

CS8602

Compiler Design

(Anna University - Regulation)

Downloaded from: annauniversityedu.blogspot.com

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

UNIT 1 – INTRODUCTION TO COMPILERS

Topics to be Covered

Translators-Compilation and Interpretation-Language processors -The Phases of Compiler-

Errors Encountered in Different Phases-The Grouping of Phases-Compiler Construction Tools -

Programming Language basics.

 Translators:

A translator is a computer program that performs the translation of a program written in a

given programming language into a functionally equivalent program in a different computer

language, without losing the functional or logical structure of the original code (the "essence" of

each program).

Types of Computer Language Translators:

The widely used translators that translate the code of a computer program into a machine code

are:

1. Assemblers

2. Interpreters

3. Compilers

Assembler:

An Assembler converts an assembly program into machine code.

Compilation and Interpretation:

 Compilation:

Compilation is the conceptual process of translating source code into a CPU-executable binary

target code.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Target

Program

Compiler

Compiler:

A compiler is a program that reads a program written in one language – the source language –

and translates it into an equivalent program in another language – the target language.

source Program target program

error messages

As an important part of this translation process, the compiler reports to its user the presence of

errors in the source program.

If the target program is an executable machine-language program, it can then be called by the

user to process inputs and produce outputs.

input output

Advantages of Compiler:

1. Fast in execution

2. The object/executable code produced by a compiler can be distributed or executed without

having to have the compiler present.

3. The object program can be used whenever required without the need to of recompilation.

Disadvantages of Compiler:

1. Debugging a program is much harder. Therefore not so good at finding errors.

2. When an error is found, the whole program has to be re-compiled.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

History of Compiler:

 Until 1952 most of the programs were written in assembly language

 In 1952 Grace Hopper writes the first compiler for the A-0 programming language

 Between 1957 – 58 John Backus writes the first Fortran compiler. Optimization

of the code was the integral component of the compiler.

Applications of Compiler Technology:

 Implementation of High Level Programming Languages

 Optimizations for Computer Architectures (both parallelism and memory hierarchies

improve the potential performance of a machine, but they must be harnessed effectively

by the compiler to deliver real performance of an application)

 Design of a new computer architecture

 Program Translations (Program Translation techniques are: Binary Translation,

Hardware Synthesis, Database Query Interpreters, Compiled Simulation)

 Software Productivity Tools (Ex. Structure editors, type checking, bound checking,

memory management tools, etc)

 Interpretation:

Interpretation is the conceptual process of translating a high level source code into executable

code.

Interpreter:

An Interpreter is also a program that translates high-level source code into executable code.

However the difference between a compiler and an interpreter is that an interpreter translates

one line at a time and then executes it: no object code is produced, and so the program has to

be interpreted each time it is to be run. If the program performs a section code 1000 times, then

the section is translated into machine code 1000 times since each line is interpreted and then

executed. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Advantages of an Interpreter:

1. Good at locating errors in programs

2. Debugging is easier since the interpreter stops when it encounters an error.

3. If an error is deducted there is no need to retranslate the whole program

Disadvantages of an Interpreter:

1. Rather slow

2. No object code is produced, so a translation has to be done every time the program is running.

3. For the program to run, the Interpreter must be present

Difference between Compiler and Interpreter:

S.No. Compiler Interpreter

1.

Compiler works on the complete program

at once. It takes the entire program as

input.

Interpreter Program works line by line. It

takes one statement at a time as input.

2.
Compiler generates intermediate code,

called the object code or machine code.

Interpreter does not generate intermediate

object code or machine code.

3.

Compiler executes conditional control

statements (like if-else and switch-case)

and logical constructs faster than

interpreter.

Interpreter executes conditional control

statements at a much slower speed.

4.

Compiled program take more memory

because the entire object code has to reside

in memory.

Interpreter does not generate intermediate

object code. As a result, interpreted

programs are more memory efficient.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

S.No. Compiler Interpreter

5.

Compile once and run any time. Compiled

program does not need to be compiled

every time.

Interpreted programs are interpreted line

by line every time they are executed.

6.

Errors are reported after the entire program

is checked for syntactical and other errors.

Error is reported as soon as the first error

is encountered. Rest of the program will

be checked until the existing error is

removed.

7.

A compiled language is more difficult to

debug.

Debugging is easy because interpreter

stops and report errors as it encounters

them.

8.

Compiler does not allow a program to run

until it is completely error-free.

Interpreter runs the program from the

first line and stops execution only if it

encounters an error.

9.
Compiled languages are more efficient but

difficult to debug.

Interpreted languages are less efficient

but easier to debug.

10.

Examples:

C, C++, COBOL

Examples:

BASIC, VISUAL BASIC, Python, Ruby,

PERL, MATLAB, Lisp

Hybrid Compiler:

Hybrid compiler is a compiler which translates a human readable source code to an intermediate

byte code for later interpretation. So these languages do have both features of a compiler and an

interpreter. These types of compilers are commonly known as Just In-time Compilers (JIT).

Example of a Hybrid Compiler:

Java is one good example for these types of compilers. Java language processors combine

compilation and interpretation. A Java Source program may be first compiled into an

intermediate form called byte codes. The byte codes are then interpreted by a virtual machine.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Translator

A benefit of this arrangement is that the byte codes compiled on one machine can be interpreted

on another machine, perhaps across a network.

In order to achieve faster processing of inputs to outputs, some Java compilers called just-in-time

compilers, translate the byte codes into machine language immediately before they run the

intermediate program to process the input.

Source program

Intermediate Program

Input

Output

Compilers are not only used to translate a source language into the assembly or machine

language but also used in other places.

Example:

1. Text Formatters: A text formatter takes input that is stream of characters,

most of which is text, some of which includes commands to indicate paragraphs, figures,

or mathematical structures like subscripts and superscripts.

2. Silicon compilers: A silicon compiler has a source language that is similar

or identical to a conventional programming language. The variable of the language

represent logical signals (0 or 1) or groups of signals in a switching circuit. The output is

a circuit design in an appropriate language.

