstra’s Doctrine:-

Consider a program (Dijkstra’s Doctrine) that is supposed to accept a six character

code and ensure that

the first character is numeric and rests of the characters are alphanumeric. How many

combinations of input data should we test.

The first character can be filled up in one of 10 ways (the digits (0-9) . 10

The Second through sixth characters can each be filled up in 62 ways(digits 0-9 (10) ,

lower case letters a-z (26) and capital letters A-Z (26)) (10+26+26) 5 625

This means that we have a total of 10 * (625) or 9,16,328,320 valid combinations of

values to test.

Assuming that each combinations takes 10 seconds to test, testing all these valid

combinations will take approximately 2905 years.

“Testing can only prove the presence of defects, never their absence”

3. A Test in time:-

Defect in a product can come from any phase. There could have been errors while

gathering initial requirements .If a wrong or incomplete requirement forms the basis for

the design and development of a product, then that functionality can never be realized

correctly in the eventual product. Similarly , when a product design – which forms the

basis for the product development - is faulty, then the code that realizes the faulty

design will also not meet the requirements. An Essential Conditions should be that

15

Car Salesman:- “ the car is complete –
you just need to paint it “

Sales Representative/ Engineer:- “This Car has the best possible transmission and brake,
and accelerate from 0 to 80mph in under 20 seconds!”.
Customer: “Well that may be true, but unfortunately it accelerates (even faster) when I
press the break pedal”

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

every phase of the software development (requirements, design, coding)should catch

and correct defects at that phase, without letting the defects seep to the next stage.

Organization incurs extra expenses for

Performing a wrong design based on the wrong requirements;

Transforming the wrong design into wrong code during the coding phase

Testing to make sure the product complies with the (wrong requirements

Releasing the product with the wrong functionality

How defects from early phases add to the costs.

Compounding effect of defects on software costs.

The cost of building a product and the number of defects in it increases steeply with

the number of defects allowed to seep into the layer phases.

4. The Cat and the Saint

16

A saint sat meditating. A cat that was prowling around was disturbing his

concentration. Hence he asked his disciples to tie the cat to a pillar while he

meditated . This sequence of events became a daily routine. The tradition

continued over the years with the saint’s descendents and the cat’s

descendents. One day, there were no cats on the hermitage. The disciples got
panicky and searched for a cat, saying , “ We need a car. Only when we get a

cat, can we tie it to a pillar and only after that saint can start meditation !”

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

17

“Why one tests” it as important as “ What to test “ and “How to test “.

From the story , If we carry out tests without understanding why we are running them,

we will end up in running inappropriate test that do not address what product should

do.!

5. Test the Tests First :-

An audiologist was testing a patient , telling ,“I want to test the range within which you

can hear . I will ask you from various distances to tell me your name, and you should

tell me your name. Please turn back and answer.” The patient understood what needs

to be done

Doctor(from 30 feet): What is your name ?

……………..

Doctor (from 20 feet): What is your name ?

…………………………

Doctor (From 10 feet) What is your name ?

Patient : For the third time , let me repeat my name is Pushpa!.

From the above example it is important to make sure that the test themselves are not

faulty before we start using them. One way of making sure that tests are tested is to

document the inputs and expected outputs for a given test and have this description

validated by an expert or get it counter checked by some means outside the tests

themselves. “ Test the test first--- a defective test is more dangerous than defective

products!”

 Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

18

6. The Pesticide Paradox:-

Defects are like pests, testing is like designing the right pesticides to catch and

kill the pests, and the test cases that are written are like pesticides .

Tests are like pesticides- you have to constantly revise their composition to

tackle new pests(Defects) .

There are two possible ways to explain how products develop this “immunity”

against test cases. The initial tests go a certain distance into the code and are stopped

from proceeding, further because of the defects they encounter. Once these defects are

fixed, the tests proceed further, encounter newer parts of the code that have been dealt

with before, and uncover new defects.

A next way is that when the tester starts exercising a product, initial defects

prevents them from using the full external functionality. As tests are run, defects are

uncovered, and problems are fixed, users get to explore new functionality that has not

been used before and this cause newer defect to exposed.

7. The Convoy and the Rags

Testing can only find a part of defects that exist in a cluster; fixing a defect may

introduce another defect to the cluster.

All of us experience traffic congestions. Typically, during
these congestions, we will see a convoy effect. There will be
stretches of roads with very heavy congestions, with vehicles
looking like they are going in a convoy. This will be followed
by a stretch of smooth sailing (rather, driving) until we
encounter the next convoy.

Pest gets used to new pesticides, develop immunity,
and render the new pesticides ineffective. In
subsequent years, the old pesticides have to be used to
kill the pests which have not yet developed this
immunity and new improved formulae that can combat
these tougher variants of pests have to be introduced.
This combination of new and old pesticides could
sometimes even hinder the effectiveness of the
(working)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

19

A fix for a defect is made around certain lines of code. This fix can produce side-effects

around the same piece of code. A fix for one defect generally introduces some instability

and necessitates another fix. All these cause the convoy of defects in certain parts of

the product. whenever a product undergoes any change, these error-prone areas need

to be tested as they may get affected.

The number of defects yet to be found increases with the number of defects uncovered.

8. The Policeman on the Bridge:-

Like the second police officer in the above story, they know people fall and they know

why people fall. Rather than simply catch people who fall (and thereby be exposed to

the risk of a missed catch), they should also look at the root cause for falling and advise

preventive action. It may not be possible for testers themselves to carry out preventive

action. “Prevention is better than cure—you may be able to expand your horizon

much farther.” Defect prevention is a part of a tester’s job.

9. The Ends of the Pendulum :-

The eventual goal of any software organization is to ensure that the customers get

products that are reasonably free of defects. There are two approaches to achieving this

goal.

1) focus on defect detection and correction

2) focus on defect prevention.

There was a bridge in a city. Whenever people walked over it, they

would fall down. To take care of this problem, the city appointed a

strong policeman to stand under the bridge to save people who fall

down. While this helped the problem to some extent, people continued

to fall down the bridge when the policeman was not around, or when

he could not catch them properly.

When the policeman retired, a new policeman was appointed to the

job. During the first few days, instead of standing at the bottom of the

bridge and catching the falling people, the new policeman worked

with an engineer and fixed the hole on the bridge, which had not been

noticed by the earlier policeman. People then stopped falling down the

bridge and the new policeman did not have anyone to catch.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

20

These are also called quality control focus and quality assurance focus. Testing is

traditionally considered as a quality control activity, with an emphasis on defect

detection and correction. Quality assurance is normally associated with process models

such as CMM, CMMI, ISO 9001, and so on. Organizations view these two functions as

mutually exclusive, “either-or” choices.

Quality control and quality assurance as two methods to achieve quality.

10. Automation Syndrome:-

A farmer had to use water from a well which was located more than a mile away.

Crop

Cycle

Farmer’s Approach Outcome

1st 100 people to draw water from the well

pot of water a day

crops failed

 Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

21

2nd thought about automation to increase productivity and to avoid

failures

bought 50 motorcycles, laid off 50 of his workers

asked each rider to get two pots of water.

process of learning to balance the motorcycles, the number of pots

of water they could fetch fell.

crops failed

again.

3rd all workers were laid off except one

bought a truck to fetch water

realized the need for training and got his worker to learn driving.

Road was narrow, truck did not help in bringing in the water

crops failed

again.

After these experiences the farmer said, “My life was better without automation!”

The moral of the above story as it applies to testing is that automation requires careful

planning, evaluation, and training. Automation may not produce immediate returns.

Some of the points that should be kept in mind while harping on automation are as

follows.

Know first why you want to automate and what you want to automate, before

recommending automation for automation’s sake.

Evaluate multiple tools before choosing one as being most appropriate for your need.

Try to choose tools to match your needs, rather than changing your needs to match

the tool’s capabilities.

Train people first before expecting them to be productive.

Do not expect overnight returns from automation.

11. Men in Black:-

The testing team was seeded with motivated people who were “free from cognitive

conflict that hampers developers when testing their own programs.” The team was

given an identity (by a black dress, amidst the traditionally dressed remainder of the

organization) and tremendous importance. All this increased their pride in work and

made their performance grow by leaps and bounds, “almost like magic.” Long after the

individual founding members left and were replaced by new people, the “Black Team”

continued its existence and reputation. The biggest bottleneck in taking up testing as a

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

22

profession is the lack of self-belief. This lack of self-belief and apparent distrust of the

existence of career options in testing makes people view the profession as a launching

pad to do other software functions. As a result, testers do not necessarily seek a career

path in testing and develop skepticism towards the profession.

The Tester’s Role in a Software Development Organization:-

Testing is sometimes erroneously viewed as a destructive activity.

The testers job is to reveal defects, fins weak points, inconsistent behavior, and

circumstances where the software does not work as expected.

Given the nature of the testers task , it is difficult for developers to effectively test their

own code

Effective Tester: To be most effective as a tester requires extensive programming

experience in order to understand how code is constructed, and where and what kind

of, defects are likely to occur.

Goal as a tester is to work with the developers to produce high quality software that

meets customer’s requirements

Projects should have an appropriate developer /tester ratio. The ratio will vary

depending on available resources, type of projects and TMM level (Testing Maturity

Model)

Example: - An embedded real time system needs to have a lower developer /tester ratio.

(2/1) than a simple data base application (4/1) .At higher TMM levels where there is a

well defined testing group, the developer/tester ratio would tend to be on the lower

end(2/1 versus 4/1) because of the availability of tester resources.

Cooperation with the code developers, tester also need to work along side with

requirement engineers to ensure that requirement are testable, ant to plan for system

and acceptance test(client are also involved in the latter part).

Testers also need to work with designers to plan for integration and unit test.

Test managers will need to cooperate with project managers in order to develop

reasonable test plans, and with upper management to provide input for the

development and maintenance of organizational testing standards , policies and goals.

Testers also need to corporate software quality assurance staff and software engineering

process group members.

In view of these requirements for multiple working relationships, communication and

extreme working skills are necessary for a successful career as a tester.

If you are employed by an organization that is assessed at TMM levels 1 or 2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

23

you may find that there is no independent software test function in the organization,

so the testers in this case may be a part of the development group, but with special

assignment to testing, or they may be apart of the software quality assurance group.

TMM level 3 and higher of the TMM

the testers may not necessarily belong to a independent organizational entity, testers

should always have managerial independence from developers in the TMM level 3.

Testers are specialist their main function is

to plan

execute,

record

analyze tests. They do not debug software.

When defects are detected using testing, software should be returned to the developers

who locate the defect and repair the code

Testers need the support of management. Developers , analysts and marketing staff

need to realize that tester add value to a software products in that they detect defects

and evaluate quality as early as possible in the software life cycle. Tester need to have a

positive view of their work. Management must support them in their effort and

recognize their contribution to the organization.

Origins of Defects:-

Defects have harmful effects on software users, and software engineers work very

hard to produce high quality software with a low numbers of defects.

Reason for Defects are shown below

1. Education :- The software engineer did not have the proper educational

background to prepare the software artifacts. They did not understand how to do

something. For example, a software engineer who did not understand the precedence

order of operators in a particular programming language could inject a defect in an

equation that uses the operators for calculation.

2. Communication:- The software engineer was not informed abut something by a

colleague. For example , if engineer 1 and engineer2 working on interfacing modules ,

and engineer 1 doesn’t inform engineer2 that no error checking code will appear in the

interfacing module he is developing , engineer 2 might have an incorrect assumption

relating to the presence /absence of an error check and defects will result.

3. Oversight :- The software engineer omitted to do something .For example a

software engineer might omit an initialization statement

4. Transcription:- The software engineer knows what to do, but makes a mistake

in doing it. A simple example is a variable name being misspelled when entering the

code.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

24

5. Process:- The process used by the software engineer misdirected the action. For

example, a development process that did not allow sufficient time for a detailed

specification to be developed and reviewed could lead to specification defects.

Goal as tester is to discover defects preferably before the software is in operation. One of

the way we do this is by designing test cases that have a high probability of revealing

defects.

In the experimental scenario

o a tester develops hypotheses about possible defects (Principle 2 and Principle 9)

o Test cases are then designed based on the hypotheses.

o The tests are run and results analyzed to prove, or disprove the hypotheses.

Myers has a similar approach to testing. He describes the successful test as one that

reveals the presence of Hypotheses defect.

He compares the role of a tester as a doctor who is in the process of constructing a

diagnosis for an ill patient. The doctor develops hypotheses about possible illness using

her knowledge of possible diseases, and the patients symptoms. Test are made in order

to make the correct diagnosis.

A successful test will reveal the problem and the doctor can being the treatment.

Completing the analogy of doctor and ill patient, one could view defective software as

the ill patient. Testers as doctors need to have knowledge about possible defects

(illness) in order tom develop defect hypotheses. They use the hypotheses to:-

Design Test cases;

Design Test procedures;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

25

Assemble test sets;

Select the testing levels(unit, integration,etc) appropriate for the tests;

Evaluate the result of the tests;

Very useful concept related to defects, testing, and diagnosis is that of the fault

model.

A fault (defect) model can be described as a link between the error made(eg., a missing

requirement, a misunderstood design elements, a typographical error) and the fault/

defect in the software.

Example of fault model a software engineer might have in memory is “an incorrect

value for a variable was observed because the precedence order for the arithmetic

operators used to calculate its value was incorrect” this could be called as “incorrect

operator precedence operator”.

Cost of Defect

Organization incurs extra expenses for

Performing a wrong design based on the wrong requirements;

Transforming the wrong design into wrong code during the coding phase

Testing to make sure the product complies with the (wrong requirements

Releasing the product with the wrong functionality

How defects from early phases add to the costs.

Compounding effect of defects on software costs.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

26

The cost of building a product and the number of defects in it increases steeply with

the number of defects allowed to seep into the layer phases.

DEFECT CLASSES:-
Defect can be classified in many ways. It is important for an organization to

adapt a single classification scheme and apply it to all projects. Developers , testers and

SQA staff should try to be as consistent as possible when recording defect data

Defects are assigned to four major classes reflecting their point of origin in

the software life cycle- the development phases in which they were injected. These

classes are:-

Requirements\ Specifications

Design

Code

Testing

Requirements and Specification Defects:-

The beginning of software life cycle is critical for ensuring high quality in the

software being developed. Defects injects in early phases can persist and be very

difficult to remove in later phases. Since many requirements are written unnatural

language representation, there are very often occurrences of ambiguous, contradictory,

unclear, redundant, and imprecise requirements.

1. Functional Description Defects:-

The overall description of what the product does, and how it should behave

(Input/Output), is incorrect, ambiguous, and /or incomplete.

2. Feature Defects

Features may be described as distinguishing characteristics of a software

component or system .Features refers to functional aspects of software that map to

functional requirement described by the user and the client, it also maps quality such

as performance and reliability. Feature defects are mainly due to features description

that are missing, incorrect, incomplete or superfluous.,

3. Feature Interaction Defects:-

Mainly due to incorrect description of how the features should interact. For

ex:- suppose one features of a software system supports adding a new customer to a

customer database. This feature interacts with another feature that categorizes the new

customer. Classification feature impact on where the storage algorithm places the new

customer in the database, and also affects another feature that periodically support

sending advertising information to customers in a specific category.

4. Interface Description Defects:-

Description of how the target software is to interface with external software,

hardware and users. For detecting many functional description defects, black box

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

27

testing techniques, which are based on functional specification of the software, offer the

best approach. Black Box testing techniques such as equivalence class partitioning,

boundary value analysis, state transition testing, and cause and effect graphing, which

are useful defecting functional type of defects.

Black Box based tests can be planned at the unit, integration, system and acceptance

levels to detect requirements/specification defects.

DESIGN DEFECTS:-

Design defects occur when system components, interactions between system

components, interaction between the components and outside software /hardware, or

users are incorrectly designed. Design of algorithm, control, logic, data elements,

module interface description, and external software/ hardware/ user interface

description. When describing these defects we assume that the detailed design

description for the software modules is the pseudo code level with processing steps

1. Algorithmic and Processing Defects:-

These occur when the processing steps in the algorithm as described by the

pseudo code are incorrect. Eg:- the pseudo code may contain a calculation that is

incorrectly specified, or the processing steps in the algorithm written in pseudo code

language may not be in the correct order.

Letter case a step may be missing or steps may be duplicated. Example of a defect in

this sub class is the omission of error condition checks such as division by zero.

2. Control, Logic and Sequence Defects:-

Control defect occur when logic flow in the pseudo code is not correct. For

example , branching to soon, branching to late, or use of an incorrect branching,

condition. Other examples in this subclasses are unreachable pseudo code elements,

improper nesting, improper procedure or function calls. Logic defects usually relate to

incorrect use of logic operators, such as <,>

3. Data Defects:-

These are associated with incorrect design of data structures. For example a

record may be lacking a field, an incorrect type is assigned to a variable or field in a

record, an array may not have the proper number of elements assigned , or storage

space may be allocated incorrectly.

4. Module Interface Description Defects :-

These are defects derived from , for example , using incorrect, and/or

inconsistent parameter type, an incorrect number of parameters, or an incorrect

ordering of parameters

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

28

5. Functional Description Defects:-

The defect in this category include incorrect, missing, and/or unclear design

element . Eg the design may not properly describe the correct functionality of a

module.

6. External Interface Description Defects:-

These are derive from in correct design description for interfaces with COTS

components, external software systems, databases and hardware devices(eg:-I/O

devices).Other example are user interface description defects where there are missing

or improper commands, improper sequence of commands, lack of proper message,

and/or lack of feedback message for the users.

CODING DEFECTS:-

Coding Defects are derived from error in implementing the code,

coding defects are closely related to design classes especially if pseudo code has been

used for detailed design. Some coding defects come from a failure to understand

programming language constructs, and miscommunication with the designer.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

29

1. Algorithm and Processing Defects:-

Adding levels of programming detail to design , code related algorithmic and

processing defect would now include unchecked overflow and underflow conditions,

comparing inappropriate data types, converting one data type to an other , in correct

ordering of arithmetic operators, misuse or omission of parenthesis, precision loss and

incorrect use of signs.

2. Control, Logic and Sequence Defects :-

On the coding level these would include incorrect expression of case statements,

incorrect iteration of loops and missing paths

3. Typographical Defects:-

These are principally syntax errors, for example incorrect spelling of variable

name, that are usually detected by compiler, self reviews, or peer reviews

4. Initialization Defects:-

These occur when initialization statements are omitted or are incorrect. This may occur

because of misunderstanding or lack of communication between programmers, and /or

programmers and designers, carelessness, or misunderstanding of programming

environment.

5. Data Flow Defects:-

There are certain reasonable operational sequences that data should flow

through. For example a variable should be initialized, before it is used in a calculation

or a condition. It should not be initialized twice before there is an intermediate use. A

variable should not be disregarded before it is used.

6. Data Defects :-

These are indicated by incorrect implementation of data structures. For example ,

the programmer may omit a filed in a record, an incorrect type or access is assigned to

a file, an array may not be allocated the proper number of elements.

7. Module Interface Defects:-

As in the case of module design elements, interface defects in the code may be

due to using in correct or inconsistent parameter types, an incorrect number of

parameters, or improper ordering of the parameters, improper design, programmer may

implement an incorrect sequence of calls or calls to nonexistent modules

8. External Hardware, Software Interface Defects:-

These defects arise form problems related to system calls, links to databases,

input/output sequences, memory usage, resource usage, interrupts and exception

handling , data exchange with hardware, protocols formats, interface with build files,

and timing sequences

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

TESTING DEFECTS:-

Defects are not confined to code and its related artifacts. Test plans,

test cases, test harnesses, and test procedures can also contain defects. Defects in test

plans are best detected using review techniques.

1. Test Harness Defect:-

In order to test software, especially at the unit and integration levels,

auxiliary code must be developed. This is called the test harness or scaffolding code.

Test harness code should be carefully designed, implements and testes since it a work

product and much of this code can be reused when the new release of the software are

developed.

2. Test Case Design and Test Procedure Defects:-

These would encompass incorrect, incomplete, missing , inappropriate

test cases, and test procedures. These defects are again best detected in test plan

reviews. Defects are revealed during the testing process itself by means of a careful

analysis of test conditions and test results. Repairs will then have to be made.

DEFECT EXAMPLES:- The Coin Problem Requirement Specification

A spec above shows the sample informal specification for a simple program

that calculates the total money value of a set of coins. The program could be a

component of an incentive cash register system to support retail store clerks.

Coin Problem in Detail : (100 cent = 1 dollar)

if suppose input for coin values given as 1 for all then the calculation as shown
below.

No of Coins
(input)

 Coin Value

1(pennies) X 1 = 1

1 (nickels) X 5 = 5

1(dimes) X 10 = 10

1(quarters) X 25 = 25

1(half-dollars) X 50 = 50

1(dollar) X 100 = 100

 191

Specification for program calculate_coin_value

This program calculates the total dollars and cents value for a set of coins. the

user inputs the amount of pennies, nickels , dimes , quarters, half-dollars, and
dollar coins held. There are six different denominations of coins. The program

outputs the total dollar and cent values of the coins to the users

Input:number_of_coins is an integer
Outputs:- number_of_dollars is an integer

Number_of_cents is an integer

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

31

Output

No of Dollars : 1

No of Cents : 91

The given specification does not specify the above details clearly.

Requirements/ specifications defects,

1) Functional description defects

a) No of coins, dollars , cents > 0

pre & post conditions are helpful

b) In each denomination – largest number allowed is missing

upper limit for cents & dollars - not given

2) Interface description defect

how user interact to provide i/p , o/p

Explanation

1) Functional Description defects arise because the functional description is

ambiguous and incomplete .It does not state that the input, number_of_coins, and the

output, number_of_dollars and number_of_cents, should all have values of zero or

greater. The number_of_coins cannot be negative and the values in dollars and cents

cannot be negative in the real world domain .

Formally stated set of [preconditions and post conditions would be helpful here,

and would address some of the problem with the specification. These are also useful for

designing black box tests.

A precondition is a condition that must be true in order for a software

component to operate properly.

In this case a useful precondition would be one that states for example ,

Number_of_coins >=0

A Post condition is a condition that must be true when a software

component completes its operation properly.

A useful post condition would be :-

Number_of _dollars, number_of_cents >=0

2) Interface Description defects

It is not clear from the specification how the user interacts with the program to

provide input and how the output is to be reported. Because of ambiguities in the user

interaction description the software may be difficult to use.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

32

Design of Coin Problem

Design Description for Program Calculate_coin_values

Program calculate_coin_values

number_of_coins is integer
total _coin_value is integer

number_of_dollars is integer

number_of_cents is integer

coin_value is array of six integers representing each coins value in cents
initialized to 1,5,10,25,25,100

begin

initialize total_coin_value to zero

initialize loop_counter to one

wjile loop_counter is less than six
begin

output “enter number of coins”

read(number_of_coins)

total_coin_value=total_coin_value+ number_of_coins * coin_value[loop_counter]

increment loop_counter

end

number_dollars=total_coin_value/100

number_of_cents=total_coin_value-100 * number_of_dollars

output (number_of_dollars, number_of_cents)

end

Design Defect

1) Control Logic & Sequencing defect while counter

2) Algorithmic & Processing Defect invalid i/p value not checked

3) Data Defect array value 25 - 2 times

4) External Interface Description defect Order of i/p , when to stop , help msg ,

feedback not given

Explanation

1) Control, Logic and Sequencing Defects:-

The defect in this subclass arises from an incorrect “while” loop condition(should

be less than or equal to six)

2) Algorithmic and Processing Defects:-

These arise from the lack of error checks for incorrect and /or invalid inputs, lack

of path where users can correct erroneous inputs, lack of a path for recovery from

input errors. The lack of an error check could be counted as functional design defects

since the design does not adequately describe the proper functionality for the program .

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

33

3) Data Defects:-

This defect relates to an incorrect value for one of the elements of the integer

array, coin_values, which should read 1,5,10,25,50,100

4) External Interface Description Defects:-

These are defects arising from the absence of input messages or prompts that

introduced the program to the user and request inputs. The user has no way of

knowing in which order the number of coins for each denomination must be input, and

when to stop inputting values. There is absence of help message and feedback for user

if he wishes to change an input or learn the correct format and order for inputting the

number of coins.

The control and logic design defects are best addressed by white box based

tests,(condition/Branch testing, loop testing).

The program below is a C like programming language. Without effectives

reviews the specification and design defects could propagate to the code. Here

additional defects have introduced in the coding phase.

Coin Problem Coding :

/*********** Program calculate_coin_values caluates the dollar and cents value

of a set of coins of different dominations input by the user denominations are

pennies, nickels, dimes ,quarters, half dollars and dollars **************/

main()

int total_coin_value;
int number_of_coin=0;

int number_of_dollar=0;

int number_of_cents=0;

int coin_value={1,5,10,15,25,25,30};

{
int i=1;
while (i < 6)

{
printf(“input number of coins\n”);

scanf(“%d”, number_of_coins);

total_coin_value=total_coin_value+(number_of_coins * coin_value{i]);
}

i=i+1;
number_of_dollars=total_coin_value/100;

number_of_cents=total_coin_value-(100*number _of_dollars);

printf(“%d\n”, number _of_dollars);

printf(“%d\n”,number_of_cents);

}

/********************************/

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

34

Coin Problem Coding Defect :

1) Data flow defect total_coin _value not initialized

2) Data Defect Array value 25 - 2 times

3) Control , logic and sequence Defect While(i<6)

4) External Interface Description defect scanf without &

5) Algorithmic and Processing Defects

6) Code Documentation Defect

1) Data Flow Defects:-

The variable total_coin_value is not initialized. It is used before it is defined.

2) Data Defects:-

The error in initializing the array coin_values is carried over form design and

should be counted as design defect.

3) Control , Logic and Sequence Defects:-

These include the loop variable increment step which is out of the scope of

the loop. Note that incorrect loop condition(i<6) is carried over from design and should

be counted as a design defects

4) External Hardware , Software Interface Defects:-

The call to the external function “scanf” is incorrect. The address of the variable

must be provided (&number_of_coins)

5) Algorithmic and Processing Defects:-

The division operator may cause problems if negative values are divided, although

this problem could be eliminated with an input check.

6) Code Documentation Defects:-

The documentation that accompanies this code is incomplete and ambiguous. It

reflects the deficiencies in the external interface description and other defects that

occurred during the specification and design. Vital information is missing for anyone

who will need to repair, maintain or reuse this code.

The control, logic and sequence, data flow defects found in this sample

could be detected by combination of white and black box testing techniques.

Black Box tests may work well to reveal the algorithmic and data defects.

the code documentation defects require a code review for detection. The external

software interface defects would probably be caught by a good complier.

Poor quality of this small program is due to defects injected during several of

the life cycle phases with probable causes ranging from lack of education, a poor

 process, to oversight on the part of the designers and developers.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

35

DEVELOPER/ TESTER SUPPORT FOR DEVELOPING A DEFECT REPOSITORY :-

It is important if you are a member of a test organization to illustrate to

management and colleagues the benefit of developing a defect repository to store defect

information. Software Engineers and Test Specialists we should follow the example of

engineers in other disciplines who realized the usefulness of defect data. Defect

monitoring should continue for each ongoing projects. The distribution of defects will

change as you make changes in your processes. The defect data is useful for test

planning, a TMM level 2 maturity goals. It helps you to select applicable testing

techniques, design and the test cases you need and allocate the amount of resources

you will need to devote to detecting and removing these defects.

A defect repository can help to support achievements and continuous

implementation of several TMM maturity goals including controlling and monitoring of

test, software quality evaluation and control ,test measurements, and test process

improvement.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

ARUNAI ENGINEERING COLLEGE

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

IT8076-SOFTWARE TESTING (2017 Regulation)

UNIT II TEST CASE DESIGN

Test case Design Strategies – Using Black Box Approach to Test Case Design –

Boundary Value Analysis – Equivalence Class Partitioning – State based testing

– Cause-effect graphing – Compatibility testing – user documentation testing –

domain testing - Random Testing – Requirements based testing – Using White

Box Approach to Test design – Test Adequacy Criteria – static testing vs.

structural testing – code functional testing – Coverage and Control Flow Graphs

–Covering Code Logic – Paths – code complexity testing – Additional White box

testing approaches Evaluating Test Adequacy Criteria.

TEST CASE DESIGN STRATEGIES

Develop effective test cases for execution based testing.

positive consequences of effective test cases

•A greater probability of detecting defects

•A more efficient use of organizational resources

•A higher probability for test reuse

•Closer adherence to testing and project schedules and budgets

•The possibility for delivery of higher quality software products

The two basic testing strategies

Test Strategy & Tester’s View Knowledge Sources Methods

Black Box

Requirements

Documents

Specification

Domain

Knowledge

Defect Analysis

Data

Equivalence class

Partitioning

Boundary value analysis

State transition

testing

Cause and Effect

Graphing

Error guessing

White Box

High level Design

Detailed Design

Control Flow

Graphs

Cyclomatic

Complexity

Statement Testing

Branch Testing

Path Testing

Data Flow testing

Mutation Testing

Loop Testing

Black Box Testing

• size of the software -> simple module, member function, or object cluster to a

subsystem or a complete software system.The description behavior or

functionality for the software under test may come from a formal specification

1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

an input/ process output diagram (IP0), or well defined set of pre and post

conditions.

• Because the black box approach only considers software behavior and

functionality, it is often called functional or specification based testing.

• This approach is useful for revealing requirements and specification defects.

White Box Approach

• Since designing, executing and analyzing the results of white box testing is very

time consuming, this strategy is usually applied to smaller sized pieces of

software such as module or member function .

• White box testing methods are especially useful for revealing design and code

based control, logic and sequence defects, initialization defects and data flow

defects.

