
CS8592 - OBJECT ORIENTED ANALYSIS AND DESIGN

UNIT I UNIFIED PROCESS AND USE CASE DIAGRAMS

Introduction to OOAD with OO Basics – Unified Process – UML diagrams – Use Case –Case study –

the Next Gen POS system, Inception -Use case Modelling – Relating Use cases – include, extend and

generalization – When to use Use-cases

OBJECTS

Knowing an object oriented language is a necessary but insufficient to create object systems.

Knowing how to “thing in objects” is critical.

The proverb “owing a hammer doesn’t make one an architect” is especially true with respect to object

technology.

Analysis: “build the right thing”

– Analysis focuses on user requirements (functional or non-functional)

Design: “build the thing right”

– Design focuses on how to provide the required functionality.

Object-Oriented Analysis

An investigation of the problem (rather than how a solution is defined) . During OO analysis, there is an

emphasis on finding and describing the objects (or concepts) in the problem domain

Analysis

Usually performed by a systems analyst.

– This is a person whose job it is to find out what an organization (or person) needs in terms of a

software system.

Analysis looks at the software as a black box of functionality.

– An analyst will never care about the internals of the system, merely how a user would interact

with it from the outside.

Design

Usually performed by an architect or designer
– An architect looks at overall system structure (at a high level)

For example, an architect on a distributed system might decide how the software

components will be distributed. An architect also looks at modularity, and non-functional

requirements (such as performance and scalability)

- A designer looks at system structure (at lower levels)

A designer will look at the classes that make up a module, and how they will interact to

perform some function of the system

Design Patterns

Patterns are themes that recur in many types of software systems
– It is common for software systems (even those whose purpose is quite different) will share some

common challenges. Often, the solution for the problem in one context can also be used in another

context. Thus, the designs (and even implementations) can often be reused from other software

systems

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Thinking in Objects and UML

The Unified Modeling Language (UML) is a standard diagramming notation; sometimes referred to as a

blueprint. It is NOT OOA/OOD or a method. Only a notation for capturing objects and the relationships

among objects (dependency; inheritance; realizes; aggregates,). UML is language-independent

Analysis and design provide software “blueprints” captured in UML. Blueprints serve as a tool for thought

and as a form of communication with others. But it is far more essential to ‘think’ in terms of objects as

providing ‘services’ and accommodating ‘responsibilities.’

Object-Oriented Analysis (Overview)

An investigation of the problem (rather than how a solution is defined) . During OO analysis, there

is an emphasis on finding and describing the objects (or concepts) in the problem domain. For

example, concepts in a Library Information System include Book, and Library. High level views

found in the application domain. Often called domain objects; entities.

Object-Oriented Design

Emphasizes a conceptual solution that fulfills the requirements.
Need to define software objects and how they collaborate to meet the requirements.

For example, in the Library Information System, a Book software object may have a title attribute

and a getChapter method. What are the methods needed to process the attributes? Designs are

implemented in a programming language. In the example, we will have a Book class in Java.

From Design to Implementation

Thinking in Terms of Objects and UML – 5

From Design to Implementation

Book

(concept)

Domain concept Representation in

analysis of concepts

public class Book {

public void print();

private String title;

}

Representation in an

object-oriented

programming language.

Can you see the services / responsibilities in the Book class? 13

Of course, design (solution to requirements) ‘assumes’ a robust requirements analysis has taken place.

Use Cases are often used to capture stories of requirements and are often views as ‘constituting’ the

functional requirements, but NOT the software quality factors (non-functional requirements). Use Cases

are not specifically designed to be object-oriented, but rather are meant to capture how an application will

be used. Many methods for capturing requirements. We will concentrate on Use Cases.

title

print()

Book

Analysis

investigation

of the problem

Design

logical solution

Construction

code

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Our Approach:

We need a Requirements Analysis approach with OOA/OOD need to be practiced in a framework of a

development process. We will adopt an agile approach (light weight, flexible) in the context of the Unified

Process, which can be used as a sample iterative development process. Within this process, the principles

can be discussed.

Why the Unified Process:

The Unified Process is a popular iterative software development process. Iterative and

evolutionary development involves relatively early programming and testing of a partial system, in

repeated cycles. It typically also means that development starts before the exact software requirements

have been specified in detail; Feedback (based on measurement) is used to clarify, correct and improve

the evolving specification:

What is the Unified Process?

The UP is very flexible and open and can include other practices from other methods such as Extreme

Programming (XP) or Scrum for example. e.g. XP’s test-driven development, refactoring can fit within a

UP project; So can Scrum’s daily meeting. Being pragmatic in adapting a particular process to your needs

is an important skill: all projects are different.

The Rush to Code

Critical ability to develop is to think in terms of objects and to artfully assign responsibilities to software

objects. Talk at great length about encapsulation and assigning methods to objects where the data is

defined. One cannot design a solution if the requirements are not understood. One cannot implement the

design if the design is faulty.

• Analysis: - investigate the problem and the requirements.

• What is needed? Required functions? Investigate domain objects.

• Problem Domain

• The Whats of a system.

• Do the right thing (analysis)

• Design:

• Conceptual solution that meets requirements.

• Not an implementation

• E.g. Describe a database schema and software objects.

• Avoid the CRUD activities and commonly understood functionality.

• The Solution Domain

• The ‘Hows’ of the system

• Do the thing right (design)

• OOA: we find and describe business objects or concepts in the problem domain

• OOD: we define how these software objects collaborate to meet the requirements.

• Attributes and methods.

• OOP: Implementation: we implement the design objects in, say, Java, C++, C#, etc.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• Using the model below, develop a discussion outlining the four

activities listed and present the major features of each.

A short definition and example of a domain model, interaction

diagram, and class diagram is sufficient, but be prepared to discuss

each of these.

Also, have a general idea about use cases – what they are designed

to do and what they are not designed to do.

4

What is Analysis and Design

• Analysis:

– investigate problem and is requirements; solution comes later

– ask and answer questions

– Example: Grade Book. Some questions?

– Requirements Analysis

• investigate requirements

– Object-oriented Analysis

• investigate objects used in and by domain

A Short Example

publicclasPlane

{

privateStringtailNumber;

publicListgetFlightHistory(){...}

}

Dicey: In which a program simulates a player tossing two dice.

Define Use Cases

– these are user scenarios, stories, goals

Define a Domain Model

– this is a description of the domain from the point of view of the objects involved

– identify the concepts, attributes and associations

– result is called the domain model
Partial (Conceptual) Domain Model

domainconcept

representationinan

object-oriented

programminglanguage

visualizationof

domainconcept

Define Design Class

Diagrams

Define Use Cases

Define Domain Model

Define Interaction

Diagrams

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1 Rols 2

It is not description of the software, it is a visualization of the concepts or mental models of a real world

domain. It is also called conceptual object model.

Assigning Responsibilities

In a program, objects collaborate – pass each other messages, make data available to one another

Common notation is called a sequence diagram. A sequence diagram shows the flow of messages between

objects If we know where the message goes we know who is “responsible” for “responding to” the

message. Answering the message involves knowing “how” to answer the message How close is “flow of

message” to the concept of “function call”?

Sequence diagram – shows messages between objects

 play()

Defining Classes

• The preceding is a dynamic view of collaborating classes.
• The following is a static view of collaborating classes; more often called a class diagram.

• Differs from the domain model, with similarities.

• Follows the sequence diagram in the order of things.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2

Partial design class diagram

DiceGame

1

Die

die1:Die

die2:Die

faceValue:int

getFaceValue():int

rol() play()

Bridging the Gap

RealWorld

DefiningDomainModel

DesigningClasses

Coding

Entity-Relationship

Model

Relational

Data Model

RealWorld

What is UML?

Database

The Unified Modeling Language is a visual language for specifying, construction and documenting

the artifacts of systems. (OMG) . A lot more than we ever need to know including lots of software for

drawing pictures .

How to Apply UML?

As a sketch: informal, hand-drawn documents, used for exploration
As a blueprint: detailed design documents, developed by tools that either forward- or reverse engineer

code.

– forward: tool takes a picture and produces executable code (mostly stubs).

– reverse: tool takes executable code and draws a picture.

As a Programming Language: Tools produce complete executables.

As a Agile Programming: UML as a sketch.

Three Perspectives in Applying UML

• UML does not dictate modeling perspective; you can use a class diagram for real-world concepts or Java

classes.

• None the less, perspectives exist:

– Conceptual class : Describe the real world concept or thing

– software class : Describe software abstractions using specifications or interfaces – no

commitment to a particular implementation

– Implementation class : Describe an implementation in a particular language like Java.

Program

DesignObject

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

.

 Different Perspectives of “Class”.

• Rectangular boxes are classes. But they can be physical things, abstract concepts, software things,

events,

• A software design methods or methodologies superimposes structure/naming conventions on the various

UML objects.

• For example, in the Unified Process (UP), Domain Model, a box represents a conceptual class. In the

Design Model they are called Design Classes.

• Different views of class:

– conceptual class, software class, implementation class.

Different phases of unified process.

Iterative development and The Unified process

The Unified Process is a popular and iterative software development process for building

object oriented system. In particular, the Rational Unified Process, as modified at Rational Software,

is widely adopted by industry.

The Most Important Concept

The critical idea in the Rational Unified Process is Iterative Development. Iterative

Development is successively enlarging and refining a system through multiple iterations, using

feedback and adaptation. Each iteration will include requirements, analysis, design, and

implementation. Iterations are time boxed.

Rational Unified Process (RUP):

RUP is a complete software-development process framework , developed by Rational

Corporation. It’s an iterative development methodology based upon six industry-proven best

practices. Processes derived from RUP vary from lightweight—addressing the needs of small

projects —to more comprehensive processes addressing the needs of large, possibly distributed

project teams.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Phases in RUP

RUP is divided into four phases, named:

 Inception

 Elaboration

 Construction

 Transition

Iterations

 Each phase has iterations. Each having the purpose of producing a demonstrable

piece of software. The duration of iteration may vary from two weeks or less up to six

months.

Relationship between UP Phases and UP disciplines

Unified Process best practices

• Get high risk and high value first

• Constant user feedback and engagement

• Early cohesive core architecture

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• Test early, often, and realistically

• Apply use cases where needed

• Do some visual modeling with UML

• Manage requirements

• Manage change requests and configuration

Inception

Inception – Activities

Formulate the scope of the project. Needs of every stakeholder, scope, boundary conditions

and acceptance criteria established. Plan and prepare the business case.

Define risk mitigation strategy, develop an initial project plan and identify known cost, schedule,

and profitability trade-offs. Synthesize candidate architecture. Candidate architecture is

picked from various potential architectures Prepare the project environment.

Inception - Exit criteria

An initial business case containing at least a clear formulation of the product vision - the

core requirements - in terms of functionality, scope, performance, capacity, technology base.

Success criteria (example: revenue projection). An initial risk assessment. An estimate of the

resources required to complete the elaboration phase.

Elaboration

An analysis is done to determine the risks, stability of vision of what the product is to

become, stability of architecture and expenditure of resources.

Elaboration - Entry criteria

The products and artifacts described in the exit criteria of the previous phase. The plan

approved by the project management, and funding authority, and the resources required for the

elaboration phase have been allocated. Define the architecture. Project plan is defined. The

process, infrastructure and development environment are described.

Elaboration - Activities

Validate the architecture. Baseline the architecture. To provide a stable basis for the bulk of the

design and implementation effort in the construction phase.

 Elaboration - Exit criteria

A detailed software development plan, with an updated risk assessment, a management

plan, a staffing plan, a phase plan showing the number and contents of the iteration , an iteration

plan, and a test plan. The development environment and other tools . A baseline vision, in the form

of a set of evaluation criteria for the final product . A domain analysis model, sufficient to be able

to call the corresponding architecture ‘complete’. An executable architecture baseline.

Construction

The Construction phase is a manufacturing process. It emphasizes managing resources and

controlling operations to optimize costs, schedules and quality. This phase is broken into several

iterations.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Construction - Entry criteria

The product and artifacts of the previous iteration. The iteration plan must state the

iteration specific goals. Risks being mitigated during this iteration. Defects being fixed during the

iteration.

Construction – Activities

Develop and test components. Manage resources and control process. Assess the iteration

Construction - Exit Criteria

The same products and artifacts, updated. A release description document, which captures

the results of an iteration. Test cases and results of the tests conducted on the products, An

iteration plan, detailing the next iteration Objective measurable evaluation criteria for assessing the

results of the next iteration(s).

Transition

The transition phase is the phase where the product is put in the hands of its end users. It

involves issues of marketing, packaging, installing, configuring, supporting the user-community,

making corrections, etc.

Transition - Entry criteria

The product and artifacts of the previous iteration, and in particular a software product

sufficiently mature to be put into the hands of its users.

Transition – Activities

Test the product deliverable in a customer environment. Fine tune the product based upon

customer feedback Deliver the final product to the end user .Finalize end-user support material

Transition - Exit criteria

An update of some of the previous documents, as necessary, the plan being replaced by a

“post-mortem” analysis of the performance of the project relative to its original and revised

success criteria; A brief inventory of the organization’s new assets as a result this cycle.

Advantages of RUP

The RUP puts an emphasis on addressing very early high risks areas. It does not assume a

fixed set of firm requirements at the inception of the project, but allows to refine the requirements

as the project evolves. It does not put either a strong focus on documents The main focus remains

the software product itself, and its quality.

Drawbacks of RUP

RUP is not considered particularly “agile”. It fails to provide any clear implementation

guidelines. RUP leaves the tailoring to the user entirely.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Use-Case Model

Use Case Relationships

Business Model

Objects, attributes, associations

Domain Model

Use Case Model

Requirements

Design

VISION

GLOSSARY

SUPPLEMENTARY

SPECIFICATION

Interaction Diagrams

2

Use case diagram

• Use case concepts introduced by Ivar Jackson in object oriented s/w engineering.

• Use cases represent specific flow of events in the system

• Use cases defines the outside (actor) and inside(use case) of the system’s behavior.

• Use case diagram is graph of actors, set of use cases enclosed by a system boundary.

Use Cases are not Diagrams

• Use Cases may have a diagram associated with them, and a use case diagram is an easy way for an

analyst to discuss a process with a subject matter expert (SME).

• But use cases are primarily text. The text is important. The diagram is optional.

Why Use Cases?

• Simple and familiar story-telling makes it easier, especially for customers, to contribute and

review goals.

• Use cases keep it simple

• They emphasize goals and the user perspective.

• New use case writers tend to take them too seriously.

Actors or Use Case First?

• An actor is a role that user plays with respect to the system.

• Typically, both actors and use cases are identified early and then examined to see if more use

cases can be found from the actors, or more actors found by examining the use cases.

How Use Cases look like?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• Capture the specific ways of using the system as dialogues between an actor and the system.

• Use cases are used to

– Capture system requirements

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

– Communicate with end users and Subject Matter Experts

Test the system

Finding Use Cases

1. Choose the system boundary

• Is it s/w application, the h/w and application as a unit or the entire organization?

2. Identify the primary actors

3. Identify the goals for each primary actor

4. Define use cases that satisfy these goals; name them according to their goal

How to organize the Actors & Goals

• Two approaches

– As we discover results, draw them in use case diagram, naming the goals as use cases.

– Write an actor-goal list first, review and refine it, and then draw the use case diagram.

Other ways to find actors and goals: Event Analysis

• Look at external events. E. g. “Enter sale line items” or “enter payment.”

External Event From Actor Goal/Use Case

Enter sale item Cashier Process a sale

Enter payment Cashier or customer Process a sale

Which is a Valid Use Case?

• The Boss test: “What have you been doing all day?” Is this strongly related to achieving results?

• The Elementary Business Process test: Task performed by one person at one place at one time in

response to a business event that adds value and leaves data in a consistent state.

• The size test: Fully dressed is 3-10 pages.

Use Cases in Iterative Methods

• Functional requirements recorded in use cases(use case model)

• Important part of iterative planning

– Work of an iteration decided by choosing use case scenarios or entire use cases

– Key input to estimation

• Use cases influence organization of user manuals

• Testing builds on use case scenarios

• Use case realization drive the design. The team design collaborating objects and subsystems in

order to perform or realize the use cases. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Use cases in NextGen Inception Phase

Fully dressed Casual Brief

Process Sale

Handle Returns

Process Rental

Analyze Sales Activity

Manage Security

….

Cash In

Cash Out

Manage Users

Start Up

Start Down

Manage System tables

….

Three common use case formats

• Brief – one paragraph summary, usually of the main success scenario.

• Casual – informal paragraph format. Multiple paragraphs that cover various scenario.

• Fully dressed – all steps and variations are written in detail , and there are supporting sections ,

like preconditions and success guarantees.

Use cases Template

Use case section comment

Name Start with verb

Scope The system under design

Level User goal or sub function

Primary Actor Calls on the system to deliver its service

Stakeholders and Interests Who cares about this use case, and what do they want?

Preconditions What must be true on start and worth telling the reader?

Success Guarantee What must be true on successful completion, and worth

telling the reader?

Main Success Scenario A typical, unconditional happy path scenario of success

Extensions Alternate scenarios of success

Special requirement Related non functional requirement

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Case Study I: NextGen POS System

• NextGen point-of-sale (POS) system – Computerized application used to record sales and handle

payments typically used in a retail store.

• Components – Hardware: computer and bar code scanner & Software

• Interfaces to various service applications, such as a third party tax calculator and inventory control

• Must be relatively fault-tolerant – Even if remote services are temporarily unavailable (such as the

inventory system), they must still be capable of capturing sales and handling at least cash

payments

• Increasingly must support multiple and varied client-side terminals and interfaces – Thin-client

Web browser terminal – Regular personal computer with graphical user interface – Touch screen

input – Wireless PDAs, etc.

USE CASE : Process Sale (FULLY DRESSED VERSION)

• Primary Actor: Cashier

• Stakeholders and Interests:

 Cashier: Wants accurate and fast entry, no payment errors…

 Salesperson: Wants sales commissions updated. …

• Preconditions: Cashier is identified and authenticated.

• Success Guarantee (Post conditions):

 Sale is saved. Tax correctly calculated.…

Main success scenario (or basic flow):…

Use case

• Main success scenario (or basic flow):

1. The Customer arrives at a POS checkout with items to purchase.

2. cashier starts new sale

3. Cashier enters item identifier

4. System records sale line item and presents item description, price and running total.

Cashier repeats step 3-4 until indicates done.

5. System presents total with taxes calculated.

6. Cashier tells customer the total, and asks for payment.

7. Customer pays and system handles payment.

8. System logs completed sale and send sale and payment info to the external accounting system

and inventory system.(to update inventory)

9. System presents receipt.

10. Customer leaves with receipt and goods.

• Extensions (or alternative flows):

 If invalid identifier entered. Indicate error.

 If customer didn’t have enough cash, cancel sales transaction.

 Customer paying by debit card … invalid pin

 Printer out of paper.

• Special requirements: Touch screen UI, …

• Technology and Data Variations List:

 Identifier entered by bar code scanner,…

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• Open issues: What are the tax law variations?...

Things that are in Use Cases

• Create a written document for each Use Case

– Clearly define intent of the Use Case

– Define Main Success Scenario (Happy Path)

– Define any alternate action paths

– Use format of Stimulus: Response

– Each specification must be testable

– Write from actor’s perspective, in actor’s vocabulary

Elements in the Preface

• Only put items that are important to understand before reading the Main Success Scenario.

These might include:

• Name (Always needed for identification)

• Primary Actor

• Stakeholders and Interests List

• Preconditions

Success guarantee (Post Conditions)

Naming Use Cases

• Must be a complete process from the viewpoint of the end user.

• Usually in verb-object form, like Buy Pizza

• Use enough detail to make it specific

• Use active voice, not passive

• From the viewpoint of the actor, not the system

Golden Rule of Use-Case Names

• Each use case should have a name that indicates what value (or goal) is achieved by the actor's

interaction with the system

• Here are some good questions to help you adhere to this rule:

– Why would the actor initiate this interaction with the system?

What goal does the actor have in mind when undertaking these actions?

What value is achieved and for which actor?

Use Case Name Examples

• Excellent - Purchase Concert Ticket

• Very Good - Purchase Concert Tickets

• Good - Purchase Ticket (insufficient detail)

• Fair - Ticket Purchase (passive)

• Poor - Ticket Order (system view, not user)

• Unacceptable - Pay for Ticket (procedure, not process)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

CRUD

• Examples of bad use case names with the acronym CRUD. (All are procedural and reveal nothing

about the actor’s intentions.)

• C - actor Creates data

• R - actor Retrieves data

• U - actor Updates data

• D - actor Deletes data

Identify Actors

• We cannot understand a system until we know who will use it

– Direct users

– Users responsible to operate and maintain it

– External systems used by the system

– External systems that interact with the system

Types of Actors

• Primary Actor

– Has goals to be fulfilled by system

• Supporting Actor

– Provides service to the system

• Offstage Actor

– Interested in the behavior, but no contribution

• In diagrams, Primary actors go on the left and others on the right.

Define Actors

• Actors should not be analyzed or described in detail unless the application domain demands it.