3. Query Interpreters: A query interpreter translates a predicate containing

relational and Boolean operators into commands to search a database for records

satisfying that predicate.

Virtual

Machine

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Language Processors:

A language processor is a program that processes the programs written in programming language

(source language). A part of a language processor is a language translator, which translates the

program from the source language into machine code, assembly language or other language.

An integrated software developmental environment includes many different kinds of language

processors. They are:

1. Pre Processor

2. Compiler

3. Assembler

4. Linker

5. Loader

1. Pre Processor

The Pre Processor is the system software which is used to process the source program before fed

into the compiler. They may perform the following functions:

1. Macro Processing: A preprocessor may allow a user to define macros that

are shorthand for longer constructs.

2. File Inclusion: A preprocessor may include header files into the program

text. For example, the C pre-processor causes the contents of the file <global.h> to

replace the statement #include <global.h> when it processes a file containing this

statement.

3. Rational Preprocessors: These processors provides the user with built-in

macros for constructs like while-statements or if-statements etc.,

4. Language Extensions: It provides features similar to built-in macros. For

example, the language Equel is a database query language embedded in C.

2. Interpreter

An interpreter, like a compiler, translates high-level language into low-level machine language.

The difference lies in the way they read the source code or input. A compiler reads the whole

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

source code at once, creates tokens, checks semantics, generates intermediate code, executes the

whole program and may involve many passes. In contrast, an interpreter reads a statement from

the input, converts it to an intermediate code, executes it, then takes the next statement in

sequence. If an error occurs, an interpreter stops execution and reports it. whereas a compiler

reads the whole program even if it encounters several errors.

3. Assembler

An assembler translates assembly language programs into machine code. The output of an

assembler is called an object file, which contains a combination of machine instructions as well

as the data required to place these instructions in memory.

4. Linker

Linker is a computer program that links and merges various object files together in order to make

an executable file. All these files might have been compiled by separate assemblers. The major

task of a linker is to search and locate referenced module/routines in a program and to determine

the memory location where these codes will be loaded, making the program instruction to have

absolute references.

5. Loader

Loader is a part of operating system and is responsible for loading executable files into memory

and executes them. It calculates the size of a program instructions and data and creates memory

space for it. It initializes various registers to initiate execution.

 Phases of Compiler:

A compiler operates in phases, each of which transforms the source program from one

representation to another.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The Analysis – Synthesis Model of Compilation:

There are two parts to compilation:

 Analysis and

 Synthesis

1. Analysis:

The first three phases forms the bulk of the analysis portion of a compiler. The analysis part

breaks up the source program into constituent pieces and creates an intermediate representation

of the source program. During analysis, the operations implied by the source program are

determined and recorded in a hierarchical structure called a syntax tree, in which each node

represents an operation and the children of a node represent the arguments of the operation.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Example:

Syntax tree for position := initial + rate * 60

:=

position +

initial *

rate 60

2. Synthesis Part:

The synthesis part constructs the desired target program from the intermediate representation.

This part requires most specialized techniques.

The Analysis Phase:

Lexical Analysis: The lexical analysis phase reads the characters in the source program and

groups them into a stream of tokens in which each token represents a logically sequence of

characters, such as identifier, a keyword (if, while, etc), a punctuation character, or a multi-

character operator work like :=. The character sequence forming a token is called the lexeme for

the token.

Certain tokens will be augmented by a ―lexical value‖. Ex. When an identifier rate is found, the

lexical analyzer generates the token id and also enters rate into the symbol table, if it is not

already exist. The lexical value associated with this id then points to the symbol-table entry for

rate.

Example: position := initial + rate * 60

Tokens:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1. position, initial and rate - id

2. :=, + and * are signs

3. 60 is a number

Thus the lexical analyzer will give the output as:

Id1 := id2 + id3 * 60

Syntax Analysis:

The next phase is called the syntax analysis or parsing. It takes the token produced by lexical

analysis as input and generates a parse tree or syntax tree. In this phase, token arrangements are

checked against the source code grammar, i.e. the parser checks if the expression made by the

tokens is syntactically correct.

It imposes a hierarchical structure of the token stream in the form of parse tree or syntax tree.

The syntax tree can be represented by using suitable data structure.

Example: position := initial + rate * 60

:=

position +

initial *

rate 60

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

*

+

id 4

id 3

id 2

id 1

:=

Data structure of the above tree:

Semantic Analysis:

Semantic analysis checks whether the parse tree constructed follows the rules of language. For

example, assignment of values is between compatible data types, and adding string to an integer.

Also, the semantic analyzer keeps track of identifiers, their types and expressions; whether

identifiers are declared before use or not etc. The semantic analyzer produces an annotated

syntax tree as an output.

This analysis inserts a conversion from integer to real in the above syntax tree.

:=

position +

initial *

rate inttoreal

60

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Synthesis Phase:

Intermediate Code Generation:

After semantic analysis the compiler generates an intermediate code of the source code for the

target machine. It represents a program for some abstract machine. It is in between the high-level

language and the machine language. This intermediate code should be generated in such a way

that it makes it easier to be translated into the target machine code.

Intermediate code have two properties: easy to produce and easy to translate into the target

program. An intermediate code representation can have many forms. One of the form is three-

address code, which is like the assembly language for a machine in which every memory

location can act like a register and three-address code have at most three operands.

Example: The output of the semantic analysis can be represented in the following intermediate

form:

temp1 := inttoreal (60)

temp2 := id3 * temp1

temp3 := id2 + temp2

id1 := temp3

Code Optimization:

The next phase does code optimization of the intermediate code. Optimization can be assumed as

something that removes unnecessary code lines, and arranges the sequence of statements in order

to speed up the program execution without wasting resources CPU, memory. In the following

example the natural algorithm is used for optimizing the code.

Example:

The output of intermediate code can be optimized as:

temp1 := id3 * 60.0

id1 := id2 + temp1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The compiler that do most code optimization are called “optimizing compilers”.