Using the Black Box Approach to Test Case Design:-

1)Equivalence Class Partitioning:-

Partition the input domain of the software into valid and invalid classes. Invalid

classes represent erroneous or unexpected inputs.

Advantage:-

exhaustive testing - eliminated

selecting a subset of test inputs with a high probability of detecting a defect

cover a larger domain of inputs/outputs with a smaller subset selected from an

equivalence class.

Guidelines

Input Conditions no of equivalent

classes

EXAMPLE

range of
values

one valid &

two invalid
classes

Eg: range of 1-499
Valid -> all values from 1-99

Invalid -> values < 1

Invalid values > 499

specific

value

one valid &

two invalid

classes

Eg:- If the specification for a

Product code(3115) ,
Valid -> valid Product code {3115}

Invalid -> valid Product

code<3115 Invalid valid Product

code>3115 Members

of a set

one valid &

one invalid

classes

eg:- paint module states that the

Color RED, BLUE, GREEN and

YELLOW are allowed as inputs
Valid -> RED

Invalid -> BLACK

must be

condition

(Boolean)

one valid &

one invalid

classes

Eg:- if a specification for a module

states that the first character of a

part identifier must be a letter

Valid -> TOTAL

Invalid -> 3PI

If the input specification in an equivalence class is not handled in an

identical way by the software under test, then the class should be further

partitioned into smaller equivalence classes

2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Example: A specification of a square root function.

Function square_root

message (x:real)
when x >0.0

reply (y:real)
where y >0.0 & approximately (y*y,x)

otherwise reply exception imaginary_square_root
end function

input: x (4)

output : y (2) Square root of x

I) Test Condition Relevant to Input Conditions:
1) The input conditions variable x must be a real number and be

equal to or greater than 0.0.

2) The output conditions y must be a real number equal to or greater

than 0.0, whose square is approximately equal to x.

II) Generate equivalence classes

EC1. The input variable x is real, valid.

EC2. The input variable x is not real, invalid.
EC3. The value of x is greater than 0.0, valid.

EC4. The value of x is less than 0.0, invalid.

III) equivalence class reporting Table (EC table)

Condition Valid EC Invalid EC

1 EC1 , EC3 EC2 , EC4

IV) Summary of Test I/ps using EC Partitioning

Test case Id i/p Valid EC Invalid EC

TC1 -3 - EC4

TC2 4.0 EC1,EC3 -

TC3 AB - EC2

TC4 -6.2 - EC4

Provide testcases for all ECs present in EC table

2)Boundary Value Analysis :

The test cases developed based on equivalence class partitioning can be

strengthened by use of an another technique called boundary value analysis.

boundary value analysis requires that the tester select elements close to the

edges, so that both the upper and lower edges of an equivalence class are

covered by test cases.

3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Guidelines

Input

Conditions

Valid & Invalid Test Case EXAMPLE

range of values valid test cases ends of
the range,

invalid test cases above

and below the end of the

range.

Eg: range between -1.0 and +1.0

input values of -1.0, -1.1, and 1.0,
1.1.

number

of values

valid test cases min &

Max Numbers

Invalid Test Case Min-1
, max+1 numbers

Ex: house can have one to four

owners

0,1 owners and 4,5 owners

ordered set, focus on the first and

last elements of the set.

i/p: {25,27,28}
last element 27,28,29
first element 24,25,26

Example1:

The input specification for the module states that a widget identifier should consist of 3–
15 alphanumeric characters of which the first two must be letters.

I) conditions that apply to the input:

(i) it must consist of alphanumeric characters,

(ii) the range for the total number of characters is between 3 and 15, and,
(iii) the first two characters must be letters.

II) Generate bounds groups
BLB—a value just below the lower bound

LB—the value on the lower boundary ALB—
a value just above the lower boundary

BUB—a value just below the upper bound

UB—the value on the upper bound
AUB—a value just above the upper bound

For our example module the values for the bounds groups are:
BLB—2 BUB—14

LB— 3 UB— 15
ALB—4 AUB—16

Generate Equivalent Classes
Condition1:
EC1. Part name is alphanumeric, valid.

EC2. Part name is not alphanumeric, invalid.

4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Condition2:
EC3. The widget identifier has between 3 and 15 characters, valid.

EC4. The widget identifier has less than 3 characters, invalid.

EC5. The widget identifier has greater than 15 characters, invalid.

Condition3:

EC6. The first 2 characters are letters, valid.

EC7. The first 2 characters are not letters, invalid.

III) Equivalence class reporting table.

IV) Summary of Test Inputs using equivalence class & BVA

Provide testcases for all ECs present in EC table and bound groups.

Example 2: Pin number input of ATM SYSTEM

Case Study : Apply ECP & BVA for pinno of ATM System

Example:

The Pinno input has following specification

I) Derive Input conditions

a) Only digits for pin no input

b) Values range from 0000 to 9999 (Length is 4)

5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

II) Generate bounds groups

For our example module the values for the bounds groups are:

BLB— -1 BUB— 9998

LB— 0 UB— 9999

ALB—1 AUB— 10000

Generate Equivalent Classes

Condition1:

EC1.pinno i/p - only digits, valid.

EC2. pinno i/p with digits and other symbols , invalid.

Condition2:

EC3. The pinno i/p has value between 0000 and 9999 , valid.

EC4. The pinno i/p has value < 0000, invalid.

EC5. The pinno i/p has value > 9999, invalid.

III) Equivalane Class Report

i/p condition valid EC Invalid EC

1 EC1 EC2

2 EC3 EC4, EC5

IV) Summary of test i/ps

Test

Case ID

Input Values Valid EC & Bounds

Covered

InValid EC &

Bounds Covered

1. 9999 EC1 , EC3(UB) -

2. 9998 EC1 , EC3(BUB) -

3. 0000 EC1 , EC3(LB) -

4. 0001 EC1 , EC3(ALB) -

5. W236 - EC2

6. -875 - EC2 , EC4(BLB)

7. 10000 EC1 EC5(AUB)

3)State based Testing

Graph based testing methods are applicable to generate test cases for state machines

such as language translators , work flows , transaction flows and data flows.

It is useful in

o product is language processor

o work flow modeling

o dataflow modeling

Example: validate number using simple rules (for language processor)

1. number start with an optional sign

2. sign can be followed by nay number of digits

3. digits can be optionally followed by a decimal point, represented by a period

4. if there is a decimal point , then there should be 2 digit after decimal

5. Any Number – whether or not it has a decimal point, should be terminated by

a blank.

6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

An example of a state transition diagram.

State transition table

Current

state

Input Next

State

1 Digit 2

1 + 2

1 - 2

2 Digit 2

2 Blank 6

2 decimal
point

3

3 Digit 4

4 Digit 5

5 Blank 6

the above state transition table can be used to derive test cases to test valid and

invalid numbers

1. Start the start state (state #1)

2. Choose the path that leads to the next state (ex: +/-/digit)

3. Invalid i/p in a given state, generate an error condition TC

4. Repeat the process till u reach the final state

A general outline for using state based testing methods with respect to

language processors is

1. Identify the grammar for the scenario. In the above example, we have

represented the diagram as a state machine. In some cases, the scenario can be

a context-free grammar, which may require a more sophisticated representation

of a "state diagram."

2. Design test cases corresponding to each valid state-input combination.

3. Design test cases corresponding to the most common invalid combinations of

state-input.

Ex2 : Leave application by an employee (for work flow modeling)

7

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4) Cause effect Graphing

• Equivalence class partitioning does not allow testers to combine conditions .

• It is a dynamic test case writing technique.

• Cause and effect graphing is technique that can be used to combine conditions

and derive an effective set of test cases that may inconsistencies in a

specifications

• It restates the requirements specification in terms of logical relationship

between the input and output conditions. Since it is logical, it is obvious to use

Boolean operators like AND, OR and NOT.

Steps:

1. The tester must decompose the specification of a complex software component
into lower level units

2. Identify causes and effects

Cause - distinct i/p condition or an equivalence class of i/p conditions.
Effect - an output condition or a system transformation

3. From the cause and effect information, a Boolean cause and Effect graph is

created.

Graph : Node causes(Left Side) and effects (Right side). logical operators
such as AND, OR and NOT and are associated with the arcs.

Notations for constructing cause and Effect graph

4. The graph may be annotated with constraints that describes combinations of
causes and/or effects that are not possible due to environmental or syntactic

constraints

5. Convert the graph into a decision table.

6. The columns in the decision table are transformed into test cases.

Example: module that allows user to perform a search for a character in an

existing string.

Step1 : decompose the specification

Input length of the string

character to search for.
8

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.softwaretestinghelp.com/how-to-write-effective-test-cases-test-cases-procedures-and-definitions/

Output Char position
NOT FOUND
out of range

Step2 : Identify causes and effects

C1 : Positive integer from 1 to 80

C2 : Character to search for is in String
E1 : Integer out of range

E2 : Position of character in string

E3 : Character not found.

Rules or relationship :-

If C1 and C2, then E2.

If C1 and Not C2, then E3
If not C1, then E1.

Step 3: Construct cause and Effect graph & E1

Step: 4 Graph annotated with constraints

C1

E2

C2

E3

Step 5: Convert the graph into a decision table(1- true , 0-false , - don’t care)

 T1 T2 T3

C1 1 1 0

C2 1 0 -

E1 0 0 1

E2 1 0 0

E3 0 1 0

Step6 : Decision table are transformed into test cases

Columns are changed into testcases

Existing string “abcde”

Test Cases Length Character to search

for

Outputs

T1 5 C 3

T2 5 w Not Found

T3 90 Integer out of

range

5)Compatibility testing

It ensures the working of the product with different infrastructure components

(Non-functional testing).

test case results depend on infrastructure for delivering functionality

9

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

infrastructure parameter are changed , product is expected to still behave

correctly and produce desired results.

infrastructure parameter H/W , S/W , other components

Example

Test the application in same browsers but in different versions. For e.g. to

test the compatibility of site ebay.com. Download different versions of Firefox

and install them one by one and test the ebay site. Ebay site should behave

equally same in each version.

Test the application in different browsers but in different versions. For e.g.

testing of site ebay.com in different available browsers like Firefox, Safari,

Chrome, Internet Explorer and Opera etc.

Parameters:

Processor (Pentium III / IV, Xenon, SPARC)

Architecture(32 bit / 64 bit)

Resource Availability (RAM & Hard disk space)

Equipment (printer , Modem, Router).

Operating System

Middle-tier infrastructure components (Web Server, App server)

Back end components (Oracle, MS SQL)

Any s/w used to generate product binaries (compiler, linker)

Technological components (SDK, JDK)

Compatibility matrix :

Each row represents a unique combination of a specific set of values of the

parameter

Ex: Mail App

Server App Server Web

Server

Client Browser MS Office Mail

Server

Windows

2000

Microsoft

SQL server

2000

Windows

2000

Advanced

server with

SP$ and

.Net

framework

1.1

IIS5.0 Win2K

Professional

IE 6.0 Office 2k
& Office

XP

Exchange
5.5 & 2K

 ….

Common Techniques

Horizontal Combination(HC): Parameters of the row grouped together for

executing the test cases

Intelligent Sampling:

In HC each feature of the product has to be tested with each row

in the compatibility matrix involves time & effort

Various permutation and combination methods used

Selection of intelligent sampling based on

10

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Types:

Information collected on the set of dependencies of the

product with parameter.

Less dependent removed from the list

Can include parameters that are part of product

Backward compatibility Testing is to verify the behavior of the developed

hardware/software with the older versions of the hardware/software. The

product parameters required for backward compatibility is added to the

compatibility matrix and are tested.

Forward compatibility Testing is to verify the behavior of the developed

hardware/software with the newer versions of the hardware/software.

Tools for compatibility testing:

Adobe Browser Lab - Browser Compatibility Testing

Secure Platform - Hardware Compatibility tool

Virtual Desktops - Operating System Compatibility

6) User documentation testing:

User documentation testing Is done to ensure the documentation matches the

product and vice versa.

User Documentation includes

Manuals user guides installation guides setup guides

online help read me files software release notes

Objective

To check if what is stated in the document is available in the product

To check if what is there in the product is explained correctly in the

document.

Product upgraded documentation upgraded

Lack of coordination documentation group & testing /development group

sitting in front of the system & verifying screen by screen , transaction by

transaction , report by report

checks language aspects (spell check & grammar)

Advantages

Aids in highlighting problems overlooked during reviews

High quality documentation minimizes defect reported by the customer

Results in less difficult support calls

New Programmer & testers can use doc. to learn the external functionality of the

product

Customer need less training & can proceed more quickly to the advanced

training

The effort & money spent on this would form a valuable investment in the long

run for the organization.

11

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7) Domain Testing :

Testing the product purely based on domain knowledge & expertise in the

domain of application

Requires business domain knowledge, Extension of black box testing

When to apply domain testing?

o Ability to design and execute test cases that relate to the people who will buy

and use the software.

o Concerned about everything in the business flow

o Testing the product , not by going through the logic built into the product.

o Business flow determines the steps, not the software under test “ Business

Vertical Testing”

o To Test the software for “Domain Intelligence” , tester is expected to have

intelligence & knowledge of business flow

o Earlier phases of Black box Testing deals with Equivalent Class Partitioning

,Decision Table (Cause Effect Graphing)

o Domain testing is done all components are integrated and product has been

tested using black box approaches.

Ex: Cash Withdrawal of ATM system

Step1 :Go to the ATM

Step2 : Put ATM card inside

Step3 : Enter Correct PIN

Step4 : Choose cash withdrawal

Step5 : Take the cash

Step6 : Exit and retrieve the card

Other Black Box testing Required denomination is available to dispense the

requested amount

Domain Testing Whether user has got the right amount / not

12

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

8) Random Testing:-

If a tester randomly selects input from the domain, this is called random testing

– Eg:- if the valid input domain for a module is all positive integer between 1 and

100,

– would randomly or unsystematically select valued form within that domain; for

example the values 55,24,3 might me chosen

9)Requirements Based Testing

Deals with validating the requirements given in the SRS

Requirements 1) Explicit 2) Implicit

Precondition

Detailed review of the requirements specification, it ensures that they are

consistent , correct , complete , testable.

Implied requirements are converted and documented as explicit

requirements more effective

Explicit & Implicit requirements are collected and documented as “ Test

Requirements specification “ (TRS)

Requirements are tracked by a Requirement Traceability Matrix (RTM)

RTM traces all the requirements from their origin through design, development

and testing.

Example : Locking (key is turned clockwise)

unlocking (key is turned anticlockwise)

Key No :123-456

Sample Requirement Specification

Sno ReqId Description Priority (H,

M,L)

1. BR-01 Inserting the key numbered 123
-456 and turning it clockwise

should facilitate locking

H

2. BR-02 Inserting the key numbered 123
-456 and turning it

anticlockwise should facilitate

unlocking

H

3. BR-03 only key number 123-456 can

be used to lock and unlock

H

4. BR-04 No other object can be used to

lock

M

5.

Requirement Traceability Matrix (RTM)

Req

Id

Description Priori

ty (H,

M,L)

Test

Conditions

Test Case

IDs

Phases of

testing

BR-

01

Inserting the key numbered 123 -456

and turning it clockwise should

facilitate locking

H Use key

123-456

Lock_001 unit

Compone

nt

13

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

BR-

02

Inserting the key numbered 123 -456

and turning it anticlockwise should
facilitate unlocking

H Use key

123-456

Lock_002 unit ,

Compone
nt

BR-

03

only key number 123-456 can be

used to lock and unlock

H Use key

123-456 to
lock

Lock_003 Compone

nt

Use key

123-456 to

unlock

Lock_004

 …..

Tests for higher priority requirements will get precedence over tests for lower

priority functionality that has higher risk is tested earlier

cross ref b/w requirements and the subsequent phases is recorded in the RTM

RTM helps in identifying the relationship between the requirements and test

cases. Combinations are

one (requirements) to one (Test Case)

one to many

many to one

many to many

one to none.

RTM in Requirement Based Testing:

it is a tool to track the testing status of each requirement, without missing any

requirements

prioritization enables selecting the right features to test

list of test cases that address the particular requirement can be viewed

Test metrics

1. Requirements addressed priority wise

2. Number of test case requirement wise

3. Total no of test cases

Test results

1. Total no of test cases passed

2. Total no of test cases failed

3. Total no of defects in requirements

4. No of requirements completed

5. No of requirements pending

Summary of Test I/P:

s.no Req

Id

Priority Test Cases Total

test

cases

Total

test

cases

Passed

Total

test

cases

Failed

%

Pass

No of

defects

1. BR-01 H Lock_01 1 1 0 100 1

2. BR-02 H Lock_02 1 1 0 100 1

3. BR-03 H Lock_03,04 2 1 1 50 3

4. …

Using above Observations can be made with respect to the requirement

14

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

10) Positive & Negative Testing

Positive testing

Verifies the requirements of the product & set of expected o/p

To prove that the product work as per specification

is to prove that the product works as per specification and expectations. A

product delivering an error when it is expected to give an error, is also a

part of positive testing.

+ve testing is done to verify the known test conditions.

Ex; Lock & Key

Negative Testing

Negative testing is done to show that the product does not fail when an

unexpected input is given. The purpose of negative testing is to try to break the

system. Negative testing covers scenarios for which the product is

not designed and coded. In other words, the input values may not have been

represented in the specification of the product.

-ve testing is done to break the product with unknowns

Difference between positive testing and negative testing

For positive testing if all documented

requirements and test conditions are

covered, then coverage can be

considered to be 100 percent.

no end to negative testing, and 100

percent coverage –ve testing is

impractical.

Negative testing requires a high degree

of among the testers to cover as many

"unknowns" as possible to avoid

at a customer site.

Summary of Black Box Testing

i/p values divided into class 1. Equivalent Class Partitioning

i/p values in range 2. Boundary Value Analysis

i/p & o/p values with multiple 3. Cause effect graphing

15

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

condition

Checking expected & un expected i/p
values

4. Positive & negative Testing

Language processor , work flow
,process flow

5. State based testing

To ensure the Requirements 6. Requirement Based Testing

To test domain expertise 7. Domain Testing

Documentation consistent with

product

8. Documentation Testing

Using the White Box Approach to Test Case Design

• white box Testing The tester’s goal is to determine if all the logical and data

elements in the software unit are functioning properly.

• during the detailed design phase of development - knowledge needed for the

white box test design approach often becomes available to the tester in later

phase of software life cycle

• White Box test design follows black box design as the test efforts for a given

project progress in time

White Box Black Box

white box based test design is

most useful when testing small

components.

Black box useful for both small

& large s/w components

Level of detail required for test
design is very high

Comparatively low

Static Vs Structural Testing

Static Structural

Product is tested by tester by
going through the source code

not the executable or binaries

Tests are run by computer on

the built product

Does not involve executing the

program

Involves executing the program

against predesigned test cases

Static test reveals :

Code works according to the functional requirements

16

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Code has been written in accordance with the design developed earlier in the

project life cycle

Code for any functionality has been missed out

Code handles errors properly

Static test Methods :

1. Desk Checking of the code

Informal checking done by author

No structured method

No Logs / check lists

Depends on knowledge of the author

Disadvantages

A developer is not the best person to detect problems in his or her own code.

He or she may be tunnel vision and have blind spots to certain types of

problems.

Developers generally prefer to write new code rather than do any

form of testing

This method is essentially person-dependent and informal and thus may not

work consistently across all developers.

2. Code walkthrough

Group oriented - method and formal inspection are group-oriented

methods

Multiple perspective – walkthroughs and inspections is very thin and

varies from organization to organization. The advantage is that it brings

multiple perspectives

Multiple roles - a set of people look at the' program code and raise

questions for the author. The author explains the logic of the code, and

answers the questions. If the author is unable to answer some questions,

he or she then takes those questions and finds their answers

3. Formal /Fagan Inspection:

1) Group oriented , highly formal & structured

2) specific roles , requires thorough preparation

This method increases the number of defects detected by

1) demanding thorough preparation before an inspection/review;

2) enlisting multiple diverse views;

3) assigning specific roles to the multiple participants; and

4) going sequentially through the code in a structured manner.

Roles :

1) Author- programmer or developer

2) Moderator - expected to formally run the inspection according to the

process.

3) Inspector/Reviewer - provides, review comments for the code.

17

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4) Scribe - takes detailed notes during the inspection meeting and circulates

them to the inspection team after the meeting.

Process:

Author & Moderator select the review team

Introductory Meeting

o Author present his perspective

o Typical Document (code, Design, SRS, Stds) is circulated

o Moderator informs date ,time venue – inspection meeting

Defect Logging Meeting:

The moderator takes the team sequentially through the program code, asking

each inspector if there are any defects in that part of the code. If any of the

inspectors raises a defect, then the inspection team deliberates on the defect

and, when agreed that there is a defect, classifies it in two dimensions

1)Major (major defects need immediate attention.) / Minor – (may not

substantially affect a program)

2) Systematic (machine-specific idiosyncrasies may have to removed by

changing the coding standards) / mis execution(happens because of an error

or slip on the part of the author. example : a wrong variable in a statement)

Review Meeting (if the defect severe)

Challenges in Formal /Fagan Inspection

Time Consuming

Logistics & Scheduling - multiple people involved

Not possible to review entire coding

Based on criticality & complexity of code is classified into

High ,medium Formal Inspection

Low Walk through , desk checking

Structural testing Methods:

The fundamental difference between structural testing and static testing is that

in structural testing tests are actually run by the computer on the built product,

whereas in static testing, the product is tested by humans using just the source

code and not the executables or binaries.

1. Unit Functional Testing – methods fall under debugging category

a. Initially Quick test – the developer can perform certain obvious tests, knowing

the input variables and the corresponding expected output Variables

b. modules with Complex logic & condition – build debug version(ex:

intermediate print statement)

c. run the product under debugger or IDE (single stepping of instruction, break

points etc)

18

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2. Code Coverage Testing

Code coverage testing involves designing and executing test cases and finding

out the percentage of code that is covered by testing.

instrumentation

% of code covered by testing is found by a technique

specialized tool to rebuild the product , link with the set of lib

Reporting on the portion of the code covered frequently, so easy to identify

critical & most often code.

Types of coverage

a)Statement Coverage b)Path Coverage

c)Condition Coverage d)Function Coverage

a)Statement Coverage

It refers to writing test cases that execute each of the program statements.

There are 4 types of programming constructs.

1. Sequential control flow

2. Two-way decision statements like if then else

3. Multi-way decision statements like Switch

4. Loops like while do, repeat until and for

1)Sequential Control flow(SC)

Generate test data to make the program enter the sequential block, to make it

go through the entire block

this may not always be true , Asynchronous Exceptions - (for example, a divide

by zero)

Multiple Entry Point , in Non Structured Programming

SC metric= No of of statements exercised / Total No of Statements

2) Two-way decision statements –if then else

Have data to test the then part

Have data to test the else part

Relevance of statement coverage ?

If the program implements wrong requirements and this wrongly implemented

code is "fully tested," with 100 percent code coverage, it still is a wrong program

and hence the 100 percent code coverage does not mean anything.

Ex:

Total =0;

If(code ==’M’)

{ Stm1;

…

Stm7; }

Else

Percent = value/Total *100; /*divide be zero*/

19

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

when we test with code = "M," we will get 80 percent code coverage. But if the

data distribution in the real world is such that 90 percent of the time, the value

of code is not = "M," then, the program will fail 90 percent of the time (because

of the divide by zero in the highlighted line).

3) multi way decision statements – switch

It can be reduced to multiple two way if statement

4) Loops – while do ,repeat until , for

Looping statements can be handled in 3 ways.

1) Skip the loop

- so that the situation of the termination condition being true before
starting the loop is tested.

2) Exercise the loop between one & max number of times
- to check all possible "normal" operations of the loop

3) Cover the loop around the boundary (i.e n-1, n,n+1)

b)Path Coverage

statement coverage may not indicate “true coverage”. path coverage gives better

representation, split a program into a number distinct paths. A program can start

from the beginning and take any of the paths to its completion.

Path Coverage= No of of path exercised/Total No of of path in the

program

Ex: Date validation routine . date accepted as 3 fields dd, mm, yyyy.

i/p validate numeric i/p for date (dd , mm , yyyy)

leapyear() function (returns FALSE/ TRUE based on i/p)

array dayofMonth[] contains No of days in each month

20

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The Flow chart shows different Path can be taken through program. Path label

is given as A… H .

A B-D-G
B-D-H

B-C-E-G
B-C-E-H

B-C-F-G
B-C-F-H

If Wrong Month

given

Except Feb Month

with correct and

wrong date given

Feb Month & Leap

year with correct and

wrong date given

Feb Month & Not

Leap year with
correct and wrong

date given

Summary of Test inputs

TC ID Path (Description) Input Expected o/p

TC1 A (Month Wrong Path) 20/ 0/2000 Invalid Date

TC2 B-D-G (Not Feb - days wrong) 31/4/2015 Invalid Date

TC3 B-D-H (Not Feb - days correct) 31/1/2015 valid Date

TC4 B-C-E-G (Feb , Leap Year - days wrong) 30/2/2016 Invalid Date

TC5 B-C-E-H (Feb , Leap Year - days correct) 29/2/2016 valid Date

TC6 B-C-F-G (Feb , Not Leap Year - days wrong) 29/2/2014 Invalid Date

TC7 B-C-F-H (Feb , Not Leap Year - days Correct) 10/2/2014 valid Date

C)Condition Coverage

It is necessary to have test cases that exercise each Boolean expression and have

test cases test produce the TRUE and FALSE paths.

Further refinement of path coverage , Make sure each Boolean expression is covered

for TRUE as well as FALSE paths

Ex: Path A covered on giving mm < 1 , reporting invalid month

Program not tested for mm> 12

Compliers perform optimizations to minimize the number of Boolean operations

and all the conditions may not get evaluated, even though the right path is

chosen.

For example, when there is an OR condition (as in the first IF statement above),

once the first part of the IF (for example, mm < 1) is found to be true, the second

part will not be evaluated at all as the overall value of the Boolean is TRUE.

Similarly, when there is an AND condition in a Boolean expression, when the

first condition evaluates to FALSE, the rest of the expression need not be

evaluated at all.

For all these reasons path testing is not sufficient.

Condition Coverage= No of of conditions exercised/Total No of of conditions in the program

Above formula indicates percentage of conditions covered by a set of test cases.

d)Function Coverage

This testing finds how many functions are covered by test cases

Ex: Database s/w -- inserting a row into the database

Payroll app – calculate tax

Adv:

1) Functions are easier to identify

2) Higher level of abstraction than code, easy to achieve 100%

21

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3) more logical mapping to requirements than other type of coverage

4) importance of functions can be prioritized based on the importance of

requirements

5) provides natural transition to black box testing

3)Code Complexity Testing

While using these coverage : following questions are raised

1) which of the paths are independent ?(to minimize the test cases)

2) is there an upper bound on the number of tests to be executed to ensure all

the statements have been executed at least once ?

Ans : Cyclomatic complexity “ a metric that quantifies the complexity of a

program”

Steps in Determining Cyclomatic complexity

1) Construct Flow Graph

2) Compute cyclomatic complexity of the resultant flow graph

3) Determine a basis set of linearly independent paths

4) Prepare test cases that will force execution of each path in the basis set

Flow Graph

Program is represented in the form of a flow graph.

Flow graph can be constructed like a flowchart.

Flow graph consist of nodes and graphs.

Representation of Programming primitives in flowgraph

Steps to convert flowchart into flow graph

1) Identify the predicates or decision points

2) Ensure that the predicates are simple

22

Function Coverage = No of of function exercised/Total No of of functions in the Program

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3) Combine all sequential statements into a single node

4) When a set of sequential statements are followed by a simple predicate ,

combine all the sequential statements & predicate check into one node & have 2

edges emanating from this one node

5) Make sure that all the edges terminate at some node.

To Compute cyclomatic complexity : 3 ways

Example : sum of all positive numbers (greater than zero)

a array name

num_of_entries no of elements

sum to store total value

1. pos_sum(a, num_of_entries, sum)

2. sum=0
3. int i=1

4. while (i <=num_of_entries)
5. if (a[i] >0)

6. sum=sum+a[i]
endif

7. i=i+1
end while

8. end pos_sum

Assign line no for each statement in the program before constructing the
flowgraph.

23

i) Cyclomatic Complexity V(G) = E – N + 2, where E is the number of edges

and N is the number of nodes in graph G

ii) V(G) = P + 1, where P is the number of predicate nodes in the flow graph G
iii) V(G) =the number of regions (Closed & Outer Region)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1)Construct Flow Graph

2) Calculate the cyclomatic complexity of the resultant flow graph

i)V(G)= E - N+2 E= 7, N= 6 V(G) = 7 - 6 + 2 =3

ii)V(G)= P+1 P=2 V(G) = 2+1 = 3

iii) V(G) = No of Regions(R) R=3 V(G) = 3

3)Determine a basis set (independent path)

A path is a sequence of control flow nodes usually beginning from the entry

node of a graph through to the exit node.