• Template for definition:

– Name

– Definition

• Example for an ATM application:

Customer: Owner of an account who manages account by depositing and withdrawing funds

Working with Use Cases

• Determine the actors that will interact with the system

• Examine the actors and document their needs

• For each separate need, create a use case

• During Analysis, extend use cases with interaction diagrams

Preconditions

• Anything that must always be true before beginning a scenario is a precondition.

• Preconditions are assumed to be true, not tested within the Use Case itself.

• Ignore obvious preconditions such as the power being turned on. Only document items necessary

to understand the Use Case.

Success Guarantees

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• Success Guarantees (or Post conditions) state what must be true if the Use Case is completed

successfully.

• This may include the main success scenario and some alternative paths. For example, if the happy

path is a cash sale, a credit sale might also be regarded a success.

• Stakeholders should agree on the guarantee.

Scenarios

• The Main Success Scenario, or “happy path” is the expected primary use of the system, without

problems or exceptions.

Alternative Scenarios or Extensions are used to document other common paths through the system

and error handling or exceptions

Documenting the Happy Path

• The Success Scenario (or basic course) gives the best understanding of the use case

• Each step contains the activities and inputs of the actor and the system response

• If there are three or more items, create a list

• Label steps for configuration management and requirements traceability

• Use present tense and active voice

• Remember that User Interface designers will use this specification

Note: Do not use the term “happy path” in formal documents.

Documenting Extensions

• Use same format as Happy Path

• Document actions that vary from ideal path

• Include error conditions

• Number each alternate, and start with the condition:

3A. Condition: If [actor] performs [action] the system …

• If subsequent steps are the same as the happy path, identify and label as (same)

• Steps not included in alternate course are assumed not to be performed.

Two Parts for Extensions

• Condition

– Describe the reason for the alternative flow as a condition that the user can detect

• Handling

– Describe the flow of processing in the same manner as the happy path, using a numbering

system consistent with the original section.

Special Requirements

If a non-functional requirement , quality attribute, or constraint affects a use case directly, describe

it as a special requirement

Technology and Data Variations List

• Often there are technical differences in how things are done even though what is done is the same.

These things can be described in the Technology and Data Variations List.

• For example, if a card reader cannot read the magnetic stripe on a credit card, the cashier might be

able to enter it on the keyboard.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Types of Use Cases

• The most common Use Cases are High Level Use Cases and Expanded Essential Use Cases in

analysis, and Expanded Real Use Cases in design. The next slide gives definitions.

• In addition, Use Case diagrams may be used in discussions with stakeholders while capturing their

requirements.

Elaborating Use Cases

• High Level Use Case (Brief)

– Name, Actors, Purpose, Overview

• Expanded Use Case (Fully Dressed)

– Add System Events and System Responses

• Essential Use Case (Black Box)

– Leave out technological implications

• Real Use Case (White Box)

– Leave in technology

Technology

• The distinction between an essential (black box) use case that leaves out technology and a real

(white box) use case that includes technology is fundamental.

• For example, in an Automated Teller Machine, an essential use case can mention identification or

validation, but only a real use case can mention a key pad or card reader.

Post conditions

• Post conditions (or success guarantees) state what always must be true for a use case to succeed.

Avoid the obvious, but clearly document any that are not obvious. This is one of the most

important parts of a use case.

Conditions and Branching

Stick to the “Happy Path,” “Sunny Day Scenario,” Typical Flow, or Basic Flow (all names for the

same basic idea) in the main section and defer all conditional sections and branching to the

extensions or alternate flows

Extension Use Cases

• Users appreciate simplicity, so most use cases leave out alternate courses

• You can do this by extending the use case while leaving the original use case alone

Feature Lists

• Older methods of detailing requirements tended to have many pages of detailed feature lists.

Usually the details could not be seen in context.

• Current philosophy is to use a higher level of detail with use cases instead of a list.

• High level System Feature Lists are acceptable when they can give a succinct summary of the

system.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Use Cases not an OO idea

• Use Cases are not an Object-Oriented methodology. They are common in structured development

as well.

• However, the Unified Process encourages use-case driven development.

Partial use case diagram – POS system

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Inventory system

Overview

• A use case diagram identifies transactions between actors and a system as individual use cases

Actor

• An actor is an idealized user of a system

• Actors can be users, processes, and other systems

• Many users can be one actor, in a common role

• One user can be different actors, based on different roles

• An actor is labeled with the name of the role

Non-human Actor

• Actors can be users, processes, and other systems.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Use

case

modellin

g

• Show non-human actors in a different manner, usually as a rectangle

Non-human actors are usually not primary users, and thus are usually shown on the right, not the left

Use Case

• A use case is a coherent unit of externally visible functionality provided by a system and expressed by a

sequence of messages

• Additional behavior can be shown with parent-child, extend and include use cases

• It is labeled with a name that the user can understand

System

• A system is shown as a rectangle, labeled with the system name

• Actors are outside the system

• Use cases are inside the system

• The rectangle shows the scope or boundary of the system

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Association Relationship

• An association is the communication path between an actor and the use case that it participates in

• It is shown as a solid line

• It does not have an arrow, and is normally read from left to right

• Here, the association is between a Modeler and the Create Model use case

Relationships in Use Cases

• There are several Use Case relationships:

• Association

• Extend

• Generalization

• Uses

• Include

Terminology

• A concrete use case is initiated by an actor and performs the entire behavior(ProcessSale)

• An abstract use case is never instantiated by itself. It is a subfunction(HandleCreditPayment)

• A base use case includes another use case or is extended or specialized by one

• An addition use case is the use case that is the extension, inclusion, or specialization

Extend Relationship

• Extend puts additional behavior in a use case that does not know about it.

• It is shown as a dotted line with an arrow point and labeled <<extend>>

• In this case, a customer can request a catalog when placing an order

Downloaded From: https://cse-r17.blogspot.com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

https://cse-r17.blogspot.com/

Example

• The extend relationship

– Suppose a use case's text should not be modified or has been baselined as a stable artifact, and

can't be touched.

– to create an extending or addition use case, and within it, describe where and under what

condition it extends the behavior of some base use case.

• UC1: Process Sale (the base use case)

– Extension Points: VIP Customer, step 1. Payment, step 7.

– Main Success Scenario:

• 1.Customer arrives at a POS checkout with goods and/or services to purchase

• .…

• 7.Customer pays and System handles payment.…

• UC15: Handle Gift Certificate Payment (the extending use case)

– Trigger: Customer wants to pay with gift certificate.

– Extension Points: Payment in Process Sale.

– Level: Subfunction

– Main Success Scenario:

• 1.Customer gives gift certificate to Cashier.

• 2.Cashier enters gift certificate ID.

• The use of an extension point, and that the extending use case is triggered by some condition.

– Extension points are labels in the base use case which the extending use case references as the

point of extension.

– the extension point may simply "At any point in use case X." with many asynchronous events,

such as a word processor ("do a spell check now," "do a thesaurus lookup now"), or reactive

control systems.

• updating the Extensions section is usually the preferred solution, rather than creating complex use case

relationships.

• Practically motivates using the extend technique

• when it is undesirable for some reason to modify the base use case..

•

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Use Case Generalization

• Generalization is a relationship between a general use case and a more specific use case that inherits and

extends features to it

• It is shown as a solid line with a closed arrow point

• Here, the payment process is modified for cash and charge cards

Uses Relationship

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• When a use case uses another process, the relationship can be shown with the uses relationship

• This is shown as a solid line with a closed arrow point and the <<uses>> keyword

• Here different system processes can use the logon use case

Include Relationship

• Include relationships insert additional behavior into a base use case

• They are shown as a dotted line with an open arrow and the key word <<include>>

• Shown is a process that I observed in an earlier career

Example

• Some partial behavior across several use cases.

– paying by credit occurs in several use cases, including Process Sale, Process Rental, Contribute

to Lay-away Plan.

– to separate it into its own subfunction use case, and indicate its inclusion.

– This is simply refactoring and linking text to avoid duplication

• UC1: Process Sale

– Main Success Scenario:

• 1.Customer arrives at a POS checkout with goods and/or services to purchase

• .…

• 7.Customer pays and System handles payment.…

– Extensions:

• 7b. Paying by credit: Include Handle Credit Payment.

• 7c. Paying by check: Include Handle Check Payment.

• UC7: Process Rental

– Extensions:

6b. Paying by credit: Include Handle Credit Payment

• UC12: Handle Credit Payment

– Level: Subfunction

– Main Success Scenario:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• 1.Customer enters their credit account information.

• 2.System sends payment authorization request to an external Payment Authorization

Service System, and requests payment approval.

• 3.System receives payment approval and signals approval to Cashier.

– Extensions:

• 2a. System detects failure to collaborate with external system:

– System signals error to Cashier.

– Cashier asks Customer for alternate payment.

• Using “include” with Asynchronous Event Handling

– when a user is able to, at any time, select or branch to a particular window, function, or Web

page, or within a range of steps.

• a*, b*, ... style labels in the Extensions section.

• UC1: Process FooBars

– Main Success Scenario:

– …

– Extensions:

• a*. At any time, Customer selects to edit personal information: Edit Personal

Information.

• b*. At any time, Customer selects printing help: Present Printing Help.

• 2-11. Customer cancels: Cancel Transaction Confirmation

Use Case Example- ATM

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1

UNIT II - STATIC UML DIAGRAMS

Introduction

CLASS DIAGRAM

 The UML includes class diagrams to illustrate classes, interfaces, and their

associations. They are used for static object modeling.

 Used for static object modeling. It is used to depict the classes within a

model.

 It describes responsibilities of the system, it is used in forward and reverse

engineering

 Keywords used along with class name are {abstract, interface, actor}

Definition: Design Class Diagram

The class diagram can be used to visualize a domain model. we also need a unique term to

clarify when the class diagram is used in a software or design perspective. A common

modeling term for this purpose is design class diagram (DCD).

UML class diagrams in two perspectives

Domain Model

Design Model

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2

Class Diagram Representation

Class is represented as rectangular box showing classname, attributes , operations.

The main elements of class are

1 Attributes

2 Operations & Methods

3 Relationship between classes

Attributes (refer pg no 26)

An attribute is a logical data value of an object. Attributes of a classifier also called

structural properties in the UML.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3

1. Operations and Methods

Operations: One of the compartments of the UML class box shows the signatures of

operations. Assume the version that includes a return type. Operations are usually

assumed public if no visibility is shown. both expressions are possible

An operation is not a method. A UML operation is a declaration, with a name,

parameters, return type, exceptions list, and possibly a set of constraints of pre-and

post-conditions. methods are implementations.

Relationship between classes

There are different relationship exists between classes. They are

1. Association

2. Generalization & specialization

3. Composition and aggregation

4. Dependency

5. Interface realization

Association

An association is a relationship between classes. The semantic relationship between two or

more classifiers that involve connections among their instances.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4

Example

For example, a single instance of a class can be associated with "many" (zero or more,

indicated by the *) Item instances.

Generalization & Specialization

Generalization is the activity of identifying commonality among concepts and defining superclass

(general concept) and subclass (specialized concept) relationships.

Ex1:

In the above example person is the generalized class and specialized classes are student and

professor

Ex2:

In the above example payment is the generalized class and specialized classes are cash payment

credit payment and check payment .

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5

Composition and Aggregation

Composition, also known as composite aggregation, is a strong kind of whole-part aggregation and

is useful to show in some models. A composition relationship implies that

 An instance of the part (such as a Square) belongs to only one composite instance (such as

one Board) at a time,

 The part must always belong to a composite (no free-floating Fingers)

 The composite is responsible for the creation and deletion of its parts either by itself

creating/deleting the parts, or by collaborating with other objects.

Aggregation is a vague kind of association in the UML that loosely suggests whole-part

relationships. Aggregation implies a relationship where the child can exist independently of the

parent. Example: Class (parent) and Student (child). Delete the Class and the Students still exist.

For example, a Department class can have an aggregation relationship with a Company class, which

indicates that the department is part of the company. Aggregations are closely related to

compositions.

Dependency

A general dependency relationship indicates that a client element (of any kind, including classes,

packages, use cases, and so on) has knowledge of another supplier element and that a change in the

supplier could affect the client.

Dependency can be viewed as another version of coupling, a traditional term in software

development when an element is coupled to or depends on another.

Interface realization

The UML provides several ways to show interface implementation, providing an interface to

clients, and interface dependency (a required interface). In the UML, interface implementation is

formally called interface realization

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6

In the above example, Clock is the server program implementing Timer interface giving Timer as

the provided interface, window is the client program with Timer as required interface. The Timer

interface contains the services provided by the server object.

Qualified Association

A qualified association has a qualifier that is used to select an object (or objects) from a larger set

of related objects, based upon the qualifier key

Association Class

An association class allows you treat an association itself as a class, and model it with attributes,

operations, and other features. For example, if a Company employs many Persons, modeled with

an Employs association, you can model the association itself as the Employment class, with

attributes such as start Date.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7

 Elaboration often consists Elaboration

 Elaboration

 Elaboration

Elaboration is the initial series of iterations during which, on a normal project:

o The core, risky software architecture is programmed and tested

o The majority of requirements are discovered and stabilized

o The major risks are mitigated or retired

o Build the core architecture, resolve the high-risk elements, define most requirements,

and estimate the overall schedule and resources.

o Elaboration is the initial series of iterations during which the team does serious

investigation, implements (programs and tests) the core architecture, clarifies most

requirements, and tackles the high-risk issues.

o Elaboration often consists of two or more iterations; Each iteration is recommended

to be between two and six weeks; prefer the shorter versions unless the team size is

massive. Each iteration is time boxed, i.e its end date is fixed.

o Elaboration is not a design phase or a phase when the models are fully developed in

preparation for implementation in the construction step that would be an example of

superimposing waterfall ideas on iterative development and the UP.

o During this phase, no prototypes are created; rather, the code and design are

production-quality portions of the final system.

o Architectural prototype means a production subset of the final system. More

commonly it is called the executable architecture or architectural baseline.

 DOMAIN MODEL

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

8

Table -Sample elaboration artifacts, excluding those started in inception.

Domain Models

The figure shows a partial domain model drawn with UML class diagram notation. It illustrates that

the conceptual classes of Payment and Sale are significant in this domain, that a Payment is related

to a Sale in a way that is meaningful to note, and that a Sale has a date and time, information

attributes we care about.

Applying the UML class diagram notation for a domain model yields a conceptual perspective

model. Identifying a rich set of conceptual classes is at the heart of OO analysis.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

9

What is a Domain Model?

A domain model is a visual representation of conceptual classes or real- situation objects in

a domain . Domain models have also been called conceptual models domain object models, and

analysis object models.

Definition

 In the UP, the term "Domain Model" means a representation of real-situation conceptual

classes, not of software objects. The term does not mean a set of diagrams describing software

classes, the domain layer of a software architecture, or software objects with responsibilities.

A domain model is illustrated with a set of class diagrams in which no operations (method

signatures) are defined. It provides a conceptual perspective. It may show:

 omain obje

Why Call a Domain Model a "Visual Dictionary"?

Domain Model visualizes and relates words or concepts in the domain. It also shows an abstraction

of the conceptual classes, because there are many other things one could communicate about

registers, sales, and so forth. The domain model is a visual dictionary of the noteworthy

abstractions, domain vocabulary, and information content of the domain.

A UP Domain Model is a visualization of things in a real-situation domain of interest, not of

software objects such as Java or C# classes, or software objects with responsibilities. Therefore, the

following elements are not suitable in a domain model:

 Software artifacts, such as a window or a database, unless the domain being modeled are of

software concepts, such as a model of graphical user interfaces.

 Responsibilities or methods.

A domain model shows real –situation conceptual classes, not software classes

.

A domain model does not show software artifacts or classes

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

10

 Two Traditional Meaning of Domain Model

Meaning 1 :"Domain Model" is a conceptual perspective of objects in a real situation of the world,

not a software perspective.

Meaning 2 :"the domain layer of software objects." That is, the layer of software objects below the

presentation or UI layer that is composed of domain objects software objects that represent things

in the problem domain space with related "business logic" or "domain logic" methods.

CONCEPTUAL CLASSES

A conceptual class is an idea, thing, or object. It may be considered in terms of its symbol, intension,

and extension (see Figure).

 Symbol words or images representing a conceptual class.

 Intension the definition of a conceptual class.

 Extension the set of examples to which the conceptual class applies.

For example, consider the conceptual class for the event of a purchase transaction. I may choose to

name it by the (English) symbol Sale. The intension of a Sale may state that it "represents the event

of a purchase transaction, and has a date and time." The extension of Sale is all the examples of

sales; in other words, the set of all sale instances in the universe.

A conceptual class has a symbol, intension and extension

Are Domain and Data Models the Same Thing?

A domain model is not a data model (which by definition shows persistent data to be stored

somewhere), so do not exclude a class simply because the requirements don't indicate any obvious

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

11

need to remember information about it or because the conceptual class has no attributes. For

example, it's valid to have attribute less conceptual classes, or conceptual classes that have a purely

behavioral role in the domain instead of an information role.

Motivation: Why Create a Domain Model?

Lower Representational Gap with OO Modeling : This is a key idea in OO: Use software

class names in the domain layer inspired from names in the domain model, with objects having

domain-familiar information and responsibilities. This supports a low representational gap between

our mental and software models.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

12

Lower Representational Gap with OO Modeling

Guideline: How to Create a Domain Model?

Bounded by the current iteration requirements under design:

1. Find the conceptual classes (see a following guideline).

2. Draw them as classes in a UML class diagram.

3. Add associations and attributes.

Guideline: To Find Conceptual Classes

Three Strategies to Find Conceptual Classes :

1. Reuse or modify existing models. This is the first, best, and usually easiest approach. There

are published, well-crafted domain models and data models for many common domains,

such as inventory, finance, health, and so forth.

2. Use a category list. (Method 2)

3. Identify noun phrases. (Method 3)

Method 2: Use a Category List

We can create a domain model by making a list of candidate conceptual classes. The guidelines

also suggest some priorities in the analysis. Examples are drawn from the 1) POS, 2) Monopoly

game 3) airline reservation domains.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

13

Table - Conceptual Class Category List.

Conceptual Class Category Examples

business transactions

Guideline: These are critical (they involve money), so

start with transactions.

Sale,

Payment Reservation

transaction line items

Guideline: Transactions often come with related line

items, so consider these next.

SalesLineItem

product or service related to a transaction or

transaction line item

Guideline: Transactions are for something (a

product or service). Consider these next.

Item

Flight, Seat, Meal

where is the transaction recorded?

Guideline: Important.

Register, Ledger

FlightManifest

roles of people or organizations related to the

transaction; actors in the use case

Guideline: We usually need to know about the parties

involved in a transaction.

Cashier, Customer, Store

MonopolyPlayer Passenger,

Airline

place of transaction; place of service Store

Airport, Plane, Seat

noteworthy events, often with a time or place we need

to remember
Sale, Payment

MonopolyGame Flight

physical objects

Guideline: This is especially relevant when creating

device-control software, or simulations.

Item, Register Board,

Piece, Die Airplane

descriptions of things ProductDescription

FlightDescription

Guideline: Descriptions are often in a catalog. ProductCatalog

FlightCatalog

containers of things (physical or information) Store, Bin Board Airplane

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

14

Table - Conceptual Class Category List.

Conceptual Class Category Examples

things in a container Item Square (in a Board)

Passenger

other collaborating systems CreditAuthorizationSystem

AirTrafficControl

records of finance, work, contracts, legal matters Receipt, Ledger

MaintenanceLog

financial instruments Cash, Check, LineOfCredit

TicketCredit

schedules, manuals, documents that are regularly referred

to in order to perform work

DailyPriceChangeList

RepairSchedule

Method 3: Finding Conceptual Classes with Noun Phrase Identification

Another useful technique (because of its simplicity) suggested is linguistic analysis:

Identify the nouns and noun phrases in textual descriptions of a domain, and consider them

as candidate conceptual classes or attributes.

Guideline

Linguistic analysis has become more sophisticated; it also goes by the name natural language

modeling. for example, The current scenario of the Process Sale use case can be used.

Main Success Scenario (or Basic Flow):

1. Customer arrives at a POS checkout with goods and/or services to

purchase.

2. Cashier starts a new sale.

3. Cashier enters item identifier.

4. System records sale line item and presents item description , price, and

running total. Price calculated from a set of price rules.

Underlined words are nouns. The next level of scrutiny derives class names.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

15

 Example: Find and Draw Conceptual Classes

Case Study: POS Domain

From the category list and noun phrase analysis, a list is generated of candidate

conceptual classes for the domain. There is no such thing as a "correct" list. It is a somewhat

arbitrary collection of abstractions and domain vocabulary

Initial POS domain model.

Guidelines

1. Agile Modeling Sketching a Class Diagram : The sketching style in the UML class

diagram is to keep the bottom and right sides of the class boxes open. This makes it easier

to grow the classes as we discover new elements.

2. Agile Modeling Maintain the Model in a Tool? The purpose of creating a domain model

is to quickly understand and communicate a rough approximation of the key concepts.