Code Generation:

This is the final phase of the compiler which generates the target code, consisting normally of

relocatable machine code or assembly code. Variables are assigned to the registers.

Example:

The output of above optimized code can be generated as:

MOVF id3, R2

MULF #60.0, R2

MOVF id2, R1

ADDF R2, R1

MOVF R1, id3

The first and the second operands of each instruction specify a source and destination

respectively. The F in each instruction denotes the floating point numbers. The # signifies that

60.0 is to be treated as constant.

Activities of Compiler:

Symbol table manager and error handler are the other two activities in the compiler which is also

referred as phases. These two activities interact with all the six phases of a compiler.

Symbol Table Manager:

The symbol table is a data structure containing a record for each identifier, with fields for the

attributes of the identifier.

The attributes of the identifiers may provide the information about the storage allocated for an

identifier, its type, its scope (where in the program it is valid), and in the case of procedure

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

names the attributes provide information about the number and types of its arguments, the

method of passing each argument (eg. by reference), and the type returned, if any.

The symbol table allows us to find the record for each identifier quickly and to store or retrieve

data from that record quickly. Attributes of the identifiers cannot be determined during lexical

analysis phase. But it can be determined during the syntax and semantic analysis phases. The

other phase like code generators uses the symbol table to retrieve the details about the identifiers.

Error Handler: (Error Detection and Reporting)

Each phase can encounter errors. After the deduction of an error, a phase must somehow deal

with that error, so that the compilation can proceed, allowing further errors in the source program

to be detected.

Lexical Analysis Phase: If the characters remaining in the input do not form any token of the

language, then the lexical analysis phase detect the error.

Syntax Analysis Phase: The large fraction of errors is handled by syntax and semantic analysis

phases. If the token stream violates the structure rules (syntax) of the language, then this phase

detects the error.

Semantic Analysis Phase: If the constructs have right syntactic structure but no meaning to the

operation involved, then this phase detects the error. Ex. Adding two identifiers, one of which is

the name of the array, and the other the name of a procedure.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Translation of statement

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Errors Encountered in Different Phases:

Program submitted to a compiler often have errors of various kinds. So, good compiler should

be able to detect as many errors as possible in various ways and also recover from them.

Each phase can encounter errors. After the deduction of an error, a phase must somehow deal

with that error, so that the compilation can proceed, allowing further errors in the source program

to be detected.

Errors during Lexical Analysis:

If the characters remaining in the input do not form any token of the language, then the lexical

analysis phase detect the error.

There are relatively few errors which can be detected during lexical analysis.

i. Strange characters

Some programming languages do not use all possible characters, so any strange ones

which appear can be reported. However almost any character is allowed within a quoted

string.

ii. Long quoted strings (1)

Many programming languages do not allow quoted strings to extend over more than one

line; in such cases a missing quote can be detected.

iii. Long quoted strings (2)

If quoted strings can extend over multiple lines then a missing quote can cause quite a lot

of text to be 'swallowed up' before an error is detected.

iv. Invalid numbers

A number such as 123.45.67 could be detected as invalid during lexical analysis

(provided the language does not allow a full stop to appear immediately after a number).

Some compiler writers prefer to treat this as two consecutive numbers 123.45 and .67 as

far as lexical analysis is concerned and leave it to the syntax analyser to report an error.

Some languages do not allow a number to start with a full stop/decimal point, in which

case the lexical analyzer can easily detect this situation.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Source: A + * B

Error: | Found '*', expect one of: Identifier, Constant, '('

Error Recovery Actions:

The possible error-recovery actions are:

i) Deleting an extraneous character

ii) Inserting a missing character

iii) Replacing an incorrect character by correct character

iv) Transposing two adjacent characters

For example:

fi (a == 1)

Here fi is a valid identifier. But the open parentheses followed by the identifier may tell fi is

misspelling of the keyword if or an undeclared function identifier.

Errors in Syntax Analysis:

The large fraction of errors is handled by syntax and semantic analysis phases. If the token

stream violates the structure rules (syntax) of the language, then this phase detects the error.

The errors detected in this phase include misplaced semicolons or extra or missing braces; that

is, "{" or " } . " As another example, in C or Java, the appearance of a case statement without an

enclosing switch is a syntactic error. (However, this situation is usually allowed by the parser

and caught later in the processing, as the compiler attempts to generate code). Unbalanced

parenthesis in expressions is handled

During syntax analysis, the compiler is usually trying to decide what to do next on the basis of

expecting one of a small number of tokens. Hence in most cases it is possible to automatically

generate a useful error message just by listing the tokens which would be acceptable at that

point.

More specific hand-tailored error messages may be needed in cases of bracket mismatch.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

A parser should be able to detect and report any error in the program. It is expected that when an

error is encountered, the parser should be able to handle it and carry on parsing the rest of the

input. Mostly it is expected from the parser to check for errors but errors may be encountered at

various stages of the compilation process. A program may have the following kinds of errors at

various stages:

 Lexical : name of some identifier typed incorrectly

 Syntactical : missing semicolon or unbalanced parenthesis

 Semantical : incompatible value assignment

 Logical : code not reachable, infinite loop

There are four common error-recovery strategies that can be implemented in the parser to deal

with errors in the code.

Panic mode

When a parser encounters an error anywhere in the statement, it ignores the rest of the statement

by not processing input from erroneous input to delimiter, such as semi-colon. This is the easiest

way of error-recovery and also, it prevents the parser from developing infinite loops.

Statement mode

When a parser encounters an error, it tries to take corrective measures so that the rest of inputs of

statement allow the parser to parse ahead. For example, inserting a missing semicolon, replacing

comma with a semicolon etc.. Parser designers have to be careful here because one wrong

correction may lead to an infinite loop.

Error productions

Some common errors are known to the compiler designers that may occur in the code. In

addition, the designers can create augmented grammar to be used, as productions that generate

erroneous constructs when these errors are encountered.