(i) 1-2-3-4-8 (skip the loop)

(ii) 1-2-3-4-5-6-7-4-8 (adding number to sum)

(iii) 1-2-3-4-5-7-4-8 (not adding number to sum)

4) Prepare summary of test cases

Test
case Id

Input Expected o/p Actual o/p Result
:Pass/Fail

TC1 num_of_entries = -5 0 0 Pass

TC2

num_of_entries = 3
30

60

20

i=1 sum=30
i=2 sum=90

i=3 sum=110

110

Pass

Sum=110

TC3

num_of_entries = 1
-30

i=1 sum=0

0

Pass

Sum=0

24

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Meaning of cyclomatic complexity value

Complexity Meaning

1-10 Well written code , testability is high , cost/effort maintain

is low

10-20 Moderately complex , testability is medium ,cost/effort to
maintain is medium

20-40 Very complex , testability is low ,cost/effort to maintain is

high

>40 Not testable ,any amount of money /effort to maintain may
not be enough

Problem: Biggest of 3 Numbers

1 Read A,B,C

2 If A > B then

3 If A >C then

4 Print “ A is greater”

Else

5 Print “C is greater”

6 Endif

Else

7 If B >C then

8 Print “ B is greater”

Else

9 Print “C is greater”

10 Endif

11 Endif

1. Construct Flow Graph

25

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2. Calculate Cyclomatic Complexity

1. V(G)= E - N+2 E= 7, N= 11 V(G) = 13 -11 + 2 =4

2. V(G)= P+1 P=3 V(G) = 3+1 = 4

3. V(G) = No of Regions(R) R=4 V(G) = 4

4. Derive Basis Set

(i) 1-2-3-4-6-11 (A is greater)

(ii) 1-2-3-5-6-11 (C is greater)

(iii) 1-2-7-8-10-11 (B is greater)

(iv) 1-2-7-9-10 -11 (C is greater)

5. Summary of Test I/p

Test
case Id

Input Expected o/p Actual o/p Result
:Pass/Fail

TC1
Path1

A= 12 B=10 C=2 A is greater A is greater Pass

TC2
Path2

A= 12 B=10 C= 23 C is greater C is greater Pass

TC3
Path3

A= 10 B=12 C= 2 B is greater B is greater Pass

TC4

Path4

A= 10 B=12 C= 23 C is greater C is greater Pass

Additional White Box Test Design Approaches

Data Flow and White Box Test Design

Mutation Testing

Loop Testing

Test Adequacy Criteria TAC:- (stopping rule)

Def: Tester need a framework for deciding which structural elements to select

as the focus of testing, for choosing the appropriate test data and for deciding

when the testing efforts are adequate enough to terminate the process with

confidence that the software is working properly.

It is minimal standards for testing a program

– Helping testers to select properties of a program to focus on during test

– Helping testers to select a test data set for a program based on the selected

properties

– Supporting testers with development of quantitative objects for testing

– Indicating to testers whether or not testing can be stopped for that program

Types of TAC:

1. Program Based TAC : focus on structural properties of program , includes logic

,control structure , data flow

2. Specification based TAC: focus on program specification

3. Random TAC: ignores both program structure& specification

Ex: TAC focus on statement/branch properties

26

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

“A test data set is statement, or branch , adequate if a test set T for program P

Causes all the statements, or branches to be executed respectively”

Coverage Analysis: The TAC & the requirement that certain features of the code

are to be exercised by the test case, also named as coverage criteria

Degree of coverage : when a coverage related testing goal is expressed as a

percent.

degree of coverage < 100% due to the following:-

1. The Nature of the Unit

i. Some statements/branches may not be reachable

ii. The unit may be simple, and not mission or safety , critical and so

complete coverage is thought to be unnecessary

2. The lack of resources

i. The time set aside for testing is not adequate to achieve 100% coverage

ii. There are not enough trained testers to achieve complete coverage for all

the units

iii. There is a lack of tools to support complete coverage.

3. Other project related issued such as timing, scheduling and marketing

constraints.

Ex: 4 branches in s/w unit

2 are executed by planned set of test cases

Degree of branch coverage : 50%

Coverage goal is

not met

Develop Additional test cases & re execute

the test cases

Continue until

desired degree is
obtained

Evaluating Test Adequacy Criteria :TAC hierarchy

Tester can select appropriate criterion using the hierarchy

Criteria at the top includes the Criteria at the Bottom , for example All def-

use path adequacy means - tester achieved branch & statement adequacy

Each Adequacy Criteria has both strength and weakness

Stronger criteria tester need more time and resource

Example : (Sample code with data flow information)

def variable defined

use variable Used
p-use Predicate Use , variable used in condition

c-use Computation use , variable used in calculation

1 sum=0 sum, def
2 read (n) n, def
3 i=1 i, def

4 while (i <=n) i, n p-use
5 read (number) number, def
6. sum=sum+number sum, def, sum, number, c-use

7 i=i+1 i, def, c-use
8 end while
9 print (sum) sum, c-use

27

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Ex: DU Chain (Def-Use Path) Chain in Data flow Testing

Def-Use Path a path from a variable definition to a use is called a def-use path

Partial Ordering for Test Adequacy Criteria

Axioms

set of axioms that allow testers to formalize properties which should be satisfied

by any good program-based test data adequacy criterion

Testers can use the axioms to

recognize both strong and weak adequacy criteria;

28

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

focus attention on the properties that an effective test data adequacy criterion

should exhibit;

select an appropriate criterion for the item under test;

stimulate thought for the development of new criteria;

The axioms are based on the following set of assumptions

(i) programs are written in a structured programming language;

(ii) programs are SESE (single entry/single exit);

(iii) all input statements appear at the beginning of the program;

(iv) all output statements appear at the end of the program.

The axioms/properties described by Weyuker are the following

1. Applicability Property

2. Non exhaustive Applicability Property

3. Monotonicity Property

4. Inadequate Empty Set

5. Anti extensionality Property

6. General Multiple Change Property

7. Anti decomposition Property

8. Anti composition Property

9. Renaming Property

10. Complexity Property

11. Statement Coverage Property

Sample test data adequacy criteria and axiom satisfaction

Mutation Testing

• is a testing technique that focuses on measuring the adequacy of test cases.

• A test case is adequate if it is useful in detecting faults in a program.

• A test case can be shown to be adequate by finding at least one mutant program

that generates a different output than does the original program for that test

case.

29

 Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

• If the original program and all mutant programs generate the same output, the

test case is inadequate.

Basic Steps

Kinds of Mutation

A mutation is a small change in a program.

Value Mutations: these mutations involve changing the values of constants

or parameters (by adding or subtracting values etc), e.g. loop bounds { being

one out on the start or finish is a very common error.

Decision Mutations: this involves modifying conditions to reflect potential

slips and errors in the coding of conditions in programs, e.g. a typical mutation

might be replacing a > by a < in a comparison.

Statement Mutations: these might involve deleting certain lines to reflect

omissions in coding or swapping the order of lines of code. There are other

operations, e.g. changing operations in arithmetic expressions. A typical

omission might be to omit the increment on some variable in a while loop.

Example of Testing By Decision Mutation

First test data set--M=1, N=2 , the original function returns 2

• five mutants: replace”>“ operator in if statements by (>,<,<=or=)

Program Mutants

function MAX(M ,N:INTEGER)
return INTEGER is

begin
if M>N then

return M;

else
return N;

end if:
end MAX;

Mutants Outputs Comparison
if M>=N then 2 live

if M<N then 1 dead
if M<=N then 1 dead

if M=N then 2 live
if M< >N then 1 dead

• Executing each mutant: adding test data M=2, N=1 will eliminate the latter live

mutant, but the former live mutant remains live because it is equivalent to the

original function. No test data can eliminate it.

30

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Need For Levels Of Testing:-

 Execution based software testing, especially large systems, is usually carried out at different levels

 Major Phases of testing:

 Unit Test

 Integration Test

 System Test

 Acceptance Test

 Principal goal is to detect functional and structural defects in the unit. At the integration level several components

are tested as group, and tester investigates component interaction. At the system level the system as a whole is tested

and a principle goal is to evaluate attribute such as ability, reliability and performance

Level of Testing and Software Development Paradigms

The approach used to design and develop a software system has an impact on how a testers plan and design suitable

tests.

 The major approaches to system development- 1) Bottom up 2) Top down

 These approaches are supported by two major types of programming languages-

 1) procedure Oriented and 2) Object Oriented

 The different levels of systems developed with both approached using their traditional procedural programming

languages or object oriented programming languages.

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

IT8076-SOFTWARE TESTING (2017 Regulation)
UNIT-III

The Need of Levels of testing, Unit test , Unit test planning, Designing the unit test. Test Harness, Running the

unit tests and recording results. Integration Tests- Designing Integration test- Integration Test Planning-

Scenario Testing –Defect Bash Elimination-System testing -Acceptance testing-Performance Testing-Regression

Testing-Internationalization Testing- Adhoc Testing-Alpha-Beta Tests-Testing OO Systems-Usability and

Accessibility Testing- configuration testing – compatibility testing –testing the documentation –website testing

ARUNAI ENGINEERING COLLEGE

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Unit Test- The Need for Preparation

 The principal goal for unit testing is insure that each individual software is functioning according to its

specification

 Good testing practice  calls for unit tests that are planned and public.

 Planning includes

 designing test to reveal defects such as functional description defects, algorithmic defects , data defects,

and control logic and sequence defects.

 Resources should be allocated and test cases should be developed, using both white and black box test

design strategies.

 The unit should be tested by an independent tester (other than testers) and the test results and defects found

should be recorded as apart of the unit history (made public).

 Systems developed with procedural languages

 are generally viewed as being composed of passive data and active procedures

 When test cases are developed the focus is on generating input data to pass to the procedures (or

functions) in order to reveal defects.

 Object Oriented systems

 are viewed as being composed of active data along with allowed operations on that data, all

encapsulated within a unit similar to abstract data type.

Unit test: Functions, Procedures, Classes, and Method as Unit

 A workable definition for a software unit is as follows

 A Unit is the smallest possible testable software component

 It can be characterized in several ways. For example a unit in a typical procedure oriented

software system”

 Perform a single cohesive function

 Can be compiled separately

 Is a task in a work breakdown structure (from the manager’s point of view)

 Contain code that can fit on a single page or screen.

 A unit is traditionally viewed as a function or procedure implemented in a procedural (imperative)

programming language.

 In object oriented systems both the method and the class/object have been suggested by researchers

 A unit may also be a small sized COTS component purchased from an outside vendor that is undergoing

evaluation by the purchaser, or simple module retrieved from an in-house reuse library

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 Each unit should also be reviewed by a team of reviewers, preferably before the unit test.

 Unit test in many cases is performed informally by the unit developer soon after the module is completed, and it

compiles cleanly.

 Some developers also perform an informal review of the unit .

 To prepare for unit test the developers/ testers must perform several tasks. These are:-

1. Plan the general approach to unit testing

2. Design the test cases, and test procedures

3. Define relationships between the test

4. Prepare the auxiliary code necessary for unit test.

Unit test Planning

A general unit test plan should be prepared.It may be prepared as a component of the master test plan or a stand

alone plan.It should be developed in conjunction with the master plan and the project plan for each project

 Phase 1 : Describe Unit test Approach and Risk

In this phase of unit test planning the general approach to unit test planning is outlined: The test planner

1. Identifies test risks

2. Describes techniques to be used for designing the test cases for units

3. Describes techniques to be used for data validation and recording of test results

4. Describes the requirement for test harness and other software that interfaces with unit to be tested eg:- any

special software needed for testing object oriented units

 During this phase the planner also identifies completeness requirements ie what will be covered by the unit test

and to what degree (state , functionality, control, data flow patterns)

 Planner also identifies termination condition for unit test.

 They include coverage requirement and special cases

 Special cases may result in abnormal termination of unit test

 Planner estimate the resources needed for unit test such as hardware, software and staff and develop tentative

schedule under constraints identified at that time

Phase 2:- Identify Unit Features to be Tested

 This phase requires information from the unit specification and detailed design description

 The planner determines which features of each unit will be tested, for example functions, performance

requirement , state and state transition , control structures , messages and data flow patterns

 Some features will be covered by the tests, they should be mentioned and risks of not testing them be assessed.

 Input and output of each test unit should be identified.

Phase 3: Add levels of Detail to the Plan

 In this phase the planner refines the plan as produced in the previous two phases

 The planner adds new details to the approach, resource and scheduling portions of the unit test plan

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 Eg:- Existing test cases that can be reused for this project can be identified in the phase

 Unit availability and integration scheduling information should be included in the revised version of the test

plan

 Planner must be sure to include a description of how test results will be recorded.

 Test related documents that will be required for this task eg test logs, test incidents report should be described.

Designing the Unit test

 It is important to specify the following test design information with the unit test plan

 The test cases (including I/O and expected output for each test cases)

 The test procedures (steps required run the test)

 As a part of the unit test design process, developers / tester should also describe the relationship

between the tests.

 Test suites can be defined that binds related tests together as a group.

 Test cases, test procedures and test suites may be reused from the past projects if the organization has been

careful to store them so that they can be easily retrievable and reusable

 Test case design at unit level can be base on the use of black and white box design strategies

 Both of these approaches are useful for designing test cases for functions and procedures

 They are useful to designing test for individual methods in a class. This approach gives the tester the

opportunity to exercise logic structure and /or data flow sequence or to use mutation analysis, all with the goal

of evaluating the structural integrity of the unit

Class as a testable Unit

 If an organization is using the object oriented paradigm to develop software system it will need to select the

component to be considered for unit test.

 Choice consist of 1) individual methods as a unit or 2) the class as a whole.

 Additional code in the form of tests harness, must be built to represent the called methods within the class. This

is costly;

 Building such test harness for each individual method often require developing code equivalent to that already

existing in the class itself.

 In spite of the potential advantages of testing each method individually, many developers/testers consider the

class to be the component of choice for unit testing. The process of testing classes as units is sometimes called

component test

 When testing on the class level we are able detect not only traditional types of defects, for example, those due to

control or data flow errors, but also defects due to the nature of object oriented systems, for example, defects

due to encapsulation, inheritance, and polymorphism errors.

Issue 1:- Adequately Testing Classes

 The potentially high costs for testing each individual method in a class

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 These high cost will be particularly apparent when there are many methods in a class; the number can reach as

high as 20 to 30.

 If the class is selected as the unit to test, it is possible to reduce these cost since many cases the methods in a

single class server as drivers and stubs for one another.

 This has the effect of lowering the complexity of the test harness that needs to be developed.

 some cases driver classes that represent outside classes using the methods of the class under test will have to be

developed.

 For example : create, pop, push empty, full and show_top methods associated with the stack class.

 When testers unit(or components) test this class what they will need to focus on is the operation of each of the

methods in the class and the interaction between them

 For example, a test sequence for a stack that can hold three items might be:

create(s,3), empty(s), push(s,item-1), push(s,item-2), push(s,item-3),

full(s), show_top(s), pop(s,item), pop(s,item), pop(s,item), empty(s), . . .

Issue 2: Observation of Object States and State Changes

 Methods may not return a specific value to a caller

 They may instead change the state of an object .

 The state of an object is represented by a specific set of values for its attributes or state variables

 Methods often modify the state of an object, and the tester must ensure that each state transistor is proper

 The test designers can prepare a state table that specifies states , the object can assume, and then in the table

indicate sequence of messages and parameters that will cause the object to ensure each state.

 When the test are run the tester can enter results in this table. The first call to the method push in the stack class,

changes the state of the stack so that empty is no longer true. It also changes the value of the stack pointer

variable, top.

 To determine if the method push is working properly the value of the variable top must be visible both before

and after the invocation of this method. In this case show_top within the class may be called to perform this

task.

 The methods full and empty also probe the state of the stack. A sample augmented sequence of calls to check

the value of top and the full/ empty state of the three item stack is :

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Issue 3:- The Retesting of classes-I

 One of the most beneficial features of object oriented development is encapsulation  used to hide

information

 A program unit , in this case a class, can be built with a well defined public interface that proclaims its services

to client classes. The implementation of the services is private. Client who use the service s are unaware of

implementation details. The interface is unchanged , making changes to the implementation should not affect

the client classes. A tester object oriented code would therefore conclude that only the class with

implementation changes to its methods needed to be retested.

 In an object-oriented system, if a developer changes a class implementation that class needs to be retested as

well as all the classes that depend on it. If a superclass, for example, is changed, then it is necessary to retest all

of its subclasses

Issue 4:- The Retesting of classes-II

 Classes are usually a part of a class hierarchy where there are existing inheritance relationships

 Subclasses inherit methods from their super classes

 Tester may assume that once a method in a super class has been tested , it does not need retested in a subclasses

that inherit it.

 There may be overriding of methods where a subclass may replace an inherited methods with a locally define

methods.

 Designing a new set of test cases may be necessary.

 This is because the two methods may be structurally different

 Shape (display() , color())

 triangle (color())

 equilateral triangle (display())

 Suppose the shape superclass has a subclass, triangle, and triangle has a subclass, equilateral triangle. Also

suppose that the method display in shape needs to call the method color for its operation.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 Equilateral triangle could have a local definition for the method display. That method could in turn use a local

definition for color which has been defined in triangle.

 This local definition of the color method in triangle has been tested to work with the inherited display method in

shape, but not with the locally defined display in equilateral triangle.

 This is a new context that must be retested. A set of new test cases should be developed.

 The tester must carefully examine all the relationships between members of a class to detect such occurrences.

The Test Harness

 The auxiliary code developed to support testing of units and components is called as test harness

 The harness consist

 drivers  call the target code

 stubs  represent modules it calls.

 The development of drivers and stubs requires testing resources.

 The drivers and stubs must be tested themselves to insure they are working properly and that they are reusable

for subsequent releases of the software

 Drivers and stubs can be developed at several levels of functionality

 Eg:- a driver could have the following options and combinations of options:

 Call the target unit

 Do 1, and pad pass input parameters from the table

 Do 1,2, and display parameters

 Do 1,2,3 and display result (output parameters)

The stub should also exhibit bit different levels of functionality

 For example a stub could

 Display a message that it has been called the target unit

 Do1, and display any input parameters passes from the target units

 Do1,2, and pass back result from a table

 Do1,2,3 and display result from table

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Running a Unit tests and Recording Results

 Unit test can begin when

 The unit become available from the developers

 The test cases have been designed and reviewed

 The test harness and any other supplemental to supporting tools

 The status of the test efforts for a unit, and a summary of test results must be recorded in a unit test

worksheet

 It is very important that the tester at any level of testing to carefully record, review and check test results.

 The tester must determine from the results whether the unit has passed or failed the test

 If the test is failed, the nature of the problem should be recorded in what is sometimes called the test incident

report.

 Differences from expected behavior should be described. When a unit fails a test there may be several reasons

for the failure.

 fault in the unit implementation

 A fault in the test case specification (the input or the output was not specified correctly)

 A fault in test procedures execution(the test should be rerun)

 A fault in the test environment (perhaps a database was not set up properly)

 A fault in the unit design (the code correctly adheres to the design specification , but the latter is

incorrect)

 When a unit has been completely tested and finally passes all of the required tests it is ready for integration

Integration Test-Goals

 Integration test for procedural code has two major goals

 To detect defects that occur on the interfaces of units

 To assemble the individual unit into working subsystem and finally a complete system that is ready for

system test.

 In unit test the tester attempts to detect defects that are related to the functionality and structure of the unit.

 Some simple unit interfaces are more adequately tested during integration test when each unit is finally

connected to a full and working implementation of those unit it calls, and those that call it.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 Few minor expectations, integration test should only be performed on unit that have been reviewed and have

successfully passed unit testing.

 A tester might believe erroneously that since a unit has already been tested during a unit test with a drivers and

stubs, it does not need to be retested in combinations with other units during integration test.

 Integration testing works best as an iterative process procedural oriented system.

 One unit at a time integrated into a set of previously integrated modules which have passed a set of integration

tests.

 The interface and functionality of the new unit is combination with the previously integrated units is tested

 When a subsystem is built from units integrated in the stepwise manner, then performance , security and stress

test can be performed in this subsystem.

 Integrating one unit at a time helps tester in several ways.

 It keeps the number of new interfaces to be examined small, so that can focus on these interfaces only.

 Experienced tester know that many defects occur at module interface.

 Another advantage is that the massive failures that often occur multiple units are integrated at once is avoided.

 Approach also helps the developers, it allows defect search and repair confined to a small known number of

components and interfaces

 Integration process is object oriented systems is driven by assembly of the classes into cooperating groups.

 The cooperating groups of classes are tested as a whole and then combined into higher level groups.

Designing Integration tests

 Integration test  using a black or white box approach , Some unit test can be reused

 Since many error occur at module interfaces, test designers need to focus on exercising all input/output

parameter pairs and all calling relationships

 The tester needs to insure the parameters are of the correct type and in the correct order.

 The author has had the personal experience of spending many hours trying to locate a fault that was due to an

correct ordering of parameters in the calling routine

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 Example : Procedure_b is being integrated with Procedure_a. Procedure_a calls Procedure_b with two input

parameters in3, in4. Procedure_b uses those parameters and then returns a value for the output parameter out1.

Terms such as lhs and rhs could be any variable or expression.

 The parameter could be involved in a number of def and/or use data flow patterns

 The actual usage patterns of the parameters must be checked at integration time.

 Some black box test used for module integration may be reusable from unit testing.

 When units are integrated and subsystems are to be tested as a whole, new tests will a have to be designed to

cover the functionality tests at the integration level are the requirements document and the user manual.

 Tester need to work with requirement analyst to insure that the requirement are testable, accurate and complete.

 Black Box tests should be developed to insure proper functionally and ability to handle subsystem stress.

 Integration Testing of clusters of classes also involves building test harness which in this case are special

classes of objects built for testing

 Class testing we evaluated intra class method interaction , at the cluster level we test inter class method

interaction as well

 We want to insure that message are being passed properly to interfacing objects, object state transition are

correct when specific events occur , and that the cluster are performing their required functions.

 A group of cooperative classes is selected for a test as a cluster.(packages in java)

 If developers have used the Coad and Yourdon’s approach , then a subject layer could be used to represent a

cluster.

Integration test Planning

 Integration test must be planned

 Planning can begin when high level design is complete so that the system architecture is defined.

 Documents relevant to integration test planning are the requirement document, the use manual and usage

scenario. These document contains structure charts, the state charts and data dictionary , cross reference table ,

module interface description

 The strategy for integration of the unit must be defined .

 For procedural-oriented system

 the order of integration of the units of the units should be defined. This depends on the strategy selected.

Consider the fact that the testing objectives are to assemble components into subsystems and to demonstrate

that the subsystem functions properly with the integration test cases.

 For object-oriented

 systems a working definition of a cluster or similar construct must be described, and relevant test cases

must be specified. In addition, testing resources and schedules for integration should be included in the

test plan. The plan includes the following items:

Cluster this cluster is dependent on

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

A natural language description of the functionality of the cluster to be

 retested.

List a classes in the cluster

A set of cluster test cases

 Integration Testing Types:-

Integration testing can be viewed as

1) type of testing

2) phase of testing.

 Integration is defined to be a set of interactions, all defined interaction among the components need to be tested. The

architecture and design can give the details of interactions within the systems, however testing the interactions between

one system and another system required detailed understanding of how they work together.

Integration Testing As a Type of Testing :-

Integration testing means testing of interfaces. They are

Internal Interfaces - provide communication across two modules within a projects or product, internal to the product,

and not exposed to the customer or external developers

Exported or External Interfaces.. - Exported interfaces are those that are visible outside the product to third party

developers and solution providers.

“Intergration Testing Type Focuses on testing interfaces that are “Implicit and Explicit” and “Internal and

External”

Implicit interface -> Documentation given

Explicit interface-> No documentation given

“A set of Modules and Interfaces”

 In the above diagram, it is clear that there are at least 12 interfaces between the modules to be tested (9 explicit and

3 explicit). Now what will be the order of interface to be tested. There are several methodologies available , to in

decide the order for integration testing. These are as follows:-

1. Top Down Integration

2. Bottom up Integration

Component 1

Component 2

Component 3

Component 5

Component 4

Component 6

Component 7

Component 8

Component 9

 Component 10

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

3. Bi-Directional Integration

4. System (Big Bang) Integration

Top-Down Integration :-

 Integration Testing involves testing the topmost component interface with other components in same

order as you navigate from top to bottom, till we cover all the components.

To understand this methodology, we will assume that a new product/ software development where components become

available one after another in the order of component number specified .The integration starts with testing the interface

between Component 1 and Component 2 .To complete the integration testing all interfaces mentioned covering all the

arrows, have to be tested together. The order in which the interfaces are to be tested is depicted in the table below. In an

incremental product development, where one or two components gets added to the product in each increment, the

integration testing methodology pertains to only those new interfaces that are added .

Order of testing Interfaces

Steps Interfaces Tested

1 1-2

2 1-3

3 1-4

4 1-2-5

5 1-3-6

6 1-3-6-(3-7)

7 (1-2-5)-(1-3-6-(3-7))

8 1-4-8

9 (1-2-5)-(1-3-6-(3-7))-(1-4-8)

For example , assume one component (component 8) is added for the current release , then the integration testing for

current release need to include steps 4,7,8 and 9.

To optimize no of steps in integration(optimization of elapsed time) , following steps can be combined ,

 step 6,step 7  executed as single step,

 step 8,step 9

Components 1

Components 5

Components 3 Components 4

Components 7 Components 6

Components 2

Components 8

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Subsystem : set of components and their related interfaces can deliver functionality without expecting the presence of

components is called as sub system . Ex: components in steps 4, 6 and 8 can be considered as subsystem.

Bottom-Up Integration:-

Bottom-up integration is just the opposite of top-down integration, where the components for a new product

development becomes available in reverse order, starting from the bottom. Testing takes place from the bottom of the

control flow upwards. Components or systems are substituted by drivers. Logic Flow is from top to bottom and

integration path is from bottom to top. Navigation in bottom-up integration starts from component 1 converting all sub

systems , till components 8 is reached. The order is listed below. The number of steps in the bottom up can be

optimized into four steps. By combining step2 and step3 and by combining step 5-8 in the previous table.

Order of Interface tested using Bottom Up Integration

Steps Interfaces Tested

1 1-5

2 2-6,3-6

3 2-6-(3-6)

4 4-7

5 1-5-8

6 2-6-(3-6)-8

7 4-7-8

8 (1-5-8)-(2-6-(3-6)-8)-(4-7-8)

Bidirectional Integration:- (Sandwich Integration) Bi directional integration is a combination of the top-down

and bottom –up integration approaches used together to derive integration steps. Let us assume software components

become available in the order mentioned by the component numbers.

The Individual component 1, 2, 3, 4, and 5 are tested separately and bi-directional integration is performed initially

with the use of studs and drivers. Drivers are used to provide upstream connectivity while stubs are provided for

downstream connectivity.

A driver is a function which redirects the request to some other components and stubs simulate the behavior of a

missing components. After the functionality of these integrated components are tested, the drivers and stubs are

Component 8

Component 6

Component 1

Component 7

Component 3 Component 2

Component 5

Component 4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

discarded .Once component 6,7 and 8 becomes available, the integration methodology then focuses only on those

components , as these are the components which need focus and are new.

Steps for Integration Using Sandwich Testing :-

Steps Integration Tested

1 6-2

2 7-3-4

3 8-5

4 (1-6-2)-(1-7-3-4)-(1-8-5)

System (Big Bang) Integration:-

 System Integration means that all the components of the system are integrated and tested as a single unit.

Integration testing, which is testing of interface, can be divided into two types:-

 Components or Sub-System Integration

 Final Integration testing or system Integration

 Big bang Integration is deal for a product where the interfaces are stable with less number of defects.

 There are some major important disadvantages that can have a bearing on the release dates and quality of a

product are as follows :-

1. When a Failure or defects is encountered during system integration, it is very difficult to locate the problem, to

find out in which interface the defects exists. The debug cycle may involve focusing on specific interfaces and

testing them again.

2. The ownership for correcting the root cause of the defects may be a difficult issue to pin point.

3. When integration testing happens in the end , the pressure from the approaching release date is very high. This

pressure on the engineers may cause them to compromise on the quality of the product .

4. A certain components may take an excessive amount of time to be ready. This precludes testing other interfaces

and wastes time till the end.

Choosing Integration Methods:-

Sno Factors Suggested Integration Methods

1 Clear Requirement and Design Top Down

2 Dynamically, Changing Requirements,

Design, Architecture

Bottom-Up

Component 1

Component 8
Component 7

Component 2

Component 6

Component 3 Component 4 Component 5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

3 Changing Architecture, Stable Design Bi-Directional

4 Limited Changes to existing Architecture

with less Impact

Big Bang

5 Combination of all the above Select one of the above after careful analysis

Integration Testing As a Phase of testing :-

 “All testing activities that are conducted from the point where two components are integrated to the point

where all system components work together , are considered a part of the integration testing phase.”

The Integration testing phases focuses on finding defects which predominantly arise because of combining various

components for testing, and should not be focused on for component or few components .Integration testing as a

type focuses on testing the interfaces. This is a subnet of the integration testing phase.

Scenario Testing:-

 Scenario testing is defined as a “set of realistic user activities that are used for evaluating the products” .It is also

defined as testing involving customer scenarios. There are two methods to evolve scenario

1. System Scenario

2. Use case Scenario/ Role Based Scenarios.

 System Scenario:-

 System Scenario is a method where by the set of activities used for scenario testing covers several components

in the system. The following approaches can be used to develop system scenarios.

Story-line : Develop a story-line that combines various activities of the product that may be executed by an end

user.

Life-cycle / state transitions: Consider an object, derive the different transitions / modification that happen to

the object and derive scenarios to cover them . Ex: Savings Bank Account(opening , deposit , withdraw ,

interest calculation etc)  applied to money object

Deployment / implementation details from customer: develop a scenario from a known customer

deployment / implementation details and create set of activities by various users in the implementation

Business verticals: Visualizing how a product / software will be applied to different business verticals and

create a set of activities as scenarios (e.g., purchasing function is done differently in pharmaceuticals, software

houses , government organization so make the product multi purpose)

Battle-ground scenarios: Create some scenarios to justify “the product works” and some scenarios to “try and

break the system” to justify “the product doesn’t work.”

 The set of scenarios developed will be more effective if the majority of the approaches mentioned above are

used in combination, not in isolation. Scenario should not be set of disjointed activities which have no relation

to each other. Any activity in a scenario is always a continuation of the previous activities. Effective Scenarios

will have combination of current customers implementation foreseeing future use of product, and developing

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

adhoc test cases. Coverage is always a big question with respect to functionality in scenario testing. This testing

is not meant to cover different permutations and combinations of features and usage in a product .