3. Report Objects - Include 'Receipt' in the Model? Receipt is a term in the POS domain.

But it's only a report of a sale and payment, and thus duplicate information.

4. Use Domain Terms :

Make a domain model in the spirit of how a cartographer or mapmaker works:

a. Use the existing names in the territory. For example, if developing a model for a

library, name the customer a "Borrower" or "Patron" the terms used by the library

staff.

b. Exclude irrelevant or out-of-scope features. For example, in the Monopoly domain

model for iteration-1

c. Do not add things that are not there.

5. How to Model the Unreal World? Some software systems are for domains that find very

little analogy in natural or business domains; software for telecommunications is an

example. For example, here are candidate conceptual classes related to the domain of a

telecommunication switch: Message, Connection, Port, Dialog, Route, and Protocol.

6.A Common Mistake with Attributes vs. Classes If we do not think of some conceptual class X

as a number or text in the real world, X is probably a conceptual class, not an attribute. As an

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

16

example, should store be an attribute of Sale, or a separate conceptual class Store?

In the real world, a store is not considered a number or text the term suggests a legal entity, an

organization, and something that occupies space. Therefore, Store should be a conceptual class.

As another example, consider the domain of airline reservations. Should destination be an attribute

of Flight, or a separate conceptual class Airport?

In the real world, a destination airport is not considered a number or text-it is a

massive thing that occupies space. Therefore, Airport should be a concept.

7 When to Model with 'Description' Classes? A description class contains information that

describes something else. For example, a Product Description that records the price, picture, and

text description of an Item.

Motivation: Why Use 'Description' Classes? The need for description classes is common in many

domain models. The need for description classes is common in sales, product, and service domains.

It is also common in manufacturing, which requires a description of a manufactured thing that is

distinct from the thing itself Figure. Descriptions about other things. The * means a multiplicity of

"many." It indicates that one Product Description may describe many (*) Items.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

17

When Are Description Classes Useful?

Add a description class (for example, Product Description) when:

 There needs to be a description about an item or service, independent of the current

existence of any examples of those items or services.

 Deleting instances of things they describe (for example, Item) results in a loss of

information that needs to be maintained, but was incorrectly associated with the

deleted thing.

 It reduces redundant or duplicated information.

Example: Descriptions in the Airline Domain

As another example, consider an airline company that suffers a fatal crash of one of its planes.

Assume that all the flights are cancelled for six months pending completion of an investigation.

Also assume that when flights are cancelled, their corresponding Flight software objects are deleted

from computer memory. Therefore, after the crash, all Flight software objects are deleted.

If the only record of what airport a flight goes to is in the Flight software instances, which represent

specific flights for a particular date and time, then there is no longer a record of what flight routes

the airline has The problem can be solved, both from a purely conceptual perspective in a domain

model and from a software perspective in the software designs, with a FlightDescription that

describes a flight and its route, even when a particular flight is not scheduled in following figure

Descriptions about other things.

Note that the prior example is about a service (a flight) rather than a good.

Descriptions of services or service plans are commonly needed.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

18

Associations

An association is a relationship between classes (more precisely, instances of those classes) that

indicates some meaningful and interesting connection (see Figure)

In the UML, associations are defined as "the semantic relationship between two or more classifiers

that involve connections among their instances."

 Include the following associations in a domain model:

 Associations for which knowledge of the relationship needs to be preserved for

some duration ("need-to-remember" associations).

 Associations derived from the Common Associations List.

Guideline 1. Avoid Adding Many Associations

 We need to avoid adding too many associations to a domain model. In a graph with

n nodes, there can be (n·(n-1))/2 associations to other nodes-a potentially very large

number. A domain model with 20 classes could have 190 associations lines!

 During domain modeling, an association is not a statement about data flows, database

foreign key relationships, instance variables, or object connections in a software

solution; it is a statement that a relationship is meaningful in a purely conceptual

perspective-in the real domain.

Applying UML: Association Notation

An association is represented as a line between classes with a capitalized

association name. See Figure

The UML notation for association

The ends of an association may contain a multiplicity expression indicating the numerical

relationship between instances of the classes.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

19

The association is inherently bidirectional, meaning that from instances of either class, logical

traversal to the other is possible. This traversal is purely abstract; it is not a statement about

connections between software entities.

An optional "reading direction arrow" indicates the direction to read the association name; it does

not indicate direction of visibility or navigation. If the arrow is not present, the convention is to read

the association from left to right or top to bottom.

Guideline 2: To Name an Association in UML

Name an association based on a ClassName-VerbPhrase - ClassName format where the verb phrase

creates a sequence that is readable and meaningful. Simple association names such as "Has" or "Uses" are

usually poor, as they seldom enhance our understanding of the domain.

For example,

 Sale Paid-by CashPayment

o bad example (doesn't enhance meaning): Sale Uses CashPayment

 Player Is-on Square

o bad example (doesn't enhance meaning): Player Has Square

Association names should start with a capital letter, since an association represents a

classifier of links between instances; in the UML, classifiers should start with a capital letter.

Applying UML: Roles

Each end of an association is called a role. Roles may optionally have:

 multiplicity expression

 name

 navigability

Applying UML: Multiplicity

Multiplicity defines how many instances of a class A can be associated with one

instance of a class B

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

20

Multiplicity on an association.

For example, a single instance of a Store can be associated with "many" (zero or

more, indicated by the *) Item instances.

Multiplicity values.

Applying UML: Multiple Associations Between Two Classes

The domain of the airline is the relationships between a Flight and an Airport the

flying-to and flying-from associations are distinctly different relationships, which should be

shown separately.

Multiple associations.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

21

Roles as Concepts versus Roles in Associations: In a domain model, a real-world role especially

a human role may be modeled in a number of ways, such as a discrete concept, or expressed as a

role in an association.For example, the role of cashier and manager may be expressed in at least the

two ways illustrated in Fig

Reflexive Associations : A concept may have an association to itself; this is known as a reflexive

association

Example: Associations in the Domain Models

Case Study: NextGen POS : The domain model in Figure shows a set of conceptual classes and

associations that are candidates for our POS domain model. The associations are primarily derived

from the "need-to-remember" criteria of these iteration requirements, and the Common Association

List. For example:

 Transactions related to another transaction Sale Paid-by CashPayment.

 Line items of a transaction Sale Contains SalesLineItem.

 Product for a transaction (or line item) SalesLineItem Records-sale-of Item.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

22

NextGen POS partial domain model.

 Attributes : An attribute is a logical data value of an object. Include attributes that the

requirements (for example, use cases) suggest or imply a need to remember information. For

example, a receipt (which reports the information of a sale) in the Process Sale use case

normally includes Therefore,

 Sale needs a dateTime attribute.

 Store needs a name and address.

 Cashier needs an ID.

Applying UML- Attribute Notation : Attributes are shown in the second compartment of

the class box . Their type and other information may optionally be shown.

Class and attributes.

More Notation

The full syntax for an attribute in the UML is:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

23

visibility name : type multiplicity = default {property-string}

Some common examples are shown in Fig

Attribute notation in UML.

{readOnly} is probably the most common property string for attributes.

Multiplicity can be used to indicate the optional presence of a value, or the number

of objects that can fill a (collection) attribute.

Derived Attributes : When we want to communicate that 1) this is a noteworthy attribute,

but 2) it is derivable, we use the UML convention: a / symbol before the attribute name.

Guideline 1 : Suitable Attribute Types - Focus on Data Type Attributes in the Domain

Model

Most attribute types should be what are often thought of as "primitive" data types,

such as numbers and Booleans. For example, the current Register attribute in the Cashier

class in Figure is undesirable because its type is meant to be a Register, which is not a simple

data type (such as Number or String).

Relate with associations, not attributes

Guideline : The attributes in a domain model should preferably be data types. Very

common data types include: Boolean, Date (or DateTime), Number, Character, String

(Text), Time. Other common types include: Address, Color, Geometrics (Point, Rectangle),

Phone Number, Social Security Number, Universal Product Code (UPC), SKU, ZIP or

postal codes, enumerated types

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

24

A common confusion is modeling a complex domain concept as an attribute. To illustrate, a

destination airport is not really a string; it is a complex thing that occupies many square

kilometers of space. Therefore, Flight should be related to Airport via an association, not

with an attribute, as shown in Fig.

Don't show complex concepts as attributes; use associations.

Guideline : Relate conceptual classes with an association, not with an attribute.

Data Types

Attributes in the domain model should generally be data types; informally these are

"primitive" types such as number, boolean, character, string, and enumerations (such as Size

= {small, large}).

For example, it is not (usually) meaningful to distinguish between:

 Separate instances of the Integer 5.

 Separate instances of the String 'cat'.

 Separate instance of the Date "Nov. 13, 1990".

Guideline 1 : When to define New Data type Classes ? Guidelines for

modeling data types

Represent what may initially be considered a number or string as a new data type class

in the domain model if:

 It is composed of separate sections. –Ex phone number, name of person

 There are operations associated with it, such as parsing or validation. - social

security number

 It has other attributes. - promotional price could have a start (effective) date and

end date

 It is a quantity with a unit. - payment amount has a unit of currency

 It is an abstraction of one or more types with some of these qualities.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

25

Item identifier in the sales domain is a generalization of types such as Universal Product

Code (UPC) and European Article Number (EAN)

Applying these guidelines to the POS domain model attributes yields the following

analysis:

 The item identifier is an abstraction of various common coding schemes, including

UPC-A, UPC-E, and the family of EAN schemes. These numeric coding schemes

have subparts identifying the manufacturer, product, country (for EAN), and a

check-sum digit for validation. Therefore, there should be a data type ItemID class,

because it satisfies many of the guidelines above.

 The price and amount attributes should be a data type Money class because they

are quantities in a unit of currency.

 The address attribute should be a data type Address class because it has

separate sections.

Applying UML: Where to Illustrate These Data Type Classes?

Two ways to indicate a data type property of an object.

Should the ItemID class be shown as a separate class in a domain model?. Since ItemID is a

data type (unique identity of instances is not used for equality testing), it may be shown only

in the attribute compartment of the class box, as shown in above Figure. On the other hand,

if ItemID is a new type with its own attributes and associations, showing it as a conceptual

class in its own box may be informative.

Guideline 2 : No Attributes Representing Foreign Keys

In Following Fig the currentRegisterNumber attribute in the Cashier class is undesirable

because its purpose is to relate the Cashier to a Register object. The better way to express that

a Cashier uses a Register is with an association, not with a foreign key attribute.

Do not use attributes as foreign keys.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

26

Guideline 3 : Modeling Quantities and Units

Most numeric quantities should not be represented as plain numbers. Consider price or

weight. These are quantities with associated units, and it is common to require knowledge of

the unit to support conversions.

Modeling quantities.

Example: Attributes in the Domain Models -Case Study: NextGen POS

See following Fig. The attributes chosen reflect the information requirements for this iteration

the Process Sale cash-only scenarios of this iteration. For example:

CashPayment amountTendered To determine if sufficient payment was provided, and to

calculate change, an amount (also known as "amount tendered") must be

captured. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

27

CashPayment amountTendered To determine if sufficient payment was provided, and to

calculate change, an amount (also known as "amount tendered") must be

captured.

Product-

Description

description To show the description on a display or receipt. itemId To

look up a ProductDescription.

price To calculate the sales total, and show the line item price.

Sale dateTime A receipt normally shows date and time of sale, and this is useful

for sales analysis.

SalesLineItem quantity To record the quantity entered, when there is more than one item

in a line item sale (for example, five packages of tofu).

Store address, name The receipt requires the name and address of the store.

NextGen POS partial domain model.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

28

DOMAIN MODEL REFINEMENT

OBJECTIVES

 Refine the domain model with generalizations, specializations, association

classes, time intervals, composition, and packages.

 Generalization and specialization are fundamental concepts in domain

modeling that support an economy of expression;

 Association classes capture information about an association itself.

 Time intervals capture the important concept that some business objects are valid

for a limited time.

 Packages are a way to organize large domain models into smaller units.

Concepts Category List : This Table shows some concepts being considered in this

iteration.

Category Examples

physical or tangible objects CreditCard, Check

Transactions CashPayment, CreditPayment, CheckPayment

other computer or electro-mechanical systems

external to our system

CreditAuthorizationService,

CheckAuthorizationService

abstract noun concepts

Organizations CreditAuthorizationService,

CheckAuthorizationService

records of finance, work, contracts, legal

matters

AccountsReceivable

Generalization

The concepts CashPayment, CreditPayment, and CheckPayment are all very similar.

In this situation, it is possible (and useful) to organize them (as in following Figure) into a

generalization-specialization class hierarchy (or simply class hierarchy) in which the super

class Payment represents a more general concept, and the subclasses more specialized ones.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

29

Generalization-specialization hierarchy.

Generalization is the activity of identifying commonality among concepts and

defining superclass (general concept) and subclass (specialized concept) relationships.

Identifying a superclass and subclasses is of value in a domain model because their presence

allows us to understand concepts in more general, refined and abstract terms.

Guideline : Identify domain superclasses and subclasses relevant to the current

iteration, and illustrate them in the Domain Model.

Class hierarchy with separate and shared arrow notations.

Defining Conceptual Superclasses and Subclasses:

Definition: A conceptual super class definition is more general or encompassing than a subclass

definition.

For example, consider the superclass Payment and its subclasses (CashPayment, and so on).

Assume the definition of Payment is that it represents the transaction of transferring money (not

necessarily cash) for a purchase from one party to another, and that all payments have an amount

of money transferred. The model corresponding to this is shown in following Figure.

Payment class hierarchy.

A Credit Payment is a transfer of money via a credit institution which needs to be

authorized. My definition of Payment encompasses and is more general than my definition

of Credit Payment.
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

30

Definition: All members of a conceptual subclass set are members of their superclass set. For

example, in terms of set membership, all instances of the set Credit Payment are also members of

the set Payment. In a Venn diagram, this is shown as in following Fig

Venn diagram of set relationships.

Conceptual Subclass Definition Conformance: When a class hierarchy is created, statements

about superclasses that apply to subclasses are made. For example, the following Figure states that

all Payments have an amount and are associated with a Sale.

Subclass conformance.

Guideline: 100% Rule

100% of the conceptual superclass's definition should be applicable to the

subclass. The subclass must conform to 100% of the superclass's:

 attributes

 associations

Conceptual Subclass Set Conformance:A conceptual subclass should be a member of the set of

the superclass. Thus, CreditPayment should be a member of the set of Payments.

Guideline: Is-a Rule

All the members of a subclass set must be members of their superclass set.

In natural language, this can usually be informally tested by forming the statement: Subclass

is a Superclass.

Guideline: Correct Conceptual Subclass

A potential subclass should conform to the:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

31

 100% Rule (definition conformance)

 Is-a Rule (set membership conformance)

When to Define a Conceptual Subclass?

Definition: A conceptual class partition is a division of a conceptual class into disjoint

subclasses. For example, in the POS domain, Customer may be correctly partitioned (or

subclassed) into MaleCustomer and FemaleCustomer. But is it relevant or useful to show

this in our model (see following figure)? This partition is not useful for our domain; the next

section explains why

Legal conceptual class partition, but is it useful in our domain

Motivations to Partition a Conceptual Class into Subclasses

Create a conceptual subclass of a superclass when:

1. The subclass has additional attributes of interest.

2. The subclass has additional associations of interest.

3. The subclass concept is operated on, handled, reacted to, or manipulated

differently than the superclass or other subclasses, in ways that are of interest.

4. The subclass concept represents an animate thing (for example, animal, robot)

that behaves differently than the superclass or other subclasses, in ways that are

of interest.

Based on the above criteria, it is not compelling to partition Customer into the subclasses

MaleCustomer and FemaleCustomer because they have no additional attributes or

associations, are not operated on (treated) differently, and do not behave differently in ways

that are of interest . This table shows some examples of class partitions from the domain of

payments and other areas, using these criteria

Example subclass partitions

Conceptual Subclass Motivation Examples

The subclass has additional attributes of

interest.

Payments not applicable.Library Book, subclass of

LoanableResource, has an ISBN attribute.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

32

Conceptual Subclass Motivation Examples

The subclass has additional associations of

interest.

Payments CreditPayment, subclass of Payment, is

associated with a CreditCard.

Library Video, subclass of LoanableResource, is

associated with Director.

The subclass concept is operated upon,

handled, reacted to, or manipulated

differently than the superclass or other

subclasses, in ways that are of interest.

Payments CreditPayment, subclass of Payment, is

handled differently than other kinds of payments in

how it is authorized.

Library Software, subclass of LoanableResource,

requires a deposit before it may be loaned.

The subclass concept represents an animate

thing (for example, animal, robot) that

behaves differently than the superclass or

other subclasses, in ways that are of interest.

Payments not applicable. Library

not applicable.

Market Research MaleHuman, subclass of Human,

behaves differently than FemaleHuman with respect

to shopping habits.

When to Define a Conceptual Superclass?

Motivations to generalize and define a superclass: Guideline

Create a superclass in a generalization relationship to subclasses when:

 The potential conceptual subclasses represent variations of a similar concept.

 The subclasses will conform to the 100% and Is-a rules.

 All subclasses have the same attribute that can be factored out and expressed in the

superclass.

 All subclasses have the same association that can be factored out and related to the

superclass.

NextGen POS Conceptual Class Hierarchies

Justifying Payment subclasses.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

33

Payment Classes : Based on the above criteria for partitioning the Payment class, it is

useful to create a class hierarchy of various kinds of payments. The justification for the

superclass and subclasses is shown in Figure .

Authorization Service Classes : Credit and check authorization services are variations

on a similar concept, and have common attributes of interest. This leads to the class

hierarchy in following Figure.

Justifying the AuthorizationService hierarchy

Abstract Conceptual Classes

Definition: If every member of a class C must also be a member of a subclass, then class C is called

an abstract conceptual class. For example, assume that every Payment instance must more

specifically be an instance of the subclass Credit Payment, Cash Payment, or Check Payment. This

is illustrated in the Venn diagram of Figure (b). Since every Payment member is also a member of

a subclass, Payment is an abstract conceptual class by definition.

Abstract conceptual classes.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

34

Abstract Class Notation in the UML : To review, the UML provides a notation to indicate abstract

classes the class name is italicized

Abstract class notation.

Guideline : Identify abstract classes and illustrate them with an italicized name in the

Domain Model, or use the {abstract} keyword.

Modeling Changing States

Assume that a payment can either be in an unauthorized or authorized state, and it is

meaningful to show this in the domain model. As shown in Figure , one modeling approach

is to define subclasses of Payment: Unauthorized Payment and Authorized Payment.

Guideline : Do not model the states of a concept X as subclasses of X. Rather, either:

 Define a state hierarchy and associate the states with X, or

 Ignore showing the states of a concept in the domain model; show the states in state

diagrams instead.

Modeling changing states.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

35

Association Classes

The following domain requirements set the stage for association classes:

 Authorization services assign a merchant ID to each store for identification during

communications.

 A payment authorization request from the store to an authorization service needs

the merchant ID that identifies the store to the service.

 Furthermore, a store has a different merchant ID for each service.

Placing merchantID in Store is incorrect because a Store can have more than one value for

merchantID. The same is true with placing it in Authorization Service (see Figure).

Inappropriate use of an attribute.

Guideline : In a domain model, if a class C can simultaneously have many values for the

same kind of attribute A, do not place attribute A in C. Place attribute A in another class that is

associated with C.

For example:

 A Person may have many phone numbers. Place phone number in another class, such

as PhoneNumber or ContactInformation, and associate many of these to Person.

First attempt at modeling the merchantID problem.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

36

The fact that both Store and Authorization Service are related to Service Contract is a clue

that it is dependent on the relationship between the two. The merchantID may be thought of as an

attribute related to the association between Store and Authorization Service.

This leads to the notion of an association class, in which we can add features to the

association itself. Service Contract may be modeled as an association class related to the association

between Store and Authorization Service.

.

An association class

Guideline : Clues that an association class might be useful in a domain model:

 An attribute is related to an association.

 Instances of the association class have a lifetime dependency on the

association.

 There is a many-to-many association between two concepts and information

associated with the association itself

How to Identify Composition: Guideline?

Consider showing composition when:

 The lifetime of the part is bound within the lifetime of the composite there is a

create-delete dependency of the part on the whole.

 There is an obvious whole-part physical or logical assembly.

 Some properties of the composite propagate to the parts, such as the location.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

37

 Operations applied to the composite propagate to the parts, such as

destruction, movement, and recording.

Composition in the NextGen Domain Model

In the POS domain, the SalesLineItems may be considered a part of a composite Sale;

Aggregation in the point-of-sale application.

SYSTEM SEQUENCE DIAGRAMS

Use cases describe how external actors interact with the software system we are interested

in creating. During this interaction an actor generates system events to a system, usually requesting

some system operation to handle the event.

For example, when a cashier enters an item's ID, the cashier is requesting the POS system to

record that item's sale (the enterItem event). That event initiates an operation upon the system. The

use case text implies the enterItem event, and the SSD makes it concrete and explicit.

A system sequence diagram is a picture that shows, for one particular scenario of a use case,

the events that external actors generate their order, and inter- system events. All systems are treated

as a black box.