Source: C := (A + B * 3 ;

Error: | Missing ')' or earlier surplus '('

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Global correction

The parser considers the program in hand as a whole and tries to figure out what the program is

intended to do and tries to find out a closest match for it, which is error-free. When an erroneous

input (statement) X is fed, it creates a parse tree for some closest error-free statement Y. This

may allow the parser to make minimal changes in the source code, but due to the complexity

(time and space) of this strategy, it has not been implemented in practice yet.

Errors during Semantic Analysis

Semantic errors are mistakes concerning the meaning of a program construct; they may be either

type errors, logical errors or run-time errors:

(i) Type errors occur when an operator is applied to an argument of the wrong type, or to

the wrong number of arguments.

(ii) Logical errors occur when a badly conceived program is executed, for example: while x

= y do ... when x and y initially have the same value and the body of loop need not

change the value of either x or y.

(iii) Run-time errors are errors that can be detected only when the program is executed, for

example:

var x : real; readln(x); writeln(1/x)

which would produce a run time error if the user input 0.

Syntax errors must be detected by a compiler and at least reported to the user (in a helpful way).

If possible, the compiler should make the appropriate correction(s). Semantic errors are much

harder and sometimes impossible for a computer to detect.

 The Grouping of Phases:

Depending on the relationship between phases, the phases are grouped together as front end and

a back end.

Front End:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The front end consists of phases that depend primarily on the source language and are largely

independent of the target machine. The phases of front end are:

 Lexical Analysis

 Syntactic Analysis

 Creation of the symbol table

 Semantic Analysis

 Generation of the intermediate code

 A part of code optimization

 Error Handling that goes along with the above said phases

character stream

token stream

intermediate

representation

Back End:

The back end includes the phases of the compiler that depend on the target machine, and these

phases do not depend on the source language, but depend on the intermediate language. The

phases of back end are:

 Code Optimization

 Code Generation

 Necessary Symbol table and error handling operations

Categories of Compiler Design:

Based on the grouping of phases there are two types of compiler design is possible:

1. A Single Compiler for different Machine - It is possible to produce a single

compiler for the same source language on a different machine by taking the front end of a

compiler as common and redo its associated back end.

2. Several Compiler for One Machine – It is possible to produce several

compilers for one machine by using a common back end for the different front ends.

Syntax Directed

Translator

Lexical

Analyzer

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Compiler Construction Tools:

In order to atomize the development of compilers some general tools have been created. These

tools use specialized languages for specifying and implementing the component. The most

successful tool should hide the details of the generation algorithm and produce components

which can be easily integrated into the remainder of the compiler. These tools are often referred

as compiler – compilers, compiler – generators, or translator-writing systems.

Some of the compiler-construction tools are:

Parser generators: Automatically produce syntax analyzers from a grammatical description

of a programming language.

Scanner generators: Produce lexical analyzers from a regular-expression description of the

tokens of a language.

Syntax-directed translation engines: Produce collections of routines for walking a parse tree

and generating intermediate code.

Code-generator generators: Produce a code generator from a collection of rules for

translating each operation of the intermediate language into the machine language for a target

machine.

Data-flow analysis engines: Facilitate the gathering of information about how values are

transmitted from one part of a program to each other part. Data-flow analysis is a key part of

code optimization.

Compiler-construction toolkits: Provide an integrated set of routines for constructing various

phases of a compiler.
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Programming Language Basics:

The important terminology and distinctions that appear in the programming languages are:

1. The Static / Dynamic Distinction:

 A programming language can have static policy and dynamic policy.

 Static Policy: The issues that can be decided at compile time by compiler is called static

policy.

 Dynamic Policy: The issues that can be decided at run time of the program is called

dynamic policy.

 One of the issue decision policy in the language is the scope of declarations.

 Scope Rules: The scope of a declaration of x is the context in which uses of x refer to this

declaration. A language uses static scope or lexical scope if it is possible to determine the

scope of a declaration by looking only at the program and can be determined by compiler.

Otherwise, the language uses dynamic scope.

 Example in Java:

public static int x;

The compiler can determine the location of integer x in memory.

2. Environments and States:

The association of names with locations in memory (the store) and then with values can be

described by two state mappings that change as the program runs.

Two-State Mapping from Names to Values

The environment is a mapping from names to locations in the store.

The state is a mapping from locations in store to their values. That is, the state maps l-values to

their corresponding r-values, in the terminology of C.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Example:

The storage address 100, associated with variable pi, holds 0. After the assignment pi := 3.14,

the same storage is associated with pi, but the value held there is 3.14.

3. Static Scope and Block Structure:

Scope Rules: The scope of a declaration of x is the context in which uses of x refer to this

declaration. . A language uses static scope or lexical scope if it is possible to determine the scope

of a declaration by looking only at the program and can be determined by compiler. Otherwise,

the language uses dynamic scope.

 Example in Java:

public static int x;

The compiler can determine the location of integer x in memory.

The static-scope policy is as follows:

1. A C program consists of a sequence of top-level declarations of variables and functions.

2. Functions may have variable declarations within them, where variables include local

variables and parameters. The scope of each such declaration is restricted to the function

in which it appears.

3. The scope of a top-level declaration of a name x consists of the entire program that

follows, with the exception of those statements that lie within a function that also has a

declaration of x.

Block Structures:

Languages that allow blocks to be nested are said to have block structure. A name a: in a nested

block B is in the scope of a declaration D of x in an enclosing block if there is no other

declaration of x in an intervening block. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4. Explicit Access Control:

 Classes and structures introduce a new scope for their members.

 The use of keywords like public, private, and protected, object oriented languages such

as C + + or Java provide explicit control over access to member names in a super class.

 These keywords support encapsulation by restricting access.

 Thus,

o Private names are purposely given a scope that includes only the method

declarations and definitions associated with that class and any "friend" classes

(the C + + term).

o Protected names are accessible to subclasses.

o Public names are accessible from outside the class.