Coverage of Activities by Scenario Testing

End User Activity Frequency Priority Applicable Environments No of times Covered

1.Login to Application High High W2000,W2003,XP 10

2. Create an Object High Medium W2000,XP 7

3.Modify Parameters Medium Medium W2000,XP 5

4.List Object Parameters Low Medium W2000,XP,W2003 3

5.Compose Mail Medium Medium W2000,XP 6

6.Attach Files Low Low W2000,XP 2

7.Send Composed Mail High High W2000,XP 10

Use Case Scenarios:-

A use case Scenario is a stepwise procedure on how a user intends to use a system, with different user roles and

associated parameters. A use case scenario can include stories, pictures and deployment details. Use cases are useful

for explaining customer problems and how the software can solve those problems without any ambiguity

Example:-

The scenario above is explaining a example of withdrawing a cash from a bank. A customer fills up a

cheque and gives it to an official in the bank. The official verifies the balance in the account from the computer

and gives the required cash to the customer .The customer in this example is a actor, the clerk the agent , and

the response given by the computer which gives the balance in the account , is called the system response

 Actor and System Response in Use Case for ATM cash withdrawal

Cheque
Query

Response
Cash

Agent

Actor

System
Response

.

.

.

.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

DEFECT BASH:-

1. Defect bash is an ad hoc testing, done by people performing different roles to bring out all types of

defects. It is very popular among applications development companies, where the products can be used

by people who perform different roles. The testing by all the participants during the defect bash is not

based on written test cases. Defect bash brings together plenty of good practices that are popular in

testing industry. They are as Follows :-Enabling people to “cross boundaries and test beyond assigned

area”

2. Bringing different people performing different roles together in the organization for testing - “Testing

isn’t for testers alone”

3. Let everyone in organization use the product before delivery - “Eat your own dog food”

4. Bringing fresh pairs of eyes to uncover new defects – “Fresh eyes have less bias”

5. Bringing in people who have different levels of product understanding, to test the product together

randomly – “Users of software are not the same”

6. Testing doesn’t wait for the time taken for documentation – “Does testing wait till all documentation is

done?”

7. Enabling people to say the “system works” as well as enabling them to “break the system” – “Testing

isn’t to conclude that the system works or doesn’t work”

Even though it is said that defect bash is an ad hoc testing, not all activities of defects bash are un planned. All the

activities in the defect bash are planned activities, except for what to be tested .It involves several

 steps:-

1. Choosing the frequency and duration of defect bash.

2. Selecting the right product build.

3. Communicating the objectives of each defect bash to everyone

4. Setting up and monitoring the lab for defect bash.

5. Taking action and fixing issues.

6. Optimizing the effort involved in defect bash.

1. Choosing frequency and duration

• Too frequent or too few rounds may not meet objective

• Optimize duration involved

2. Selecting right product build

• Good-quality product

• Regression tested build

• Too many defects spoil confidence

3. Communication objective of defect bash

• Purpose & objective has to be clear

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

• Areas of focus to be communicated

• Defects that can be found easily by test team shouldn’t be objective

 4. Setting up and monitoring lab

• Right configuration and resources

• Easy install & set-up help

• Optimized for both functional & non-functional defects

• Monitor all resources (RAM, disk, CPU, network)

 5. Taking actions and fixing issues

• Duplicate defects

• Not possible to look at each defect alone due to volume

• Code reviews and inspections

• Communication to all users on defects and their resolution

System Testing

 When integration tests are completed, a software system has been assembled and its major subsystem have been

tested

 System test planning should begin at the requirement based (black box) test

 System test planning is a complicated task. There are many components of the plan that need to be prepared

such as test approaches, costs, schedules , test cases and test procedures

 System testing itself requires large amount of resources

 The goalto ensure that the system performs according to its requirements.

 System test evaluates both functional behavior and quality requirement such as reliability, usability,

performance and security.

 The phase of testing is especially useful for detecting external hardware and software interface defects. Eg:-

those causing race conditions, deadlocks , problems with interrupts and exception handling.

 The organization will want to sure that the quality of the software has been measured and evaluated before

users/client are invited to use the system.

 In fact system test serves as a good rehearsal scenario for acceptance test.

 System test often requires many resources, special lab equipment.

 The best scenario is for the team to be part of an independent testing group.

 There are several types of system tests

 Functional testing , Performance Testing

 Stress testing , Configuration testing

 Security Testing ,Recovery testing

 reliability and usability testing.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 A load  is a serious of input that stimulated a group of transaction

 A transaction is a unit of work seen from the system user’s view

 A transaction consist of set of operations that may be performed by a person , software

 system or a device that is outside the system.

 A use case can be used to describe a transaction

 Ex : a telecomm system  load that simulated a series of phone calls (transactions) of particular types and

lengths arriving from different locations

 A load can be a real load, that is we can put the system under test to real usage by having actual telephone users

connected to it.

 Loads can also produced by tools called load generators , they will generate test input data from system test.

Load generators can be simple tools that outputs a fixed set of predetermined transaction

Functional testing

 Functional test at system level are used to ensure that the behavior of the system adheres to the requirements

specification. All functional requirements for the system must be achievable by the system.

 Examplepersonal finance system is required to allow users to set up account, add, modify and delete entries

in the accounts, and print reports, the function based system and acceptance test must ensure that the system can

perform these tasks

 Functional test are black box in nature ,The focus is on the inputs and proper output for each function

 Improper and illegal inputs must also be handled by the system

 Goals

 All types or classes of legal input must be accepted by the software

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 All classes of illegal inputs must be rejected (however the system should remain available)

 All possible classes of system output must exercised and examined

 All effective system states and state transition must be exercised and examined

 All functions must be exercised

 If a failure is observed, a formal test incident report should be completed and returned with the test log to the

developer for code repair. Managers keep track of these forms and reports for quality assurance purposes, and to

track the progress of the testing process.

Performance Testing

There are two major requirements:

 Functional Requirement:-

Users describes what function the software should perform. We test for compliance of these requirements at the

system level with the functional based system test.

 Quality Requirement :-

 There are nonfunctional in nature but describes quality levels expected for the software. One example of a

quality requirement is performance level, the users may have objectives for the software system in terms of memory

use , response time , throughput and delay

Goal : to see if the software meets performance requirements

 Testers also learn from performance test whether there are any hardware or software factors that impact on the

systems requirement .

 Performance testing allows the testers to tune the system, ie to optimize the allocation of system resource

 Performance objectives stated clearly  requirement documents , system test plans

 Results of Performance system test is quantifiable ex:no of CPU cycles , response time , no of transactions per

second.

 Resources for the performance testing must be allocated in the system test plan, Example of resources are given

below in a diagram

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 A source of transaction to drive the experiment ,For example if you were performance testing an operating

system you need a stream of data that represent typical user interactions .Typically the source of transaction

for many system is load generator .

 An experimental test bed  that includes hardware and software the system under test interacts with. The test

bed requirement sometimes includes special laboratory equipment and space that must be reserved for the tests.

 Instruments or probes that help to collect the performance data, probes may be hardware or software in

nature. Some probe tasks are event counting and event duration measurement. Eg:- if you are investigating

memory requirements for your software you could use a hardware probe that collected information on memory

usage as the system executes. The tester must keep in mind that the probes themselves may have an impact on

system performance

 A set of tools to collect, store, process and interpret the data. Very often , large volume of data are collected,

and without tools the testers may have difficulty in processing and analyzing the data in order to evaluate true

performance levels.

Stress Testing

 When a system is tested with a load that causes it to allocate its resources in maximum amounts, this is called

stress testing

 Eg:-if an OS is required to handle a 10 interrupts / second and the load cause 20 interrupt/ second, the system is

being stressed

 Goal  try to break the system; find the circumstance under which it will crash, this is sometimes called

“breaking the system”

 Stress testing is important because it can reveal defects in real time and other types of systems, as well as

weak areas where poor design could cause unavailability of services.

 Stress testing often uncovers race conditions, deadlocks , depletion of resource in unusual or un planned

patterns , and upset in normal operation of the software system.

 System limits and threshold values are exercised , Hardware and software interactions are stretched to the limit

 Stress testing is supported by many of the resource used for performance test as shown in previous diagram ,

This includes the load generator , The tester set the load generator parameter so that load levels cause stress to

the system

 Stress testing is important from the user/client point of view

 When system operate correctly under conditions of stress then client have confidence that the software can

perform as required.

Configuration Testing

 It allows developer/tester to evaluate system performance and availability when hardware exchanges and

reconfigurations occurs.

 Software Systems interact with hardware devices such as disc drivers, tape drivers and printers

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 Many Software system also interact with multiple CPU some of which are redundant.

 Eg:- a printer of type X should be substitutable for a printer of type Y, CPU A should be removable

from a system composed of several other CPUs

 Sensor A should be replaced with Sensor B

 Software will have a set of commands or menus that allow users to make these configuration changes

 If a system does not have specific requirements for device configuration changes then large-scale configuration

testing is not essential.

 According to Beizer configuration testing has the following objectives

1. Show that all configuration changing commands and menus work properly

2. Show that all interchangeable and that they each enter the proper states for the specified conditions

3. Shows that the system performance level is maintained when devices are interchanged, or when they fail

 Several types of operations should be performed during configuration test, some sample operations for tester

are:-

 Rotate and Per mutate the position of devices to ensure physiological/logical device permutations work

for each device

 Induce malfunctions in each devices , to see if the system properly handles the malfunction

 Induce multiple device malfunctions to see how the system reacts

 These operation will help to reveal problems (defects) relating to hardware and software when hardware

exchange, and the reconfiguration occur.

Security Testing:-

 Designing and testing software system insure that they are safe and secure is a big issue facing software

developers and test specialist

 Safety and Security is a big issue because of the Internet

 Users/Client should be encouraged to make sure their security needs are clearly known at requirement time, so

that security issues can be addressed by designers and Testers.

 Computer Software and data can be compromised by

 Criminals, intent on doing damages, stealing data and information, causing denial of service ,

invading privacy

 Errors on the part of honest developers/ maintainers who modify, destroy or compromise data

because of misinformation , misunderstanding , and/or lack of knowledge

Attacks can be random or systematic. Damage can be done through various means such as:-

 Viruses

 Trojan Horses

 Trap Doors

 Illicit channels

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

The effect of security breaches could be extensive and can cause

 Loss of information

 Corruption of information

 Privacy violations

 Denial of service

 Physical, psychological and economic harm to process or property can result from security breaches

 Developers try to ensure the security of their systems through use of protection mechanism such as

passwords, encryption , virus checkers and the detection and elimination of trap doors

 Password checking and example of other areas to focus on during security testing are described below

 Password Checking:- Test the password checker to insure that users will select a password that

meets the condition descried in the password checker specification. Equivalence class

partitioning and boundary value analysis based on the rules and conditions that specify a valid

password can be used to design the tests .

 Legal and Illegal Entry with password:- Test for legal and illegal system/data access via legal

and illegal passwords.

 Password Expiration:- If it is decided that password will expire after certain time period, tests

should be designed to insure the expiration period is properly supported and that users can enter

a new and appropriate password.

 Encryption:-Design test cases to evaluate the correctness of both encryption and decryption

algorithm for systems where data/message are encoded

 Browsing:- Evaluate browsing privileges to insure that unauthorized browsing doesn't occur.

Tester should attempt to browse illegally and observe system responses. They should determine

what types of private information can be inferred by both legal and illegal browsing

 Trap Doors:- Identify any unprotected entries into the system that may allow access through

unexpected channel (trap doors) .Design test cases that attempt to gain illegal entry and observe

results. tester will need to support of designer and developers for this task

 Viruses:- Design test to insure that system virus checkers prevent or curtail entry of viruses into

the system. Tester may attempt to infect the system with various viruses and observer the system

response.

Recovery Testing:-

 Recovery testing subjects a system to losses of resources in order to determine if it can recover properly from

these losses. This type of testing is important for transaction system.

 Eg:- on line banking software

 A test scenario might be to emulate loss of device during a transaction, Test would determine if the system

could return to a well known state ,and that no transaction have been compromised.

 System with automated recovery are deigned for this purpose

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 They usually have multiple CPU and /or multiple instance of devices , and mechanism to detect the failure of

the device, They are also called as “CHECK POINTS”

 Beizer advises that tester focus on the following areas during recovery testing

 Restart:- The current system state and transaction state are discarded The most recent checkpoint record

retrieved and the system initialized to the state in the checkpoint record. Tester must insure that all transaction

have been reconstructed correctly and that all devices are in proper state. The system should then be able to

begin to process new transaction

 Switchover:- The ability of the system to switch to a new processor must be tested .Switch over is the result of a

command or detection of faulty processor by a monitor

 All transaction and processes must be carefully examined to detect:-

 Loss of transaction

 Merging of transaction

 Incorrect Transactions

 An unnecessary duplication of transaction

Difference between functional and non functional Testing

System test contains both functional and non functional Testing

Testing aspect Functional Testing Non Functional Testing

Involves Product Features and functionality Quality Factor

Tests Product behavior Behavior & Experience

Result Conclusion Simple steps written to check expected

results

Huge data collected and analyzed

Results Varies Due to Product Implementation Product Implementation , resources and

configuration

Testing Focus Defect detection Qualification of product

Knowledge required Product and domain Product ,domain, design ,architecture

,statistical skills

Failures normally due to Code architecture , design ,code

Testing Phase Unit, component, integration , system System

Test case Repeatability Repeated Many Times Repeated only in case of failures and for

different configuration

Configuration One time setup for a set of test cases Configuration changes for each test case

 Example 1. Design / architecture verification

2. Business vertical testing

3. Deployment Testing

4. Beta Testing

5. Certification standards and Testing

for compliance

1. Scalability Test

2. Performance Test

3. Reliability Test

4. Stress Test

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

ACCEPTANCE TESTING

 It is done by the customer or by the rep of the customer to check whether the product is ready for use in the real

life environment.

 Customer defines a set of test cases that will be executed to qualify and accept the product

 Small in numbers, black box type of test cases

 Written to execute real life scenarios , verifying both functional & non functional aspects of the system

 Done prior to product delivery , sometimes jointly developed by the customer and product organization

1. Acceptance Criteria

a. Acceptance Criteria(AC) – Product acceptance

Acceptance criteria is not meant for executing test cases that have not been executed before. hence

existing testcases are looked at and certain categories of test cases can be grouped as AC.

Ex: all performance TC should pass to meet response time requirements

b. Acceptance Criteria – Procedure acceptance

It can be defined based on the procedures followed for delivery. It could be documentation and release

media. Example

 User , admin and troubleshooting doc should be part of the release

 Along with binary code , source code of the product build scripts to be delivered in CD

 A minimum of 20 employees are trained on the product usage prior to deployment

c. Acceptance Criteria – service level agreements(SLA)

service level agreements are part of contract signed by the customer and product organization. Important

contract items are taken and verified.

For Ex: time limits to resolve defects mentioned in SLA

i. All major defects that come up during first 3 months of deployment need to be fixed free of cost

ii. Down time of the implemented system should be less than 0.1%

iii. All major defects are to be fixed within 48 hours of reporting

2. Selecting test cases for Acceptance testing

a. End to End functionality verification

b. Domain Test

c. User Scenario test

d. Basic Sanity Test

e. New Functionality Test

f. A few Non functional Tests

g. Test Pertaining to legal obligations and service level agreements

h. Acceptance test data

3. Executing Acceptance Tests

 Acceptance Tests done by either 1)product organization 2) customer

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 If it is done by product organization ,forming a team is an important activity.

 It contains  Product management , support, consulting team

 90 % --people with business process knowledge , 10% -- tech testing team

 Testing Team may or may not aware of testing , so appropriate training on the product and the process must

be given . This could be in-house training material.

 The testing team members constantly interact with acceptance team members & help them

 to get required test data,

 select and identify test cases

 analyze the acceptance test result

 During test execution , the acceptance test team reports its progress regularly

REGRESSION TESTING

 Regression testing is not a level of testing, but it is the retesting of software that occur when changes are made

to ensure that new version of the software has retained the capability of the old version and no new defects has

been introduced due to the changes. Regression Testing can occur at any level of test

 Ex:- when unit test are run the unit may pass a number of these tests until one of the test does reveal a defect.

The unit is repaired and then retested with all the old test cases to ensure that the changes have not affected its

functionality

• Regression testing is selective re-testing of the system with an objective to ensure that the bug fixes work and

those bug fixes have not caused any un-intended effects in the system

• This testing is done to ensure that:

– The bug-fixes work

– The bug-fixes do not create any side-effects

Regression Testing – Types

I. Final regression testing

• Unchanged build exercised for the minimum period of “cook time” (gold master build)

• To ensure that “the same build of the product that was tested reaches the customer”

• More critical than any other type of testing

• Used to get a comfort feeling on the product prior to release

II. Regression testing

• To validate the product builds between test cycles

• Unchanged build is recommended but not mandatory

• Used to get a comfort feeling on the bug fixes, and to carry on with next cycle of testing

• Also used for making intermediate releases (Beta,Alpha)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

When to do regression testing?
1. A reasonable amount of initial testing is already carried out

2. A good no of defects have been fixed

3. Defect fixes that can produce side-effects are taken care of

STEPS IN REGRESSION TESTING

1. Performing initial smoke tests

2. Understand the criteria for Selecting test cases

3. Classifying test cases

4. Methodology for selecting the TC

5. Resetting test cases for execution

6. How to conclude results

1. Performing initial smoke tests
• Identify the basic functionality that product must satisfy

• Designing the test cases to ensure that these functionality works , package them into smoke test suite

• Ensuring that every time the product is build this suite is run successfully before anything else is run

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

• If this suite fails , escalating to the developer to identify the changes or roll back to the state where

smoke test suite succeeds

2. Understand the criteria for Selecting test cases
1. Include TC that has max defects.

2. Include TC where changes are made.

3. Include TC that test the basic functionality.

4. Include TC in which problems are reported.

5. Include TC that test end-to-end behavior.

6. Include TC for positive conditions.

7. Include the TC that are visible to the user.

3. Classifying test cases

Priority -0 Called sanity Test case

Check basic functionality & are run for accepting the build for

further testing

Done when a project goes through major change

Priority -1 Uses the basic and normal setup and these test cases deliver high

project value to both development team and to customer

Priority -2 It deliver moderate project value

Executed as a part of testing cycle

4. Methodology for selecting the TC
 Criticality &

Impact of

Action

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

defect fixes

Case 1 Low Select few Test cases from the test case database(TCDB),

execute them , they fall under priority 0,1,2

Case 2 Medium execute test cases from priority 0,1 , few from Priority 2

Case 3 high Execute all test case from priority 0,1 & carefully select sub

set of TC from Priority 2

Alternative methodology :

1. Regress all

2. Priority based (priority 0,1, 2)

3. Regress Changes

4. Random Regression

5. Context based dynamic regression

5.Resetting test cases for execution

• When there is a major change in the product

• When there is a change in the build procedure that affects the product

• In a large release cycle where some test cases have not been executed for a long time

• When you are in the final regression test cycle with a few selected test cases

• In a situation in which the expected results could be quite different from history

6. How to conclude results

Current Result from

regression

Previous

Results

Conclusion Remarks

FAIL PASS FAIL  Regression failed and

 Apply RESET guidelines and proceed

after getting new build

PASS FAIL PASS  Bug fixes are working and

 Continue your regression to find side

effects

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

FAIL FAIL FAIL  Bug fixes not working or not provided or

 Wrong selection

PASS(with

work around)

FAIL Analyze the work

round and if

satisfied mark as

PASS

 Work round needs good review as they

create side effects

PASS PASS PASS  This test case could have been included for

finding side-effects or Wrong selection

INTERNATIONALIZATION TESTING:-

 Introduction

 Primer

 Terminology

 Test phases for I18n

 Enabling testing

 Locale testing

 I18n validation

 Fake language testing

 Language testing

 Localization testing

 Tools

Introduction:-

 Market of software is becoming truly global. The advent of Internet has removed some of the technology barriers on

widespread usage of software products and has simplified the distribution of Software Products

 Building Software for the International market, supporting multiple languages, in a cost effective and timely manner is

a matter of using internationalization standards throughout the software development life cycle- from requirements

capture through design, development, testing and maintenance.

 If some Guidelines are not followed in the SDLC for internationalization, the effort and additional cost to

support every new language will increase significantly overtime. Testing for Internationalization is done to ensure that

the software does not assume any specific language or conventions associated with a specific language. Testing for

language or conventions associated with a specific language. Testing for Internationalization has to be done in various

phases of SDLC.

Terminology Used in Internationalization

 Definition of Language :-

 Language – Language is a tool used for communication. Language has Semantics or the meanings associated

with the sentences. For the same language , the spoken usage , word usage and grammar could vary from

country to another, however the character /alphabets may remain the same in most cases.

Character Set

 ASCII – American Standard Code for Information Interchange:

– Uses 8 bit for representing characters

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

– Basic ASCII uses 7 bits (128 chars) and extended ASCII uses 8 bits (256 chars)

– European characters and punctuation symbols are easily represented in extended ASCII

– It also includes accented chars (ñ, á, é, í, ó, ú)

 Double Byte Character Set (DBCS) :

– Many of the languages (Chinese & japanese) can be represented in 8 bits.

– DBCS uses 16 bits to represent characters.

– In DBCS, 65536 different characters can be represented

 Unicode:

– ASCII & DBCS represents characters of a single language

– Unicode represents all characters of all languages

– Unicode assigns a unique code to each character no matter what language or program or platform

– Uses 16 bit encoding

– Unicode transformation format : Specifies algorithmic mapping of character into Unicode

– Each language has a unique number in Unicode

 Locale

– Each of the languages is spoken differently in different countries and states

– There could be many countries speaking the same language, using the same characters, punctuations,

etc.

– But some conventions may be different (currency and date format)

– For example, English is used widely in the US and India, but

 Currency : $ and Rs.

 $1,000,000 and Rs. 1,00,000

– There could be multiple currencies in a country (Euro and Franc in France)

– There could be multiple locale for a language in the same country

Terminology

• Internationalization(I18n)

• also called I18n, the subscript 18 is used to mean that there are 18 characters between “I” and the last

“n” in the word Internationalization

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

• Testing is done in various phases to ensure that all those activities are done right is called

Internationalization testing or I18n testing.

• Represents all activities to make products available to the international market

• Includes both DEV & testing activities

• Localization (L10n)

• Also called L10n, the subscript 10 is used to indicate that there are 10 characters between “L” and “n”

in the word Localization.

• Translation of all product messages and documentation

• Done by language experts

• Includes both DEV & testing activities

• Globalization

• Not very popular

• Also called G12n

• Internationalization includes localization but some companies want to separate as the team that does

both are different, and hence this term

Test Phases for Internationalization Testing :- Testing for Internationalization requires a clear understanding of all

activities involved and their sequence. The job of testing is to ensure the correctness of activities done earlier by other

teams.

The Major Activities in Internationalization Testing

 The Testing for internationalization is done in multiple phases in the project life cycle. The diagram below Elaborates

the SDLC V model described and how the different phases of this model are related to various I18n testing Activities.

Enabling testing is done by the developer as a part of the Unit testing Phase.

Some Important Aspects of Internationalization testing are:-

3. I18N Testing and

Validation

4. Fake language Testing

Message Consolidation

Message Translation

Include messages into

the product

6. Localization Testing

Release (International

Version)
Release (English

Version)

Enable the code

1. Enabling testing

2. Locale testing

5. Language Testing

GLOBALIZATION= INTERNATIONALIZATION+ LOCALIZATION

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

1. Testing the code for how it handles input, strings and sorting items;

2. Display of Messages for Various Languages; and

3. Processing of Messages for Various Languages and Conventions.

Enabling Testing:-

Enabling Testing is a white box testing methodology , which is done to ensure that the source code used in the

software allows internationalization. A source code , which has hard coded currency format and date format, fixed

length GUI screens or dialog boxes, read and print messages directly on the media is not considered enabled code.

An activity of code review or code inspection mixed with test cases for unit testing, with an objective to catch

I18n defects is called enabling testing. The year 2000 is a classic I18n defect. Enabling testing finds the majority of

I18n defects If this is not done in the unit test phase, exponential effort has to be spent in later phases as it impacts

code, design, etc. Also other I18n testing for fake language, l10n has to be repeated.

Enabling Testing – Checklist:-

• Find out those APIs/function calls that can’t be used for I18n (printf, scanf) – NLSAPI, unicode, GNU gives

some APIs instead

• Check the code for hard-coded date, currency format, ASCII usage or character constants.

• Check the code for arithmetic operations on date ie there is no computations (additions and subtractions) done

on date variables or different format forced to the date in the code.

• Check that no format is forced to date field

• Check each field in the screen for extra space (normally 50% extra space is allotted)

• Ensure that region-based messages/slang are not used (e.g., Hi, references to colour)

• Ensure no string operations are performed on the code (substring search, concatenation); only APIs provided by

I18n are to be used

• The code does not assume any predefined path, filename, directory name in NLS directory

• Check code doesn’t make any assumptions about bit representation (8, 16, 32), and bit operations are not used

• Ensure adequate length is allocated to accommodate translated messages

• Check that pictures, logos and bitmaps do not have embedded text

• Ensure that all messages have code in-line comments for helping translators (e.g. pre-ponement of meeting)

• Ensure all resources are (dialog boxes, screen shots, bitmaps, etc.)

Localization Testing Localization Testing

Language Testing

Fake Language Testing

Language Testing

Fake Language Testing

I18n Validation

Locale Testing

I18n Validation

Locale Testing

Enabling TestingEnabling Testing

Component TestingComponent Testing

System TestingSystem Testing

Integration TestingIntegration Testing

Unit TestingUnit Testing

Acceptance

Testing

Acceptance

Testing

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

• Ensure technical jargons are not used and that the text may be understood by even the least-skilled user (e.g.,

pipe overflow)

• Ensure that the directions of reading / writing are opposite to scrolling, and that they follow the language

convention

Locale Testing:-

 Locale Testing is not as elaborate procedure as enabling testing. The focus of Locale testing is Limited to :-

 Changing the different locale using the system settings or environment variables, and testing the software

functionality, number, date, time and currency format is called locale testing.

 It is to used validate the effects of locale change in the product. A locale change affects date, currency format,

the display of items in the screen, dialog boxes and the text.

 Black box methodology tests all component features for each locale.

 In Microsoft Windows 2000, you can change locale by clicking “Start->Settings->Control Panel->Regional

options (demo).

Locale Testing focuses on testing the conventions for number, punctuations, date and time, and currency format.

Locale Testing - Checklist

 All features that are applicable to I18n are tested with different locales of the software for which it is intended.

 Some of the activities that need not be considered for I18n testing are auditing, debug code, log of activities

and such features that are used only by English administrators and programmers.

 Hot keys, function keys and help screens are tested with different applicable locales (this is to check whether

locale change would affect the keyboard settings).

 Date and time format is in line with the defined locale of the language. For example if the US English locale is

selected, the software should display data in mm/dd/yyyy date format.

 Currency is in line with the selected locale and language. For example, currency should be AUS$ if the

language is AUS English.

 Number format is in line with the selected locale and language. For example, the correct decimal punctuations

are used and the punctuation is put at the right places.

Reading Scrolling

J

a

p

a

n

e

s

e

English

English

Arabic

Arabic

J

a

p

a

n

e

s

e

Reading and scrolling direction

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 Time zone information and daylight saving time calculations (if used by the software) are consistent and

correct.

Internationalization Validation:-

 Objectives of I18n the validations is performed with the following objectives:-

1. The software is tested for functionality with ASCII, DBCS, and European characters•

2. The software handles string operations, sorting, sequencing operations as per the language and characters selected

3. The software display is consistent with characters that are non-ASCII in GUI and menus

4. The software messages are handled properly

I18n Validation – Input Method Editor

This is a soft keyboard used to enter non-English characters into the product. IME soft keyboard for Japanese.

I18n validation – Checklist:-

1. The functionality in all languages and locales are the same.

2. Sorting and sequencing the items are as per the conventions of language and locale. For example if $ is

mentioned as the currency symbol for USA, sorting should take care of symbol & punctuations.

3. The input to the software can be in non-ASCII (Use of tools such as IME) and functionality is consistent with

non-ASCII.•

4. The non-ASCII characters in the name are displayed as they were entered.

5. The cut or copy -and-paste of non-ASCII characters retains their style after pasting, and the software functions

as expected.

6. The software functions correctly with different languages / words / names generated with IME and other tools;

for example, Login should work with an English user name as well as with a German user name with some

accented characters.

7. The documentation contains consistent documentation style and punctuations, and all language / locale

conventions are followed for every target audience.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

8. All the runtime messages in the software are as per the language, country terminology and usage along with

proper punctuations; for example, the currency amount 123456789.00 should get formatted as 123,456,789.00

in the US and as 12,34,56,789.00 in India)

 I18 n Validation Focuses on component functionality for Input/ Output of Non English Messages.

Fake Language Testing

Fake Language testing uses software translators to catch the translation and localization issues early. This also ensures

that switching between languages works properly and correct messages are picked up from proper directories that have

the translated messages. Fake Language testing helps in identifying the issues proactively before the product is

localized. For this purpose , all messages are consolidated from the software , and fake language conversion are

consolidated from the software, and fake language conversion are done by tools and tested. The Fake language

translators use English like Target Languages, which are easy to understand and test. This type of testing helps English

testers to find the defects that may otherwise found only by Language Experts during Localization Testing .

In the figure there are two English like Fake Languages used (Pig Latin and Wide Roman) A message in the

program, “Hello” as “Ellohay” in Pig Latin and “Hello” in Wide Roman .This helps in identifying whether the

proper target language has been picked up by the software when language is changed dynamically using system

setting .