Guideline: Draw an SSD for a main success scenario of each use case, and frequent or

complex alternative scenarios.

SSD for a Process Sale scenario.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

38

Why Draw an SSD?

A software system reacts to three things:

 external events from actors (humans or computers),

 timer events,

 faults or exceptions (which are often from external sources).

Therefore, it is useful to know what, precisely, are the external input events the system events.

They are an important part of analyzing system behavior.

System behavior is a description of what a system does, without explaining how it does it. One

part of that description is a system sequence diagram.

 RELATIONSHIP BETWEEN SSDS AND USE CASES

An SSD shows system events for one scenario of a use case, therefore it is generated from

inspection of a use case (see Figure below).

SSDs are derived from use cases; they show one scenario.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

39

How to Name System Events and Operations?

Which is better, scan(itemID) or enterItem(itemID)?

System events should be expressed at the abstract level of intention rather than in terms of the

physical input device.

Thus "enterItem" is better than "scan" (that is, laser scan) because it captures the intent of the

operation while remaining abstract and noncommittal with respect to design choices about what

interface is used to capture the system event.

Choose event and operation names at an abstract level. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

40

 Example: Monopoly SSD

The Play Monopoly Game use case is simple, as is the main scenario. The observing

person initializes with the number of players, and then requests the simulation of play,

watching a trace of the output until there is a winner.

SSD for a Play Monopoly Game scenario.

Process:

Draw SSDs only for the scenarios chosen for the next iteration. Don't create SSDs

for all scenarios, unless you are using an estimation technique that requires identification of

all system operations.

WHEN TO USE CLASS DIAGRAMS

Class diagram is a static diagram and it is used to model the static view of a system. The static view

describes the vocabulary of the system.

Class diagram is also considered as the foundation for component and deployment diagrams. Class

diagrams are not only used to visualize the static view of the system but they are also used to

construct the executable code for forward and reverse engineering of any system.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

41

Class diagram clearly shows the mapping with object-oriented languages such as Java,

C++, etc. From practical experience, class diagram is generally used for construction purpose.

Class Diagrams are used for

 Describing the static view of the system.

 Showing the collaboration among the elements of the static view.

 Describing the functionalities performed by the system.

 Construction of software applications using object oriented languages.

 Forward and reverse engineering.

Ex: Order Processing System

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

UNIT III - DYNAMIC AND IMPLEMENTATION UML DIAGRAMS

DYNAMIC DIAGRAMS

There are two kinds of object models: dynamic and static. Dynamic models,

such as UML interaction diagrams (sequence diagrams or communication diagrams),

State chart diagram, Activity diagram, help design the logic, the behavior of the code or

the method bodies. They tend to be the more interesting, difficult, important diagrams

to create. Static models, such as UML class diagrams, help design the definition of

packages, class names, attributes, and method signatures (but not method bodies).

The main behavior or dynamic diagrams in UML are

 Interaction diagrams are:

o Sequence diagrams

o Collaboration diagrams
 State chart diagrams

 Activity diagrams

UML INTERACTION DIAGRAMS

The UML includes interaction diagrams to illustrate how objects interact via messages.

They are used for dynamic object modeling. There are two common types:

 Sequence Diagram

 Communication Diagram

Ex: Sequence and Communication Diagrams

public class A

{

private B myB = new B();

public void doOne()

{

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

myB.doTwo();

myB.doThree();

}
}

Class A has a method named doOne and an attribute of type B. Also, that class B has methods named doTwo
and doThree.

Sequence Diagram Communication Diagram

Sequence diagrams illustrate interactions in

a kind of fence format, in which each new

object is added to the right

illustrate object interactions in a graph or network

format, in which objects can be placed anywhere on

the diagram

Strengths and Weaknesses of Sequence vs. Communication Diagrams

Type Strengths Weaknesses

sequence clearly shows sequence or time

ordering of messages

large set of detailed notation options

forced to extend to the right when

adding new objects; consumes

horizontal space

fewer notation options

communication space economical flexibility to add

new objects in two dimensions

more difficult to see sequence of

messages

Common UML Interaction Diagram Notation

Lifeline boxes to show participants in interactions.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Basic Message Expression Syntax

The UML has a standard syntax for these message expressions:

return = message(parameter : parameterType) : returnType
Parentheses are usually excluded if there are no parameters, though still legal. For

example:

initialize(code)

initialize

d = getProductDescription(id)

d = getProductDescription(id:ItemID)

d = getProductDescription(id:ItemID) : ProductDescription

Singleton Objects

There is only one instance of a class instantiated never two. it is a "singleton" instance. In a

UML interaction diagram (sequence or communication), such an object is marked with a '1' in the

upper right corner of the lifeline box.

Singletons in interaction diagrams.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Basic Sequence Diagram Notation

Name Symbol Description

Lifeline Boxes

and Lifelines ,

Messages

All UML examples show the lifeline as

dashed (because of UML 1 influence), in

fact the UML 2 specification says it may

be solid or dashed.

Found message the sender will not be

specified, is not known, or that the

message is coming from a random

source.

Reply or

Return Msgs

There are two ways to show the return

result from a message:

1. Using the message syntax

returnVar = message(parameter).

2. Using a reply (or return) message

line at the end of an activation

bar.

Messages to

"self" or

"this"

message being sent from an object to

itself by using a nested activation bar

Creation of

Instances and

Object

Destruction

It is desirable to show explicit destruction

of an object. The UML lifeline notation

provides a way to express this destruction

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Frames

To support conditional and looping constructs (among many other things), the

UML uses frames. Frames are regions or fragments of the diagrams; they have an

operator or label (such as loop) and a guard (conditional clause).

Frame

Operator
Meaning

alt
Alternative fragment for mutual exclusion conditional logic expressed

in the guards.

loop

Loop fragment while guard is true. Can also write loop(n) to indicate

looping n times. There is discussion that the specification will be

enhanced to define a FOR loop, such as loop(i, 1, 10)

opt Optional fragment that executes if guard is true.

par Parallel fragments that execute in parallel.

region Critical region within which only one thread can run.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Alt Frame

Alternative fragment for

mutual exclusion

conditional logic expressed

in the guards.

Loop

Frame

Loop fragment while guard

is true. Can also write

loop(n) to indicate looping n

times. the specification will

be enhanced to define a

FOR loop, such as loop(i, 1,

10)

Opt

Frame

Optional fragment that

executes if guard is true.

Nesting of

frames

Frames can be nested

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Relating

Interaction

Diagrams

An interaction occurrence

(also called an interaction

use) is a reference to an

interaction within another

interaction. It is useful, for

example, when you want to

simplify a diagram and

factor out a portion into

another diagram, or there is

a reusable interaction

occurrence.

to Invoke

Static (or

Class)

Methods

The classes Class and Type

are metaclasses, which

means their instances are

themselves classes. A

specific class, such as class

Calendar, is itself an

instance of class Class.

Thus, class Calendar is an

instance of a metaclass.

Asynchron

ous and

Synchrono

us Calls

An asynchronous message

call does not wait for a

response.

They are used in multi-

threaded environments

such as .NET and Java.

The UML notation for

asynchronous calls is a stick

arrow message; regular

 synchronous

(blocking) calls are shown

with a filled arrow. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Basic Communication Diagram Notation

Name Symbol Description

Links ,

Messages

 A link is a connection path

between two objects; it indicates some

form of navigation and visibility

between the objects

Each message between objects is

represented with a message expression ,

direction of the message , message

Number

Messages to

"self" or

"this"

A message can be sent from an

object to itself.

This is illustrated by a link to

itself, with messages flowing along the

link.

Creation of

Instances

The message may be annotated

with a UML stereotype, like so:

«create». The create message may

include parameters, indicating the

passing of initial values.

Message

Number

Sequencing

The first message is not

numbered. Thus, msg1 is unnumbered.

The order and nesting of

subsequent messages is shown with a

legal numbering scheme in which nested

messages have a number appended to

them.

Conditional

Messages

A conditional message by following a

sequence number with a conditional

clause in square brackets, similar to an

iteration clause. The message is only

sent if the clause evaluates to true.

Mutually

Exclusive

Conditional

Paths

 modify the sequence expressions with a

conditional path letter. The first letter

used is a by convention.

either 1a or 1b could execute after msg1.

Both are sequence number 1 since either

could be the first internal message.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Iteration or

Looping

a simple * can be used

Messages to a

Classes to

Invoke Static

(Class)

Methods

Meta class stereotype is used to

represent static method call

Asynchronou

s and

Synchronous

Calls

asynchronous calls are shown with a

stick arrow; synchronous calls with a

filled arrow.

WHEN TO USE COMMUNICATION DIAGRAMS

The purpose of interaction diagrams is to visualize the interactive behavior of the

system. Visualizing the interaction is a difficult task. Hence, the solution is to use

different types of models to capture the different aspects of the interaction.

Sequence and collaboration diagrams are used to capture the dynamic nature but from

a different angle. The purpose of interaction diagram is −

 To capture the dynamic behavior of a system.

 Model message passing between objects or roles that deliver thefunctionalities

of use cases and operations

 To describe the structural organization of the objects.

 To describe the interaction among objects.Support the identification of objects

(hence classes), and their attributes (parameters of message) and operations

(messages) that participate in use cases

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Sequence diagram vs Communication diagram Example

UML STATE MACHINE DIAGRAMS AND MODELLING

A UML state machine diagram illustrates the interesting events and states of an object,

and the behavior of an object in reaction to an event. Transitions are shown as arrows,

labeled with their event. States are shown in rounded rectangles. It is common to include

an initial pseudo-state, which automatically transitions to another state when the instance

is created.

State machine diagram for a telephone

A state machine diagram shows the lifecycle of an object: what events it experiences,

its transitions, and the states it is in between these events. Therefore, we can create a

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

state machine diagram that describes the lifecycle of an object at arbitrarily simple or

complex levels of detail, depending on our needs

Definitions: Events, States, and Transitions

An event is a significant or noteworthy occurrence. For example:

 A telephone receiver is taken off the hook.

A state is the condition of an object at a moment in time the time between events. For

example:

 A telephone is in the state of being "idle" after the receiver is placed on the

hook and until it is taken off the hook.

A transition is a relationship between two states that indicates that when an event

occurs, the object moves from the prior state to the subsequent state. For example:

 When the event "off hook" occurs, transition the telephone from the "idle" to

"active" state.

Guidelines : To Apply State Machine Diagrams:

Object can be classified into

1) State-Independent Object - If an object always responds the same way to an

event, then it is considered state-independent (or modeless) with respect to that

event. The object is state-independent with respect to that message.

2) State-Dependent Objects - State-dependent objects react differently to events

depending on their state or mode.

Guideline : Consider state machines for state-dependent objects with complex

behavior, not for state-independent objects . For example, a telephone is very

state-dependent. The phone's reaction to pushing a particular button (generating

an event) depends on the current mode of the phoneoff hook, engaged, in a

configuration subsystem, and so forth.

Modeling State-Dependent Objects : state machines are applied in two ways:

1. To model the behavior of a complex reactive object in response to events.

2. To model legal sequences of operations protocol or language specifications.

o This approach may be considered a specialization of #1, if the "object"
is a language, protocol, or process. A formal grammar for a context-free
language is a kind of state machine.

1.Complex Reactive Objects

a) Physical Devices controlled by software

o Phone, car, microwave oven: They have complex and rich reactions to
events, and the reaction depends upon their current mode.

b) Transactions and related Business Objects
o How does a business object (a sale, order, payment) react to an event?

For example, what should happen to an Order if a cancel event occurs?
And understanding all the events and states that a Package can go

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

through in the shipping business can help with design, validation, and

process improvement.

c) Role Mutators : These are objects that change their role.
o A Person changing roles from being a civilian to a veteran. Each role is

represented by a state.

Example 1: Physical Devices / Nested States – Telephone Object

A state allows nesting to contain substates; a substate inherits the transitions of its

superstate (the enclosing state. It may be graphically shown by nesting them in a

superstate box..

For example, when a transition to the Active state occurs, creation and transition into

the PlayingDialTone substate occurs. No matter what substate the object is in, if the

on hook event related to the Active superstate occurs, a transition to the Idle state

occurs.

Example 2: Transactions and related Business Objects

Order Processing System – Order Object

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2) Protocols and Legal Sequences

a) Communication Protocols

o TCP, and new protocols, can be easily and clearly understood with a state
machine diagram. For example, a TCP "close" request should be ignored
if the protocol handler is already in the "closed" state.

b) UI Page/Window Flow or Navigation When doing UI modeling, it can be

useful to understand the legal sequence between Web pages or windows;

Applying a state machine to Web page navigation modeling.

c) UI Flow Controllers or Sessions These are usually server-side objects

representing an ongoing session or conversations with a client. For example, a

Web application that remembers the state of the session with a Web client and

controls the transitions to new Web pages, or the modified display of the current

Web page, based upon the state of the session and the next operation that is

received.

d) Use Case System Operations Do you recall the system operations for Process

Sale: makeNewSale, enterItem etc. These should arrive in a legal order; for

example, endSale should only come after one or more enterItem operations.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

STATE DIAGRAM : COFFEE VENDING MACHINE

WHEN TO USE STATE DIAGRAM

State chart diagram is one of the five UML diagrams used to model the dynamic nature

of a system. They define different states of an object during its lifetime and these states

are changed by events. State chart diagrams are useful to model the reactive systems.

Reactive systems can be defined as a system that responds to external or internal events.

State chart diagram describes the flow of control from one state to another state. States

are defined as a condition in which an object exists and it changes when some event is

triggered. The most important purpose of State chart diagram is to model lifetime of an

object from creation to termination.

State chart diagrams are also used for forward and reverse engineering of a system.

However, the main purpose is to model the reactive system.

The main usage can be described as −

 To model the object states of a system.

 To model the reactive system. Reactive system consists of reactive objects.

 To identify the events responsible for state changes.

 Forward and reverse engineering.

Example:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

UML ACTIVITY DIAGRAMS

A UML activity diagram shows sequential and parallel activities in a process. They

are useful for modeling business processes, workflows, data flows, and complex

algorithms.

Purpose: To understand & Communicate the structure & dynamics of the organization

in which a system is to be deployed.

Elements:

Start , end, activity ,action, object , fork ,join, decision , merge, time signal , rake ,

accept signal , swim lane

Symbol Name Use

Start/ Initial Node Used to represent the starting point or the

initial state of an activity

Activity / Action

State

Used to represent the activities of the process

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Action Used to represent the executable sub-areas of

an activity

Object Used to represent the object

 Control Flow / Edge Used to represent the flow of control from one

action to the other

 Object Flow /

Control Edge

Used to represent the path of objects moving

through the activity

Decision Node Used to represent a conditional branch point with

one input and multiple outputs

Merge Node Used to represent the merging of flows. It has

several inputs, but one output.

Fork Used to represent a flow that may branch into

two or more parallel flows

Merge Used to represent a flow that may branch into

two or more parallel flows

Signal Receipt Used to represent that the signal is received Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

rake Further can be expanded into sub activity

diagram

swim lane Divides the diagram into vertical zones

Time Signal Timing condition can be specified

Example: Showing usage of symbols

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Example

This diagram shows a sequence of actions, some of which may be parallel. Two

points to remember:

 once an action is finished, there is an automatic outgoing transition

 the diagram can show both control flow and data flow

Guideline to Apply Activity Diagrams

1. Business Process Modeling

Client uses activity diagrams to understand their current complex business processes by

visualizing them. The partitions are useful to see the multiple parties and parallel actions

involved in the shipping process, and the object nodes illustrate what's mov0ing around.

Ex: Borrow books return books usecase of Library Information system

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2. Data Flow Modeling

data flow diagrams (DFD) became a popular way to visualize the major steps and data

involved in software system processes. This is not the same as business process

modeling; rather, DFDs were usually used to show data flows in a computer system,

although they could in theory be applied to business process modeling.

3. Concurrent Programming and Parallel Algorithm Modeling

Parallel algorithms in concurrent programming problems involve multiple partitions,

and fork and join behavior. The UML activity diagram partitions can be used to

represent different operating system threads or processes. The object nodes can be used

to model the shared objects and data. Forking can be used to model the creation and

parallel execution of multiple threads or processes, one per partition.

4. Guidelines

 If modeling a business process, take advantage of the "rake" notation and sub-

activity diagrams. On the first overview "level 0" diagram, keep all the actions

at a very high level of abstraction, so that the diagram is short and sweet.

Expand the details in sub-diagrams at the "level 1" level, and perhaps even more

at the "level 2" level, and so forth.

Example: NextGen Activity Diagram

The partial model in Figure illustrates applying the UML to the Process Sale use case

process. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Activity Diagram Ex1: Borrow Books (Library Information System)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

WHEN TO USE ACTIVITY DIAGRAMS

Activity diagram is suitable for modeling the activity flow of the system. An application

can have multiple systems. Activity diagram also captures these systems and describes

the flow from one system to another. This specific usage is not available in other

diagrams. These systems can be database, external queues, or any other system.

Activity diagram gives high level view of a system. This high level view is mainly for

business users or any other person who is not a technical person. This diagram is used

to model the activities of business requirements. The diagram has more impact on

business understanding rather than on implementation details.

Activity diagram can be used for −

 Modeling work flow by using activities.

 Modeling business requirements.

 High level understanding of the system's functionalities.

 Investigating business requirements at a later stage.

Example

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

UML PACKAGE DIAGRAMS

UML package diagrams are often used to illustrate the logical architecture of a system-

the layers, subsystems, packages . A layer can be modeled as a UML package; It is part

of the Design Model and also be summarized as a view in the Software Architecture

Document.

Logical Architecture is the large scale organization of the software classes into

packages subsystem and layers It is called logical architecture because there’s no

decision about how these elements are deployed across different operating system

processes or across physical computers in a network.

Layer is a coarse grained grouping of classes , packages, or subsystems that has

cohesive responsibility for major aspect of the system .

There are 2 types of Layers.

1) Higher Layer (Contain more application specific services ex: UI layer)

2) Lower layer (Contain more generalized services ex: Technical Services layer)

Higher Layer calls upon services of lower layer , but vice versa is not .

Typically layers in the Object Oriented System has 7 standard layers. The important

layers are

 User Interface – Has various I/O formats & forms.
 Application Logic and Domain Objects - software objects representing domain

concepts (for example, a software class Sale) that fulfill application

requirements, such as calculating a sale total.

 Technical Services general purpose objects and subsystems that provide

supporting technical services, such as interfacing with a database or error

logging.

Architecture Types

strict layered architecture
A layer only calls upon the services of the of the layer directly below it. This design is

common in network protocol stacks, but not in information systems

Relaxed layered architecture

A higher layer calls upon several lower layers.

Example, the UI layer may call upon its directly subordinate application logic layer,

and also upon elements of a lower technical service layer, for logging and so forth.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Layers shown with UML package diagram notation.

Elements

Name Symbol Description

Package

package can group anything:

classes, other packages, use

cases

Dependency

depended-on package

Fully qualified Name java::util::Date To represents a namespace

(outer package named "java"

with a nested package named

"util" with a Date class)

Ex:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Package Diagram : Library Information System

WHEN TO USE PACKAGE DIAGRAMS

1. It is used in large scale systems to picture dependencies between major

elements in the system.

2. Package diagrams represent a compile time grouping mechanism.

UML DEPLOYMENT AND COMPONENT DIAGRAMS

 Deployment Diagrams :

A deployment diagram shows the assignment of concrete software artifacts (such as

executable files) to computational nodes (something with processing services). It shows the

deployment of software elements to the physical architecture and the communication (usually

on a network) between physical elements

Two Nodes of Deployment Diagram:

1) Device Node: This is a Physical Computing Resource representing a computer

with memory or mobile.

2) Execution Environment Node:

This is a software computing resource that runs within an outer node (such as a

computer) and which itself provides a service to host and execute other executable

software elements. For example:

o An operating system (OS) is software that hosts and executes programs

o A virtual machine (VM, such as the Java or .NET VM) hosts and executes programs

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

o A database engine (such as PostgreSQL) receives SQL program requests

and executes them, and hosts/executes internal stored procedures

(written in Java or a proprietary language)

o A Web browser hosts and executes JavaScript, Java applets, Flash, and

other executable technologies

o A workflow engine

o A servlet container or EJB container

Elements:

Name

Symbol

Description

Device Node :

Physical Computing Resource

Execution

Environment Node

{OS = Linux }

{JVM = sun Hot Spot 2.0}

a software computing resource

Communication

path

 Connection between nodes with protocol

name

Artifact:

Name of the project fie

 As the UML specification suggests, many node types may show stereotypes,

such as «server», «OS», «database», or «browser», but these are not official

predefined UML stereotypes.

 Note that a device node or EEN may contain another EEN. For example, a

virtual machine within an OS within a computer.

 A particular EEN can be implied, or not shown, or indicated informally with a

UML property string; for example, {OS=Linux}.

 The normal connection between nodes is a communication path, which may be

labeled with the protocol. These usually indicate the network connections.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 A node may contain and show an artifact a concrete physical element, usually a

file. This includes executables such as JARs, assemblies, .exe files, and scripts.