5. Dynamic Scope:

 Scope Rules: The scope of a declaration of x is the context in which uses of x refer to this

declaration.

 A language uses static scope or lexical scope if it is possible to determine the scope of a

declaration by looking only at the program and can be determined by compiler.

 Example in Java:

public static int x;

The compiler can determine the location of integer x in memory.

 The language uses dynamic scope if it is not possible to determine the scope of a

declaration during compile time.

 Example in Java:

public int x;

 With dynamic scope, as the program runs, the same use of x could refer to any of several

different declarations of x.

6. Parameter Passing Mechanism: Parameters are passed from a calling procedure to the callee

either by value (call by value) or by reference (call by reference). Depending on the procedure

call, the actual parameters associated with formal parameters will differ.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Call-By-Value: In call-by-value, the actual parameter is evaluated (if it is an expression) or

copied (if it is a variable). The value is placed in the location belonging to the corresponding

formal parameter of the called procedure.

Call-By-Reference:

In call-by-reference, the address of the actual parameter is passed to the callee as the value of the

corresponding formal parameter. Uses of the formal parameter in the code of the callee are

implemented by following this pointer to the location indicated by the caller. Changes to the

formal parameter thus appear as changes to the actual parameter.

Call-By-Name:

A third mechanism — call-by-name — was used in the early programming language Algol 60. It

requires that the callee execute as if the actual parameter were substituted literally for the formal

parameter in the code of the callee, as if the formal parameter were a macro standing for the

actual parameter (with renaming of local names in the called procedure, to keep them distinct).

When large objects are passed by value, the values passed are really references to the objects

themselves, resulting in an effective call-by-reference.

7. Aliasing: When parameters are (effectively) passed by reference, two formal parameters can

refer to the same object, called aliasing. This possibility allows a change in one variable to

change another.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

get next token

Symbol

Table

Parser Lexical

Analyzer

UNIT 2 – LEXICAL ANALYSIS

Topics to be Covered

Need and Role of Lexical Analyzer-Lexical Errors-Expressing Tokens by Regular

Expressions-Converting Regular Expression to DFA- Minimization of DFA-Language for

Specifying Lexical Analyzers-LEX-Design of Lexical Analyzer for a sample Language.

Lexical Analysis

The Role of the Lexical Analyzer

The lexical analyzer is the first phase of a compiler.

Main Task of Lexical Analyzer:

Its main task is to read the input characters and produce as output a sequence of tokens that

the parser uses for syntax analysis.

Source

Program

token

The above diagram illustrates that the lexical analyzer is a subroutine or a co routine of the

parser. Upon receiving a ―get next token‖ command from the parser, the lexical analyzer

reads input characters until it can identify the next token.

Secondary Tasks of Lexical Analyzer:

Since Lexical analyzer is the part of the compiler that reads the source text, it may also

perform certain secondary tasks at the user interface.

1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1. Stripping out from the source program comments and white space in the

form of blank, tab and newline characters.

2. Correlating error messages from the compiler with the source program.

Example, the lexical analyzer may keep track of the number of newline

characters seen, so that a line number can be associated with an error message.

Phases of Lexical Analyzer:

Lexical analyzers are divided into a cascade of two phases:

Scanning – the scanner is responsible for doing simple tasks (Example – Fortran

compiler use a scanner to eliminate blanks from the input)

Lexical analysis – the lexical analyzer does the more complex operations.

Issues in Lexical Analysis:

There are several reasons for separating the analysis phase of compiling into lexical analysis

and parsing:

1. To make the design simpler. The separation of lexical analysis from syntax analysis

allows the other phases to be simpler. For example, parsing a document with

comments and white spaces is more complex than it is removed in the previous phase

itself.

2. To improve the efficiency of the compiler. A separate lexical analyzer allows to

construct an efficient processor. A large amount of time is spent in reading the source

program and partitioning it into tokens. Specialized buffering techniques speed up the

performance.

3. To enhance the compiler portability. Input alphabets and device specific anomalies

can be restricted to the lexical analyzer.

Tokens, Patterns and Lexemes:

Token: A token is an atomic unit represents a logically cohesive sequence of characters such

as an identifier, a keyword, an operator, constants, literal strings, punctuation symbols such as

parentheses, commas and semicolons.

Eg. rate - identifier

+, - - operator

if - keyword

Pattern: A pattern is a rule used to describe lexeme. It is a set of strings in the input for

which the same token is produced as output.

2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Lexeme: A lexeme is a sequence of characters in the source program which is matched by the

pattern for a token. i.e. lexemes represents tokens.

Token Sample Lexemes Informal Description of Pattern

Const Const const

If If if

Relation <, <=, =, < >, >, >= < or <= or = or < > or > or >=

Id pi, count, A2 Letter followed by letters and digits

Num 3.1416, 0, 6.02E23 any numeric constant

Literal ―garbage collection‖ any characters between ― and ― except ―

Attributes for Tokens:

When more than one pattern matches a lexeme, the lexical analyzer must provide additional

information about the particular lexeme that matched to the subsequent phases of the

compiler.

For example, the pattern relation matches the operators like <, <=, >, >=, =, < >. It is

necessary to identify operator which is matched with the pattern.

The lexical analyzer collects other information about tokens as its attributes. A token has

only a single attribute, a pointer to the symbol -table entry in which the information about the

token is kept.

For example: The tokens and associated attribute-values for the Fortran statement

X = Y * Z ** 4

are written below as a sequence of pairs:

<id, pointer to symbol-table entry for X>

<assign_op,>

<id, pointer to symbol-table entry for Y>

<mult_op,>

<id, pointer to symbol-table entry for Z>

<exp_op,>

<num, integer value 4>

3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

For certain attribute pairs, there is no need for an attribute value.

Eg. <assign_op,>

For others, the compiler stores the character string that forms a value in a symbol table.

Lexical Errors:

A lexical analyzer has a very localized view of a source programs.