The Following items in the checklist can be used for Fake Language Testing:-

1. Ensure the software functionality is tested for at least one of the European single byte fake languages (e.g.,

Pig Latin) Ensure the software functionality is tested for at least one double byte language (e.g., Wide

Roman)

2. Ensure all strings are displayed properly in the screen

3. Ensure the screen width, size of pop-ups and dialog boxes are adequate for string display with the fake

languages.

Fake Language testing helps in simulating the functionality of the localized product for a different language

using software translator.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Language Testing:-

• Short form of “language compatibility testing”

• This testing is done to ensure that on other language settings the functionality of the software is not broken and

that it is still compatible across the network.

• When data is transmitted between machines or between softwares and operating systems, the code page, bit

stream, message conversions taking place for internationalization.

Language Testing - Checklist

 Check the functionality on one English, one non-English and one double-byte language platform

combination.

 Check the performance of key functionality on different language platforms and across different

machines connected in the network.

Localization Testing :-

1. Build tools consolidate all messages.

2. Documents and other artifacts are collected.

3. They are sent to language experts for translation.

Server

Startup

language/

locale

Locale of the

server OS

Locale of the

client

Japanese

German

English

I speak only

English but can

deal with anyone

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

4. Process of localization is expensive.

5. Not all messages, documents need to be localized.

6. Process of localization also alters the GUI screens, dialog boxes, icons and bitmaps.

7. Process of customization.

8. The product is installed in a specific language and tested by language experts.

Localization Testing – Checklist

1. All the messages, documents, pictures, screens are localized to reflect the native users and the conventions of

the country, locale and language.

2. Font sizes and hot keys are working correctly in the translated messages, documents and screens.

3. Filtering and searching capabilities of software work as per the language and locale conventions.

4. Addresses, phone numbers, numbers and postal codes in the localized software are as per the conventions of the

target user.

5. Sorting and case conversions are right as per language convention; for example, sort order in English is A, B,

C, D, E, whereas in Spanish the sort order is A, B, C, CH, D, E.

Sort Order in English and Spanish

Tools Used For Internationalization :-

 There are several tools available for internationalization. These largely depend on the technology and platform used.

For Example, the tools used for client server technology is different from those for web services technology using

Java.

America

Brasil

Canada

China

Cyberia

India

America

Brasil

Canada

Cyberia

China

India

After sorting

English Spanish

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

ADHOC TESTING :-

• Overview

• Ad hoc testing Vs planned testing

• Buddy testing

• Pair testing

• Exploratory testing

• Iterative testing

• Agile & extreme testing

• Defect seeding

• Defect bash

• Drawbacks of ad hoc testing

All types of testing explained earlier are part of planned testing and are carried out using certain specific techniques

(Boundary value Analysis) there are family of test types which are carried out in un planned manner hence it is named

Adhoc Testing. Related Type of Adhoc Testing are

1. Buddy Testing

2. Exploratory Testing

3. Pair Testing

4. Iterative Testing

5. Agile and Extreme Testing

6. Defect Seeding

Issues of planned testing

a. Goes by level of understanding at the time of design

b. Validation of test cases happens at runtime

c. Lack of clarity on requirements impacts quality

d. Lack of skills affects quality of test cases

e. Lack of time for design affects completeness

 After some of the Planned test cases are executed, the clarity on the requirement improves. Test cases written

earlier may not reflect the better clarity gained in this process.

 After going through a round of planned test execution, the skills of the test engineers becomes but the test cases

may not have been updated to reflect the improvement in skills.

 The lack of time for test design affects the quality of testing , as there could be missing perspectives.

 Planned Testing Enables catching certain types of defects. Though Planned tests help in boosting the testers

Confidence , it is the testers “intuition” that often finds critical defects.

Definition: Ad Hoc Testing

Testing done without using any formal testing technique is called ad hoc testing.

Pesticide Paradox

 One of the Principles of Software Testing explains the situation where the surviving pests in a farm creates

resistance to a particular pesticide. The situation requires the farmer to use a different types of pesticide every time for

the next crop cycle. Similarly, products defects gets tuned to planned test cases and those test cases may not uncover

defects in the nest test cycles unless new perspectives are added. Planned Test Cases requires constant updates,

sometimes even on a daily basis, incorporating the new learning. Updating test cases very frequently may become time

consuming and tedious job .In such cases we have to follow Adhoc Testing.

Adhoc Testing Versus Planned Testing :-

Testing done without using any recognized testing technique is called ad hoc testing.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Constant interaction with developers and other project team members may lead to better understanding of the product

from various perspectives. Since Adhoc tests require better understanding of the product, it is importance to stay

“Connected”.

Due to lack of communication, change in the requirements may not be informed to the test team. When test Engineer

does not know the requirements changes, it is possible to miss few tests. This may result in a few undetected defects. It

is possible to unintentionally miss some perspectives due to changed requirements.

Interaction with developers and other team members may help in getting only a set of perspectives. These type of

interaction may bias the testing team. Hence it is important to constantly question the test cases and also interact with

people outside the organization to find different ways of using the product and use them in adhoc testing.

Adhoc testing can be performed on a product at any time, but the return from adhoc testing are more if they are run

after running planned test cases. Adhoc testing can be planned in one of two ways:-

1. After a Certain number of planned test cases are executed. In this case, the product is likely to be in a better

shape and thus newer perspectives and defects can be uncovered. Since Adhoc testing does not require all the

test cases to be documented immediately, this provides an opportunity to catch multiple missing perspectives

with minimal time delay.

2. Prior to planned testing. This will enable gaining better clarity on requirement and assessing the quality of the

product upfront.

Drawbacks of Adhoc Testing and Their Resolutions:-

Drawback Possible resolution

Difficult to ensure the perspectives covered

in ad hoc testing are used in future
 Document ad hoc tests after test completion

Large number of defects found in ad hoc

testing
 Schedule a meeting to discuss defect impacts

 Improve the test cases for planned testing

Lack of comfort on coverage of ad hoc

testing
 When producing test reports combine the planned test and

ad hoc test

 Plan for additional planned test and ad hoc test cycles

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Difficult to track the exact steps done  Write detailed defect reports in a step-by-step manner

 Document ad hoc tests after test execution

Lack of data for metrics analysis  Plan the metrics collection for both planned tests and ad

hoc tests, not only for ad hoc testing

Buddy Testing :-

Def: A developer and tester working as buddies to help each other on testing and in understanding the specifications

is called Buddy Testing

 Two team members (developer and a tester)are identified as buddies. The buddies mutually help each other,

with a common goal of identifying defects early and correcting them

 This good working relationship as buddies overcome fear.

 Budding people with good working relationships yet having diverse backgrounds is a kind of a safety measure

that improves the chance of detecting errors in the program very early

 Buddies should not feel mutually threatened or get a feeling of insecurity during buddy testing. They are trained

on the philosophy and objective of buddy training.

 They also have to agree on the modalities and the terms of working before actually starting the testing work.

They stay close together to be able to follow the agreed plan

 The Buddy can check for compliance to coding standards , appropriate variable definitions , missing code,

sufficient inline code documentation , error checking.

 Buddy testing uses both white box and black box testing approaches.

 after testing generates specific review developers.

 The more specific the feedback, easier it is for the developer to fix the defects . The buddy may also suggest

ideas to fix the code when pointing out an error in the work product. A buddy test may help avoid errors of

omission, misunderstanding, and miscommunication by providing varied perspectives or interactive exchanges

between the buddies,

 Buddy testing not only helps in finding errors in the code but also helps the tester to understand how the code is

written and provides clarity on specifications. Buddy testing is normally done at the unit phase , where there

are both coding and testing activities .

Pair Testing:-

Pair testing is testing done by two testers working simultaneously on the same machine to find defects in the product

.Example:-

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 For e.g., two people traveling in a car to find a new place

• Two testers pair up to uncover new defects

• One person executes tests, and the other person observes

• Rotation of roles

• A session of one or two hours

• A senior person and a junior person make an ideal pair

 Pair testing takes advantage of the concept of the presence of one senior member can also help in pairing; this

can cut down on the time spent on the learning curve of the product. It enables better training to be given to the

team members; The impact of the requirements can be fully understood and explained to less experienced

individuals.

 Pair testing can be done during any phase of testing. It encourages idea generating right from the requirements

analysis phase, taking it forward to the design, coding and testing phases .

 Testers can pair together during the coding phase to generate various ideas to test the code and various

components.

 After completion of component testing, during integration, tester can be paired to test the interfaces together.

Pair testing during system testing ensures that product level defects are found and addressed.

 When the product is in new domain and not many people have the desired knowledge pair testing will be useful.

Pair testing can track that vague defect that is not caught by a single person testing,

 A defect found during such pair testing may be explained better by representation of two members. Pair testing

is extension of the “Pair Programming” concept used as a technique in the extreme programming model.

 Pair testing require interaction and exchange of ideas between two individuals. Team members pair with

different persons during project life cycle, the entire project team can have a good understanding of each other ,

Situation when Pair Testing Becomes Ineffective:-

 During pairing, teaming up individual high performers may lead to problem may be possible that during the

course of the session , one person takes the lead and other has a laid back attitude . This may not produce the desired

TestsTests

Business

Requirements

Business

Requirements

TestsTestsTests

Project

Specification

Project

Specification

TestsTestsTests

System

Specification

System

Specification

TestsTestsTests

Design

Specification

Design

Specification

TestsTestsTests

CodeCode

Component TestingComponent Testing

System TestingSystem Testing

Integration TestingIntegration Testing

Unit TestingUnit Testing

Acceptance

Testing

Acceptance

Testing

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

results. In case the pair of individuals in the team are ones who do not try to understand and respect each other, pair

testing may lead to frustration and domination. When one member is working on the computer and other is playing the

role of scribe , if their speed of understanding and execution does not match, it may result in loss of attention. It may

be difficult in the later stage.

 Pairing up juniors with experienced members may result in the members may result in the former doing tasks

that the senior may not want to do, At the end of the session, there is no accountability on who is responsible for

steering the work, providing directions and delivering the results.

Exploratory Testing :-

 Technique used to find defects in Adhoc testing is to keep exploring the products, covering more depth

and breadth. Exploratory testing tries to do that with specific objectives, tasks and plans. Exploratory testing can be

done during any phase of testing.

 Exploratory testers may execute their test based on their past experiences in testing a similar product, or

a product of similar domain, or a product in a technology area. Exploratory testing can be used to test software that is

untested, unknown , or unstable. It is used when it is not obvious what the nest test should be and or when we want to

go beyond the obvious tests.

Exploratory Testing Techniques:-

 For e.g., driving the car in a new area. Common techniques used to reach the destination is

• Getting a map

• Asking pedestrians

• Random direction and search

• Calling up a friend

• Enquiring at gas stations

• Looking at boards / signs

Guesses

Architecture diagrams, use cases

Past defects

Error handling

Discussions

Questions & Checklists

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Guesses are used to find the part of the program that is likely to have more errors. Because a tester would have

already faced situations to test a similar product ort software. Those tests from guesses are used on the product to check

for similar defects,

Architectural Diagrams and Use Cases depicts the interactions and relationships between different components and

modules . us eases give an insight of the product’s usage from the end users perspectives. Use case can explain a set of

business events , the input requires, people involved in those events and the expected output.

Study of Past Defects studying defects reported in the previous releases helps in understanding of the error prone

functionality / modules in a product development environment .

Error Handling is the product in another technique to explore. Error handling is a portion of the code which prints

appropriate messages or provides appropriate action in case of failures. We can check using exploratory test for various

scenarios for graceful error handling. For Example in the case of a catastrophic error, termination should be with a

meaningful error message. Error Handling provides a message or corrective action in such situations. Test can be

performed to simulate such situations to ensure that the products code take care of these aspects.

Discussion – Exploration may be planned based on the understanding of the system during project discussions or

meetings. Plenty of information can be picked up during these meetings regarding implementation of different

requirements for the products. They can be noted and used while testing.

Questionnaires and Checklists to perform the exploration. Questions like “What, When, How, Who and Why” can

provide leads to explore areas in the product. To understand the implementation of functionality in a product , open-

ended questions like “What does this module do”, “ When is it being called or used?”, “ how is the input processed” ,”

who are the users of this modules”, etc.

Iterative Testing :-

For e.g., a person driving without a map trying to count the restaurants in a town

Customer will have a usable product at the end of every iteration .It is possible to stop the product development at any

particular iteration and market the product as an independent entity.

Customer and Management can notice the impact of defects and the product functionality at the end of each iteration.

They can take a call to proceed to the next level or not, base don the observations made in the last iterations. A test plan

is created at the beginning of the first iterations and update for every subsequent iterations. This can be broadly defined

the type and scope of testing to be done for each of the iterations. Developers create unit test cases to ensure that the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

program developed goes through complete testing. Unit test cases are also generated from black box perspective to

more completely test the product. Regression Testing may be repeated at least every alternative iterations so that the

current functionality is preserved since iterative testing involves repetitive test execution of tests that were run fro the

previous iterations, it becomes a tire some exercise for the testers.

Assume that a defect was found in the second iteration and was not fixed until the fifth. There is a possibility that the

defect may no longer be valid or could have become void due to revised requirements during the third, fourth and fifth

iterations. In the example above the counting the number of restaurants starts from the first road visited , the results of

the search can be published at the end of each iteration and released.

Agile and Extreme Testing :-

Call Attendant: Our process requires the person

for whom the certificate is issued to come and sign

the form.

Caller: I understand your process, but I am asking

for the death certificate of my grand father.

 Agile and Extreme (XP) models take the processes to the extreme to ensure that customer requirements are met

in a timely manner. Customer partner with the project teams to go step by step in bringing the project to completion in

a phased manner. The customer becomes part of the project team so as to clarify any doubts/questions.

 Agile and Extreme (XP) methodology emphasizes the involvement of the entire team, and their interactions

with each other, to produce workable software that can satisfy a given set of features. As a result of such interactions,

all ideas are exchanged. Software is delivered as a small release with features being introduced in increments.

 A typical XP project day start with a meeting called the Stand Up meeting . At the start of each day, the team

meets to decide on the plans of actions for the day. During this meeting the team brings up any clarifications or

concerns. They are discussed and resolved. The entire team gets a consistent view of what each team members is

working on. Tester present to the project team the progress of the project based on the test results.

 Each of the requirements is at a
different phase

 Testing needs to focus on the current
requirement

 It should ensure that all requirements
continue to work

 More re-testing effort

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Policies / concepts of Agile and Extreme

• Cross boundaries

• Incremental progress – both product and process evolve in incremental way

• Travel light – least overhead

• Communicate – more focus on communication

• Write tests before coding – all unit tests run at 100%

• Make frequent small releases

• Involve customers all the time

Example for extreme testing

• Technically, driving a car using a joystick is easier , But customers are comfortable with steering wheels

The basic steps that are carried out :-

 Develop and Understand User Story

 Prepare acceptance tests

 Test Plan and Estimation

 Code

 Test

 Refactor

 Automate

 Accepted and Delivered

For e.g.,

• Basic features : wheel, brake, pedal, tyres

• New features added incrementally

• Every year / every manufacturer release new

models many times in a year with new features

• Thus Automobile industry keeps growing &

Improving

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Cost of Change:-

Defect Seeding:-

Def: Defect seeding is a method of intentionally introducing defects into a product to check the rate of detection and

residual defects.

Error Seeding is also known as Debugging . It acts as a reliability measure for the release of the product. Usually one

group members in the project injects the defects while an other group tests to remove them. The purpose of this

exercise is while finding the known seeded defects, the unseeded/ un earthed defects may also be uncovered . Defects

that are seeded are similar to real defects. Defects that can be seeded may vary from sever or critical defects to cosmetic

errors. Defect Seeding may act as a guide to check the efficiency of the inspection or testing process. It serves as a

confidence measure to know the percentage of defects removal rates. It acts as a measure to estimate the number of

defect yet to be discovered in the system.

 Defects that can be seeded may vary from severe or critical defects to cosmetic errors.

• For example : a team seeds 20 defects, and testing finds out 12 seeded defects and 25 other defects

Total latent defects = (defects seeded / defects seeded found) * Other defects found

• 20 / 12 * 25 = 41.67 = 42

Based on the above calculation , the number of estimated defects yet to be found is 42.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

When a group knows that there are seeded defects in the system it acts as a challenge for them to find as many of them

as possible. It adds a new energy into their testing .in case of manual testing, defects are seeded before the start of the

testing process. When the tests are automated, defects can be seeded any time .

It may be useful to look at the following issues on defect seeding as well.

1. Care should be taken during the defect seeding process to ensure that all the seeded defects are removed before

the release of the product.

2. The code should be written in such a way that the errors introduced can be identified easily, Minimum number

of lines should be added to seed defects so that the effort involved in removal becomes reduced.

• It is necessary to estimate the effort required to clean up the seeded defect along with effort for identification.

Effort may also be needed to fix the real defects

 ALPHA, BETA TESTS

 Goal : allow users to evaluate the software in terms of clients expectations and goals.

 The acceptance tests must be planned carefully with input from the client/users. Acceptance test cases are based

on requirements.

 The user manual is an additional source for test cases. System test cases may be reused.

 The software must run under real-world conditions on operational hardware and software.

 For continuous systems the software should be run at least through a 25-hour test cycle.

 Development organizations will often receive their final payment when acceptance tests have been passed.

 Acceptance tests must be rehearsed by the developers/testers. There should be no signs of unprofessional

behavior or lack of preparation. Clients do not appreciate surprises. They should be provided with documents

and other material to help them participate in the acceptance testing process, and to evaluate the results

 After acceptance testing the client will point out to the developers which requirement have/have not been

satisfied. Some requirements may be deleted, modified, or added due to changing needs.

 If the client is satisfied that the software is usable and reliable, and they give their approval, then the next step

is to install the system at the client’s site. If the client’s site conditions are different from that of the developers,

the developers must set up the system so that it can interface with client software and hardware. Retesting may

have to be done to insure that the software works as required in the client’s environment. This is called

installation test.

 If the software has been developed for the mass market , then testing it for individual clients/users is not

practical or even possible in most cases. Very often this type of software undergoes

 two stages of acceptance test.

 alpha test.  test takes place at the developer’s site. A cross-section of potential users and members of

the developer’s organization are invited to use the software. Developers observe the users and note

problems.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 Beta test sends the software to a cross-section of users who install it and use it under real world

working conditions. The users send records of problems with the software to the development

organization where the defects are repaired sometimes in time for the current release. In many cases the

repairs are delayed until the next release.

TESTING OO SYSTEMS :-

In procedure-oriented languages

Algorithms +Data Structures =Programs.

These programming languages were algorithm-centric in that they viewed the program as being driven by an algorithm

that traced its execution from start to finish, as shown in Figure Data was an external entity that was operated upon by

the algorithm.

Conventional algorithm centric programming languages.

Fundamentally, this type of programming languages was characterized by

1.Data being considered as separate from the operations or program and

2.Algorithm being the driver, with data being subsidiary to the algorithm.

In OO languages

There are two fundamental paradigm shifts in OOlanguages and programming:

First the language is data- or object-centric.

Second The data and the methods that operate on the data go together as one indivisible unit.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Object centric language-algorithm and data tightly coupled.

Some of the basic concepts of OO systems are relevant for testing

Classes :Classes form the fundamental building blocks for OO systems. A class is a representation of a real-life object.

Each class (or the real-life object it represents) is made up of attributes or variables and methods that operate on the

variables.

Class rectangle

{

private int length, breadth;

public:

new (float length, .float. breadth)

(

this->length = length;

this->breadth = breadth;

float area ()

{

return (length*breadth1;

return (2*(length+breadth))

}

} ;

Objects

Objects are the dynamic instantiation of a class. Multiple objects are instantiated using a given (static) class

definition. Such specific instantiations are done using a constructor function.

Constructor

A constructor function brings to life an instance of the class. Each class can have more than one constructor

function. Depending on the parameters passed or the signature of the function, the right constructor is called.

Encapsulation

Encapsulation provides the right level of abstraction about the variables and methods to the outside world.

Polymorphism

This property of two methods-in different classes-having the same name but performing different functions is

called polymorphism.

Inheritance

Inheritance enables the derivation of one class from another without losing sight of the common features. This

ability is called inheritance. The original class is called the parent class (or super-class) and the new class is

called a child class (or derived class, or sub-class). Inheritance allows objects (or at least parts of the object) to

be reused. A derived class inherits the properties of the parent class-in fact, of all the parent classes, as there can

be a hierarchy of classes. Thus, for those properties of the parent class that are inherited and used as is, the

development and

testing costs can be saved. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

INHERITANCE STRUCTURES

BASE

SUBCLASS

SINGLE

BASEBASE

SUBCLASS

SUBCLASS

SUBCLASS

BASE

MULTIPLE MULTIPLE LEVELS

DIFFERENCES IN OO TESTING
From a testing perspective, the implication is that testing an oo system should tightly integrate data and

algorithms .. The dichotomy between data and algorithm that drove the types of testing m procedure-oriented

languages has to be broken. Testing OO systems broadly covers the following topics.

1. Unit testing a class

2. Putting classes to work together (integration testing of classes)

3. System testing

4. Regression testing

5. Tools for testing OO systems

Unit Testing a Set of Classes
Classes are the building blocks for an entire OO system.

Why classes have to be tested individually first:
reasons:

1. A class is intended for heavy reuse. A residual defect in a class can therefore, potentially affect every instance

of reuse.

2. Many defects get introduced at the time a class (that is, its attributes and methods) gets defined. A delay in

catching these defect makes them go into the clients of these classes. Thus, the fix for the defect would have to

be reflected in multiple places, giving rise to inconsistencies.

3. A class may have different features; different clients of the class may pick up different pieces of the class. No

one single client may use all the pieces of the class. Thus, unless the class is tested as a unit first, there may be

pieces of a class that may never get tested.

4. A class is a combination of data and methods. If the data and methods do not work in sync at a unit test level,

it may cause defects that are potentially very difficult to narrow down later on.

5. Unlike procedural language building blocks, an OO system has special features like inheritance, which puts

more "context" into the building blocks. Thus, unless the building blocks are thoroughly tested stand-alone,

defects arising out of these contexts may surface, magnified many times, later in the cycle.

Conventional methods that apply to testing classes

Some of the methods for unit testing that we have discussed earlier apply directly to testing classes. For

example:

1. Every class has certain variables. The techniques of boundary value analysis and equivalence partitioning

discussed in black box testing can be applied to make sure the most effective test data is used to find as many

defects as possible.

2. As mentioned earlier, not all methods are exercised by all the clients, The methods of function coverage that

were discussed in white box testing can be used to ensure that every method (function) is exercised.

3. Every class will have methods that have procedural logic. The techniques of condition coverage, branch

coverage, code complexity, and so on that we discussed in white box testing can be used to make sure as many

branches and conditions are covered as possible and to increase the maintainability of the code.

4. Since a class is meant to be instantiated multiple times by different clients, the various techniques of stress

testing.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Integration testing

 Since OOsystems are ·designed to be made up of a number of smaller components or classes that are meant to

be reused (with necessary redefinitions), testing that classes work together becomes the next step, once the basic

classes themselves are found to be tested thoroughly. In the case of OO systems, because of the emphasis on

reuse and classes, testing this integration unit becomes crucial. in an OO system, the way in which the various

classes communicate with each other is through messages. A message of the format

<instance name>.<method name>.<variables>

calls the method of the specified name, in the named instance, or object (of the appropriate class) with the

appropriate variables.

Methods with the same name perform different functions  polymorphism. From a testing perspective,

polymorphism is especially challenging because it defies the conventional definition of code coverage and static

inspection of code.

The various methods of integration

 top-down

 bottom-up

 big bang

System Testing and Interoperability of OO Systems

Object oriented systems are by design meant to be built using smaller reusable components (i.e. the classes).

Some of the reasons for this added importance are:

1. A class may have different parts, not all of which are used at the same time. When different clients start using

a class, they may be using different parts of a class and this may introduce defects at a later (system testing)

phase

2. Different classes may be combined together by a client and this combination may lead to new defects that are

hitherto uncovered.

3. An instantiated object may not free all its allocated resource. Thus causing memory leaks and such related

problems, which shows up only in the system testing phase

Regression Testing of OO Systems

 Taking the discussion of integration testing further, regression testing becomes very crucial for OO systems.

As a result of the heavy reliance of OO systems on reusable components, changes to an one component

could have potentially unintended side-effects on the clients that use the component.

 Hence, frequent integration and regression runs become very essential for testing OO systems. Also,

because of the cascaded effects of changes resulting from properties like inheritance, it makes sense to catch

the defects as early as possible.

Tools for Testing of OO Systems

There are several tools that aid in testing OO systems. Some of these are

1. Use cases

2. Class diagrams

3. Sequence diagrams

4. Activity Diagrams

5.State charts

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Use cases

Use cases represent the various tasks that a user will perform when interacting with the system. Use cases go into the

details of the specific steps that the user will go through m accomplishing each task and the system responses for each

steps. This fits in place for the object oriented paradigm, as the tasks and responses are akin to messages passed to the

various objects.

Class diagram

A class diagram is useful for testing in several ways.

1.It identifies the elements of a class and hence enables the identification of the boundary value analysis, equivalence

partitioning, and such tests.

2.The associations help in identifying tests for referential integrity constraints across classes.

3.Generalizations help in identifying class hierarchies and thus help in planning incremental class testing as and when

new variables and methods are introduced in child classes.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

A sequence diagram

A sequence diagram helps in testing by

1. Identifying temporal end-to-end messages.

2. Tracing the intermediate points in an end-to-end transaction, thereby enabling easier narrowing down of problems.

3. Providing for several typical message-calling sequences like blocking call, non-blocking call, and so on.

Sequence diagrams also have their limitations for testing-complex interactions become messy, if not impossible; to

represent; dynamic binding cannot be represented easily.

Ex: Borrow Books in Library Information system

Activity diagram

While a sequence diagram looks at the sequence of messages, an activity diagram depicts the sequence of activities that

take place. It is used for modeling a typical work flow in an application and brings out the elements of interaction

between manual and automated processes. Since an activity diagram represents a sequence of activities, it is very

similar to a flow chart and has parallels to most of the elements of a conventional flow chart.

Given that an activity diagram represents control flow, its relevance for testing comes from

1. The ability to derive various paths through execution. Similar to the flow graph discussed in white box testing, an

activity diagram can be used to arrive at the code complexity and independent paths through a program code.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

2. Ability to identify the possible message flows between an activity and an object, thereby making the message-based

testing more robust and effective.

State Chart Diagram

When an object can be modeled as a state machine, then the techniques of state-based testing, in black box testing can

be directly applied.

USABILITY AND ACCESSIBILITY TESTING

Usability Testing

Testing that validates ease of use , speed and aesthetics of the product from the user’s point of view

Characteristics

1. Usability testing tests the product from the users' point of view.

2. Usability testing is for checking the product to see if it is easy to use for the various categories of

users.

3. Usability testing is a process to identify discrepancies between the user interface of the product and

the human user requirements, in terms of the pleasantness and aesthetics aspects.

Conclusion

A view expressed by one user of the product may not be the view of another.

 easy for one user -->may not be easy for another

 fast (interms of say, response time) e slow for another user

 beautiful by someone  look ugly to another.

APPROACH TO USABILITY

For example , when a Philips (or a star) screwdriver was invented, it saved only few

milliseconds per operation to adjust the screwdriver to the angle of the screw compared to a flat

screwdriver.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

People best suited to perform usability testing :

 representatives of the actual user segments who would be using the product

 People who are new to the product



WHEN TO DO USABILITY TESTING?

 There are 2 phases in usability testing.

Phase 1 : Design Validation

Phase 2 : Usability testing done as a part of component and integration testing phases of a test

cycle

Usability design is verified through several means, some of them are

 Style sheets

 Screen prototypes

 Paper designs

 Layout design

Web application interfaces are designed before designing functionality . That gives adequate time for

doing two phases of usability testing.

Client Application Web Application

Step1 : Design for functionality Step1 : Design for User Interface

Step2 : Perform Coding for

functionality

Step2 : Performa Coding for User

Interface

Step3 : Design for User Interface Step3 : Test User Interface (Phase 1)

Step4 : Perform coding for User

Interface

Step4 : Design for Functionality

Step5 : Integrate user interface with

functionality

Step5 : Perform coding for functionality

Step6 : Test UI along with

functionality (Phase 1 & 2)

Step6 : Test UI along with functionality

(Phase 2)

Development and Testing of Client Applications and Web Application

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

HOW TO ACHIEVE USABILITY?

Usability is a habit and a behavior, just like humans, the products are expected to behave differently

and correctly with different users and to their expectations.

Checklists are created and verified during usability testing.

1. Do users complete the assigned tasks/operations successfully?

2. If so, how much time do they take to complete the tasks/operations?

3. Is the response from the product fast enough to satisfy them?

4. Where did the users get struck? What problems do they have?

5. Where do they get confused? Were they able to continue on their

own? What helped them to continue?

QUALITY FACTORS FOR USABILITY

 Comprehensibility – when features and components are grouped in a product , they should be

based on user terminologies not technology or implementation

 Consistency – A Product needs to be consistent with any applicable standards , platform look

and feel , base infrastructure and earlier versions of the same product.

 Navigation – This helps in determining how easy it is to select the different operations of the

product

 Responsiveness- How fast the product responds to the user request .

AESTHETICS TESTING

It ensures the product is pleasing to the eye.

Ex: A pleasant look for menus, pleasing colors, nice icons, and so on can improve aesthetics. It is

generally considered as gold plating, which is not right.

ACCESSIBILITY TESTING

Verifying the product usability for physically challenged users

Accessibility to the product can be provided by two means.