It also includes data files such as XML, HTML, and so forth.

Deployment Diagram Ex: Next Generation POS System

In the diagram ,there are 2 servers namely DellpowerEdge 3600 with RedHat Linux

OS , Tomcat 6, Apache 2.1 are software computing resources , in tomcat server

webstore.war file is loaded. In the other server DellpowerEdge 3400 with RedHat

Linux OS, database PostgresSQL 10 are software computing resources.

There are 2 client nodes connected to server via HTTP & SOAP /HTTP protocol. In

first client exe file is shown as artifact. In the other client , web base application is

enabled by browser .

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

COMPONENT DIAGRAMS

A component represents a modular part of a system that encapsulates its contents and

whose manifestation is replaceable within its environment. A component defines its

behavior in terms of provided and required interfaces. A component serves as a type,

whose conformance is defined by these provided and required interfaces.

Features of UML component

1) It has interfaces

2) it is modular, self-contained and replaceable.

The second point implies that a component tends to have little or no dependency on

other external elements. it is a relatively stand-alone module.

Example: A good analogy for software component modeling is a home entertainment

system; we expect to be able to easily replace the DVD player or speakers. They are

modular, self-contained, replaceable, and work via standard interfaces.

For example, at a large-grained level, a SQL database engine can be modeled as a

component; any database that understands the same version of SQL and supports the

same transaction semantics can be substituted. At a finer level, any solution that

implements the standard Java Message Service API can be used or replaced in a system.

Elements:

Name

Symbol

Description

Component

with Provided

Interface

stand-alone module.

Dependency System getting services from the

component

Guideline : Component-based modeling is suitable for relatively large-scale elements,

because it is difficult to think about or design for many small, fine-grained replaceable

parts.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Ex: Next Generation POS system .

WHEN TO USE COMPONENT AND DEPLOYMENT DIAGRAMS

Component diagrams are used to visualize the static implementation view of a system.

Component diagrams are special type of UML diagrams used for different purposes.

Component diagrams can be used to −

 Model the components of a system.

 Model the database schema.

 Model the executables of an application.

 Model the system's source code.

Model the components of a system

Ex: Order System

Modeling Source Code

 Either by forward or reverse engineering, identify the set of source code files of interest

and model them as components stereotyped as files.

 For larger systems, use packages to show groups of source code files.

 Consider exposing a tagged value indicating such information as the version number

of the source code file, its author, and the date it was last changed. Use tools to manage

the value of this tag.

 Model the compilation dependencies among these files using dependencies.

Again, use tools to help generate and manage these dependencies.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Modeling an Executable Release

 Identify the set of components to model.

 Consider the stereotype of each component in this set. find a small number of

different kinds of components (such as executables, libraries, tables, files, and

documents).

 For each component in this set, consider its relationship to its neighbors. It

shows only dependencies among the comp

Modeling a Physical Database

 Identify the classes in the model that represent the logical database schema.

 Select a strategy for mapping these classes to tables.

 To visualize, specify, construct, and document your mapping, create a

component diagram that contains components stereotyped as tables.

 Where possible, use tools to help you transform your logical design into a

physical design. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

72

UNIT IV - DESIGN PATTERNS

INTRODUCTION

 One way to describe object design “After identifying your requirements and creating

a domain model, then add methods to the software classes, and define the messaging

between the objects to fulfill the requirements”

 Not really- Answer the following questions:

o What methods belong to where?

o How the objects should interact?

 GRASP as Methodical Approach to Learning Basic Object Design

UML versus Design Principles

 The UML is simply a standard visual modeling language, knowing its details doesn’t

teach you how to think in objects – that is the theme of this course

 The critical design tool for software development is a mind well educated in design

principles. It is not the UML or any other technology

Object Design

After the requirements identification, add the methods to the classes and define the message between

the objects. The designing of object starts with

 Inputs

 Activities

 Outputs

Inputs to object design

 Use case model

 Domain Model

 System Sequence Diagrams

 Operation Contracts

 Supplementary Specification

Activities of object design

 Dynamic and static modeling (draw both interaction and complementary class

diagrams)

 Applying various OOD principles

o GRASP- General Responsibility Assignment Software Patterns

o GoF (Gang of Four) design patterns

o Responsibility-Driven Design (RDD)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

73

Outputs of object design

 Modeling for the difficult part of the design that we wished to explore before coding

 Specifically for object design,

o UML Interaction diagrams

o Class diagrams

o Package diagrams

 UI sketches and prototypes

 Database models Report sketches and prototypes

 RDD is a general metaphor for thinking about OO software design.

 Thinking of software objects as having responsibilities an abstraction of what they

do. Responsibility means a contract or obligation of a classifier.

 RDD is a general metaphor for thinking about object oriented design.

Responsibilities are related to the obligation of an object in terms of its behavior

o what an object should know?

o what an object should do?

Responsibilities is of two types: Doing, Knowing

1. Knowing responsibilities:

o knowing about private encapsulated data

o knowing about related objects

o knowing about things it can derive or calculate

2. Doing responsibilities:

a. doing something itself, such as creating an object or doing a calculation

b. initiating action in other objects

c. controlling and coordinating activities in other objects.

What's the Connection Between Responsibilities, GRASP, and UML Diagrams?

Assigning responsibilities to objects while coding or while modeling. Within the UML,

drawing interaction diagrams becomes the occasion for considering these responsibilities.

Responsibilities are implemented using methods

What are Patterns?

A pattern is a named description of a problem and solution that can be applied to new

contexts; ideally, a pattern advises us on how to apply its solution in varying circumstances

4.2 RDD

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

74

and considers the forces and trade-offs.

Many patterns, given a specific category of problem, guide the assignment of responsibilities

to objects.

Example : The format is

Pattern Name : Information Expert

Problem : What is a basic principle by which to assign responsibilities to objects?

Solution : Assign a responsibility to the class that has the information needed to

fulfill it.

GRASP stands for “General Responsibility Assignment Software Patterns”

 It is a Learning Aid for OO Design with Responsibilities. This approach to

understanding and using design principles is based on patterns of assigning

responsibilities.

 We can apply the GRASP principles while drawing UML interaction diagrams, and

also while coding where we deciding on responsibly assignments.

 GRASP defines nine basic OO design principles or basic building blocks in design.

 They are

1. Information Expert

2. Creator

3. Controller

4. Low Coupling

5. High Cohesion

6. Polymorphism

7. Pure Fabrication

8. Indirection

9.ProtectedVariations.

All these patterns answer some software problem, and in almost every case these problems

are common to almost every software development project.

4.3 APPLYING GRASP TO OBJECT DESIGN

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

75

PATTERN/

PRINCIPLE

DESCRIPTION

Information

Expert

A general principle of object design and responsibility assignment?

Assign a responsibility to the information expert – the class that has the

information necessary to fulfill the responsibility.

Creator

Who creates? (Note that Factory is a common alternate solution.)

Assign class B the responsibility to create an instance of class A if one of these

is true:

1. B contains A

2. B aggregates A

3. B has the initializing data for A

4. B records A

5. B closely uses A

Controller

What first object beyond the UI layer receives and coordinates (“controls”) a system

operation?

Assign the responsibility to an object representing one of these choices:

1. Represents the overall “system,” a “root object,” a device that the software

is running within, or a major subsystem (these are all variations of a façade

controller).

2. Represents a use case scenario within which the system operation occurs (

a use-case or session controller)

Low coupling

(evaluative)

How to reduce the impact of change?

Assign responsibilities so that (unnecessary) coupling remains low. Use this

principle to evaluate alternatives.

High

Cohesion

(evaluative)

How to keep objects focused, understandable, and manageable, and as a side-

effect, support low Coupling?

Assign responsibilities so that cohesion remains high. Use this to evaluate

alternatives.

Polymorphism
Who is responsible when behavior varies by type?

When related alternatives or behaviors vary by type (class), assign

responsibility for the behavior – using polymorphic operations – to the types

for which the behavior varies.

Pure

Fabrication

Who is responsible when you are desperate, and do not want to violate high cohesion

and low coupling?

Assign a highly cohesive set of responsibilities to an artificial or convenience

“behavior” class that does not represent a problem domain

concept – something made up, in order to support high cohesion, low coupling, and

reuse.

Indirection
How to assign responsibilities to avoid direct coupling?

Assign the responsibilities to an intermediate object to mediate between other

components or services, so that they are not directly coupled.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

76

Protected

Variations

How to assign responsibility to objects, subsystems and systems so that the

variations or instability in these elements do not have an undesirable impact on

other elements?

Identify points of predicted variation or instability; assign responsibilities to

create a stable “interface” around them.

4.3.1 Creator

Problem

Who should be responsible for creating a new instance of some class?

One of the most common activities in object oriented system is creation of objects. General

principle is applied for the assignment of creation responsibilities.

Design supports :

1) low coupling

2) increased clarity

3) encapsulation

4) reusability.

Solution

Assign class B the responsibility to create an instance of class A if one of these is true

 B "contains" or compositely aggregates A.

 B records A.

 B closely uses A.

 B is an expert while creating A (B passes the initializing data for A that is passed to

A when created.)

B is a creator of A objects. If more than one option applies, usually prefer a class B which

aggregates or contains class A.

Example:

In the NextGen POS application, who should be responsible for creating a SalesLineItem

instance? By Creator, we should look for a class that aggregates, contains, and so on,

SalesLineItem instances. Consider the partial domain model in Figure Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

77

Partial Domain Model

Here “Sale “ takes the responsibility of creating ‘SalesLineItem’ instance . Since sale

contains many ‘SalesLineItem’ objects.

The assignment of responsibilities requires that a ‘makeLineitem’ must also be defined

in ‘Sale’.

Creating a SalesLineItem

Creator guides the assigning of responsibilities related to the creation of objects, a very

common task. The basic intent of the Creator pattern is to find a creator that needs to be

connected to the created object in any event. Choosing it as the creator supports low coupling.

All very common relationships between classes in a class diagram are,

 Composite aggregate part

 Container contains Content

 Recorder records

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

78

Creator suggests that the enclosing container or recorder class is a good candidate for the

responsibility of creating the thing contained or recorded.

Example:- ‘Payment’ instance while creation initialized with ‘sale ‘ total. ‘Sale’ is a

candidate creator of ‘Payment’.

Contradictions:

Based upon some external property value, creation requires significant complexity like,

 Recycled instances for performances.

 Creating an instance from one of a family of similar classes based upon some

external property value, etc.

In such cases we go for helper class called

 Concrete Factory, and

 Abstract Factory

Benefits of the creator

 Low coupling is supported which implies Lower maintenance and higher

opportunities for reuse

4.3.2 INFORMATION EXPERT (OR EXPERT)

Problem

What is the general principle of assigning responsibilities to objects?

During Object Design, when the interactions between objects are defined, we make choices

about the assignment of responsibilities to software classes. This makes the software easier

to

 Maintain

 Understand and

 Extend

Solution

Assign a responsibility to the information expert, the class that has the information

necessary to fulfill the responsibility.

Example:-

NextGEN POS Application

Some class needs to know the grand total of a sale. Start assigning responsibilities by clearly

stating the responsibility.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

79

1. Look at relevant classes in the Design Model if available,

2. Otherwise, look in the Domain Model

Example:-

If the design work has been just started, then look into the domain model, the real-world

“sale”. In design model, software class ‘sale’ is added with the responsibility for getting total

with the method ‘getTotal’.

Partial domain model for association of sale

After adding the getTotal() , the partial interaction and class diagrams given as :

To determine expert using the above the SalesLineItem should determine subtotal.

 SalesLineItem Quantity

 ProductDescription Price

By information expert using the above the Sales LineItem should determine subtotal. This is

done by Sale sending get Subtotal messages to each Sales LineItem and sum the results.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

80

Calculating Sales Total

After knowing and answering subtotal , a SalesLineItem sends it a message asking for the

product price. ProductDescription is an information expert on answering its price.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

81

Calculating the sale total

Finally, we assigned three design classes of the objects with three responsibilities to find the sales total.

Design Class

Responsibility

Sale

knows sale total

SalesLineItem

knows line item subtotal

 The Information Expert is frequently used in the assignment of responsibilities

 Experts express the common "intuition" that objects do things related to the information

they have.

 Partial information experts will collaborate in the task.

 For example:- Sales total problem experts will collaborates in the task.

 Information expert thus has real world analogy.

 Information experts are basic guiding principle used continuously in object design.

Contradictions

Solution suggested by Expert is undesirable, usually because of problems in coupling and cohesion.

To overcome this,

 Keep application logic in one place(like domain software objects)

 Keep database objects in another place(separate persistence services subsystem.

 Supporting a separation of major concerns improves coupling and cohesion in a

design.

Benefits

 Information encapsulation is maintained since objects use their own information

to fulfill tasks.

 High cohesion is usually supported

4.3.3 LOW COUPLING

Coupling is a measure of how strongly one element is connected to, has knowledge of, or relies

on other elements.

An element with low (or weak) coupling is not dependent on too many other elements.

Types of coupling

Design Class

Responsibility

ProductDescription

knows product price

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

82

Low coupling or weak coupling High coupling or strong coupling

An element if does not depend on too

many other elements like classes,

subsystems and systems it is having

low coupling.

A class with high coupling relies on many other

classes.

The Problem of high coupling are

 Forced local changes because of changes in

related classes.

 Harder to understand in isolation.

 Harder to reuse because its use requires the

additional presence of the classes on which it

is dependent

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

83

Problem :

How to support low dependency, low change impact, and increased reuse?

Solution :

Assign a responsibility so that coupling remains low. Use this principle to evaluate

alternatives.

Example:-

NextGen case Study

We have to create payment instance and associate it with sale.

DESIGN 1: Suggested by creator

1) The Register creates the Payment and

2) It adds coupling of Register to Payment.

Register creates Payment

DESIGN 2: Suggested by low coupling

1) The Sale does the creation of a Payment and

2) It does not increase the coupling.

Sales creates Payment

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

84

Low coupling is an evaluation principle for evaluating all designs decisions. In object-

oriented languages such as C++, Java, and C#, common forms of coupling from TypeX to

TypeY include the following:

 TypeX has an attribute (data member or instance variable) that refers to a TypeY

instance, or TypeY itself.

 A TypeX object calls on services of a TypeY object.

 TypeX has a method that references an instance of TypeY, or TypeY itself, by any

means. These typically include a parameter or local variable of type TypeY, or the

object returned from a message being an instance of TypeY.

 TypeX is a direct or indirect subclass of TypeY.

 TypeY is an interface, and TypeX implements that interface.

Contradictions

High coupling to stable elements and to pervasive elements is a problem. For example, a

J2EE application can safely couple itself to the Java libraries

Benefits

 Not affected by changes in other components

 Simple to understand in isolation

 Convenient to reuse

4.3.4 CONTROLLER

Problem

What first object beyond the UI layer receives and coordinates ("controls") a system

operation?

System operations were first explored during the analysis of SSD. These are the major input

events upon our system.

Example:-

1) When a cashier using a POS terminal presses the "End Sale" button indicating “sale has

ended”.

2) When a writer using a word processor presses the "spell check" button to perform

checking of spelling.

A controller is the first object beyond the User Interface (UI) layer that is responsible for

receiving or handling a system operation message.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

85

Solution

Assign the responsibility to one of the following

 Represents the overall "system," a "root object,"

- These are all variations of a facade controller.

 Represents a use case scenario called

- <UseCaseName>Handler,
- <UseCaseName>Coordinator, or

- <UseCaseName>Session

o Use the same controller class for all system events in the same use case
scenario.

o Informally, a session is an instance of a conversation with an actor. Sessions
can be of any length but are often organized in terms of use cases (use case
sessions)

Example: NextGen application contains several system operations.

Some system operations of NextGen POS Application.

During the design the responsibility of system operations Is done by the controller.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

86

The controller pattern some choices are,

Represents the overall

"system," "root object,"

device, or subsystem.

Register,

POSSystem

Represents a receiver or

handler of all system ProcessSaleHandler,

events of a use case ProcessSaleSession

scenario.

A controller should assign other objects the work that needs to be done. It coordinates or

controls the activity. Same controller class can be used for all system events to maintain

information about the state of use case. A common defect in the design of controllers is it

suffers from bad cohesion.

The system operations identified during system behavior analysis are assigned to one or more

controller classes like,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

87

Allocation of system operations

Controller

The Facade controller representing the overall system, device, or a subsystem. facade

controller representing the overall system, device, or a subsystem.

Façade controllers

1) Facade controllers are suitable when there are not "too many" system events,

2) When the user interface (UI) cannot redirect system event messages to alternating

controllers, such as in a message-processing system.

Use case controller

A use case controller is a good choice when there are many system events across

different processes; it factors their handling into manageable separate classes and also

provides a basis for knowing and reasoning about the state of the current scenario in

progress.

Guideline

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

88

Normally, a controller should delegate to other objects the work that needs to be

done; it coordinates or controls the activity. It does not do much work itself.

Benefits

1. Increased potential for reuse and pluggable interfaces.

2. Opportunity to reason about the state of the use case.

Implementation

The code has

 Process JFrame window referring to domain controller object – Register.

 Define handler for button click.

 Show key message – sending enterItem message to the controller.

Code

public class ProcessSaleJFrame extends JFrame

{

// the window has a reference to the 'controller' domain object

(1) private Register register;

// the window is passed the register, on creation

public ProcessSaleJFrame(Register _register)

{

register = _register;

}

// this button is clicked to perform the

// system operation "enterItem"

private JButton BTN_ENTER_ITEM;

(2) BTN_ENTER_ITEM.addActionListener(new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

// utility class

(3) register.enterItem(id, qty);

}

}); // end of the addActionListener call

return BTN_ENTER_ITEM;

} // end of method

// …

} // end of class

Bloated Controllers

Issues and Solutions

Poorly designed, a controller class will have low cohesion unfocused and handling too many

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

89

areas of responsibility; this is called a bloated controller.

Signs of bloating are:

 There is only a single controller class receiving all system events in the system, and

there are many of them. This sometimes happens if a facade controller is chosen.

 The controller itself performs many of the tasks necessary to fulfill the system event,

without delegating the work. This usually involves a violation of Information Expert

and High Cohesion.

 A controller has many attributes, and it maintains significant information about the

system or domain, which should have been distributed to other objects, or it duplicates

information found elsewhere.

Among the Cures for a bloated controller are these two:

1. Add more controllers a system does not have to need only one. For example, consider an

application with many system events, such as an airline reservation system.

2. Design the controller so that it primarily delegates the fulfillment of each system

operation responsibility to other objects.

UI Layer Does Not Handle System Events

An important corollary of the Controller pattern is that UI objects (for example, window

objects) and the UI layer should not have responsibility for handling system events. Assume

the NextGen application has a window that displays sale information and captures cashier

operations.

Desirable coupling of UI layer to domain layer

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

90

Assigning the responsibility for system operations to objects in the application or domain

layer by using the Controller pattern rather than the UI layer can increase reuse potential.

If a UI layer object (like the SaleJFrame) handles a system operation that represents part

of a business process, then business process logic would be contained in an interface (for

example, window-like) object; the opportunity for reuse of the business logic then

diminishes because of its coupling to a particular interface and application.

Less desirable coupling of interface layer to domain layer

4.3.5 HIGH COHESION

Problem

How to keep objects focused, understandable, and manageable, and as a side effect, support

Low Coupling?

Cohesion (or more specifically, functional cohesion) is a measure of how strongly related and

focused the responsibilities of an element are. An element with highly related responsibilities

that does not do a tremendous amount of work has high cohesion. These elements include

classes, subsystems, and so on.

Solution

Assign a responsibility so that cohesion remains high. Use this to evaluate alternatives.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

91

A class with low cohesion does many unrelated things or does too much work. Such classes are

undesirable; they suffer from the following problems:

 hard to comprehend

 hard to reuse

 hard to maintain

 delicate; constantly affected by change

Low cohesion classes often represent a very "large grain" of abstraction or have taken on

responsibilities that should have been delegated to other objects.

Example

Create a payment instance and associate it with sale

DESIGN 1

 Register records a Payment in the real-world domain, the Creator pattern suggests

Register as a candidate for creating the Payment.

 The Register instance could then send an addPayment message to the Sale, passing

along the new Payment as a parameter.

Register creates Payment

DESIGN 2

The second design delegates the payment creation responsibility to the Sale supports higher

cohesion in the Register.
 Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

92

Sale creates Payment

 In the second design, payment creation in the responsibility of

sale.

a. It is highly desirable because it supports High Cohesion & Low Coupling

Scenarios of varying degrees of functional cohesion

1. Very low cohesion: A class is solely responsible for many things in very different

functional areas.

Ex : Assume the existence of a class called RDB-RPC-Interface which is completely

responsible for interacting with relational databases and for handling remote procedure

calls. These are two vastly different functional areas, and each requires lots of

supporting code.

2. Low cohesion: A class has sole responsibility for a complex task in one functional

area.

Ex: Assume the existence of a class called RDBInterface which is completely

responsible for interacting with relational databases. The methods of the class are all

related, but there are lots of them, and a tremendous amount of supporting code; there

may be hundreds or thousands of methods.