The possible error-recovery actions are:

i) Deleting an extraneous character

ii) Inserting a missing character

iii) Replacing an incorrect character by correct character

iv) Transposing two adjacent characters

For example:

fi (a == 1)

Here fi is a valid identifier. But the open parentheses followed by the identifier may tell fi is

misspelling of the keyword if or an undeclared function identifier.

INPUT BUFFERING:

Input buffering is a method used to read the source program and to identify the tokens

efficiently. There are three general approaches to the implementation of a lexical analyzer.

1. Use a lexical-analyzer generator to produce the lexical analyzer from a regular-

expression based specification. In this case, the generator provides routines for

reading and buffering the input. Example – Lex Compiler

2. Write the lexical analyzer in a conventional systems-programming language, using

the I/O facilities of that language to read the input.

3. Write the lexical analyzer in assembly language and explicitly manage the reading of

input.

Since the lexical analyzer is the only phase of the compiler that reads the source program

character-by-character, it is possible to spend a considerably amount of time in the lexical

analysis phase. Thus the speed of lexical analysis is a concern in compiler design.

4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The following technique uses two-buffer input scheme to identify the tokens. The speed of

the lexical .analyzer can be improved by using the sentinels to mark the buffer end.

Buffer Pairs:

The lexical analyzer needs to look-ahead many characters beyond the lexeme for finding the

pattern. The lexical analyzer uses a function ungetc() to push the look-ahead characters back

into the input stream. In order to reduce the amount of overhead required to process an input

character, specialized buffering techniques have been developed.

A buffer is divided into N-character halves where N is the number of characters on one disk

block. Example 1024 or 4096

: : : X : : = : : M : * : : C : * : * : 4 : eof : : : : : :

forward

lexeme_beginning

Input Buffer with two halves

The processing of buffer pair is as follows:

1. Read N input character into each half of the buffer using one system read command

instead of reading each input character

2. If fewer than N characters remain in the input, then eof marker is read into the buffer

after the input characters.

3. Two pointers to the input buffer are maintained. Initially both pointers point to the

first character of the next lexeme to be found.

a. Begin pointer points the s tart of the lexeme

b. The forward pointer is set to the character at its right end

4. Once the lexeme is identified, both pointers are set to the character immediately past

the lexeme.

If the forward pointer is reaching the halfway mark, the right half is filled with N new input

characters. If the forward pointer is about to move past the right end of the buffer, the left

half is filled with N new characters and the forward pointer wraps around to the beginning of

the buffer. The number of tests to be required is very large.

5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

if forward at end of first half then begin

reload second half;

forward := forward + 1

end

else if forward at end of second half then begin

reload first half;

move forward to beginning of first half

end

else

forward := forward + 1;

Code to advance forward pointer:

Sentinels:

In the previous scheme mentioned a check should be made each time when the forward

pointer is moved that we have not moved off one half of the buffer. i.e. only one eof marker

at the end.

A sentinel is a special character which is not a part of the source program used to represent

the end of file. (eof)

Instead of testing the forward pointer each time by two tests, extend each buffer half to hold a

sentinel character at the end and reduce the number of tests to one.

: : : X : : = : : M : * : eof C : * : * : 4 : eof : : : : : eof

forward

lexeme_beginning

Sentinels at end of each buffer half

6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

forward := forward + 1;

if forward = eof then begin

if forward at end of first half then begin

reload second half;

forward := forward + 1

end

else if forward at end of second half then begin

reload first half;

move forward to beginning of first half

end

else /* eof within a buffer signifying end of input */

terminate lexical analysis

end

For most of the cases, the code performs only one test to see whether forward point to an eof.

If it reaches the end of a buffer or the end of the file, then we performs more tests for

checking each half and to reload other half of the buffer.

Look ahead code with sentinels:

SPECIFICATION OF TOKENS:

Regular expressions are an important notation for specifying patterns. Each pattern matches

a set of strings, so regular expressions will serve as names for set of strings.

Strings and Languages:

Alphabet: An alphabet or character class denotes any finite set of symbols. For example,

Letters, Characters, ASCII characters, EBCDIC characters

String: A string over some alphabet is a finite sequence of symbols drawn from that alphabet.

For example, 1 0 1 0 1 1 is a string over {0, 1}* , is a empty string over {0, 1}*

Length of the String : The length of the string 1 0 1 is denoted as | 1 0 1 | = 3 i.e. the number

of occurrences of symbol is S.

Language: A language denotes any set of strings over some fixed alphabet .

7

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Example Language L = {0
n
 1

n
 | n > 0}

Some common terms associated with parts of a string are as follows:

Let s be the string where S = ―regular‖.

TERM DEFINITION

prefix of s
A string obtained by removing zero or more trailing symbols of

string s; eg. ban is a prefix of banana

suffix of s
A string formed by deleting zero or more of the leading symbols

of s; eg. nana is a suffix of banana

substring of s
A string obtained by deleting a prefix and a suffix from s; eg.

nan is a substring of banana.

proper prefix, suffix or

substring of s

Any nonempty string x that is, respectively, a prefix, suffix, or

substring of s such that s ≠ x

subsequence of s

Any string formed by deleting zero or more not necessarily

contiguous symbols from s; eg. baaa is a subsequence of

banana.