1. Making use of accessibility features provided by the underlying infrastructure (for example,

operating system), called basic accessibility, and

2. Providing accessibility in the product through standards and guidelines, called product

accessibility.

I) Basic Accessibility

1) Keyboard accessibility

 Sticky keys(ctrl, alt, del -->login ,

logout)

 Filter keys

 Toggle key sound

 Sound keys

 Arrow keys to control mouse

 Narrator (text to audio)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

2) Screen accessibility

 Visual sound

 Enabling captions for multimedia

 Soft keyboard

 Easy reading with high contrast

3) Other accessibility features

II) Product Accessibility

Sample Requirement 1 Text equivalent have to be provided for audio , video &

picture images

Sample Requirement 2 Documents and fields should be organized (style sheets)

Sample Requirement 3 UI should be designed so that all info conveyed with color is

also without color

Sample Requirement 4 Reduce the fictker rate , speed of moving text avoid flashes

and blinking text

Sample Requirement 5 Reduce physical movements requirements for the user when

designing the interface and allow adequate time for user

response

Screen with 4 fields in the corner

Color as method of identification

Sample website with picture along with web site equivalent

TOOLS FOR USABILITY

 Jaws

 HTML Validator

 Style Sheet Validator

 Magnifier (enlarge the items)

 Narrator (Text audio)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

 Soft Keyboard(display keyboard template on the screen)

USABILITY LAB SETUP

 This lab has 2 sections – recording sections and observation section.

 In the recording section of the lab - A user is requested to come to the lab with a prefixed set of

operations that are to be performed with the product

 In the observations section of the lab - it is one way glass – the experts can see the user but the

user cannot see the experts . some usability experts sit and observe the user for body language

and associate the defects with the screens and events that caused it.

Configuration Testing (or refer page no 21 of unit 3 notes)

Configuration testing is the process of checking the operation of the software you’re testing with all the various

types of hardware.

Ex : Configuration bug

1. if your greeting card program works fine with laser printers but not with

inkjet printers.

2. The hardware device or its device drivers may have a bug that only your software reveals. Maybe your

software is the only one that uses a unique display card setting. When your software is run with a

specific video card, the PC crashes.

3. if a specific printer driver always defaulted to draft mode and your photo printing software had to set it

to high-quality every time it printed.

The PC.

Components - system boards, component cards, and other internal devices such as disk drives, CD-ROM drives,

video, sound, modem, and network cards

Peripherals. Peripherals, shown in Figure are the printers, scanners, mice, keyboards,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

monitors, cameras, joysticks, and other devices that plug into your system and operate externally to the PC.

Interfaces. The components and peripherals plug into your PC through various types of

interface connectors .These interfaces can be internal or external to the PC. Typical names for them are ISA, PCI,

USB, PS/2, RS/232, and Firewire. There are so many different possibilities that hardware manufacturers will often

create the same

peripheral with different interfaces. It’s possible to buy the exact same mouse in three

different configurations!

• Options and memory. Many components and peripherals can be purchased with different hardware options and

memory sizes. Printers can be upgraded to support extra fonts or accept more memory to speed up printing.

Graphics cards with more memory can support additional colors and higher resolutions.

• Device Drivers. All components and peripherals communicate with the operating system and the software

applications through low-level software called device drivers. These drivers are often provided by the hardware

device manufacturer and are installed when you set up the hardware. Although technically they are software, for

testing purposes they are considered part of the hardware configuration.

configuration testing - the general process

1. Decide the Types of Hardware You’ll Need

Put your software disk on a table and ask yourself what hardware pieces you need to put together to make it

work.

2. Decide What Hardware Brands, Models, and Device Drivers Are Available

Decide what device drivers you’re going to test with. Your options are usually the drivers

included with the operating system, the drivers included with the device, or the latest drivers available on the

hardware or operating system company’s Web site.

3. Decide Which Hardware Features, Modes, and Options Are Possible

Color printers can print in black and white or color, they can print in different quality modes, and can have settings

for printing photos or text. Display cards, as shown in Figure, can have different color settings and screen

resolutions.

4. Pare Down the Identified Hardware Configurations to a Manageable Set

reduce the thousands of potential configurations into the ones that you’re going to test.

put all the configuration information into a spreadsheet with columns for the manufacturer, model, driver versions,

and options.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

5. Identify Your Software’s Unique Features That Work with the Hardware Configurations

For example, if you’re testing a word processor such as WordPad), you don’t need to test the file save and load

feature in each configuration. File saving and loading has nothing to do with printing. A good test would be to

create a document that contains different fonts, point sizes, colors, embedded pictures, and so on. You would then

attempt to print this document on each chosen printer configuration

6. Design the Test Cases to Run on Each Configuration

1. Select and set up the next test configuration from the list.

2. Start the software.

3. Load in the file configtest.doc.

4. Confirm that the displayed file is correct.

5. Print the document.

6. Confirm that there are no error messages and that the printed document

 matches the standard.

7. Log any discrepancies as a bug

7. Execute the Tests on Each Configuration

run the test cases and carefully log and report your results to your team, and to the ardware manufacturers if necessary.

You’ll need to work closely with the programmers and

white-box testers to isolate the cause and decide if the bugs you find are due to your software or to the hardware.

If the bug is specific to the hardware, consult the manufacturer’s Web site for information on reporting problems to

them. Be sure to identify yourself as a software tester and what company you work for.

8. Rerun the Tests Until the Results Satisfy Your Team

It’s difficult to run configuration testing the entire course of a project. Initially a few configurations might be tried,

then a full test pass, then smaller and smaller sets to confirm bug fixes. Eventually you will get to a point where there

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

are no known bugs or to where the bugs that still exist are in uncommon or unlikely test configurations. At that point,

you can call your configuration testing complete.

Compatibility Testing (Refer Unit 2 Notes)

Documentation Testing (Refer Unit 2 Notes)

Website Testing

• Web Page Fundamentals

• Black-Box Testing

• Gray-Box Testing

• White-Box Testing

• Configuration and Compatibility Testing

• Usability Testing

Web Page Fundamentals

Internet Web pages are just documents of text, pictures, sounds, video, and hyperlinks

Web page features.

 Text of different sizes, fonts, and colors (okay, you can’t see the colors in this book)

 Graphics and photos

 Hyperlinked text and graphics

 Varying advertisements

 Drop-down selection boxes

 Fields in which the users can enter data

features that make the Web site much more complex:

 Customizable layout that allows users to change where information is positioned

 onscreen

 Customizable content that allows users to select what news and information they want to see

 Dynamic drop-down selection boxes

 Dynamically changing text

 Dynamic layout and optional information based on screen resolution

 Compatibility with different Web browsers, browser versions, and hardware and software platforms

 Lots of hidden formatting, tagging, and embedded information that enhances the Web page’s usability

Testing Techniques apply to Web page testing

 basic white-box and black-box techniques

 configuration and compatibility testing

 usability testing

1) Black-Box Testing

screen image of Apple’s Web site, www.apple.com, a fairly straightforward and typical Web site. It has all the basic

elements—text, graphics, hyperlinks to other pages on the site, and hyperlinks to other Web sites.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

The easiest place to start is by treating the Web page or the entire Web site as a black box

What would you test? What would you choose not to test?

When testing a Web site, you first should create a state table , treating each page as a different state with the

hyperlinks as the lines connecting them. A completed state map will give you a better view of the overall task.

Web pages are made up of just text, graphics, links, and the occasional form. Testing them isn’t difficult.

Text

Check the audience level,

 the terminology,

 the content and subject matter,

 the accuracy—especially of information that can become outdated—and

 always check spelling.

 each page has a correct title

An often overlooked type of text is called ALT text, for ALTernate text. Figure shows an

example of ALT text. When a user puts the mouse cursor over a graphic on the page he gets a pop-up description of

what the graphic represents. Web browsers that don’t display graphics use ALT text. Also, with ALT text blind users

can use graphically rich Web sites—an audible reader interprets the ALT text and reads it out through the computer’s

speakers.

Hyperlinks

Links can be tied to text or graphics. Each link should be checked to make sure that it jumps to the correct destination

and opens in the correct window.

Check

 Text links are usually underlined, and the mouse pointer should change to a hand pointer when it’s over any

kind of hyperlink—text or graphic.

 Look for orphan pages, which are part of the Web site but can’t be accessed through a hyperlink

 do all graphics load and display properly? If a graphic is missing or is incorrectly named, it won’t load and the

Web page will display an error where the graphic was to be placed.

 If text and graphics are intermixed on the page, make sure that the text wraps properly around the graphics. Try

resizing the browser’s window to see if strange wrapping occurs around the graphic.

 How’s the performance of loading the page? Are there so many graphics on the page, resulting in a large

amount of data to be transferred and displayed, that the Web site’s performance is too slow?

 What if it’s displayed over a slow dial-up modem connection on a poor-quality phone line?

If a graphic can’t load onto a Web page, an error box is put in its location

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

Forms

Forms are the text boxes, list boxes, and other fields for entering or selecting information on a Web page. In the

example a signup form for potential Mac developers. There are fields for entering your first name, middle initial, last

name, and email address.

 Make sure your Web site’s form fields are positioned properly. Notice in this Apple Developer signup form that the

middle initial (M.I.) field is misplaced.

Gray-Box Testing

graybox testing, is a mixture of the black box & white box testing —hence the name. You still test the software as a

black-box, but you supplement the work by taking a peek (not a full look, as in white-box testing) at what makes the

software work. Web pages provide themselves nicely to gray-box testing.

Most Web pages are built with HTML (Hypertext Markup Language). Listing shows a few lines of the HTML used to

create the Web page

<html>

<head>

<meta http-equiv=”Content-Type” content=”text/html; charset=iso-8859-1”>

….

HTML and Web pages can be tested as a gray box because HTML isn’t a programming language it’s a markup

language.

In the early days of word processors, you couldn’t just select text and make it bold or italic. You had to embed

markups, sometimes called field tags, in the text. For example, to create the bolded phrase

This is bold text.

you would enter something such as this into your word processor:

[begin bold]This is bold text.[end bold]

HTML works the same way. To create the line in HTML you would enter

This is bold text.

HTML has evolved to where it now has hundreds of different field tags and options, as evidenced by the HTML

2) White-Box Testing

Web page also has customizable and dynamic changing content. Remember, HTML isn’t a programming language—

it’s merely a tagging system for text and graphics. To create these extra dynamic features requires the HTML to be

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

supplemented with programming code that can execute and follow decision paths. popular Web programming

languages: DHTML, Java, JavaScript, ActiveX, VBScript, Perl, CGI, ASP, and XML.

the important bugs that you have some knowledge of the Web site’s system structure and programming:

• Dynamic Content. Dynamic content is graphics and text that changes based on certain

conditions—for example, the time of day, the user’s preferences, or specific user actions.

Supported by

 Client side scripting :It’s possible that the programming for the content is done in a simple scripting language

such as JavaScript and is embedded within the HTML. apply gray-box testing techniques when you examine the

script and view the HTML.

 server-side scripting : For efficiency, most dynamic content programming is located on the Web site’s server;

and would require to have access to the Web server to view the code.

• Database-Driven Web Pages. Many e-commerce Web pages that show catalogs or

inventories are database driven. The HTML provides a simple layout for the Web content

and then pictures, text descriptions, pricing information, and so on are pulled from a

database on the Web site’s server and plugged into the pages.

• Programmatically Created Web Pages. Many Web pages, especially ones with

dynamic content, are programmatically generated—that is, the HTML and possibly even

the programming is created by software. A Web page designer may type entries in a database and drag and drop

elements in a layout program, press a button, and out comes the HTML that displays a Web page. If you’re testing such

a system, you have to check that the HTML it creates is what the designer expects.

• Server Performance and Loading. Popular Web sites might receive millions of individual

hits a day. Each one requires a download of data from the Web site’s server to the

browser’s computer. If you wanted to test a system for performance and loading, you’d

have to find a way to simulate the millions of connections and downloads.

• Security. Web site security issues are always in the news as hackers try new and different ways to gain access to a

Web site’s internal data. Financial, medical, and other Web sites that contain personal data are especially at risk and

require intimate knowledge of server technology to test them for proper security.

3)Configuration and Compatibility Testing

Configuration testing is the process of checking the operation of your software with various types of hardware and

software platforms and their different settings.

Compatibility testing is checking your software’s operation with other software.

Web pages are perfect examples of where you can apply this type of testing .Assume that you have a Web site to test.

You need to think about what the possible hardware

and software configurations might be that could affect the operation or appearance of the site.

Here’s a list to consider:

• Hardware Platform. Is it a Mac, PC, a TV browsing device, a hand-held, or a wristwatch?

Each hardware device has its own operating system, screen layout, communications

software, and so on. Each can affect how the Web site appears onscreen.

• Browser Software and Version. There are many different Web browsers and browser

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

versions. Some run on only one type of hardware platform, others run on multiple platforms. Some examples are

Netscape Navigator 3.04 and 4.05, Internet Explorer 3.02,

4.01, and 5.0, Mosaic 3.0, Opera, and Emacs.

• Browser Plug-Ins. Many browsers can accept plug-ins or extensions to gain additional

functionality. An example of this would be to play specific types of audio or video files.

• Browser Options. Most Web browsers allow for a great deal of customization. You can select security options,

choose how ALT text is handled, decide what plug-ins to enable, and so on. Each option has potential impact on how

your Web site operates—and, hence, is a test scenario to consider.

Video Resolution and Color Depth. Many platforms can display in various screen resolutions and colors. A PC

running Windows, for example, can have screen dimensions of

640×480, 800×600, 1,024×768, 1280×1024, and up. Your Web site may look different, or

even wrong, in one resolution, but not in another. Text and graphics can wrap differently,

be cut off, or not appear at all. The number of colors that the platform supports can also impact the look of your site.

There can be as few as 16 colors and as many as 224. Could your Web site be used on a system with only 16 colors?

• Text Size. Did you know that a user can change the size of the text used in the browser?

Could your site be used with very small or very large text? What if it was being run on a

small screen, in a low resolution, with large text?

• Modem Speeds. Enough can’t be said about performance. Someday everyone will have

high-speed connections with Web site data delivered as fast as you can view it. Until

then, you need to test that your Web site works well at a wide range of modem speeds.

4) Usability Testing

The following list is adapted from his Top Ten Mistakes in Web Design:

• Gratuitous Use of Bleeding-Edge Technology. Your Web site shouldn’t try to attract

users by bragging about its use of the latest Web technology. When desktop publishing was young, people put 20

different fonts in their documents; try to avoid similar design bloat on the Web.

• Scrolling Text, Marquees, and Constantly Running Animations. Never allow page

elements that move incessantly. Moving images have an overpowering effect on human

peripheral vision.

• Long Scrolling Pages. Users typically don’t like to scroll beyond the information visible

onscreen when a page comes up. All critical content and navigation options should be on

the top part of the page. Recent studies have shown that users are becoming more willing

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

to scroll now than they were in the early years of the Web, but it’s still a good idea to

minimize scrolling on navigation pages.

• Non-Standard Link Colors. Hyperlinks to pages that users haven’t seen should be blue;

links to previously seen pages should be purple or red. Don’t mess with these colors

because the ability to understand which links have been followed is one of the few navigational aids that’s standard in

most Web browsers. Consistency is key to teaching users what the link colors mean.

• Outdated Information. some pages are better off being removed completely from the server after their expiration

date.

• Overly Long Download Times. Traditional human-factor guidelines indicate that 0.1 second is about the limit for

users to feel that the system is reacting instantaneously. One second is about the limit for a user’s flow of thought to

stay uninterrupted. Ten seconds is the maximum response time before a user loses interest. On the Web, users have

been trained to endure so much suffering that it may be acceptable to increase this limit to 15 seconds for a few pages.

But don’t aim for this—aim for less.

• Lack of Navigation Support. They will always have difficulty finding information, so they need support in the form

of a strong sense of structure and place. Your site’s design should start with a good understanding of the structure of the

information space and communicate that structure explicitly to users. Provide a site map to let users know where they

are and where they can go. The site should also have a good search feature because even the best navigation support

will never be enough.

• Orphan Pages. Make sure that all pages include a clear indication of what Web site they

belong to since users may access pages directly without coming in through your home page. For the same reason, every

page should have a link to your home page as well as some indication of where they fit within the structure of your

information space.

• Complex Web Site Addresses (URLs). Even though machine-level addressing like the URL should never have been

exposed in the user interface, it’s there and research has found that users actually try to decode the URLs of pages to

infer the structure of Web sites. Users do this because of the lack of support for navigation and sense of location in

current Web browsers. Thus, a URL should contain human-readable names that reflect the nature of the Web site’s

contents.

• Using Frames. Frames are an HTML technology that allows a Web site to display another Web site within itself,

hence the name frame—like a picture frame. Splitting a page into frames can confuse users since frames break the

fundamental user model of the Web page.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

UNIT IV TEST MANAGEMENT

People and organizational issues in testing – Organization structures for

testing teams – testing services – Test Planning – Test Plan Components –

Test Plan Attachments – Locating Test Items – test management – test process

– Reporting Test Results – Introducing the test specialist – Skills needed by a

test specialist – Building a Testing Group-The structure of testing group-The

Technical training program.

 PEOPLE AND ORGANIZATIONAL ISSUES IS TESTING

COMMON PEOPLE ISSUES

 Perceptions and Misconceptions about testing

 Testing is not technically challenging

 Requires a holistic understanding of the entire product
 Requires thorough understanding of multiple domains

 Specialization in languages, Use of tools

 Opportunities for conceptualization and out-of-the-box thinking.
 Significant investments are made in testing today – sometimes a lot more than in

development

 Testing does not provide me a career path or growth
 Normally job titles are given as “Development Engineers”, “Senior Development

Engineer” etc.

 Testing organizations do not always present such obvious opportunities for career

growth. This does not mean that there are no career paths for testing
professionals.

 There is an equally lucrative career path for testing professionals also.

 I am put in testing – what is wrong with me?!
 Toppers allocated for development and testing functions get the leftovers,

obviously management is sending the wrong signals and reinforcing the wrong

message.

 A person assigned testing only when he or she has the right aptitude and attitude

for testing.

 Compensations and reward favor the development leads to people “graduate to

development” rather than look for careers in testing itself

 These folks are my adversaries
 Testing and development teams should reinforce each other and not be at

loggerheads.

 Testing is what I can do in the end if I get time
 Testing is not what happens in the end of a project – it happens throughout and

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

continues even beyond a release

 There is no sense of ownership in testing
 Testing has deliverables just as development has and hence testers should have

the same sense of ownership

 Testing is only destructive

 Testing is destructive as much it is constructive, like the two sides of a coin.

Providing Career Path for Testing Professional

When people look for a career path in testing, some of the areas of progression they look for are,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Technical challenge

 Learning opportunities

 Increasing responsibilities and authority

 Increasing independence

 Ability to have a significant influence

 Rewards and recognition

Responsibilities of a Test Engineer
 Following the test process for executing tests, maintaining tests etc.

 Filing high quality defects, usable by developers
 Categorizing defects

 Adhering to schedules specified

 Developing high quality documentation

Responsibilities of a Senior Test Engineer
 Helping development staff in debugging and problem isolation

 Contribution to enhancing processes for testing

 Generation of metrics related to testing

Responsibilities of a Test Lead
 Review of test case, test design etc.
 Planning test strategy

 Allocating tasks to individual and monitoring it

 Mentoring team members and assisting them in technical matters

 Interaction with developing team for debugging and problem reproduction

 Overall responsibility for test quality

Responsibilities of a Test Architect
 A test architect has in-depth knowledge of a variety of testing techniques and

methodologies used both inside and outside of an organization

 They often provide technical assistance and/or advice to the test Manager.
 Test Architect come into picture when Test Manager takes on additional responsibilities
 A test architect is expected to be able to affect change not only across the testing

community, but between other engineering disciplines as well.

 Development Functions Vs Testing

Similarities

1. Requirement / Test Specification : Requires thorough understanding of the domain.

2. Design : Carries with it all attributes for product design like reuse, standard formation.

3. Coding / Test Script : Involves using the development and test automation tools.
4. Testing / Making the tests operational : Involves well-knot teamwork between teams to

ensure that correct results are captured.

5. Maintenance : Keeping the tests current with changes from maintenance.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

Differences

1. Testing is often a crunch time function
Testing functions close to product release time throws in some unique planning

and management challenge.

2. More “elasticity” is allowed in projects in earlier phases
Development function will take longer than planned, whereas same amount is not

given for testing as final deadline for a product release is seldom compromised.

3. Testing is arguably the most difficult ones to staff

It is difficult to attract and retain top talent for testing functions.

4. Testing usually carry more external dependencies that development functions.

The role of the ecosystem and call for action

 Role of education system: The right values can only be more effectively caught by the
students than be taught by the teachers.

 Not been as core course; No lab experience; No real time experience
 Projects not asking test plan, but for coding only

 Scope for team work???
 Role of senior management: Fairness to and recognition of testing professionals should

not only be done but should be seen to be done.

 How to spot a good tester.

 Rewarding people.

 Role of the community: As members of test community, do you have pride and sense of
equality/ Remember, authority is taken, not given.

 Pride in work

 ORGANISATION STRUCTURES FOR TESTING TEAMS

ORGANIZATION STRUCTURE FOR TESTING TEAMS:

Dimensions of Organization Structures

The organization structures are based on two dimensions.

1. Dimension based on organization type.

2. Dimension based on geographic distribution

The organization is classified into two types. They

are:

1. Product Organization – Product Organization produces software products

and responsible for the entire product.

2. Service Organization – Service organization does not have complete

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

product responsibility.

Dimensions of Organization Structure

 Organization Type
 Geographic Distribution

 Organization types

 Product
 Responsibility for entire product

 Testing is one phase

 Service

 Provide testing service to other organizations
 Provide test specialist

 Geographic distribution

 Single site  all members at one place
 Multi site  members at different location

STRUCTURES IN SINGLE-PRODUCT COMPANIES
Product companies in general have a high-level organization structure similar to the one shown

in the figure shown below:

Organization structure of a multi-product company.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Testing Team Structure for Single-Product Companies

 Most product companies start with a single product.

 During the initial stages of evolution, the organization does not work with many

formalized processes.

 The product delivery team members distribute their time among multiple tasks and after
wear multiple hats.

All the engineers report into the project manager who is in charge of the entire project,

with very little distinction between testing function and development functions. Thus,

there is only a very thin line separating the ―development team and ―testing team.

Typical organization structures in early stages of a product.

 Advantages
 Exploits the rear-loading nature of testing activities (during early part of the project,

everyone chips in for development and during the later part, they switch over to test)

 Enables engineers to gain experience in all aspects of life cycle.

 Is amenable to the fact that the organization mostly only has informal processes.
 Some defects may be detected early.

 Disadvantages
 Accountability for testing and quality reduces (give importance for developing or

testing?)

 Developers do not in general like testing and hence the effectiveness of testing suffers
 Schedule pressures generally compromise testing (deadline to meet leads to

insufficient time for testing causes compromise in quality of testing).

 Developers may not be able carry out the different types of tests.

Separate groups for testing and development.
 Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

https://learnengineering.in/

1.There is clear accountability for testing and development. The results and the expectations

from the two teams can be more clearly set and demarcated.

2. Testing provides an external perspective. Since the testing and development teams are

logically separated, there is not likely to be as much bias as in the previous case for the testers to

prove that the product works. This external perspective can lead to uncovering more defects in
the product.

3. Takes into account the different skill sets required for testing. As we have seen in the earlier

chapters, the skill sets required for testing functions are quite different from that required for

development functions. This model recognizes the difference in skill sets and proactively

address the same.

Component-Wise Testing Teams: Even if a company produces only one product, the product

is made up of a number of components that fit together as a whole. In order to provide better

accountability, each component may be developed and tested by separate teams and all the

components integrated by a single integration test team reporting to the project manager.

COMPONENT WISE ORGANIZATION

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Testing Team Structure for Multi-Product Companies

The organization of test teams in multi-product companies is dictated largely by the following

factors.

 How tightly couples the products are in terms of technology

 Dependence among various products

 How synchronous are the release cycles of products

 Customer base for each product & similarity among customer bases for various products.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

Based on the above factors, there are several options available for organizing testing teams.

1. Testing team as part of “CTO’s Office”

o Developing a product architecture that is testable or suitable for testing

o Testing team will have better product and technology skills
o The testing team can get a clear understating of what design and architecture are

built for and plan their tests accordingly

o The CTO’s team can evolve a consistent, cost-effective strategy for test
automation.

o In order to make the test team more effective,
 It should be smaller in number

 It should be a team of equals or at most very few hierarchies.
 It should have organization-wide representation

 It should have decision-making and enforcing authority

 It should be involved in periodic reviews to ensure operations are in line.

2. Single test team for all products.
This model is similar to the case of a single product team divided into multiple

components and each of the components being developed by an independent team.

Here, since different groups have delivery responsibilities for different products, the

single testing team must report to a different level. The possibilities are,

(i) The single testing team can form a “testing business unit” and report into this unit.
(ii) The testing team can be made to report to the “CTO thing-tank”.

3. Testing teams organized by product
The issues in single testing teams are, accountability, decision making and

scheduling. Solution?...

Assign complete responsibility of all aspects of a product to the corresponding

business unit and let the business unit head figure out how to organize the testing and
development teams.

4. Separate testing team for different phases of testing

Types of test Reports into
White box testing Development team

Black box testing Testing team

Integration testing Organization-wide testing team
System testing Product management / Product marketing

Performance testing A central benchmarking group

Acceptance testing Product management / Product marketing

Internationalization testing internationalization team and some local teams
Regression testing All test Teams

Advantages

1. People with appropriate skill sets are used to perform a given type of test.

2. Defects can get detected better and closer to the point of injection.
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

 TESTING SERVICES – (SERVICE STRUCTURE OF TESTING TEAM)

 Testing Services Organization

Today it is common to find testing activities outsourced to external companies who specialize is
testing and provide testing services.

Business Need for Testing Services

1. Testing is becoming increasingly diverse and a very specialized function
2. The variety and complexity of the test automation tools further increase the challenge in

testing.

3. Testing as a process is becoming better defined and thus makes testing to outsourcing.
4. An organization expertise in understanding software domain may be expert in setting up

and running an effective testing function.

5. An outsourced organization can offer location and cost advantage.

Typical Roles and Responsibilities of Testing Services Organization

 A testing services organization is made up of a number of accounts.
 Each account being responsible for a major customer.

 Each account is assigned an account manager.
 Account manager, a single point of contact from the customer into testing services

organization.

Account manager service:

 Single point contact between customer and testing service organization.

 Develops rapport with customer; responsible for ensuring current projects are

delivered as promised; getting new business.

 Participate in all strategic (and tactical) communication between them.

 Acts as a proxy for the customer within the testing services organization.

 Account manager may be located close to the customer site or at the location of testing
services organization.

 To develop better rapport, this role would require frequent travel and face-to-face

meetings with the customer.

The testing service team organizes its account team as a near-site team and a remote team.

Near-site team  Usually a small team, placed at or near customer location.

 Direct first point of contact for the costumer for tactical and urgent issues

 Act as a stop-gap to represent the remote team, in the event of emergencies.

 Serves to increase the rapport between the customer’s operational team and the
testing services team.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

Remote team  Usually large in number the team does the bulk of work, located on the site of
the testing services organization.

 The remote team manager manages the entire remote team.

 Can have a peer-to-peer relationship with the near-site team or have the near-site

team reporting to them.

 Can have further hierarchies as test leads and test engineers.

Challenges and Issues in Testing Service Organizations

1. The outsider effect and estimation of resources

 Do not necessarily have access to the product internals or code.

 Do not have access to product history (to find which modules has historically

problem prone – results been in not able to prioritize testing).

 May not necessarily have same level of rapport with development team.

 Will have to estimate and plan for hardware and software resources.

2. Domain expertise

 Testing service organization may have to undertake projects from multiple customers.

 The little product ownership makes it tougher to get domain expertise to join a testing
service company.

 The diversity of domains exacerbates the problem.

3. Privacy and customer isolation issues

 As testing service organization has a common infrastructure, physical isolation of the
different teams may be difficult

 As people more from one project to another, there should be full confidence and
transparency in ensuring the customer-specific knowledge acquired in one project is

not taken to other projects.

 A Non Disclosure Agreement (NDA) is draw up between the customer and the testing

service organization.

4. Apportioning hardware and software resources and costs

 When dealing with multiple customers, the organization uses hardware and software
resources internally.

 Some of them are identified and allocated for particular account and some others and

multiplexed across multiple projects (eg. Satellite links, e-mail server etc.).

 The cost has to be apportioned across different projects while costing the project.

5. Maintaining the “bench”

 Need to maintain “people of bench” – people not allocated to any project but ready in

the wings to take on new projects and to convince customers.

 New projects may come at any time

 Some prospects may require initial studies to be done or some

demonstration of initial capability before signing.

 May need to know resumes of specific individuals and to select people at
initial level.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

Success Factors for Testing Organizations

(i) Communication and teamwork

(ii) Bringing in customer perspective

(iii) Providing appropriate tools and environment

(iv) Providing periodic skill upgrades

 TEST PLANNING

A plan is a document that provides a framework or approach for achieving a set of goals.

In order to meet a set of goals, a plan describes what specific tasks must be accomplished, who is

responsible for each task, what tools, procedures, and techniques must be used, how much time

and effort is needed, and what resources are essential. A plan also contains milestones.

Milestones are tangible events that are expected to occur at a certain time in the project’s
lifetime. Managers use them to determine project status.

Tracking the actual occurrence of the milestone events allows a manager to determine if the

project is progressing as planned. Finally, a plan should assess the risks involved in carrying out
the project.

Test plans for software projects are very complex and detailed documents. The planner usually

includes the following essential high-level items.