3. High cohesion: A class has moderate responsibilities in one functional area and

collaborates with other classes to fulfill tasks.

Ex: Assume the existence of a class called RDBInterface that is only partially

responsible for interacting with relational databases. It interacts with a dozen other

classes related to RDB access in order to retrieve and save objects.

4. Moderate cohesion: A class has lightweight and sole responsibilities in a few

different areas that are logically related to the class concept but not to each other.

Ex: Assume the existence of a class called Company that is completely responsible for

(a) knowing its employees and (b) knowing its financial information. These two areas

are not strongly related to each other, although both are logically related to the concept

of a company.

Rule of thumb

A class with high cohesion has a relatively small number of methods, with highly related

functionality, and does not do too much work. It collaborates with other objects to share

the effort if the task is large.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

93

 Easy to maintain

 Understand and

 Reuse

Modular Design

Modularity is the property of a system that has been decomposed into a set of cohesive

and loosely coupled modules. Modular design creates methods and classes with single

purpose, clarity and high cohesion.

Lower cohesion is had in

 Grouping responsibilities or code into one class or component.

 Distributed server objects.

Benefits

 Clarity and ease of comprehension of the design is increased.

 Maintenance and enhancements are simplified.

 Low coupling is often supported.

 Reuse of fine-grained, highly related functionality is increased because a cohesive

class can be used for a very specific purpose.

In 1994, four authors Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

published a book titled Design Patterns - Elements of Reusable Object-Oriented Software

which initiated the concept of Design Pattern in Software development.

These authors are collectively known as Gang of Four (GOF). According to these authors

design patterns are primarily based on the following principles of object orientated design.

 Program to an interface not an implementation

 Favor object composition over inheritance

Pattern & Description

There are 23 design patterns which can be classified in three categories:

Creational Patterns : These design patterns provide a way to create objects while hiding the

creation logic, rather than instantiating objects directly using new operator. This gives

program more flexibility in deciding which objects need to be created for a given use case.

4.4 APPLYING GOF DESIGN PATTERNS

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

94

Structural Patterns : These design patterns concern class and object composition. Concept

of inheritance is used to compose interfaces and define ways to compose objects to obtain

new functionalities.

Behavioral Patterns : These design patterns are specifically concerned with communication

between objects.

The 23 design patterns are listed below:

4.4.1 Creational Patterns

 Make the system independent of how objects are created composed and represented

 Abstract the instantiation process

o Hide how instances of these classes are created and assembled

o Hide references to concrete classed used in the system

 Govern the what, when, who , how object creation

1. Abstract Factory: Creates an instance of several families of classes. Provide an interface

for creating families of related or dependent objects without specifying their concrete

classes.

2. Builder: Separates object construction from its representation. Separate the construction

of a complex object from its representation so that the same construction processes can

create different representations.

3. Factory Method: Creates an instance of several derived classes. Define an interface for

creating an object, but let subclasses decide which class to instantiate. Factory Method lets

a class defer instantiation to subclasses.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

95

4. Prototype: A fully initialized instance to be copied or cloned. Specify the kinds of objects

to create using a prototypical instance, and create new objects by copying this prototype.

5. Singleton: A class of which only a single instance can exist. Ensure a class only has one

instance, and provide a global point of access to it.

FACTORY

Name Factory

Problem: Who should be responsible for creating objects when there are special considerations,

such as complex creation logic, a desire to separate the creation responsibilities for

better cohesion, and so forth?

Solution:

(advice)

Create a Pure Fabrication object called a Factory that handles the creation.

This is also called as

 Simple Factory or

 Concrete Factory.

This pattern is not a GoF design pattern, but extremely widespread. It is also a simplification

of the GoF Abstract Factory pattern. The adapter raises a new problem in the design,

 Who create adapters?

 How to create adapters?

When domain objects create the adapter, their responsibilities are beyond pure application

logic and related to connectivity with other software components.

So, when a domain object creates adapters,

 It does not support goal of separation of concerns.

 It lowers cohesion.

So, we go in for ‘factory’ pattern, when pure fabrication “factory” object is defined to create

objects.

Advantages of factory

A common alternative in this case is to apply the Factory pattern, in which a Pure Fabrication

"factory" object is defined to create objects.

Factory objects have several advantages:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

96

 Separate the responsibility of complex creation into cohesive helper objects.

 Hide potentially complex creation logic.

 Allow introduction of performance-enhancing memory management strategies, such

as object caching or recycling.

The Factory pattern

In the ServicesFactory, the logic to decide which class to create is resolved by reading in the

class name from an external source and then dynamically loading the class. This is an example

of a partial data-driven design.

4.4.2 Structural Patterns

 Help identify and describe relationship between entities

 Address how classes and objects are composed to form large structures

 Class oriented pattern use inheritance to compose interfaces and implementation

 Object Oriented Patterns describe ways to compose objects to realize new functionality ,

possibly by changing the composition at runtime.

These design patterns concern class and object composition. Concept of inheritance is used

to compose interfaces and define ways to compose objects to obtain new functionalities.

1. Adapter: Match interfaces of different classes.Convert the interface of a class into another

interface clients expect. Adapter lets classes work together that couldn’t otherwise because

of incompatible interfaces.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

26

2. Bridge: Separates an object’s interface from its implementation. Decouple anabstraction

from its implementation so that the two can vary independently.

3. Composite: A tree structure of simple and composite objects. Compose objects into tree

structures to represent part-whole hierarchies. Composite lets clients treat I ndividual

objects and compositions of objects uniformly.

4. Decorator: Add responsibilities to objects dynamically. Attach additional responsibilities

to an object dynamically. Decorators provide a flexible

alternative to subclassing for extending functionality.

5. Facade: A single class that represents an entire subsystem. Provide a unified interface to

a set of interfaces in a system. Facade defines a higher-level interface that makes the

subsystem easier to use.

6. Flyweight: A fine-grained instance used for efficient sharing. Use sharing to support large

numbers of fine-grained objects efficiently. A flyweight is a shared object that can be used

in multiple contexts simultaneously. The flyweight acts as an independent object in each

context — it’s indistinguishable from an instance of the object that’s notshared.

7. Proxy: An object representing another object. Provide a surrogate or placeholder for

another object to control access to it.

ADAPTER

Name

Adapter

Problem:

How to resolve incompatible interfaces, or provide a stable interface to similar

components with different interfaces?

Solution:

(advice)

Convert the original interface of a component into another interface, through

an intermediate adapter object.

Example:

The NextGen POS system needs to

supports many third party services

like,

 Tax calculators

 Credit authorization

 Inventory systems

 Accounting systems etc.,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

27

The Adapter pattern

Here a particular adapter instance will be instantiated, such as

 SAP for accounting, and will adapt the postSale request to the external interface.

 SOAP XML interface over HTTPS for an intranet Web services.

Using an Adapter

The type names include the pattern name "Adapter." This is a relatively common style and

has the advantage of easily communicating to others reading the code or diagrams what design

patterns are being used.

GRASP Principles as a Generalization of Other Patterns

The Adapter pattern can be viewed as a specialization of some GRASP building blocks.

Adapter supports Protected Variations with respect to changing external interfaces or third-

party packages through the use of an Indirection object that applies interfaces and

Polymorphism.

Example: Adapter and GRASP

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

28

Relating Adapter to some core GRASP principles

BRIDGE

Name:

Bridge

Problem:

To decouple the implementation from its abstraction

Solution:

(advice)

Decouple an abstraction from its implementation so that the two can vary

independently

The bridge uses encapsulation, aggregation, and can use inheritance to separate

responsibilities into different classes. Bridge design pattern is a modified version of the notion

of “prefer composition over inheritance”.

 Creates two different hierarchies. One for abstraction and another for

implementation.

 Avoids permanent binding by removing the dependency between abstraction and

implementation.

 We create a bridge that coordinates between abstraction and implementation.

 Abstraction and implementation can be extended separately.

 Should be used when we have need to switch implementation at runtime.

 Client should not be impacted if there is modification in implementation of

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

29

abstraction.

 Best used when you have multiple implementations.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

30

Example :

A household switch controlling lights, ceiling fans, etc. is an example of the Bridge. The

purpose of the switch is to turn a device on or off. The actual switch can be implemented as

a pull chain, simple two position switch, or a variety of dimmer switches.

Elements of Bridge Design Pattern

 Abstraction – core of the bridge design pattern and defines the crux (Create ,

Retrieve, Update , Delete) Contains a reference to the implementer.

 Refined Abstraction – Extends the abstraction takes the finer detail one level below.

Hides the finer elements from implementers.

 Implementer – This interface is the higher level than abstraction. Just defines the

basic operations.

 Concrete Implementation – Implements the above implementer by providing

concrete implementation.

Generic UML Diagram for Bridge Design Pattern

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

31

Need for Bridge Design Pattern

Without Bridge Pattern With Bridge Pattern

When there are inheritance hierarchies

creating concrete implementation, you

loose flexibility because of

interdependence.

Decouple implementation from interface

and hiding implementation details from

client is the essence of bridge design

pattern.

Example : for core elements of Bridge Design Pattern

Vehicle -> Abstraction

manufacture()

Car -> Refined Abstraction 1

manufacture()

Bike -> Refined Abstraction 2

manufacture()

Workshop -> Implementor

work()

Produce -> Concrete Implementation 1

work()

Assemble -> Concrete Implementation 2

work()

Example Coding :

// abstraction in bridge pattern abstract

class Vehicle {

protected Workshop workShop1; protected

Workshop workShop2;

protected Vehicle(Workshop workShop1, Workshop workShop2) {

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

32

this.workShop1 = workShop1;

this.workShop2 = workShop2;

}

abstract public void manufacture();

}

// Refine abstraction 1 in bridge pattern

public class Car extends Vehicle {

public Car(Workshop workShop1, Workshop workShop2) {

super(workShop1, workShop2);

}

public void manufacture() {
System.out.print("Car ");

workShop1.work();

workShop2.work();

} }

public class Bike extends Vehicle {
public Bike(Workshop workShop1, Workshop workShop2) {

super(workShop1, workShop2);

}

public void manufacture() {
System.out.print("Bike ");

workShop1.work();

workShop2.work();

} }
// Implementor for bridge pattern

public interface Workshop {

abstract public void work();

}
//Concrete implementation 1 for bridge pattern

public class Produce implements Workshop {

public void work() {

System.out.print("Produced"); }}

public class Assemble implements Workshop {

public void work() {

System.out.println(" Assembled.");

}}
//Demonstration of bridge design pattern

public class BridgePattern {

public static void main(String[] args) {
Vehicle vehicle1 = new Car(new Produce(), new Assemble());

vehicle1.manufacture();

Vehicle vehicle2 = new Bike(new Produce(), new Assemble());

vehicle2.manufacture();

}
}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

33

4.4.3 Behavioral Patterns

 Describes algorithms assignments of responsibilities and interaction between objects.

 Behavioral class patterns use inheritance to distribute behavior

 Behavioral object patterns use composition

1. Chain of Resp. : A way of passing a request between a chain of objects. Avoid coupling

the sender of a request to its receiver by giving more than one object a chance to handle

the request. Chain the receiving objects and pass the request along the chain until an object

handles it.

2. Command: Encapsulate a command request as an object. Encapsulate a request as an

object, thereby letting you parameterize clients with different requests, queue or log

requests, and support undoable operations.

3. Interpreter: A way to include language elements in a program. Given a language, define

a representation for its grammar along with an interpreter that uses the representation to

interpret sentences in the language.

4. Iterator: Sequentially access the elements of a collection. Provide a way to access the

elements of an aggregate object sequentially without exposing its underlying

representation.

5. Mediator: Defines simplified communication between classes. Define an object that

encapsulates how a set of objects interact. Mediator promotes loose coupling by keeping

objects from referring to each other explicitly, and it lets you vary their interaction

independently.

6. Memento: Capture and restore an object's internal state. Without violating encapsulation,

capture and externalize an object’s internal state so that the object can be restored to this

state later.

7. Observer: A way of notifying change to a number of classes. Define a one-to-many

dependency between objects so that when one object changes state, all its dependents are

notified and updated automatically.

8. State: Alter an object's behavior when its state changes. Allow an object to alter its

behavior when its internal state changes. The object will appear to change its class.

Output:
Car Produced Assembled. Bike

Produced Assembled.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

34

9. Strategy: Encapsulates an algorithm inside a class. Define a family of algorithms,

encapsulate each one, and make them interchangeable. Strategy lets the algorithm

vary independently from clients that use it.

10. Template: Defer the exact steps of an algorithm to a subclass. Define the skeleton of an

algorithm in an operation, deferring some steps to subclasses. Template Method lets

subclasses redefine certain steps of an algorithm without changing the algorithm’s

structure.

11. Visitor: Defines a new operation to a class without change. Represent an operation to be

performed on the elements of an object structure. Visitor lets you define a new operation

without changing the classes of the elements on which it operates

STRATEGY

Name

Strategy

Problem:

How to design for varying, but related, algorithms or policies? How to design

for the ability to change these algorithms or policies?

Solution:

(advice)

Define each algorithm/policy/strategy in a separate class, with a common

interface.

Example

Since the behavior of pricing varies by the strategy (or algorithm), we create multiple

SalePricingStrategy classes, each with a polymorphic getTotal method . Each getTotal method

takes the Sale object as a parameter, so that the pricing strategy object can find the pre-

discount price from the Sale, and then apply the discounting rule. The implementation of each

getTotal method will be different: PercentDiscountPricingStrategy will discount by a

percentage, and so on.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

35

A strategy object is attached to a context objectthe object to which it applies the algorithm. In

this example, the context object is a Sale. When a getTotal message is sent to a Sale, it

delegates some of the work to its strategy object

Creating a Strategy with a Factory

There are different pricing algorithms or strategies, and they change over time. Who should

create the strategy? A straightforward approach is to apply the Factory pattern again: A

PricingStrategyFactory can be responsible for creating all strategies (all the pluggable or

changing algorithms or policies) needed by the application.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

36

OBSERVER

Name:

Observer (Publish-Subscribe)

Problem:

Different kinds of subscriber objects are interested in the state changes or

events of a publisher object, and want to react in their own unique way when

the publisher generates an event. Moreover, the publisher wants to maintain

low coupling to the subscribers. What to do?

Solution:

(advice)

Define a "subscriber" or "listener" interface. Subscribers implement this

interface. The publisher can dynamically register subscribers who are interested

in an event and notify them when an event occurs.

Example:

When the Sale changes its total, the Sale object sends a message to a window, asking it to

refresh its display. To extend the solution found for changing data, add the ability for a GUI

window to refresh its sale.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

37

The Model-View Separation principle discourages such solutions. It states that "model"

objects (non-UI objects such as a Sale) should not know about view or presentation objects

such as a window. It promotes Low Coupling from other layers to the presentation (UI) layer

of objects.

Its promotes Low coupling.

The major ideas and steps in this example:

1. An interface is defined; in this case, PropertyListener with the operation

onPropertyEvent.

2. Define the window to implement the interface.SaleFrame1 will implement the

method onPropertyEvent.

3. When the SaleFrame1 window is initialized, pass it the Sale instance from which it is

displaying the total.

4. The SaleFrame1 window registers or subscribes to the Sale instance for notification

of "property events," via the addPropertyListener message.

5. The Sale does not know about SaleFrame1 objects; rather, it only knows about

objects that implement the PropertyListener interface.

6. The Sale instance is thus a publisher of "property events." When the total changes, it

iterates across all subscribing PropertyListeners, notifying each.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

38

The observer SaleFrame1 subscribes to the publisher Sale

When the Sale total changes, it iterates across all its registered subscribers, and"publishes an

event" by sending the onPropertyEvent message to each.

The Sale publishes a property event to all its subscribers

SaleFrame1, which implements the PropertyListener interface, thus implements an

onPropertyEvent method.

When the SaleFrame1 receives the message, it sends a message to its JTextField GUI widget

object to refresh with the new sale total.

 There is still some coupling from the model object (the Sale) to the view object. But

it is a loose coupling to an interface independent of the presentation layer the

PropertyListener interface.coupling to a generic interface of objects that do notneed

to be present, and which can be dynamically added (or removed), supports low

coupling.

 Therefore, Protected Variations with respect to a changing user interface has been

achieved through the use of an interface and polymorphism.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

39

Who is the observer, listener, subscriber, and publisher Why

Is It Called Observer, Publish-Subscribe, or Delegation Event Model?

This idiom was called “Publish-subscribe”, and it is still widely known by that name. One
object "publishes events," such as the Sale publishing the "property event" when the total
changes.

It has been called “Observer” because the listener or subscriber is observing the event.

It has also been called the “Delegation Event Model “(in Java) because the publisher

delegates handling of events to "listeners".

Implementation in an object-oriented language requires writing source code for

 class and interface definitions

 method definitions

Implementation is discussed in Java

1. Creating Class Definitions from Design Class Diagrams(DCD)

2. Creating Methods from Interaction Diagrams

3. Collection Classes in Code

4. Exceptions and Error Handling

5. Order of Implementation

6. Test-Driven or Test-First Development

4.5 MAPPING DESIGN TO CODE

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

40

1. Creating Class Definitions from DCDs

DCDs depict the class or interface name, superclasses, operation signatures, and attributes of

a class. If the DCD was drawn in a UML tool, it can generate the basic class definition from

the diagrams.

Defining a Class with Method Signatures and Attributes

From the DCD, a mapping to the attribute definitions (Java fields) and method signatures for

the Java definition of SalesLineItem is straightforward.

SalesLineItem in Java.

Note :

The addition in the source code of the Java constructor SalesLineItem(…). It is derived from

the create(desc, qty) message sent to a SalesLineItem in the enterItem interaction diagram.

This indicates, in Java, that a constructor supporting these parameters is required.

2. Creating Methods from Interaction Diagrams

The sequence of the messages in an interaction diagram translates to a series of statements

in the method definitions.

The enterItem interaction diagram illustrates the Java definition of the enterItem method.

For this example, we will explore the implementation of the Register and its enterItem

method.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

41

A Java definition of the Register class.is given below :

The enterItem interaction diagram.

The enterItem message is sent to a Register instance; therefore, the enterItem method is defined

in class Register.

public void enterItem(ItemID itemID, int qty)

Message 1: A getProductDescription message is sent to the ProductCatalog to retrieve a

ProductDescription.

ProductDescription desc = catalog.getProductDescription(itemID);

Message 2: The makeLineItem message is sent to the Sale.

currentSale.makeLineItem(desc, qty);

The Register class

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

42

The enterItem method.

3. Collection Classes in Code

One-to-many relationships are common. For example, a Sale must maintain visibility to a

group of many SalesLineItem instances. In OO programming languages, these relationships

are usually implemented with the introduction of a collection object, such as a List or Map,

or even a simple array.

Adding a collection.

For example, the Java libraries contain collection classes such as ArrayList and HashMap,

which implement the List and Map interfaces, respectively. Using ArrayList, the Sale class

can define an attribute that maintains an ordered list of SalesLineItem instances.

4. Exceptions and Error Handling

In terms of the UML, exceptions can be indicated in the property strings of messages and

operation declarations .

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

43

5 Order of Implementation

Classes need to be implemented from least-coupled to most-coupled, For example, possible

first classes to implement are either Payment or ProductDescription; next are classes only

dependent on the prior implementationsProductCatalog or SalesLineItem.

Possible order of class implementation and testing.

6. Test-Driven or Test-First Development

An excellent practice promoted by the iterative and agile XP method and applicable to the UP

(as most XP practices are), is test-driven development (TDD).In OO unit testing TDD- style,

test code is written before the class to be tested, and the developer writes unit testing code for

nearly all production code.