Operations on Languages:

There are several important operations that ca be applied to languages. For lexical analysis

the following operations are applied:

OPERATION DEFINITION

union of L and M

written L U M
L U M = { s | s is in L or s is in M }

concatenation of L and M

written LM
LM = { st | s is in L and t is in M }

Kleene closure of L

written L*

∞

L* = U L
i

i=0

L* denotes ―zero or more concatenations of‖ L

positive closure of L written ∞

8

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

L+ L
+
 = U L

i

i=1

L
+
 denotes ―one or more concatenations of‖ L

Example:

Let L = {A, B, . . . , Z, a, b, . . . , z} and

D = {0, 1, . . . , 9}

By applying operators defined above on these languages L and D we get the following new

languages:

1. L U D is the set of letters and digits

i.e. L U D = {A,B, . . . ,Z, a, b, . . . , z, 0, 1, . . . , 9}

2. LD is the set of strings consisting of a letter followed by a digit

i.e. LD = {0A, 0B, . . . , 0Z, 0a, 0b, . . . , 0z, 1A, 1B, . . ,1Z, 1a, 1b, . . ,1z, }

3. L
4
 is the set of all four-letter strings i.e. L

4
 = { aBAC, MNop, }

4. L* is the set of all strings of letters, including , the empty string

i.e. L* = { , A, B, . . . , Z, a, b, , z, AB, BA, aB, }

5. L(L U D)* is the set of all strings of letters and digits beginning with a letter

6. D
+
 is the set of all strings of one or more digits

Regular Expressions:

A regular expression is built out of simple regular expressions using a set of defining rules.

Each regular expression r denotes a language L(r).

Rules that define the regular expressions:

Basis:

i) is a regular expression denotes the language { }.

ii) If a is a symbol in , then a is a regular expression denotes the language { a }

Induction:

iii) Suppose r and s are regular expressions denoting the language L(r) and L(s). Then,

a. (r) | (s) is a regular expression denoting L (r) U L (s).

b. (r) (s) is a regular expression denoting L (r) L (s).

9

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

c. (r)* is a regular expression denoting (L (r))*.

d. (r) is a regular expression denoting L (r).

A language denoted by a regular expression is said to be a regular set.

The precedence and associativity of operators are as follows:

1. the unary operator * has the highest precedence and is left associative.

2. concatenation has the second highest precedence and is left associative.

3. | has the lowest precedence and is left associative.

Unnecessary parentheses can be avoided in the regular expression if the above precedence is

adopted. For example the regular expression: (a) | ((b)* (c)) is equivalent to a | b*c.

Example:

Let = {a,b}

1. The regular expression a | b denotes the set { a, b }

2. The regular expression (a | b) (a | b) denotes {aa, ab, ba, bb}, the set of all strings

of a’s and b’s of length two. Another regular expression for this same set is aa | ab |

ba | bb.

3. The regular expression a* denotes the set of all strings of zero or more a’s i.e. { , a,

aa, aaa, . . . }

4. The regular expression (a | b)* denotes the set of all strings containing zero or more

instances of an a or b, that is, the set of all strings of a’s and b’s. An equivalent

regular expression for this set is (a*b*)*

5. The regular expression a | a*b denotes the set containing the string a and all strings

consisting of zero or more a’s followed by a b.

If two regular expressions r and s denote the same language, then we say r and s are

equivalent and write r = s. For example, (a | b) = (b | a).

There are number of algebraic laws obeyed by regular expressions and these laws can be used

to manipulate regular expressions into equivalent forms.

Let r, s and t be the regular expression. The following are the algebraic laws for these regular

expressions:

10

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

AXIOM DESCRIPTION

r | s = s | r | is commutative

r | (s | t) = (r | s) | t | is associative

(rs) t = r (st) Concatenation is associative

r (s | t) = rs | rt

(s | t) r = sr | st
Concatenation distributes over |

r = r

r = r

is the identity element for concatenation

r* = (r |)* relation between * and

r** = r* * is idempotent

Regular Definitions:

The regular expressions can be given names and defining regular expressions using these

names is called regular definition. If is an alphabet of basic symbols, then a regular

definition is a sequence of definitions of the form:

d1 -> r1

d2 -> r2

.

d n -> rn

where each di is a distinct name, and each ri is a regular expression over the symbols in

U { d1, d2, , di-1 }, i.e., the basic symbols and the previously defined names.

Example:

1. Regular Definition for identifiers:

letter A | B | | Z | a | b | | z

digit 0 | 1 | | 9

id letter (letter | digit)*

11

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2. Regular Definition for num:

digit 0 | 1 | . . . | 9

digits digit digit*

optional_fraction . digits |

optional_exponent (E (+ | - |) digits) |

num digits optional_fraction optional_exponent

Notational Shorthands:

Certain constructs occur so frequently in regular expressions that it is convenient to introduce

notational shorthands for them.

1. One or more instances(+): The unary postfix operator + means ―one or more

instances of‖. Example – (r)
+
 - Set of all strings of one or more occurrences of r.

2. Zero or One Instance (?): The unary postfix operator ? means ― zero or one instance

of‖. Example – (r)? – One or zero occurrence of r.

The regular definition for num can be written by using unary + and unary ? operator

as follows:

digit 0 | 1 | . . . | 9

digits digit+

optional_fraction (. digits) ?

optional_exponent (E (+ | -)? digits) ?

num digits optional_fraction optional_exponent

3. Character Classes: The notation where a, b and c are alphabet symbols denotes the

regular expression a | b | c. An abbreviated character class such as [a – z] denotes

the regular expression a | b | . . . | z.

Using character classes the identifiers can be described as strings generated by regular

expression: [A – Za – z] [A – Z a – z 0 – 9]*

12

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Recognition of Tokens:

The tokens are recognized by following the grammatical specification of tokens.

Example:

Consider the following grammar fragment:

stmt if expr then stmt

| if expr then stmt else stmt

|

expr term relop term

| term

term id

| num

where the terminals if, then, else, relop, id and num generate sets of strings given by the

following regular definitions:

if if

then then

else else

relop < | <= | = | < > | > | >=

id letter (letter | digit)*

num digit+ (. digit +)? (E (+ | -)? digit+) ?

letter A | B | . . . | Z | a | b | . . . | z

digit 0 | 1 | . . . | 9

13

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Regular definition for White Space (ws) is:

delim blank | tab | newline

ws delim+

The goal of the lexical analyzer is to isolate the lexeme for the next token in the input buffer

and produce as output a pair consisting of the appropriate token and attribute value using the

table given below:

Regular

Expression
Token Attribute - Value

ws - -

if if -

then then -

else else -

id id Pointer to table entry

num num Pointer to table entry

< relop LT

<= relop LE

= relop EQ

< > relop NE

> relop GT

>= relop GE

Regular Expression Patterns for Tokens

14

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

start > =

0 6 7
other

*

8

Transition Diagrams:

As an intermediate step in the construction of a lexical analyzer, a stylized flowchart called a

transition diagram. Transition diagrams depict the actions that take place when a lexical

analyzer is called by the parser to get the next token. It is used to keep track of information

about characters that are seen as the forward pointer scans the input.