1. Overall test objectives. As testers, why are we testing, what is to be achieved by the tests, and
what are the risks associated with testing this product?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/

2. What to test (scope of the tests). What items, features, procedures, functions, objects, clusters,
and subsystems will be tested?

3. Who will test. Who are the personnel responsible for the tests?
4. How to test. What strategies, methods, hardware, software tools, and techniques are going to

be applied? What test documents and deliverable should be produced?

5. When to test. What are the schedules for tests? What items need to be available?
6. When to stop testing. It is not economically feasible or practical to plan to test until all defects

have been revealed. This is a goal that testers can never be sure they have reached. Because of

budgets, scheduling, customer deadlines, specific conditions must be outlined in the test plan.

Test plans can be organized in several ways depending on organizational policy. The complexity

of the hierarchy depends on the type, size, risk-proneness, and the mission/safety criticality of

software system being developed. All of the quality and testing plans should also be coordinated

with the overall software project plan. A sample plan hierarchy is shown in following figure.

Software quality assurance plan  This plan gives an overview of all verification and

validation activities for the project, details related to other quality issues such as audits,
standards, configuration control, and supplier control.

Master test plan  An overall description of all execution-based testing for the software

system.

Master verification plan  For reviews inspections/walkthroughs The master test plan itself
may be a component of the overall project plan or exist as a separate test plan for unit,

integration, system, and acceptance tests.

The level-based plans give a more detailed view of testing appropriate to that level.

The persons responsible for developing test plans depend on the type of plan under

development. For example, the master test plan for execution-based testing may be developed

by the project manager, especially if there is no separate testing group. A tester or software
quality assurance manager, can also do this but always requires cooperation and input from the

project manager.

The type and organization of the test plan, the test plan hierarchy, and who is responsible for
development should be specified in organizational standards or SQA documents.

 TEST PLAN COMPONENTS

The basic test plan components as described in IEEE Std 829-1983 is shown in following figure.

1. Test Plan Identifier
 Each test plan should have a unique identifier so that it can be associated with a specific

project and become a part of the project history.

 The project history and all project-related items should be stored in a project database
 Organizational standards should describe the format for the test plan identifier and how to

specify versions

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

2. Introduction
 Here, the test planner gives an overall description of the project, the software system

being developed or maintained, and the software items and/or features to be tested.

 References to related or supporting documents should also be included
 If test plans are developed as multilevel documents, then each plan must reference the

next higher level plan for consistency and compatibility reasons.

3. Items to Be Tested
 This is a listing of the entities to be tested and should include names, identifiers, and

version/revision numbers for each entity.

 The items listed could include procedures, classes, modules, libraries, subsystems, and
systems.

 References to the appropriate documents and the user manual should be included

 The test planner should also include items that will not be included in the test effort.

4. Features to Be Tested
 Features may be described as distinguishing characteristics of a software component

or system.
 Features that will not be tested should be identified and reasons for their exclusion from

test should be included.

 References to test design specifications for each feature and each combination of features
are identified

5. Approach

 Provides broad coverage of the issues to be addressed when testing the target software.

 Testing activities are described.
 Tools and techniques necessary for the tests should be included.
 Expectations for test completeness and how the degree of completeness will be

determined should be described

6. Item Pass/Fail Criteria
 Given a test item and a test case, the tester must have a set of criteria to decide on

whether the test has been passed or failed upon execution.

 A failure occurs when the actual output produced by the software does not agree with

what was expected, under the conditions specified by the test.

 Scales are used to rate failures/defects with respect to their impact on the customer/user

7. Suspension and Resumption Criteria
 In the simplest of cases testing is suspended at the end of a working day and resumed the

following morning.
 The test plan should also specify conditions to suspend testing based on the effects or

criticality level of the failures/defects observed.

 Conditions for resuming the test after there has been a suspension should also be
specified.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

8. Test Deliverables
 Test cases describe the actual test inputs and expected outputs.
 Deliverables may also include other documents that result from testing such as test logs,

test transmittal reports, test incident reports, and a test summary report.

 Another test deliverable is the test harness that is supplementary code that is written
specifically to support the test efforts

 Support code, like, testing tools that will be developed especially for this project, should

also be described

9. Testing Tasks
 Identify all testing-related tasks and their dependencies using a Work Breakdown

Structure (WBS)

 A Work Breakdown Structure is a hierarchical or treelike representation of all the

tasks that are required to complete a project.

 High-level tasks sit at the top of the hierarchical task tree.
 Leaves are detailed tasks sometimes called work packages that can be done by 1–2

people in a short time period, typically 3–5 days.

10. The Testing Environment
 Here the test planner describes the software and hardware needs for the testing effort

(Eg.) emulators, telecommunication equipment, etc.

 The planner must also indicate any laboratory space containing the equipment that needs

to be reserved.

 The planner also needs to specify any special software needs such as coverage tools,

databases, and test data generators.

11. Responsibilities
 The staff who will be responsible for test-related tasks should be identified.
 This includes personnel like, developers, testers, software quality assurance staff, systems

analysts, and customers/users, who will be:

 developing test design specifications, and test cases;

 executing the tests and recording results;
 checking results;

 interacting with developers;

 developing the test harnesses;

 interacting with the users/customers.

12. Staffing and Training Needs
 The test planner should describe the staff and the skill levels needed to carry out test-

related responsibilities

 Any special training required to perform a task should be noted.

13. Scheduling
 Task durations should be established and recorded with the aid of a task networking tool.
 Test milestones should be established, recorded, and scheduled.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

 Schedules for use of staff, tools, equipment, and laboratory space should also be
specified.

14. Risks and Contingencies
 Every testing effort has risks associated with it.
 Testing software with a high degree of criticality, complexity, or a tight delivery deadline

all impose risks that may have negative impacts on project goals.

 These risks should be: (i) identified, (ii) evaluated in terms of their probability of

occurrence, (iii) prioritized, and (iv) contingency plans should be developed that can be

activated if the risk occurs.

15. Testing Costs

 The project manager in consultation with developers and testers estimates testing costs.
 If the test plan is an independent document prepared by the testing group and has a cost

component, the test planner will need tools and techniques to help estimate test costs.

 Test costs that should included in the plan are:

 costs of planning and designing the tests;
 costs of acquiring the hardware and software necessary for the tests;

 costs to support the test environment;

 costs of executing the tests;

 costs of recording and analyzing test results;
 tear-down costs to restore the environment.

16. Approvals

 The test plan(s) for a project should be reviewed by those designated by the organization.
 All parties who review the plan and approve it should sign the document.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

 TEST PLAN ATTACHMENTS

 Test Design Specifications

 The IEEE standard for software test documentation describes a test design specification

as a test deliverable that specifies the requirements of the test approach.
 The test design specification also has links to the associated test cases and test procedures

needed to test the features, and also describes in detail pass/fail criteria for the features.

 To develop test design specifications many documents such as the requirements, design
documents, and user manual are useful.

 A test design specification should have the following components according to the IEEE

standard.

Test Design Specification Identifier  Give each test design specification a unique identifier and

a reference to its associated test plan.

Features to Be Tested  Test items, features, and combination of features covered by this test

design specification are listed.

Approach Refinements In the test plan a general description of the approach to be used to test
each item was described.

The test planner also describes how test results will be analyzed.

The relationships among the associated test cases are discussed.

Test Case Identification Each test design specification is associated with a set of test cases and

a set of set procedures.

The test cases contain input/output information

Test procedures contain the steps necessary to execute the tests.

Pass/Fail Criteria  The specific criteria to be used for determining whether the item has

passed/failed a test.

 Test Case Specifications

 This series of documents attached to the test plan defines the test cases required to
execute the test items named in the associated test design specification.

 Each test case must be specified correctly so that time is not wasted in analyzing the
results of an erroneous test.

Test Case Specification Identifier  Each test case specification should be assigned a unique

identifier.

Test Items  This component names the test items and features to be tested by this test case

specification.

Input Specifications  This component of the test design specification contains the actual inputs

needed to execute the test.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

Output Specifications  All outputs expected from the test should be identified. If an output is
to be a specific value or a specific feature it also should be stated. The
output specifications are necessary to determine whether the item has

passed/failed the test.

Special Environmental Needs  Any specific hardware and specific hardware configurations

needed to execute this test case should be identified. Special

software required executing the test such as compilers,

simulators, and test coverage tools should be described.

Special Procedural Requirements  Describe any special conditions or constraints that apply to

the test procedures associated with this test.

Intercase Dependencies  The test planner should describe any relationships between this test

case and others, and the nature of the relationship.

 Test Procedure Specifications

A procedure in general is a sequence of steps required to carry out a specific task.

 The planner specifies the steps required to execute a set of test cases.

 It specifies the steps necessary to analyze a software item in order to evaluate a set of

features.

Test Procedure Specification Identifier  Each test procedure specification should be assigned a

unique identifier.

Purpose  Describe the purpose of this test procedure and reference any test cases it executes.

Specific Requirements  List any special requirements for this procedure, like software,

hardware, and special training.

Procedure Steps  Here the actual steps including methods, documents for recording (logging)

results, and recording incidents are described.

 Steps include:
o Setup : to prepare for execution of the procedure;

o Start : to begin execution of the procedure;

o Proceed : to continue the execution of the procedure;

o Measure : to describe how test measurements related to outputs will be made;
o Shut down : to describe actions needed to suspend the test when unexpected

events occur;

o Restart : to describe restart points and actions needed to restart the

procedure from these points;

o Stop : to describe actions needed to bring the procedure to an orderly
halt;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

 LOCATING TEST ITEMS

 The Test Item Transmittal Report

Suppose a tester is ready to run tests on an item on the date described in the test plan. She needs
to be able to locate the item and have knowledge of its current status. This is the function of the
Test Item Transmittal Report.

This document is not a component of the test plan, but is necessary to locate and track the items

that are submitted for test. Each Test Item Transmittal Report has a unique identifier. It should
contain the following information for each item that is tracked.

(i) version/revision number of the item;

(ii) location of the item;
(iii) persons responsible for the item (e.g., the developer);

(iv) references to item documentation and the test plan it is related to;

(v) status of the item;

(vi) approvals — space for signatures of staff who approve the transmittal.

 TEST MANAGEMENT

Test managements includes aspects that should be taken care of in planning a project. These
aspects are proactive measures that can have an across-the-board influence in all testing projects.

 Choice of Standards

Standards are of 2 types, external and internal standards. External standards are standards that a
product should comply with, are externally visible, and are usually stipulated by external
consortia. Internal standards are standards formulated by a testing organization to bring in

consistency and predictability. Some of the internal standards include,

(i) Naming and storage conventions for test artifacts

 Every test artifact should be named appropriately and meaningfully.

 Stipulates the conventions for directory structure for tests.

(ii) Document standards

 For manual testing, documentation standards correspond to specifying the user
and system responses at the right level of detail that is consisten with the skill

level of the tester.

(iii) Test coding standards

 Test coding standards go one level deeper into the tests and enforce standards on
how the tests themselves are written.

(iv) Test reporting standards

 The stakeholders must get a consistent and timely view of the progress of tests.

 It provides guidelines on the level of detail that should be present in the test
reports.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

 Test Infrastructure Management

Testing requires a robust infrastructure to be planned upfront. This infrastructure is made up of 3
essential elements.

 A test case database (TCDB)  captures all the relevant information aboult the test

cases in an organization.

 A defect repository  captures all the relevant details of defects reported for a

product. It is an important vehicle of communication that influences the work flow
ithin a software organization.

 Configuration management repository and tool  keeps trace of change control and
version control of all the files / entities that make up a software product.

 Test People Management

 People management is an integral part of any project management.

 A person relies only on his or her own skills to accomplish an assigned activity

 It requires the ability to taught (unlike technical skills).

 Success of a testing organization depends vitally on judicious people managemtn
skills.

 The common goals and the spirit of teamwork have to be internalized by all the

stakeholders.

 Integrating with Product Release

 The success of a product depends on the effectiveness of integration of the
development and testing activities.

 Project planning for the entire product should be done in a holistic way.

 Some of the points to be decided for this planning are as follows.
o Sync points between development and testing as to when different types of

testing can commence. (Eg. When integration testing could start? When
system testing could start?)

o Services level agreements between development and testing as to how long it
would take for the testing team to complete the testing.

o Consistent definitions of the various properties and severities of the defects.
o Communication mechanism to the documentation group to ensure that the

documentation is kept in sync with the product.

 TEST PROCESS

 Putting Together and Baselining a Test Plan
o An organization develops a template that is to be used across the board and each

testing project puts together a test plan based on it.

o A change, if any, is made only after careful deliberations (proper approval).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

o The test plan is reviewed by a designated set of competent people of the
organization.

o It is approved by a competent authority, an independent of project manager
directly responsible for testing.

o The test plan is base lined into the configuration management repository.

o Now, the base lined test plan becomes the bases for running the testing project.
 Test case Specification

o Test case specification is designed by the testing team based on test plan.

o It becomes the bases for preparing individual test cases.
o A test case specification should clearly identify,

 The purpose of test

 Items being testing along with their version or release number
 Environment that needs to be set up for running the test case.

 Input data to be used for the test case.

 Steps to be followed to execute the test.

 The expected results that are considered to be “correct results”.
 A step to compare the actual results produced with the expected

results.

 Update of Traceability Matrix

o The traceability matrix is a tool to validate that every requirement is tested.
o It is created during the requirements gathering phase itself by filling up the

unique identifier for each requirement.

o On completion, the row corresponding to the requirement which is being
tested by the test case is updated with the test case specification identifier.

 Identifying Possible Candidates for Automation.
o Before writing test cases, decision should be taken as to which tests are to be

automated and which should run manually.

o Some criteria that will be used in deciding for automate include,
 Repetitive nature of the test

 Effort involved in automation
 Amount of manual intervention required for the test

 Cost of automation tool

 Developing and Baselining Test Cases
o Test case development entails translating the test specifications to a form from

which the tests can be executed.

 For automation, it requires writing test scripts in the automation
language.

 For manual, it maps to writing detailed step-by-step instructions for
executing the tests and validating the results.

 Test case should have change history documents, which specifies,

 What was the change

 Why the change was necessitated

 Who made the change

 When was the change made

 Brief description of how the change has been implemented

 Other files affected by the change

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

 Collecting and Analyzing Metrics

o Information about test execution gets collected in test logs and other files.

 Preparing Test Summary Report

o On test cycle completion, a test summary report is produced.
o It gives insights to the senior management about the fitness of the product for

release.

 Recommending Product Release Criteria
o Defect identification is an evidence of what defects exist in the product, their

severity and impact.

 What defects the product has

 What is the impact / severity of each of the defects
 What would be the risks of releasing the product with the existing

defects?

 REPORTING TEST RESULTS

The test plan and its attachments are test-related documents that are prepared prior to test
execution. There are additional documents related to testing that are prepared during and after

execution of the tests. The IEEE Standard for Software Test Documentation describes the

following documents.

 Test Log

The test log, a diary of events during tests , should be prepared by the person executing the

tests. In the experimental world of engineers and scientists detailed logs are kept when carrying

out experimental work.

The test log is invaluable for use in defect repair. It gives the developer a snapshot of the events

associated with a failure. The combination of test log and test incident documents helps to

prevent incorrect decisions based on incomplete or erroneous test results that often lead to

repeated, but ineffective, test-patch-test cycles.

The test log is valuable for (i) regression testing that takes place in the development of future

releases of a software product, and (ii) circumstances where code from a reuse library is to be

reused.

The test log can have many formats. An organization can design its own format or adopt IEEE

recommendations. The IEEE Standard for Software Test Documentation has the following

sections:

1. Test Log Identifier: Each test log should have a unique identifier.
2. Description: Tester should identify the items being tested, their version/revision

number, and their associated Test Item/Transmittal Report. The
environment in which the test is conducted should be described

including hardware and operating system details.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

3. Activity and Event Entries: The tester should provide dates and names of test log authors

for each event and activity. This section should also contain:

o Execution description: Provide a test procedure identifier and also the names and
functions of personnel involved in the test.

o Procedure results: For each execution, record the results and the location of the output.

o Incident report identifiers: Record the identifiers of incident reports generated while the
test is being executed.

 Test Incident Report

The tester should record in a test incident report (sometimes called a problem report) any event

that occurs during the execution of the tests that is unexpected, unexplainable, and that requires

a follow-up investigation.

The IEEE Standard for Software Test Documentation recommends the following sections in the
report:

1. Test Incident Report identifier: to uniquely identify this report.

2. Summary: to identify the test items involved, the test procedures, test cases, and test log

associated with this report.

3. Incident description: to describe time and date, testers, observers, environment, inputs,

expected outputs, actual outputs, procedure step etc.
4. Impact: what impact will this incident have on the testing effort, the test plans, the test

procedures, and the test cases? (severity rating)

 Test Summary Report

This report is prepared when testing is complete, a summary of the results of the testing efforts.
When a project postmortem is conducted, the Test Summary Report can help managers, testers,

developers, and SQA staff to evaluate the effectiveness of the testing efforts. The IEEE test

documentation standard describes the following sections for the Test Summary Report:

1. Test Summary Report identifier: to uniquely identify this report.
2. Variances: variances of the test items from their original design. Deviations and reasons

for the deviation from the test plan, test procedures, and test designs are

discussed.

3. Comprehensiveness assessment: the document author discusses the comprehensiveness of
the test effort as compared to test objectives and test

completeness criteria as described in the test plan.

4. Summary of results: the document author summarizes the testing results. Resolved and

unresolved incidents should be described.

5. Evaluation: author evaluates each test item based on test results. Did it pass/fail the tests?

If it failed, what was the level of severity of the failure?

6. Summary of activities: all testing activities and events are summarized.
7. Approvals: the names of all persons who are needed to approve this document are listed

with space for signatures and dates.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

The following figure shows the relationships between all the test-related documents.

 THE ROLE OF THE THREE GROUPS IN TESTING PLANNING

AND POLICY DEVELOPMENT

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/

The manager’s view involves commitment and support for those activities and tasks related to
improving testing process quality.

The developer/tester’s view encompasses the technical activities and tasks that when applied,

constitute best testing practices.

The user/client view is defined as a cooperating or supporting view.

Critical group participation is summarized in following figure.

 INTRODUCING THE TEST SPECIALIST

The organization tests its software at several levels (unit, integration, system, etc.) Moving up to
next level requires further investment of organizational resources in the testing process. One of

the maturity goals at this level calls for the “Establishment of a test organization.” It implies a
commitment to better testing and higher-quality software. This commitment requires that testing

specialists be hired, space be given to house the testing group, resources be allocated to the

group, and career paths for testers be established.

Although there are many costs to establishing a testing group, there are also many benefits. By
supporting a test group an organization acquires leadership in areas that relate to testing and

quality issues. For example, there will be staff with the necessary skills and motivation to be

responsible for:

o maintenance and application of test policies;

o development and application of test-related standards;

o participating in requirements, design, and code reviews;

o test planning;

o test design;
o test execution;

o test measurement;

o test monitoring (tasks, schedules, and costs);

o defect tracking, and maintaining the defect repository;
o acquisition of test tools and equipment;

o identifying and applying new testing techniques, tools, and methodologies;

o mentoring and training of new test personnel;

o test reporting.

The staff members of such a group are called test specialists or test engineers. Their primary

responsibly is to ensure that testing is effective and productive, and that quality issues are

addressed.

Testers are not developers, or analysts, although background in these areas is very helpful and

necessary. Testers don’t repair code. However, they add value to a software product in terms of

higher quality and customer satisfaction. They are not destructive; they are constructive.

Test specialists need to be educated and trained in testing and quality issues.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

Organizational, and planning skills

Track and pay attention to detail

Determination to discover and solve problems

Work with others, resolve conflicts

Mentor and train others

Work with users/clients

Written/oral communication skills

Think creatively

Personal and Managerial Skills

General software engineering principles and practices

Understanding of testing principles and practices
Understanding of basic testing strategies, and methods

Ability to plan, design, and execute test cases

Knowledge of process issues

Knowledge of networks, databases, and operating systems
Knowledge of configuration management

Knowledge of test-related documents
Ability to define, collect, and analyze test measurements

Ability, training, and motivation to work with testing tools

Knowledge of quality issues

Technical Skills

 SKILLS NEEDED BY A TEST SPECIALIST

Given the nature of assigned to the tester, many managerial and personal skills are necessary for

success in the area of work. On the personal and managerial level a test specialist must have
various skill and all of these skills are summarized as follows.

Test specialist skills

 BUILDING A TESTING GROUP

Organizing, staffing, and directing were major activities required to manage a project and a
process. Hiring staff for the testing group, organizing the testing staff members into teams,

motivating the team members, and integrating the team into the overall organizational structure

are organizing, staffing, and directing activities your organization will need to perform to build a
managed testing process.

Establishing a specialized testing group is a major decision for an organization. The steps in the

process are summarized in following figure.

The following gives a brief description of the duties for each tester that is common to most
organizations.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

 The Test Manager

In organizations with a testing function, the test manager (or test director) is the central person

concerned with all aspects of testing and quality issues. The test manager is usually responsible

for,

 test policy making,

 customer interaction,

 test planning,

 test documentation,

 controlling and monitoring of tests,

 training,

 test tool acquisition,

 participation in inspections and
walkthroughs,

 reviewing test work,

 the test repository,

 and staffing issues such as hiring,

firing, and evaluation of the test team
members.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 The Test Lead

The test lead assists the test manager and works with a team of test engineers on individual
projects. He or she may be responsible for duties such as,

(v) test planning, (ii) staff supervision, and (iii) status reporting.

The test lead also participates in test design, test execution and reporting, technical reviews,

customer interaction, and tool training.

 The Test Engineer

The test engineers design, develop, and execute tests, develop test harnesses, and set up test

laboratories and environments. They also give input to test planning and support maintenance of

the test and defect repositories.

 The Junior Test Engineer

The junior test engineers are usually new hires. They gain experience by participating in test

design, test execution, and test harness development. They may also be asked to review user

manuals and user help facilities defect and maintain the test and defect repositories.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/
https://learnengineering.in/

1

 ARUNAI ENGINEERING COLLEGE
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

IT8076 -SOFTWARE TESTING (2017 Regulation)
UNIT-V

UNIT V TEST AUTOMATION

Software test automation – skills needed for automation – scope of automation – design and
architecture for automation – requirements for a test tool – challenges in automation – Test
metrics and measurements – project, progress and productivity metrics.

Software Test Automation

WHAT IS TEST AUTOMATION?
Developing software to test the software is called test automation.

Test automation can help address several problems.

 Automation save time as software can execute test cases faster than human do .
The time thus saved can be used effectively for test engineers to

1. develop additional test cases to achieve better coverage;

2. perform some esoteric or specialized tests like ad hoc testing; or
3. Perform some extra manual testing.

The time saved in automation can also be utilized to develop additional test cases,
thereby improving the coverage of testing.

 Test automation can free the test engineers from mundane tasks and make
them focus on more creative tasks. -E.g- Ad hoc testing requires intuition and
creativity to test the product for those perspectives that may have been missed out by
planned test cases. If there are too many planned test cases that need to be run
manually and adequate automation does not exist, then the test team may spend
most of its time in test execution.

Automating the more mundane tasks gives some time to the test engineers for
creativity and challenging tasks.

 Automated tests can be more reliable -when an engineer executes a particular test
case many times manually, there is a chance for human error. As with all machine-
oriented activities, automation can be expected to produce more reliable results every
time, and eliminates the factors of boredom and fatigue.

 Automation helps in immediate testing -automation reduces the time gap between
development and testing as scripts can be executed as soon as the product build is
ready. Automated testing need not wait for the availability of test engineers.

 Automation can protect an organization against attrition of test engineers
Automation can also be used as a knowledge transfer tool to train test engineers on
the product as it has a repository of different tests for the product.

 Test automation opens up opportunities for better utilization of global
resources Manual testing requires the presence of test engineers, but automated
tests can be run round the clock, twenty- four hours a day and seven days a week.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

2

This will also enable teams in different parts of the words, in different time zones, to
monitor and control the tests, thus providing round the- clock coverage.

 Certain types of testing cannot be executed without automation-For example, if
we want to study the behavior of a system with thousands of users logged in, there is
now way one can perform these tests without using automated tolls.

 Automation means end-to-end, not test execution alone -Automation should
consider all activities such as picking up the right product build, choosing the right

configuration, performing installation, running the tests, generating the right test
data, analyzing the results, and filling the defects in the defect repository. When
talking about automation, this large picture should always be kept in mind.

 TERMS USED IN AUTOMATION

A test case is a set of sequential steps to execute a test operating on a set of

predefined inputs to produce certain expected outputs. There are two types of test cases –
automated and manual. A manual test case is executed manually while an automated

test case is executed using automation.

As we have seen earlier , testing involves several phases and several types of testing.

Some test cases are repeated several times during a product release, because the product
is built several times. Table describes some test cases for the log in example, on how the

login can be tested for different types of testing.

S.No Test Cases for Testing Belongs to What type of testing

1. Check whether login works Functionality

2. Repeat Login operation in a loop for
48 hours

Reliability

3. Perform Login from 10000 clients Load /Stress Testing

4. Measure time taken for Login
operations in different conditions

Performance

5. Run log in operation from a
machine running Japanese

language

Internationalization

From the above table , it is observed that there are 2 important dimensions

1) What operations have to be tested

2) How the operations have to be tested  scenarios

The how portion is called  scenarios.
What an operation has to do  product specific feature
How they are to be run  framework specific requirement

They are the generic requirements for all products that are being tested in an
organization.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

3

When a set of test cases is combined and associated with a set of scenarios, they are
called “test suite”. A test suite is nothing but a set of test cases that are automated and

scenarios that are associated with the test cases.

Framework for test automation

SKILLS NEEDED FOR AUTOMATION

There are different “Generations of Automation”. The skills required for automation

depends on what generation automation the company is in or desires to be in the near
future.

The automation of testing is broadly classified into three generations.
a. First generation – Record and playback

 Record and playback avoids the repetitive nature of executing tests.
Almost all the test tools available in the market have the record and

playback feature.

 A test engineer records the sequence of actions by keyboard characters
or mouse clicks and those recorded scripts are played back later, in the
same order as they were recorded. But this generation of tool has several
disadvantages.

 The scripts may contain hard-coded values, thereby making it difficult to
perform general types of tests.

 When the application changes, all the scripts have to be re-recorded,
thereby increasing the test maintenance costs.

b. Second generation-Data-driven

 This method helps in developing test scripts that generates the set of input
conditions and corresponding expected output.

 This enables the tests to be repeated for different input and output conditions.
The approach takes as much time and effort as the product.

A

Test

Suite

How to

execute

the tests

What a test

should do

Test

cases

Framework/

harness test

tool

scenarios
User

defined

scenarios

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

4

c. Third generation-Action-driven

 This technique enables a layman to create automated tests. There are no input
and expected output conditions required for running the tests.

 All actions that appear on the application are automatically tested, based on a
generic set of controls defined for automation.

 The set of actions are represented as objects and those objects are reused. The
user needs to specify only the operations and everything else that is needed for
those actions are automatically generated.

 Hence, automation in the third generation involves two major aspects- “test
case automation” and “framework design”.

Classification of skills for automation

Automation-first

generation

Automation- second

generation

Automation-third generation

Skills for test case
automation

Skills for test case
automation

Skills for test case
automation

Skills for framework

Scripting languages Scripting languages Scripting languages Programming
languages

Record- playback
tools usage

Programming
languages

Programming
languages

Design and
architecture skills for

framework creation

 Knowledge of data

generation
techniques

Design and

architecture of the
product under test

Generic test

requirements for
multiple products

 Usage of the product
under test

Usage of the
framework

 SCOPE OF AUTOMATION

1. Identifying the Types of Testing Amenable to Automation
 Certain types of tests automatically lend themselves to automation

a. Stress, reliability, scalability, and performance testing these types of testing

require the test cases to be run form a large number of different machines for an
extended period of time, such as 24 hours, 48 hours, and so on. Test cases

belonging to these testing types become the first candidates for automation.
b. Regression tests Regression tests are repetitive in nature. These test cases are

executed multiple times during the product development phases.

c. Functional tests These kinds of tests may require a complex set up and thus require

specialized skill, which may not be available on an ongoing basis. Automating these

once, using the expert skill sets, can enable using less-skilled people to run these
tests on an ongoing basis.

2. Automating Areas Less Prone To Change
Automation should consider those areas where requirements go through lesser or

no changes. Normally change in requirements cause scenarios and new features to

be impacted, not the basic functionality of the product.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

5

3. Automate Tests That Pertain to Standards

One of the tests that product may have to undergo is compliance to standards. For
example, a product providing a JDBC interface should satisfy the standard JDBC

tests.
Automating for standards provides a dual advantage. Test suites developed for
standards are not only used for product testing but can also be sold as test tools for

the market.

4. Management Aspects in Automation

Prior to starting automation, adequate effort has to be spent to obtain management
commitment. It involves significant effort to develop and maintain automated tools;

obtaining management commitment is an important activity. Return on investment is
another aspect to be considered seriously.

DESIGN AND ARCHITECTURE FOR AUTOMATION
Design and architecture is an important aspect of automation. As in product
development, the design has to represent all requirements in modules and in the

interactions between modules and in the interactions between modules.

Integration Testing, both internal interfaces and external interfaces have to be captured
by design and architecture. In this figure the thin arrows represent the internal
interfaces and the direction of flow and thick arrows show the external interfaces. All the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

6

modules, their purpose, and interactions between them are described in the subsequent
sections.