The basic rhythm is

o to write a little test code,

o write a little production code

o make it pass the test

o write some more test code, and so forth.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

44

Example

Suppose if we create TDD for the Sale class. Before programming the Sale class, we write

a unit testing method in a SaleTest class that does the following:

Each testing method follows this pattern:

1. Create the fixture.

2. Do something to it (some operation that you want to test).

3. Evaluate that the results are as expected.

Example:

public class SaleTest extends TestCase

{

// …

// test the Sale.makeLineItem method

public void testMakeLineItem()

{

// STEP 1: CREATE THE FIXTURE

// -this is the object to test ,it is an idiom to name it

'fixture'

Sale fixture = new Sale();

// set up supporting objects for the test

Money total = new Money(7.5);

Money price = new Money(2.5);

ItemID id = new ItemID(1);

ProductDescription desc =

new ProductDescription(id, price, "product 1");

// STEP 2: EXECUTE THE METHOD TO TEST

// NOTE: We write this code **imagining** there

// is a makeLineItem method. This act of imagination

// test makeLineItem

sale.makeLineItem(desc, 1);

sale.makeLineItem(desc, 2);

// STEP 3: EVALUATE THE RESULTS

// there could be many assertTrue statements

// for a complex evaluation

// verify the total is 7.5

assertTrue(sale.getTotal().equals(total));

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

45

NextGen POS Program Solution

Class Store

public class Store

{

private ProductCatalog catalog = new ProductCatalog();

private Register register = new Register(catalog);

public Register getRegister() { return register; }

}

Class ProductDescription

public class ProductDescription

{

private ItemID id;

private Money price;

private String description;

public ProductDescription (ItemID id, Money price, String

description)

{ this.id = id;

this.price = price;

this.description = description;

}

public ItemID getItemID() { return id; }

public Money getPrice() { return price; }

public String getDescription() { return description; }

}

Class ProductCatalog

public class ProductCatalog

{

public ProductCatalog()

{

// sample data

ItemID id1 = new ItemID(100);

ItemID id2 = new ItemID(200);

Money price = new Money(3);

ProductDescription desc;

desc = new ProductDescription(id1, price, "product 1");

descriptions.put(id1, desc);

desc = new ProductDescription(id2, price, "product 2");

descriptions.put(id2, desc);

}

public ProductDescription getProductDescription(ItemID id)

{

return descriptions.get(id);

}

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

46

Class SalesLineItem

public class SalesLineItem

{

private int quantity;

private ProductDescription description;

public SalesLineItem (ProductDescription desc, int quantity)

{

this.description = desc;

this.quantity = quantity;

}

public Money getSubtotal()

{ return description.getPrice().times(quantity); }

}

Class Payment

// all classes are probably in a package named

// something like:

package com.foo.nextgen.domain;

public class Payment

{

private Money amount;

public Payment(Money cashTendered){ amount = cashTendered; } public

Money getAmount() { return amount; }

}

Class Register

public class Register

{

private ProductCatalog catalog;

private Sale currentSale;

public Register(ProductCatalog catalog)

{ this.catalog = catalog; }

public void endSale()

{ currentSale.becomeComplete(); }

public void enterItem(ItemID id, int quantity)

{

ProductDescription desc = catalog.getProductDescription(id);

currentSale.makeLineItem(desc, quantity);

}

public void makeNewSale()

{ currentSale = new Sale(); }

public void makePayment(Money cashTendered)

{ currentSale.makePayment(cashTendered); }

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

47

Class Sale

public class Sale

{

private List<SalesLineItem> lineItems = new

ArrayList()<SalesLineItem>;

private Date date = new Date();

private boolean isComplete = false;

private Payment payment;

public Money getBalance()

{ return payment.getAmount().minus(getTotal()); }

public void becomeComplete() { isComplete = true; }

public boolean isComplete() { return isComplete; }

public void makeLineItem (ProductDescription desc, int

quantity)

{ lineItems.add(new SalesLineItem(desc, quantity)); }

public Money getTotal()

{ Money total = new Money();

Money subtotal = null;

for (SalesLineItem lineItem : lineItems)

{

subtotal = lineItem.getSubtotal();

total.add(subtotal);

}

return total;

}

public void makePayment(Money cashTendered)

{ payment = new Payment(cashTendered); }

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1

Introduction.

Object oriented systems development is a way to develop software by building

self – contained modules or objects that can be easily replaced, modified and reused. In

an object–oriented environment, software is a collection of discrete objects that

encapsulate their data as well as the functionality of model real–world events “objects”

and emphasizes its cooperative philosophy by allocating tasks among the objects of the

applications. A class is an object oriented system carefully delineates between its

interface (specifications of what the class can do) and the implementation of that

interface (how the class does what it does).

A method is an implementation of an object's behavior. A model is an abstract

of a system constructed to understand the system prior to building or modifying it.

Methodology is going to be a set of methods, models and rules for developing systems

based on any set of standards. The process is defined as any operation being performed.

5.1 OBJECT ORIENTED METHODOLOGIES

Object oriented methodologies are set of methods, models, and rules for

developing systems. Modeling can be done during any phase of the software life cycle

.A model is a an abstraction of a phenomenon for the purpose of understanding the

methodologies .Modeling provides means of communicating ideas which is easy to

understand the system complexity .

Object-Oriented Methodologies are widely classified into three

1. The Rumbaugh et al. OMT (Object modeling technique)

2. The Booch methodology

3. Jacobson's methodologies

UNIT V TESTING

Object Oriented Methodologies – Software Quality Assurance – Impact of

object orientation on Testing – Develop Test Cases and Test Plans.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2

A methodology is explained as the science of methods. A method is a set of

procedures in which a specific goal is approached step by step. Too min any

Methodologies have been reviewed earlier stages.

 In 1986, Booch came up with the object-oriented design concept, the Booch

method.

 In 1987,Sally Shlaer and Steve Mellor came up with the concept of the recursive

design approach.

 In 1989, Beck and Cunningham came up with class-responsibility collaboration

(CRC) cards.

 In 1990,Wirfs-Brock, Wilkerson, and Wiener came up with responsibility driven

design.

 In 1991, Peter Coad and Ed Yourdon developed the Coad lightweight and

prototype-oriented approach. In the same year Jim Rumbaugh led a team at the

research labs of General Electric to develop the object modeling technique

(OMT).

 In 1994,Ivar Jacobson introduced the concept of the use case.

These methodologies and many other forms of notational language provided

system designers and architects many choices but created a much split, competitive and

confusing environment. Also same basic concepts appeared in very different notations,

which caused confusion among users .Hence, a new evolvement of the object oriented

technologies which is called as second generation object-oriented methods.

Advantages /Charecteristics

• The Rumbaugh et al. method is well-suited for describing the object model or static

structure of the system.

• The Jacobson et.al method is good for producing user-driven analysis models

• The Booch method detailed object-oriented design models

Rumbaugh et. al.’s Object Modeling Technique (OMT)

• OMT describes a method for the analysis, design, and implementation of a system

using an object-oriented technique.

• Class, attributes, methods, inheritance, and association also can be expressed easily

• The dynamic behavior of objects within a system can be described using OMT

Dynamic model

• Process description and consumer-producer relationships can expressed using

OMT’s Functional model

• OMT consists of four phases, which can be performed iteratively:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3

1. Analysis. The results are objects and dynamic and functional models.

2. System design. The result is a structure of the basic architecture of the system.

3. Object design. This phase produces a design document, consisting of detailed

objects and dynamic and functional models.

4. Implementation. This activity produces reusable, extendible, and robust code.

• OMT separates modeling into three different parts:

1. An object model, presented by the object model and the data dictionary.

2. A dynamic model, presented by the state diagrams and event flow diagrams.

3. A functional model, presented by data flow and constraints.

OMT Object Model

• The object model describes the structure of objects in a system:

• Their identity , relationships to other objects, attributes, and operations

• The object model is represented graphically with an object diagram

• The object diagram contains classes interconnected by association lines

Example of an object model

 The above example provides OMT object model of a bank system. The boxes

represent classes and the filled triangle represents specialization.

 Association between Account and Transaction is one-to-many. Since one

account can have many transactions, the filled circle represents many (zero or

more).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4

 The relationship between Client and Account classes is one-to-one. A client can

have only one account and account can belong to only one person (in this model

joint accounts are not considered)

OMT Dynamic Model

• OMT dynamic model depict states, transitions, events, and actions

• OMT state transition diagram is a network of states and events

• Each state receives one or more events, at which time it makes the transition to the

next state.

Example of a state transition for ATM Transaction

Here the round boxes represent states and the arrows represent transitions

OMT Functional Model

• The OMT DFD shows the flow of data between different process in a business

• DFD use four primary symbols:

• Process is any function being performed ; For Ex, verify password or PIN in the

ATM system

• Data flow shows the direction of data element movement: foe Ex. PIN code

• Data store is a location where data are stored: for ex. Account is a data store in the

ATM example

• External entity is a source or destination of a data element; fro ex. The ATM card

Reader

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5

On the whole , the Rumbaugh et al .OMT methodology provides one of the strongest

tool sets for the analysis and design of object-oriented systems .

Example of OMT DFD of an ATM system

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

6

The above example is OMT DFD of the ATM system .The data flow lines

include arrows to show the direction of data element movement .The circle represents

processes. The boxes represents external entities .A data store reveals the storage of

data.

The Booch Methodology

• It is a widely used object oriented method that helps us to design the system

using object paradigm.

• The Booch methodology covers the analysis and design phases of systems

development.

• Booch sometimes is criticized for his large set of symbols.

• You start with class and object diagram in the analysis phase and refine these

diagrams in various steps.

The Booch method consists of the following diagrams:

– Class diagrams

– Object diagrams

– State transition diagrams

– Module diagrams

– Process diagrams

– Interaction diagrams

Object Modeling using Booch Notation

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

7

Example: Alarm class state transition diagram with Booch notation.The arrows

represents specialization

The Booch methodology prescribes

– A macro development process serve as a controlling framework for the micro

process and can take weeks or even months. The primary concern of the macro

process is technical management of the system

– A micro development process.

The macro development process consists of the following steps:

1. Conceptualization :

 you establish the core requirements of the system

 You establish a set of goals and develop a prototype to prove the concept

2. Analysis and development of the model.

Use the class diagram to describe the roles and responsibilities objects are to carry out

in performing the desired behavior of the system .Also use the Object diagram to

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

8

describe the desired behavior of the system in terms of scenarios or use the interaction

diagram.

3. Design or create the system architecture.

In this phase, You use the class diagram to decide what class exist and how they relate

to each other .Object diagram to used to regulate how objects collaborate. Then use

module diagram to map out where each class and object should be declared. Process

diagram – determine to which processor to allocate a process.

4. Evolution or implementation. – refine the system through many iterations

5. Maintenance. - make localized changes the the system to add new requirements

and eliminate bugs.

Micro Development Process

Each macro development process has its own micro development process

• The micro process is a description of the day to- day activities by a single or small

group of

s/w developers

• The micro development process consists of the following steps:

1. Identify classes and objects.

2. Identify class and object semantics.

3. Identify class and object relationships.

4. Identify class and object interfaces and implementation.

The Jacobson et al. Methodologies

• The Jacobson et al. methodologies (e.g., OOBE, OOSE, and Objectory) cover the

entire life cycle and stress traceability between the different phases both forward and

backward. This traceability enables reuse of analysis and design work, possibly much

bigger factors in the reduction of development time than reuse of code.

Use Cases

• Use cases are scenarios for understanding system requirements.

• A use case is an interaction between users and a system.

• The use-case model captures the goal of the user and the responsibility of the system

to its users.

The use case description must contain:

– How and when the use case begins and ends.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

9

– The interaction between the use case and its actors, including when the interaction

occurs and what is exchanged. How and when the use case will store data in the system.

– Exceptions to the flow of events.

 Every single use case should describe one main flow events

 An exceptional or additional flow of events could be added

 The exceptional use case extends another use case to include the additional one

 The use-case model employs extends and uses relationships

 The extends relationship is used when you have one use case that is similar to

another use case

The uses relationships reuse common behavior in different use cases

• Use cases could be viewed as a concrete or abstract

• Abstract use case is not complete and has no actors that initiate it but is used by

another use case.

Abstract Usecase

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

10

ATM Transaction use cases.

Object-Oriented Software Engineering: Objectory

 Object-oriented software engineering (OOSE), also called Objectory, is a

method of object oriented development with the specific aim to fit the

development of large, real-time systems. The development process, called use-

case driven development, stresses that use cases are involved in several phases

of the development.

 The system development method based on OOSE is a disciplined process for the

industrialized development of software, based on a use-case driven design. It is

an approach to object-oriented analysis and design that centers on understanding

the ways in which a system actually is used.

 By organizing the analysis and design models around sequences of user

interaction and actual usage scenarios, the method produces systems that are both

more usable and more robust, adapting more easily to changing usage

 The maintenance of each model is specified in its associated process. A process

is created when the first development project starts and is terminated when the

developed system is taken out of service

Objectory is built around several different models:

– Use case model.

– defines the outside (actors) and inside(use case) of the system behavior

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

11

– Domain object model. The object of the “real” world are mapped into

the domain object model

– Analysis object model.

– how the source code (implementation) should be carried out and written

– Implementation model.

– represents the implementation of the system

– Test model.

- constitute the test plan, specifications, and reports

Object-Oriented Business Engineering (OOBE)

Object-oriented business engineering (OOBE) is object modeling at the enterprise level.

Use cases again are the central vehicle for modeling, providing traceability throughout

the software engineering processes.

OOBE consists of : object modeling at enterprises level

– Analysis phase

 The analysis phase defines the system to be built in terms of the problem- domain

object model, the requirements model and the analysis model .This reduces

complexity and promotes maintainability over the life of the system

,since the description of the system will be independent of hardware and software

requirements .

 The analysis process is iterative but the requirements and the analysis models

should be stable before moving on to subsequent models. Jacobson et al.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

12

suggest that prototyping with a tool might be useful during this phase to help

specify user interfaces.

– Design& Implementation phases

 The implementation environment must be identified for the design model . This

include factors such as DBMS, distribution of process ,constraints due to the

programming language, available component libraries and incorporation user

interface tools

 It may be possible to identify implementation environment concurrently with

analysis. The analysis objects that fit the current implementation environment.

– Testing phase.

Finally Jacobson describes several testing levels and techniques such as unit

testing, integration testing and system testing.

Patterns

A design pattern is defined as that it identifies the key aspects of a common

design sturture that make it useful for creating a reusable object-orinted design . It also

identifies the participating classes and instances their roles and collaborations and the

distribution of responsibilities.[Gamma,Helson,Johnson definition]

A pattern involves a general description of solution to a recurring problem bundle

with various goals and constraints. But a pattern does more than just identify a solution;

it also explains why the solution is needed.

• A pattern is useful information that captures the essential structure and insight of a

successful family of proven solutions to a recurring problem that arises within a certain

context and system of forces.

• Its help software developers resolve commonly encountered, difficult problems and a

vocabulary for communicating insight and experience about these problems and their

solutions.

The main idea behind using patterns is to provide documentation to help categorize and

communicate about solutions to recurring problems.

• The pattern has a name to facilitate discussion and the information it represents.

A good pattern will do the following:

• It solves a problem.

Patterns capture solutions, not just abstract principles or strategies.

• It is a proven concept.

Patterns capture solutions with a track record, not theories or speculation.

• The solution is not obvious.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

13

The best patterns generate a solution to a problem indirectly—a necessary approach

for the most difficult problems of design.

• It describes a relationship.

Patterns do not just describe modules, but describe deeper system structures and

mechanisms.

Generative and Non-Generative Patterns

 Generative patterns are the patterns that not only describe a recurring problem

but also tell us how to generate something and can be observed in the resulting

system architectures.

 Non-generative patterns are static and passive .They describe recurring

phenomena without necessarily saying how to reproduce them.

Patterns Template

Every pattern must be expressed in form of a template which establishes a

relationship between a context, a system of forces which raises in that context and a

configuration which allows these forces to resolve themselves in that context. The

following components should be present in a pattern template

 Name –A meaningful name. This allows us to use a single word or short phrase

to refer a pattern and the knowledge and the structure it describes. Sometimes a

pattern may have more than one commonly used or recognizable name in the

literature. In this case nick names can be used.

 Problem-A statement of a problem that describes its intent: the goals and

objectives it wants to reach within the given context and forces.

 Context-The preconditions under which the problem and its solution seem to

recur and for which solution is desirable. This tells us about the pattern

applicability.

 Forces-A description of the relevant forces and constraints and how they interact

or conflict with one another and with goals to that wish to achieve. Forces reveal

the intricacies of the problem and define the kinds of trade-offs that must be

considered in the presences of the tension or dissonance they create. A good

pattern description should fully encapsulate all the forces that have an impact on

it.

 Solution

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

14

 Examples

 Resulting context

 Rationale

 Related Patterns

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

15

 Known uses-The known occurrences of the pattern and its application within

existing systems. This helps validate a pattern by verifying that it indeed is a

proven solution to a recurring problem.

AntiPatterns

• A pattern represents a “best practice” whereas an antipattern represents “worst

practice” or a

“lesson leaned”

• Antipattern come in two verities:

• Those describe a bad solution to a problem that resulted in a bad situation

• Those describing how to get out of a bad situation and how to proceed from there to

a good solution

• The pattern has a significant human component.

- All software serves human comfort or quality of life.

-The best patterns explicitly appeal to aesthetics and utility.

Capturing Patterns

 Patterns should provide not only facts but also tell us a story that captures the

experience they are trying to convey.

 A pattern should help its users comprehend existing systems, customize

systems to fit user needs, and construct new systems.

 The process of looking for patterns to document is called pattern mining.

• Guidelines for capturing patterns:

– Focus on practicability.-Patterns should describe proven solutuions to recurring

problems rather than the latest scientific results .

– Aggressive disregard of originality.-Pattern writers do not need to be the original

inventor or discoverer of the solutions that they document.

– Non-anonymous review.-Paper submissions are shepherded rather than reviewed. It

contacts the pattern authors and discusses with him or her how the patterns might be

clarified or improved on

– Writers' workshops instead of presentations.-Open forums are used here to improve

the patterns which are lacking

– Careful editing

.-Incorporating all the review comments and insights given by the writers workshops.

Frameworks

• A framework is a way of presenting a generic solution to a problem that can be

applied to all

levels in a development.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

16

• A single framework typically encompasses several design patterns and can be viewed

as the

implementation of a system of design patterns.

A definition of object oriented software framework is given by Gamma et al.

Differences between Design Patterns and Frameworks

• Design patterns are more abstract than frameworks.

• Design patterns are smaller architectural elements than frameworks.

• Design patterns are less specialized than frameworks.

The Unified Approach

• The idea behind the UA is not to introduce yet another methodology.

• The main motivation here is to combine the best practices, processes, methodologies,

and guidelines along with UML notations and diagrams.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

17

The unified approach to software development revolves around (but is not limited to)

the following processes and components.

The processes are:

– Use-case driven development.

– Object-oriented analysis.

– Object-oriented design.

– Incremental development and prototyping.

– Continuous testing.

UA Methods and Technology

• The methods and technology employed includes:

– Unified modeling language (UML) used for modeling.

– Layered approach.

– Repository for object-oriented system development patterns and frameworks.

– Promoting Component-based development.

UA Object-Oriented Analysis:

Use-Case Driven

• The use-case model captures the user requirements.

• The objects found during analysis lead us to model the classes.

• The interaction between objects provide a map for the design phase to model the

relationships and designing classes.

OOA Process consists of the following steps :

1. Identify the Actors

2. Develop the simple business process model using UML activity diagram

3. Develop the Use Case

4. Develop interaction diagrams

5. Identify classes

UA Object-Oriented Design:

• Booch provides the most comprehensive object-oriented design method.

• However, Booch methods can be somewhat imposing to learn and especially tricky

to figure out where to start.

• UA realizes this by combining Jacobson et al.'s analysis with Booch's design concept

to create a comprehensive design process.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

18

OOD Process consists of:

• Design classes , their attributes, methods, associations, structures and protocols,

apply design axioms

• Design the Access Layer

• Design and prototype User Interface

• User satisfaction and usability Test based on the usage / Use cases

Iterative Development and Continuous Testing

• The UA encourages the integration of testing plans from day 1 of the project.

• Usage scenarios or Use Cases can become test scenarios; therefore, use cases will

drive the usability testing.

• You must iterate and reiterate until, you are satisfied with the system.

Modeling Based on the Unified Modeling Language

• The UA uses the unified modeling language (UML) to describe and model the

analysis and design phases of system development.

The UA Proposed Repository

• The requirement, analysis, design, and implementation documents should be stored

in the repository, so reports can be run on them for traceability.

• This allows us to produce designs that are traceable across requirements, analysis,

design, implementation, and testing.

Two-Layer Architecture

In a two-layer system, user interface screens are tied directly to the data through

routines that sit directly behind the screens.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

19

This approach results in objects that are very specialized and cannot be reused easily

in other projects.

Three-Layer Architecture

• Your objects are completely independent of how:

– they are represented to the user (through an interface) or

– how they are physically stored.

User Interface layer

This layer consists of objects with which the user interacts as well as the objects needed

to manage or control the interface. It is also called as a view layer. The UI interface

layer objects are indentified during OOD phase .

This layer is typically responsible for two major aspects of the applications:

• Responding to user interaction-Here the user interface layer objects must be designed

to translate actions by the user , such as clicking on a button or selecting from a menu

,into an appropriate response .

That response may be to open or close another interface or to send a message down into

the business layer to start some business process.

• Displaying business objects.-The display of the objects is shown by using list boxes

and graphs

Business Layer

1. The responsibilities of the business layer are very straightforward:

2. model the objects of the business and how they interact to accomplish the business

processes.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

20

Business Layer: Real Objects

These objects should not be responsible for:

Access Layer

• The access layer contains objects that know how to communicate with the place where

the data actually resides,

•Whether it be a relational database, mainframe, Internet, or file.

• The access layer has two major responsibilities:

• Translate request-This layer must be able to translate any data-related requests from

the business layer into the appropriate protocol for data access.(For eg . if a customer

number 5333 is to be retrieved from the Database , an SQL statement is created by the

access layer and execute it)

• Translate result –It translates the data retrieved back into the appropriate business

objects and passes those objects back up into the business layer

Architecture for Access layer ,Business layer and view layer

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

21

5.2 SOFTWARE QUALITY ASSURANCE

The major key areas of SQA are

 Bugs and Debugging

 Testing strategies.

 The impact of an object orientation on testing.

 How to develop test cases.

 How to develop test plans.

Two issues in software quality are:

 Validation or user satisfaction

 Verification or quality assurance.

Elimination of the syntactical bug is the process of debugging. Detection and

elimination of the logical bug is the process of testing.

Error Types:

• Language errors or syntax errors

• Run-time errors

• Logic errors

Identifying Bugs and Debugging

• The first step in debugging is recognizing that a bug exists.

• Sometimes it's obvious; the first time you run the application, it shows itself.

• Other bugs might not surface until a method receives a certain value, or until you

take a closer look at the output

However, these steps might help:

 Selecting appropriate testing strategies

 Developing test cases and sound test plan.

Debugging Tools

• Debugging tools are a way of looking inside the program to help us determine what

happens and why.

• It basically gives us a snapshot of the current state of the program.

Testing Strategies

There are four types of testing strategies, These are:

 Black Box Testing

 White Box Testing

 Top-down Testing

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

22

 Bottom-up Testing

Black Box Testing

• In a black box, the test item is treated as "black" whose logic is unknown.

• All that's known is what goes in and what comes out, the input and output

• Black box test works very nicely in testing objects in an Object-Oriented

environment.

White Box Testing

White box testing assumes that specific logic is important, and must be tested to

guarantee system’s proper functioning. This testing looks for bugs that have a low

probability of execution that has been overlooked in previous investigations. The main

use of this testing is error-based testing , when all level based objects are tested carefully

.

One form of white box testing is called path testing

• It makes certain that each path in a program is executed at least once during testing.

Two types of path testing are:

 Statement testing coverage- The main idea of the statement testing coverage is

test every statement in the objects method executing it at least once.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

23

 Branch testing coverage –The main idea here is to perform enough tests to ensure

that every branch alternative has been executed at least once under some test. It

is feasible to fully test any program of considerable size.

Top-down Testing

It assumes that the main logic of the application needs more testing than supporting

logic.

Bottom-up Approach

• It takes an opposite approach.

• It assumes that individual programs and modules are fully developed as standalone

processes.

• These modules are tested individually, and then combined for integration testing.

System Usability & Measuring User Satisfaction

• Verification

- "Am I building the product right?"

Validation

- "Am I building the right product?"

Two main issues in software quality are

Validation or user satisfaction and

verification or quality assurance.

• The process of designing view layer classes consists of the following steps:

1. In the macro-level user interface (UI) design process, identify view layer objects.

2. In the micro-level UI, apply design rules and GUI guidelines.

3. Test usability and user satisfaction.

4. Refine and iterate the design.

Usability and User Satisfaction Testing

Two issues will be discussed:

1. Usability Testing and how to develop a plan for usability testing.

2. User Satisfaction Test and guidelines for developing a plan for user satisfaction

testing.

• The International Organization for Standardization (ISO) defines usability as the

effectiveness ,efficiency, and satisfaction with which a specified set of users can

achieve a specified set of tasks in particular environments.

• Defining tasks. What are the tasks?

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

24

• Defining users. Who are the users?

• A means for measuring effectiveness, efficiency, and satisfaction

The phrase two sides of the same coin is helpful for describing the relationship

between the

Usability and functionality of a system.

Bottom – Up Testing

It supports testing user interface and system integration. In the bottom-up strategy, each

module at lower levels is tested with higher modules until all modules are tested. It takes

help of Drivers for testing

Advantages:

 Fault localization is easier.

 No time is wasted waiting for all modules to be developed unlike Big-bang

approach

Disadvantages:

 Critical modules (at the top level of software architecture) which control the

flow of application are tested last and may be prone to defects.

 An early prototype is not possible

Top-down Testing:

In Top to down approach, testing takes place from top to down following the control

flow of the software system. Takes help of stubs for testing. It starts with the details of

the system and proceeds to higher levels by a progressive aggregation of details until

they fit requirements of system.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

25

Advantages:

 Fault Localization is easier.

 Possibility to obtain an early prototype.

 Critical Modules are tested on priority; major design flaws could be found and

fixed first.

Disadvantages:

 Needs many Stubs.

 Modules at a lower level are tested inadequately.

5.3 IMPACT OF OBJECT ORIENTATION ON TESTING

Errors.

٥ Less Plausible (not worth testing for) ٥

More Plausible (worth testing for now) ٥

New types of errors may appear

Impact of Inheritance on Testing.

 Does not reduce the volume of test cases

 Rather, number of interactions to be verified goes up at each level of the

hierarchy

 Testing approach is essentially the same for OO oriented and Non-Object

oriented environment.

 However, can reuse superclass/base class test cases

 Since OO methods are generally smaller, these are easier to test . But there are

more opportunities for integration faults.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

26

Reusability of tests.

Reusable Test Cases and Test Steps is a tool to improve re-usability and

maintainability of Test Management by reducing redundancy between Test Cases in

projects. Often the Test scenarios require that some Test Cases and Test Steps contain

repeated or similar actions performed during a Testing cycle.

The models used for analysis and design should be used for testing at the same

time. The class diagram describes relationship between objects .which is a useful

information form testing .Also it shows the inheritance structure which is important

information for error-based testing.

Error based testing

Error based testing techniques search a given class’s method for particular clues of

interests, and then describe how these clues should be tested.

Usability testing

Measures the ease of use as well as the degree of comfort and satisfaction users have

with the software.

• Usability testing must begin with defining the target audience and test goals.

• Run a pilot test to work out the bugs of the tasks to be tested.

• Make certain the task scenarios, prototype, and test equipment work smoothly.

Guidelines for Developing Usability Testing

―Focus groups" are helpful for generating initial ideas or trying out new ideas.

It requires a moderator who directs the discussion about aspects of a task or design

• Apply usability testing early and often.

• Include all of software‘s components in the test.

• The testing doesn‘t need to be very expensive, a tape recorder, stopwatch, notepad

and an office can produce excellent results.

• Tests need not involve many subjects.

• More typically, quick, iterative tests with a small, well-targeted sample of 6 to 10

participants can identify 80– 90 percent of most design problems.

• Focus on tasks, not features.

• Remember that your customers will use features within the context of particular

tasks.

• Make participants feel comfortable by explaining the testing process.

• Emphasize that you are testing the software, not the participants.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

27

• If they become confused or frustrated, it is not a reflection on them.

• Do not interrupt participants during a test.

• If they need help, begin with general hints before moving to specific advice.

• Keep in mind that less intervention usually yields better results.

• Record the test results using a portable tape recorder, or better, a video camera.

• You may also want to follow up the session with the user satisfaction test.

• The test is inexpensive, easy to use and it is educational to those who administrate it

and those who fill it out. Even if the results may never be summarized, or filled out, the

process of creating the test itself will provide us with useful information.

5.4 TEST CASES

A test case is a set of What – if questions. To test a system you must construct some

best input cases, that describe how the output will look. Next, perform the tests and

compare the

outcome with the expected output.

Myer’s (objective of testing)

Testing is a process of executing a program with the intent of finding errors.

Good test case.That has a high probability of finding an as – yet – undiscovered error.

Successful test case That detects an as – yet – undiscovered error.

Guidelines for Developing quality assurance test cases.

Freedman and Thomas have developed guidelines that have been adopted for the UA:

 Describe which feature or service your test attempts to cover.

 If the test case is based on a use case, it is good idea to refer to the use-case

name.

 Specify what you are testing and which particular feature.

 test the normal use of the object methods.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

28

 test the abnormal but reasonable use of the objects methods.

 test the boundary conditions.

 Test objects interactions and the messages sent among them.

 Attempting to reach agreement on answers generally will raise other what-if

questions.

 The internal quality of the software, such as its reusability and extensibility,

should be assessed as well.

5.5 TEST PLAN

 A Test plan is developed to detect and identify potential problems before delivering ٭

the

software to its users.

 .A test plan offers a road map ٭

 .A dreaded and frequently overlooked activity in software development ٭

Steps

 Objectives of the test.- create the objectives and describes how to achieve them

 Development of a test case- develop test case, both input and expected output.

 Test analysis.- This step involves the examination of the test output and the

documentations of the test results

Regression Testing.- All passed tests should be repeated with the revised program,

called "Regression". This can discover errors introduced during the debugging process.

When sufficient testing is believed to have been conducted, this fact should be reported,

and testing to this specific product is complete

Beta Testing.

Beta Testing can be defined as the second stage of testing any product before

release where a sample of the released product with minimum features and

characteristics is being given to the intended audience for trying out or temporarily using

the product.

Unlike an alpha test, the beta test is being carried out by real users in the real

environment. This allows the targeted customers to dive into the product's design,

working, interface, functionality, etc.

Alpha Testing.

Alpha Testing can be defined as a form of acceptance testing which is carried out

for identifying various types of issues or bugs before publishing the build or executable

of software public or market. This test type focuses on the real users

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

29

through black box and white box testing techniques. The focus remains on the task

which a general user might want or experience.

Alpha testing any product is done when product development is on the verge of

completion. Slight changes in design can be made after conducting the alpha test. This

testing methodology is performed in lab surroundings by the developers.

Here developers see things in the software from users point and try to detect the

problems. These testers are internal company or organization's employees or may be a

part of the testing team. Alpha testing is done early at the end of software development

before beta testing.

Guidelines (for preparing test plan)

 Specify Requirements generated by user.

 Specify Schedule and resources.

 Determine the testing strategy.

 Configuration Control System.

 Keep the plan up to date.

 At the end of each milestone, fill routine updates.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

30

MYER’S DEBUGGING PRINCIPLES

Bug locating principles.

 Think

 If you reach an impasse, sleep on it.

 If the impasse remains, describe the problem to someone else. Use debugging

tools.

 Experimentation should be done as a last resort.

Debugging principles.

 Where there is one bug , there is likely to be another.

 Fix the error, not just the symptom.

 The probability of solution being correct drops down as the size increases.

 Beware of error correction, it may create new errors

Case study :

Develping Test cases for vianet ATM bank system

Test cases are derived from the following use case scenarios

1. Bank Transaction

2. Checking transaction history

3. Savings/current account

4. Deposit/Withdarw

5. valid/invalid PIN

Example of vianet ATM system for user satisfaction test

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

	CS8592 - OBJECT ORIENTED ANALYSIS AND DESIGN UNIT I UNIFIED PROCESS AND USE CASE DIAGRAMS
	Object-Oriented Analysis
	Analysis
	Design
	Design Patterns
	Thinking in Objects and UML
	Object-Oriented Analysis (Overview)
	Object-Oriented Design
	Can you see the services / responsibilities in the Book class? 13
	Our Approach:
	Why the Unified Process:
	What is the Unified Process?
	The Rush to Code
	• Using the model below, develop a discussion outlining the four
	What is Analysis and Design
	A Short Example
	Assigning Responsibilities
	Defining Classes
	Partial design class diagram
	What is UML?
	How to Apply UML?
	Three Perspectives in Applying UML
	Different Perspectives of “Class”.
	Different phases of unified process.
	The Most Important Concept
	Rational Unified Process (RUP):
	Phases in RUP
	Iterations
	Relationship between UP Phases and UP disciplines
	Inception
	Inception - Exit criteria
	Elaboration
	Elaboration - Entry criteria
	Elaboration - Activities
	Elaboration - Exit criteria
	Construction
	Construction - Entry criteria
	Construction – Activities
	Construction - Exit Criteria
	Transition
	Transition - Entry criteria
	Transition – Activities
	Transition - Exit criteria
	Advantages of RUP
	Drawbacks of RUP
	Use-Case Model
	Finding Use Cases
	How to organize the Actors & Goals
	Other ways to find actors and goals: Event Analysis
	Which is a Valid Use Case?
	Use Cases in Iterative Methods
	Use cases in NextGen Inception Phase
	Case Study I: NextGen POS System
	USE CASE : Process Sale (FULLY DRESSED VERSION)
	Use case
	Elements in the Preface
	Golden Rule of Use-Case Names
	Terminology
	• UC1: Process Sale (the base use case)
	• UC15: Handle Gift Certificate Payment (the extending use case)
	Example
	• UC12: Handle Credit Payment
	• Using “include” with Asynchronous Event Handling
	Introduction
	Definition: Design Class Diagram
	Class Diagram Representation
	Attributes (refer pg no 26)

	Example (1)
	Generalization & Specialization
	Ex1:
	Ex2:
	Composition and Aggregation
	Dependency
	Interface realization

	Qualified Association
	Domain Models
	What is a Domain Model?
	Definition
	Why Call a Domain Model a "Visual Dictionary"?
	Two Traditional Meaning of Domain Model

	CONCEPTUAL CLASSES
	A conceptual class has a symbol, intension and extension
	Are Domain and Data Models the Same Thing?
	Motivation: Why Create a Domain Model?
	Guideline: To Find Conceptual Classes
	Three Strategies to Find Conceptual Classes :
	Method 2: Use a Category List
	Method 3: Finding Conceptual Classes with Noun Phrase Identification
	Guideline
	Main Success Scenario (or Basic Flow):
	Example: Find and Draw Conceptual Classes
	Guidelines
	4. Use Domain Terms :
	When Are Description Classes Useful?
	Example: Descriptions in the Airline Domain
	Associations
	Include the following associations in a domain model:
	Guideline 1. Avoid Adding Many Associations
	Applying UML: Association Notation
	The UML notation for association
	Guideline 2: To Name an Association in UML
	Name an association based on a ClassName-VerbPhrase - ClassName format where the verb phrase creates a sequence that is readable and meaningful. Simple association names such as "Has" or "Uses" are usually poor, as they seldom enhance our understandin...
	Applying UML: Roles
	Applying UML: Multiplicity
	Applying UML: Multiple Associations Between Two Classes
	Example: Associations in the Domain Models
	More Notation
	visibility name : type multiplicity = default {property-string}
	Guideline 1 : Suitable Attribute Types - Focus on Data Type Attributes in the Domain Model
	Data Types
	Guideline 1 : When to define New Data type Classes ? Guidelines for modeling data types
	Guideline 2 : No Attributes Representing Foreign Keys
	Guideline 3 : Modeling Quantities and Units

	DOMAIN MODEL REFINEMENT
	OBJECTIVES
	Generalization
	Defining Conceptual Superclasses and Subclasses:
	Subclass conformance.
	Guideline: Is-a Rule
	Guideline: Correct Conceptual Subclass
	When to Define a Conceptual Subclass?
	Motivations to Partition a Conceptual Class into Subclasses
	When to Define a Conceptual Superclass?
	NextGen POS Conceptual Class Hierarchies
	Abstract Conceptual Classes
	Association Classes
	How to Identify Composition: Guideline?
	Composition in the NextGen Domain Model

	SYSTEM SEQUENCE DIAGRAMS
	Why Draw an SSD?

	RELATIONSHIP BETWEEN SSDS AND USE CASES
	How to Name System Events and Operations?
	Example: Monopoly SSD
	Process:

	UML INTERACTION DIAGRAMS
	Basic Communication Diagram Notation
	Sequence diagram vs Communication diagram Example
	UML STATE MACHINE DIAGRAMS AND MODELLING
	State machine diagram for a telephone
	Definitions: Events, States, and Transitions
	Guidelines : To Apply State Machine Diagrams:
	Modeling State-Dependent Objects : state machines are applied in two ways:
	1.Complex Reactive Objects
	b) Transactions and related Business Objects
	Example 1: Physical Devices / Nested States – Telephone Object
	Example 2: Transactions and related Business Objects
	WHEN TO USE STATE DIAGRAM

	Example:
	Elements:
	Example
	Guideline to Apply Activity Diagrams
	2. Data Flow Modeling
	3. Concurrent Programming and Parallel Algorithm Modeling
	4. Guidelines
	Example: NextGen Activity Diagram

	WHEN TO USE ACTIVITY DIAGRAMS
	Example
	Architecture Types

	WHEN TO USE PACKAGE DIAGRAMS
	UML DEPLOYMENT AND COMPONENT DIAGRAMS
	2) Execution Environment Node:
	Elements:
	Deployment Diagram Ex: Next Generation POS System

	COMPONENT DIAGRAMS
	Features of UML component
	Elements:
	Ex: Next Generation POS system .
	Model the components of a system
	UML versus Design Principles
	Object Design
	 Inputs
	Activities of object design
	Outputs of object design
	1. Knowing responsibilities:
	2. Doing responsibilities:
	What's the Connection Between Responsibilities, GRASP, and UML Diagrams?
	What are Patterns?
	4.3.1 Creator
	Solution
	Example:

	Partial Domain Model
	Contradictions:
	 Concrete Factory, and
	4.3.2 INFORMATION EXPERT (OR EXPERT)
	Problem
	Solution
	Example:-

	Partial domain model for association of sale
	 SalesLineItem Quantity
	Calculating Sales Total
	Calculating the sale total
	Contradictions
	Benefits
	4.3.3 LOW COUPLING
	Types of coupling
	Solution :
	Example:-

	Sales creates Payment
	Contradictions (1)
	Benefits (1)
	4.3.4 CONTROLLER
	Example:-

	Solution (1)
	Example: NextGen application contains several system operations.
	Allocation of system operations
	Façade controllers
	Use case controller

	Guideline
	Normally, a controller should delegate to other objects the work that needs to be done; it coordinates or controls the activity. It does not do much work itself.
	Benefits
	Implementation
	Code
	UI Layer Does Not Handle System Events
	Desirable coupling of UI layer to domain layer
	Less desirable coupling of interface layer to domain layer 4.3.5 HIGH COHESION
	Solution
	Example
	DESIGN 1
	Register creates Payment
	Sale creates Payment
	Scenarios of varying degrees of functional cohesion
	Rule of thumb

	Modular Design
	Modularity is the property of a system that has been decomposed into a set of cohesive and loosely coupled modules. Modular design creates methods and classes with single purpose, clarity and high cohesion.
	Benefits
	Pattern & Description
	4.4.1 Creational Patterns
	Advantages of factory
	The Factory pattern
	4.4.2 Structural Patterns
	ADAPTER
	Example:

	The Adapter pattern
	Using an Adapter
	GRASP Principles as a Generalization of Other Patterns
	Relating Adapter to some core GRASP principles

	 Creates two different hierarchies. One for abstraction and another for implementation.
	Example :
	Generic UML Diagram for Bridge Design Pattern
	Example Coding :
	4.4.3 Behavioral Patterns
	Creating a Strategy with a Factory
	Example:

	The observer SaleFrame1 subscribes to the publisher Sale
	The Sale publishes a property event to all its subscribers
	Who is the observer, listener, subscriber, and publisher Why Is It Called Observer, Publish-Subscribe, or Delegation Event Model?
	1. Creating Class Definitions from DCDs
	Defining a Class with Method Signatures and Attributes
	Note :

	2. Creating Methods from Interaction Diagrams
	The enterItem interaction diagram.
	The Register class
	Adding a collection.
	4. Exceptions and Error Handling
	5 Order of Implementation
	Possible order of class implementation and testing.
	Example

	NextGen POS Program Solution
	Class ProductDescription
	Class ProductCatalog
	Class SalesLineItem
	Class Payment
	Class Register
	Class Sale

	Introduction.
	5.1 OBJECT ORIENTED METHODOLOGIES
	Advantages /Charecteristics
	Rumbaugh et. al.’s Object Modeling Technique (OMT)
	OMT Object Model

	Example of an object model
	OMT Dynamic Model
	The Booch Methodology
	Object Modeling using Booch Notation
	1. Conceptualization :
	2. Analysis and development of the model.
	3. Design or create the system architecture.

	The Jacobson et al. Methodologies
	ATM Transaction use cases.
	Object-Oriented Software Engineering: Objectory
	Objectory is built around several different models:

	Patterns
	AntiPatterns
	Capturing Patterns

	Frameworks
	Differences between Design Patterns and Frameworks

	The Unified Approach
	UA Methods and Technology
	UA Object-Oriented Analysis:
	OOA Process consists of the following steps :
	UA Object-Oriented Design:
	OOD Process consists of:
	Iterative Development and Continuous Testing
	Modeling Based on the Unified Modeling Language
	The UA Proposed Repository

	Two-Layer Architecture
	Three-Layer Architecture
	User Interface layer
	Business Layer
	Business Layer: Real Objects
	Access Layer
	Architecture for Access layer ,Business layer and view layer
	Error Types:
	Identifying Bugs and Debugging
	Debugging Tools

	Black Box Testing
	White Box Testing
	Two types of path testing are:

	Top-down Testing
	Bottom – Up Testing
	Top-down Testing:
	5.3 IMPACT OF OBJECT ORIENTATION ON TESTING Errors.
	Impact of Inheritance on Testing.
	Reusability of tests.
	Error based testing
	Usability testing
	Guidelines for Developing Usability Testing

	5.4 TEST CASES
	Myer’s (objective of testing)

	Guidelines for Developing quality assurance test cases.
	5.5 TEST PLAN
	Beta Testing.
	Alpha Testing.

	Guidelines (for preparing test plan)
	MYER’S DEBUGGING PRINCIPLES
	Bug locating principles.
	Debugging principles.

	Case study :
	Example of vianet ATM system for user satisfaction test