Architecture for test automation involves two major heads: a test infrastructure that
covers a test case database and a defect database or defect repository. Using this

infrastructure, the test framework provides a backbone that ties the selection and
execution of test cases.
1. External Modules

 There are two modules that are external modules to automation-TCDB and defect

DB. All the test cases, the steps to execute them, and the history of their execution

are stored in the TCDB.
 The test cases in TCDB can be manual or automated. The interface shown by thick

arrows represents the interaction between TCDB and the automation framework only
for automated test cases.

 Defect DB or defect database or defect repository contains details of all the defects

that are found in various products that are tested in a particular organization. It
contains defects and all the related information test engineers submit the defects for
manual test cases.

 For automated test cases, the framework can automatically submit the defects to the
defect DB during execution.

 2. Scenario and Configuration File Modules.

Scenarios are nothing but information on “how to execute a particular test case”.

A configuration file contains a set of variables that are used in automation. A
configuration file is important for running the test cases for various execution conditions

and for running the tests for various input and output conditions and states.

3. Test Cases and Test Framework Modules

Test case is an object for execution for other modules in the architecture and does
not represent any interaction by itself.

A test framework is a module that combines “what to execute” and “how they have to

be executed”. It picks up the specific test cases that are automated from TCDB and
picks up the scenarios and executes them.

The test framework is considered the core of automation design. It subjects the test
cases to different scenarios. The test framework contains the main logic for interacting ,
initiating, and controlling all modules.

A test framework can be developed by the organization internally or can be bought
from the vendor.

 4. Tools and Result Modules
 When a test framework performs its operations, there are a set of tools that may be

required. For example, when test cases are stored as source code files in TCDB, they
need to be extracted and compiled by build tools. In order to run the compiled code,
certain runtime tools and utilities may be required.

 For eg , IP Packet Simulators. The result that comes out of the tests run by the test
framework should not overwrite the results from the previous test runs. The history

of all the previous tests run should be recorded and kept as archives.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

7

5. Report Generator and Reports / Metrics Modules
 Once the results of a test run are available, the next step is to prepare the test

reports and metrics. Preparing reports is a complex and time- consuming effort and
hence it should be part of the automation design.

 There should be customized reports such as an executive report, which gives very

high level status; technical reports, which give a moderate level of detail of the test
run; and detailed or debug reports which are generated for developers to debug the
failed test cases and the product.

 The module that takes the necessary inputs and prepares a formatted report is called
a report generator. Once the results are available, the report generator can generate

metrics.

GENERIC REQUIREMENTS FOR TEST TOOL/FRAMEWORK

 Requirement 1: No hard coding in the test suite

 The variables for the test suite are called configuration variables. The file in which all

variable names and their associated values are kept is called configuration file.
 The variables belonging to the test tool and the test suite need to be separated so that

the user of the test suite need not worry about test tool variables.
 Changing test tool variables, without knowing their purpose, may impact the results

of the tests.

 Providing inline comment for each of the variables will make the test suite more
usable and may avoid improper usage of variables.

Ex: well documented config file

#Test Framework Configuration Parameter
TOOL_PATH =/tools

COMMONLIB_PATH =/tools/crm/lib
SUITE_PATH =/tools/crm

#parameter common to all the test cases in the test

VERBOSE_LEVEL =3
MAX_ERRORS=200

USER_PASSWD =hello123

#Test Case1 Parameter
TC1_USR_CREATE =0 # 1=yes 0=no

TC1_USR_PASSWD=hello123
TC1_MAX_USRS =200

Requirement 2: Test case/ suite expandability
Points to considered during expansion are

 Adding a test case should not affect other test cases

 Adding a test case should not result in retesting the complete test suite
 Adding a new test suite to the framework should not affect existing test suites

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

8

Requirement 3: Reuse of code for different types of testing, test cases

 Points to be considered during Reuse of codes are:
1) The test suite should only do what a test is expected to do. The test framework needs

to take care of “how” and

2) The test programs need to be modular to encourage reuse of code.

Requirement 4: Automatic setup and cleanup
 When test cases expect a particular setup to run the tests, it will be very difficult to

remember each one of them and do the setup accordingly in the manual method. Hence,
each test program should have a “setup” program that will create the necessary setup

before executing the test cases. The test framework should have the intelligence to find out
what test cases are executed and call the appropriate setup program.

A setup for one test case may work negatively for another test case. Hence, it is
important not only to create.
Requirement 5: Independent test cases

Each test case should be executed alone; there should be no dependency between
test cases such as test case-2 to be executed after test case-1 and so on. This requirement

enables the test engineer to select and execute any test case at random without worrying
about other dependencies.
Requirement 6: Test case dependency

Making a test case dependent on another makes it necessary for a particular test
case to be executed before or after a dependent test case is selected for execution

Requirement 7: Insulating test cases during execution

Insulating test cases from the environment is an important requirement for the

framework or test tool. At the time of test case execution, there could be some events or
interrupts or signals in the system that may affect the execution.

Requirement 8: Coding standards and directory structure
Coding standards and proper directory structures for a test suite may help the new

engineers in understanding the test suite fast and help in maintaining the test suite.
Incorporating the coding standards improves portability of the code.
Requirement 9: Selective execution of test cases

A Test Framework contains  many Test Suite
A Test Suite contains  many Test Program

A Test Program contains  many Test Cases
 The selection of test cases need not be in any order and any combination should be
allowed. Allowing test engineers to select test cases reduces the time. These selections are

normally done as part of the scenario file. The selection of test cases can be done
dynamically just before running the test cases, by editing the scenario file.

Example scenario file Meaning

test-pgm-name 2,4,1,7-10 The test cases 2,4,1,7-10 are selected for execution

Tests-pgm-name Executes all test cases

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

9

Requirement 10: Random execution of test cases
Test engineer may sometimes need to select a test case randomly from a list of test

cases. Giving a set of test cases and expecting the test tool to select the test case is called
random execution of test cases. A test engineer selects a set of test cases from a test suite;
selecting a random test case from the given list is done by the test tool.

Ex: scenario file.

Random
 test-pgm-name 2,1,5

test tool select one out of test cases 2,1,5 for execution

Random
test-pgm-name1 (2,1,5)

test-pgm-name2
test-pgm-name3

Test engineer wants one out of test program 1,2,3 to be
randomly executed and if pgm-name1 is selected , then one

out of test cases 2,1,5 to be randomly executed, if test
program 2,3 are selected , then all TC in those 2 program

are executed.

Requirement 11: parallel execution of test cases

In a multi-tasking and multi processing operating systems it is possible to make
several instances of the tests and make them run in parallel. Parallel execution simulates
the behavior of several machines running the same test and hence is very useful for

performance and load testing.

Ex: scenario file.

Instance, 5

test-pgm-name1 (3)

5 instances of test case 3 in test-pgm-name1 are executed

Instance, 5

test-pgm-name1 (2,1,5)
test-pgm-name2

test-pgm-name3

5 instances of test programs are created , within each of

the five instances that are created the test program 1,2,3,
are executed in sequence .

Requirement 12: Looping the test cases

Reliability testing requires the test cases to be executed in a loop. There are two types

of loops that are available.
1) iteration loop - gives the number of iterations of a particular test case to be

executed.

2) timed loop - which keeps executing the test cases in a loop till the specified time
duration is reached.

Ex: scenario file.

Repeat_loop, 50
test-pgm-name1 (3)

test case 3 in test-pgm-name1 is repeated 50 times.

Time_loop, 5 Hours
test-pgm-name1 (2,1,5)

test-pgm-name2
test-pgm-name3

TC 2,1,5 from test-pgm-name1 and all test cases from
the test program2 and 3 are executed in order, in a

loop for 5 hours

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

10

Requirement 13: Grouping of test scenarios
The group scenarios allow the selected test cases to be executed in order, random, in

a loop all at the same time. The grouping of scenarios allows several tests to be executed in
a predetermined combination of scenarios.

Ex: scenario file.

Group_scenario1
Parallel, 2 AND repeat,10@scen1

Scen1

test-pgm1 (2,1,5)
test-pgm2

test-pgm3

Group scenario was created to execute 2 instances
of the individual scenario “scen1” in a
loop 10 times

Requirement 14: Test case execution based on previous results

One of the effective practices is to select the test cases that are not executed and test

cases that failed in the past and focus more on them. Some of the common scenarios that
require test cases to be executed based on the earlier results are

1. Rerun all test cases which were executed previously;
2. Resume the test cases from where they were stopped the previous time;

3. Rerun only failed/not run test cases; and
4. Execute all test cases that were executed previously.

Requirement 15: Remote execution of test cases
The central machine that allocates tests to multiple machines and co-ordinates the

execution and result is called test console or test monitor. In the absence of a test console,
not only does executing the results from multiple machines become difficult, collecting the
results from all those machines also becomes difficult.

Role of test console and multiple execution machine.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

11

Requirement 16: Automatic archival of test data
The test cases have to be repeated the same way as before, with the same scenarios,

same configuration variables and values, and so on. This requires that all the related
information for the test cases have to be archived. It includes

1) What configuration variables were used
2) What scenario was used
3) What program were executed and from what path

Requirement 17: Reporting scheme

 Every test suite needs to have a reporting scheme from where meaningful reports can be
extracted. As we have seen in the design and architecture of framework, the report
generator should have the capability to look at the results file and generate various reports.

Audit logs are very important to analyze the behavior of a test suite and a product. A
reporting scheme should include

1. When the framework, scenario, test suite, test program, and each test case were

started/ completed;
2. Result of each test case;

3. Log messages;
4. Category of events and log of events; and
5. Audit reports

Requirement 18: Independent of languages

A framework or test tool should provide a choice of languages and scripts that are
popular in the software development area.

 A framework should be independent of programming languages and scripts.

 A framework should provide choice of programming languages, scripts, and
their combinations.

 A framework or test suite should not force a language/script.

 A framework or test suite should work with different test programs written
using different languages, and scripts.

 The internal scripts and options used by the framework should allow the
developers of a test suite to migrate to better framework.

Requirement 19: portability to different platforms

With the advent of platform-independent languages and technologies, there are many
products in the market that are supported in multiple OS and language platforms.

 The framework and its interfaces should be supported on various platforms.

 Portability to different platforms is a basic requirement for test tool/ test suite.

 The language/script used in the test suite should be selected carefully so that
it runs on different platforms.

 The language/ script written for the test suite should not contain platform-
specific calls.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

12

CHALLENGES IN AUTOMATION

 Test automation presents some very unique challenges. The most important of
these challenges is management commitment.

 Automation should not be viewed as a panacea for all problems nor should it
be perceived as a quick-fix solution for all the quality problems in a product.

 The main challenge here is because of the heavy front-loading of costs of test
automation, management starts to look for an early payback.

 Successful test automation endeavors are characterized by unflinching
management commitment, a clear vision of the goals, and the ability to set

realistic short-term goals that track progress with respect to the long-term
vision.

TEST METRICS AND MEASUREMENTS

Definition

 Metrics are the source of measurement.

 Metrics derive information from raw data with a view to help in decision making.

Ex: No of defects , No of test cases , effort , schedule
Metrics are needed to know test case execution productivity and to estimate test completion

date.
Effort : actual time that is spent on a particular activity or a phase

Schedule : Elapsed days for a complete set of activities

Steps in a Metrics Program

Step1: Metrics program is to decide what measurements are important and collect data

accordingly. Ex for Measurements: effort spent on testing , no of defects , no of test cases.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

13

Step2: It deals with defining how to combine data points or measurement to provide
meaningful metrics. A particular metric can use one or more measurements

Step3: It involves with operational requirement for measurements. It contains

 Who should collect measurements?
 Who should receive the analysis etc.
This step helps to decide on the appropriate periodicity for the measurements as well as

assign operational responsibility for collecting, recording and reporting the measurements.
Daily basis measurements  no of testcases executed, no of defects found, defects fixed..
Weekly measurements  how may testcases produced 40 defects,

Step4: This step analyzes the metrics to identify both positive area and improvement areas

on product quality.

Step5: The final step is to take necessary action and follow up on the action.

Step6: To continue with next iteration of metrics programs, measuring a different set of
measurements, leading to more refined metrics addressing different issues.

WHY METRICS IN TESTING?

Knowing only how much testing got completed does not answer the question on when the
testing will get completed and when the product is ready for release. To Answer these

questions , one need to estimate the following

Days needed to complete testing = Total test cases yet to be executed

 Total test case execution productivity

test case execution productivity  testcases executed per person day

Total Days needed for defect fixes = (outstanding defects yet to fixed + Defects that can be
 found in future test cycles)

 Defect fixing capability

Days needed for Release = Max(Days needed for testing , days needed for defect fixes)

More accurate estimate with regression testing

Days needed for Release = Max(Days needed for testing ,(days needed for defect fixes +

 Days needed for regressing outstanding defect fixes))

Metrics are needed to know test case execution productivity and to estimate test completion

date.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

14

 Metrics in testing help in identifying

 When to make the release.
 What to release

 Whether the product is being released with known quality.

 TYPES OF METRICS

Metrics can be classified into different types based on what they measure and what area
they focus on. At a very high level, metrics can be classified as product metrics and process
metrics.

Product metrics can be further classified as:

1. Project metrics A set of metrics that indicates how the project is planned and
executed.

2. Progress metrics A set of metrics that tracks how the different activities of the project
are progressing. The activities include both development activities and testing activities.
Progress metrics is monitored during testing phases. Progress metrics helps in finding out

the status of test activities and they are also good indicators of product quality. Progress
metrics, for convenience, is further classified into

1) test defect metrics and
2) development defect metrics.

3. Productivity metrics A set of metrics that takes into account various productivity
numbers that can be collected and used for planning and tracking testing activities. These

metrics help in planning and tracking testing activities. These metrics help in planning and
estimating of testing activities.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

15

I) PROJECT METRICS

A typical project starts with requirements gathering and ends with product release.
All the phases that fall in between these points need to be planned and tracked. In the

planning cycle, the scope of the project is finalized. The project scope gets translated to size
estimates, which specify the quantum of work to be done. This size estimate gets translated
to effort estimate for each of the phases and activities by using the available productivity

data available.

base lined effort The initial effort

 revised effort. As the project progresses and if the scope of the project changes, then the

effort estimates are re-evaluated again and this re-evaluated effort estimate is called revised
effort.

Two factors
Effort : actual time that is spent on a particular activity or a phase

Schedule : Elapsed days for a complete set of activities

 If the effort is tracked closely & met then schedule can be met.

 If planned effort is equal to actual effort and schedule not met then project is not

considered as successful one.



The basic measurements are
1. initial baselined effort and schedule

2. The actual effort
3. The revised estimate of effort and schedule

1. Effort Variance (Planned Vs Actual)

When the baselined effort estimates, revised effort estimates, and actual effort are
plotted together for all the phases of SDLC, it provides many insights about the estimation

process. As different set of people may get involved in different phases, it is a good idea to
plot these effort numbers phase-wise. A sample data for each of the phase is plotted in the
chart.

If there is a substantial difference between the baselined and revised effort, it points
to incorrect initial estimation. Calculating effort variance for each of the phases provides a
quantitative measure of the relative difference between the revised and actual efforts.

Calculating effort variance for each of the phases provides a quantitative measure of the relative difference between

the revised and actual efforts.

Effort variance % = actual effort – revised estimate X 100

 Revised estimate

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

16

Phase wise effort variation

Sample variance percentage by phase.

Effort Req Design Coding Testing Doc Defect
Fixing

Variance % 7.1 8.7 5 0 40 15

 All the baseline estimates, revised estimates, and actual effort are plotted together for
each of the phases. The variance can be consolidated into as shown in the above
table.

 A variance of more than 5% in any of the SDLC phase indicates the scope for
improvement in the estimation. The variance is acceptable only for the coding and
testing phases.

 The variance can be negative also. A negative variance is an indication of an over
estimate.

 The variance is acceptable only for the coding and testing phases.

 2. Schedule Variance (Planned vs Actual)
Schedule variance is calculated at the end of every milestone to find out how well the
project is doing with respect to the schedule.

To get a real picture on schedule in the middle of project execution, it is important to

calculate “remaining days yet to be spent” on the project and plot it along with the “actual

0

10

20

30

40

Req Design Coding Testing Doc Defect

fixing
pe

rs
on

 d
ay

s
baselined estimate Resived estimate Fixing

126 136
110

56

0
20
40
60
80

100
120
140
160
180

Baseline

Estim
ated

Actual/re
maining

No
.of

 Da
ys

Estimated Remaining

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

17

schedule spent” as in the above chart. “Remaining days yet to be spent” can be calculated
by adding up all remaining activities. If the remaining days yet to be spent on project is not

calculated and plotted, it does not give any value to the chart in the middle of the project,
because the deviation cannot be inferred visually from the chare. The remaining days in the

schedule becomes zero when the release is met.
Effort and schedule variance have to be analyzed in totality, not in isolation. This is

because while effort is a major driver of the cost, schedule determines how best a product

can exploit market opportunities, variance can be classified into negative variance, zero
variance, acceptable variance, and unacceptable variance.

3. Effort Distribution Across Phases

Adequate and appropriate effort needs to be spent in each of the SDLC phase for a
quality product release.

The distribution percentage across the different phases can be estimated at the time
of planning and these can be compared with the actual at the time of release for getting a
comfort feeling on the release and estimation methods. A sample distribution of effort

across phases is given in figure.
Actual Effort Distribution

Effort distribution :

Req > Testing > design > bug fixing > coding > doc

15%

22%

5%

17% 23%

18%

Req Design Coding Testing Doc Bug

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

18

Mature organizations spend at least 10-15 % of the total effort in requirements and

approximately the same effort in the design phase. The effort percentage for testing depends
on the type of release and amount of change to the existing code base and functionality.

Typically, organizations spend about 20 -50 % of their total effort in testing.

II) PROGRESS METRICS

One of the main objectives of testing is to find as many defects as possible before any
customer finds them. The number of defects that are found in the product is one of the
main indicators of quality.

Defects get detected by the testing team and get fixed by the development team.
Defect metrics are further classified in to

1. test defect metrics
2. development defect metrics

The progress chart gives

 pass rate

 fail rate of executed test cases

 pending test cases

 test cases that are waiting for defects to be fixed.

A scenario represented by such a progress chart shows that not only is testing

progressing well, but also that the product quality is improving. The chart had shown a
trend that as the weeks progress, the “not run” cases are not reducing in number, or

“blocked” cases are increasing in number, or “pass” cases are not increasing, then it would
clearly point to quality problems in the product that prevent the product from being ready
for release.

1. TEST DEFECT METRICS

The next set of metrics helps us understand how the defects that are found can be

used to improve testing and product quality.
Some organizations classify effects by assigning a defect priority (for example P1, P2,

P3, and so on)Some organizations use defect severity levels (for example, S1, S2, S3, and so

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8

Week

Blocked

Not run

Fail

Pass

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

19

on).The priority of a defect can change dynamically once assigned. Severity is absolute and
does not change often as they reflect the state and quality of the product.

Table -Defect priority and defect severity – sample interpretation.
Defect priority is based on defect fixing and defect severity is based on functionality level.

Priority What it means

1

2.
3
4

Fix the defect on highest priority; fix it before the next build

Fix the defect on high priority before next test cycle
Fix the defect on moderate priority when time permits, before the release
Postpone this defect for next release or live with this defect

Severity What it

means

What it means

1

2
3

4

The basic product functionality failing or product crashes

Unexpected error condition or a functionality not working
A minor functionality is failing or behaves differently than expected

Cosmetic issue and no impact on the users

This defect classification is based on priority and severity.

Defect Classification What it Means

Extreme  Product crashes or unusable

 Need to be fixed immediately

Critical  Basic functionality of the product not working

 Needs to be fixed before next test cycle starts

Important  Extended functionality of the product not working

 Does not affect the progress of testing

 Fix it before the release

Minor  Product Behaves differently

 No impact on test team or customer

 Fix it when time permits

Cosmetic  Minor Irritant

 Need not be fixed for this release

a) Defect Find Rate

The purpose of testing is to find defects early in the test cycle. The idea of testing is to
find as many defects as possible early in the cycle. However, this may not be possible for
two reasons. First, not all features of a product may become available early; because of

scheduling of resources, the features of a product arrive in a particular sequence. Some
of the test cases may be blocked because of some show stopper defects.
Once a majority of the modules become available and the defects that are blocking the

tests are fixed, the defect arrival rate increases. After a certain period of defect fixing and
testing, the arrival of defects tends to slow down and a continuation of that enables

product release. This results in a “bell curve” as shown in figure.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

20

b) Defect fix rate

The purpose of development is to fix defects as soon as they arrive. If the goal of testing
is to find defects as early as possible, it is natural to expect that the goal of development

should be to fix defects as soon as they arrive. There is a reason why defect fixing rate
should be same as defect arrival rate. If more defects are fixed later in the cycle, they
may not get tested properly for all possible side-effects.

c) Outstanding defects rate

In a well executed project, the number of outstanding defects is very close to zero all the
time during the test cycle. The number of defects outstanding in the product is calculated
by subtracting the total defects fixed from the total defects found in the product.

d) Priority outstanding rate
The modification to the outstanding defects rate curve by plotting only the high-

priority defects and filtering out the low- priority defects is called priority outstanding

defects. This is an important method because closer to product release, the product team
would not want to fix the low – priority defects.

Normally only high-priority defects are tracked during the period closer to release. Some
high-priority defects may require a change in design or architecture & fixed immediately

e) Defect trend

The effectiveness analysis increases when several perspectives of find rate, fix rate,
outstanding, and priority outstanding defects are combined. Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

www.rejinpaul.com

21

Defect trend

The following observations can be made.
1. The find rate, fix rate, outstanding defects, and priority outstanding follow a bell

curve pattern, indicating readiness for release at the end of the 19th week.

2. a sudden downward movement as well as upward spike in defect fixes rate needs
analysis (13th to 17th week in the chart above)

3. By looking at the priority outstanding which shows close to zero defects in the 19th
week, it can be concluded that all outstanding defects belong to low priority.

4. A smooth priority outstanding rate suggests that priority defects were closely tracked

and fixed.

f) Defect Classification trend

Providing the perspective of defect classification in the chart helps in finding out release
readiness of the product. When talking about the total number of outstanding defects,

some of the questions that can be asked are

 How many of them are extreme defects?

 How many are critical?
 How many are important?

 These questions require the charts to be plotted separately based on defect classification.
The sum of extreme, critical, important, minor, and cosmetic defects is equal to the total
number of defects.

Pie chart of defect distribution

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

22

g) Weighted defects trend

Weighted defect helps in quick analysis of defect, instead of worrying about the
classification of defects.

Weighted defects= (Extreme * 5 + Critical * 4 + important * 3 + Minor * 2 +
 Cosmetic)

 Both “large defects” and “large number of small defects” affect product release.

Weighted defects trend.

From Figure it can be noted that
1. The ninth week has more weighted defects, which means existence of "large number

of small defects" or "significant numbers of large defects" or a combination of the two.
This is consistent with our interpretation of the same data using the stacked area
chart.

2. The tenth week has a significant (more than 50) number of weighted defects
indicating the product is not ready for release.

h) Defect cause distribution

Logical questions that would arise are:
1. Why are those defects occurring and what are the root causes?

2. What areas must be focused for getting more defects out of testing?
Finding the root causes of the defects help in identifying more defects and

sometimes help in even preventing the defects.

 Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

23

Defect cause distribution chart

2.Development Defect Metrics
To map the defects to different components of the product , the parameter is LOC. It has

a) Component wise Defect Distribution

b) Defect Density & defect removal rate

c) Age Analysis of outstanding defect

d) Introduced and reopened defects trend

a) Component wise Defect Distribution

When module wise defect distribution is done , modules like install ,reports , client and
database has > 20 defects indicating that more focus and resources are needed for these
components.

So knowing the components producing more defects helps in defect fix plan and in deciding
what to release.

b) Defect Density & defect removal rate

Defect density maps the defects in the product with the volume of code that is produced for the
product.

Defects per KLOC = Total defects found in the product / total Executable line
 of code in KLOC

Variants to this metrics is to calculate AMD (add , modify , delete code) to find how a release affects product

quality .

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

24

c) Age Analysis of outstanding defect
The time needed to fix a defect may be proportional to its age. It helps in finding out whether

the defects are fixed as soon as they arrive and to ensure that long pending defects are given
adequate priority.

d) Introduced and reopened defects trend

Introduced defect(ID): when adding new code or modifying the code to provide a defect fix , something that was

working earlier may stop working , this is called ID.

reopened defects :fix that is provided in the code may not have fixed the problem completely or some other

modification may have reproduced a defect that was fixed earlier. This is called as reopened defects.

Testing is not meant to find the same defects again ; release readiness should consider the quality of defect fixes.

 III) PRODUCTIVITY METRICS

 Productivity metrics combine several measurements and parameters with effort spend on

the product. They help in finding out the capability of the team as well as for other purpose,
such as

1. Estimating for the new release.
2. Finding out how well the team is progressing, understanding the reasons for (both

positive and negative) variations in results.
3. Estimating the number of defects that can be found
4. Estimating release data and quality

5. Estimating the cost involved in the release.

a) Defects per 100 Hours of Testing

Defects per 100 hours of testing= (Total defects found in the product for a period /
 Total hours spent to get those defects) * 100

 Test Cases Executed per 100 Hours of Testing

Test cases executed per 100 hours of testing = (Total test cases executed for a period /

 Total hours spent in test execution) * 100

b) Test cases Developed per 100 Hours of Testing

Test cases developed per 100 hours of testing= (Total test cases developed for a period /
 Total hours spent in test case development) * 100

c) Defects per 100 Test Cases

Defects per 100 test cases = (Total defects found for a period / Total test cases
 executed for the same period) * 100

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

25

d) Defects per 100 Failed Test Cases

Defects per 100 failed test cases = (Total defects found for a period/Total test cases

 failed due to those defects) * 100

e) Test Phase Effectiveness

The following few observations can be made

1. A good proportion of defects were found in the early phases of testing (UT and CT).
2. Product quality improved from phase to phase (shown by less percent of defects

found in the later test phases – IT and ST)

 Test phase effectiveness

f) Closed Defect Distribution

The closed defect distribution helps in this analysis as shown in the figure below. From the
chart, the following observations can be made.

1. Only 28% of the defects found by test team were fixed in the product. This suggests
that product quality needs improvement before release.

2. Of the defects filled 19% were duplicates. It suggests that the test team needs to
update itself on existing defects before new defects are filed.

3. Non-reproducible defects amounted to 11%. This means that the product has some

random defects or the defects are not provided with reproducible test cases. This area
needs further analysis.

ST, 12%

UT, 39%
CT, 32%

IT, 17%

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

26

4. Close to 40% of defects were not fixed for reasons “as per design,” “will not fix,” and
“next release.” These defects may impact the customers. They need further

discussion and defect fixes need to be provided to improve release quality.

Closed defect distribution

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

www.rejinpaul.com

	UNIT IV TEST MANAGEMENT
	PEOPLE AND ORGANIZATIONAL ISSUES IS TESTING
	 Testing is not technically challenging
	 Testing does not provide me a career path or growth
	 I am put in testing – what is wrong with me?!
	 These folks are my adversaries
	 Testing is what I can do in the end if I get time
	 There is no sense of ownership in testing
	 Testing is only destructive
	Providing Career Path for Testing Professional
	Responsibilities of a Senior Test Engineer
	Responsibilities of a Test Lead
	Responsibilities of a Test Architect
	Development Functions Vs Testing
	Similarities
	Differences
	The role of the ecosystem and call for action

	ORGANISATION STRUCTURES FOR TESTING TEAMS
	ORGANIZATION STRUCTURE FOR TESTING TEAMS:
	Dimensions of Organization Structure
	 Organization Type
	 Product
	 Service

	Testing Team Structure for Single-Product Companies
	 Advantages
	 Disadvantages

	COMPONENT WISE ORGANIZATION
	Testing Team Structure for Multi-Product Companies
	Types of test Reports into

	Testing Services Organization
	Business Need for Testing Services
	Typical Roles and Responsibilities of Testing Services Organization
	Challenges and Issues in Testing Service Organizations
	Success Factors for Testing Organizations

	TEST PLANNING
	A plan is a document that provides a framework or approach for achieving a set of goals.
	Milestones are tangible events that are expected to occur at a certain time in the project’s lifetime. Managers use them to determine project status.

	TEST PLAN COMPONENTS
	1. Test Plan Identifier
	2. Introduction
	3. Items to Be Tested
	4. Features to Be Tested
	 Features may be described as distinguishing characteristics of a software component or system.

	5. Approach
	6. Item Pass/Fail Criteria
	7. Suspension and Resumption Criteria
	8. Test Deliverables
	9. Testing Tasks
	 A Work Breakdown Structure is a hierarchical or treelike representation of all the tasks that are required to complete a project.

	10. The Testing Environment
	11. Responsibilities
	12. Staffing and Training Needs
	13. Scheduling
	14. Risks and Contingencies
	15. Testing Costs
	16. Approvals

	TEST PLAN ATTACHMENTS
	Test Design Specifications
	Test Case Specifications
	Test Procedure Specifications

	LOCATING TEST ITEMS
	The Test Item Transmittal Report

	TEST MANAGEMENT
	Choice of Standards
	(ii) Document standards
	(iii) Test coding standards
	(iv) Test reporting standards
	Test Infrastructure Management
	Test People Management
	Integrating with Product Release

	TEST PROCESS
	 Putting Together and Baselining a Test Plan
	 Test case Specification
	o It becomes the bases for preparing individual test cases.

	REPORTING TEST RESULTS
	Test Log
	Test Incident Report
	Test Summary Report

	THE ROLE OF THE THREE GROUPS IN TESTING PLANNING AND POLICY DEVELOPMENT
	INTRODUCING THE TEST SPECIALIST
	SKILLS NEEDED BY A TEST SPECIALIST
	BUILDING A TESTING GROUP
	The Test Manager
	The Test Lead
	The Test Engineer
	The Junior Test Engineer