Positions in a transition diagram are drawn as circles and are called states. The states are

connected by arrows, called edges. Edges leaving state s have labels indicating the input

characters that can next appear after the transition diagram has reached state s. The label

other refers to any character that is not indicated by any of the other edges leaving s.

One state is labeled as start state; it is the initial state of the transition diagram where control

resides when we begin to recognize token. Certain states may have actions that are executed

when the flow of control reaches that state. On entering a state we read the next input

character. If there is an edge from the current state whose label matches this input character,

then we go to the state pointed by the edge. Otherwise, we indicate failure.

The symbol * is used to indicate states on which the input retraction must take place.

There may be several transition diagram, each specifying a group of tokens. If failure occurs

in one transition diagram, then the forward pointer is retracted to where it was in the start

state of this diagram, and activate the next transition diagram. Since the lexeme beginning

and forward pointers marked the same position in the start state of the diagram, the forward

pointer is retracted to the position marked by the lexeme_begining pointer. If failure occurs

in all transition diagrams, then a lexical error has been detected and an error-recovery routine

is invoked.

Transition Diagram for >=:

15

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

start letter other
9 10 11

Transition Diagram for Relational Operators:

start
0

< = return (relop, LE)
1 2

> return (relop, NE)
3

other

* return (relop, LT)

4

= 5 return (relop, LE)

>

6
=

other

return (relop, GE)

7

* return (relop, GT)

8

Transition Diagram for identifiers and keywords:

letter or digit

*

return(gettoken(),install_id())

Transition Diagram for Unsigned Numbers in Pascal:

digit digit

return(gettoken(),install_num())

16

start digit . digit E
12 13 14 15 16

E digit digit

+ or - digit other *

17 18 19

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

digit digit

start digit .
20 21 22

digit other *
23 24

return(gettoken(),install_num())

digit

*

Transition Diagram for white space:

delim

*

Convert Regular Expression to DFA -

Regular expression is used to represent the language (lexeme) of finite automata

(lexical analyzer).

Finite automata

A recognizer for a language is a program that takes as input a string x and answers yes if x is

a sentence of the language and no otherwise.

A regular expression is compiled into a recognizer by constructing a generalized transition

diagram called a Finite Automaton (FA).

Finite automata can be Non-deterministic Finite Automata (NFA) or Deterministic Finite

Automata (DFA).

It is given by M = (Q, Σ, qo, F, δ).

Where Q - Set of states

Σ - Set of input symbols

qo - Start state

17

start digit other
25 26 27

start delim delim
28 29 30

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://ecomputernotes.com/compiler-design/convert-regular-expression-to-dfa

F - set of final states

δ - Transition function (mapping states to input symbol).

δ :Q x Σ → Q

• Non-deterministic Finite Automata (NFA)

o More than one transition occurs for any input symbol from a state.

o Transition can occur even on empty string (Ɛ).

• Deterministic Finite Automata (DFA)

o For each state and for each input symbol, exactly one transition occurs from that state.

Regular expression can be converted into DFA by the following methods:

(i) Thompson's subset construction

• Given regular expression is converted into NFA

• Resultant NFA is converted into DFA

(ii) Direct Method

• In direct method, given regular expression is converted directly into DFA.

Rules for Conversion of Regular Expression to NFA

• Union

r = r1 + r2

Concatenation

r = r1 r2

18

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Closure

r = r1
*

Ɛ –closure

Ɛ - Closure is the set of states that are reachable from the state concerned on taking empty

string as input. It describes the path that consumes empty string (Ɛ) to reach some states of

NFA.

Example 1

Ɛ -closure(q0) = { q0, q1, q2}

Ɛ –closure(q1) = {q1, q2}

Ɛ -closure(q2) = { q0}

19

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Example 2

Ɛ -closure (l) = {l, 2, 3, 4, 6}

Ɛ-closure (2) = {2, 3, 6}

Ɛ-closure (3) = {3, 6}

Ɛ-closure (4) = {4}

Ɛ-closure (5) = {5, 7}

Ɛ -closure (6) = {6}

Ɛ-closure (7) = {7}

Sub-set Construction

• Given regular expression is converted into NFA.

• Then, NFA is converted into DFA.

Steps

l. Convert into NFA using above rules for operators (union, concatenation and closure) and

precedence.

2. Find Ɛ -closure of all states.

3. Start with epsilon closure of start state of NFA.

4. Apply the input symbols and find its epsilon closure.

Dtran [state, input symbol] = Ɛ -closure (move (state, input symbol))

where Dtran transition function of DFA

20

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

5. Analyze the output state to find whether it is a new state.

6. If new state is found, repeat step 4 and step 5 until no more new states are found.

7. Construct the transition table for Dtran function.

8. Draw the transition diagram with start state as the Ɛ -closure (start state of NFA) and final

state is the state that contains final state of NFA drawn.

Direct Method

Direct method is used to convert given regular expression directly into DFA.

1. Uses augmented regular expression r#.

2. Important states of NFA correspond to positions in regular expression that hold

symbols of the alphabet.

3. Regular expression is represented as syntax tree where interior nodes correspond to

operators representing union, concatenation and closure operations.

4. Leaf nodes corresponds to the input symbols

5. Construct DFA directly from a regular expression by computing the functions

nullable(n), firstpos(n), lastpos(n) andfollowpos(i) from the syntax tree.

6. nullable (n): Is true for * node and node labeled with Ɛ. For other nodes it is false.

7. firstpos (n): Set of positions at node ti that corresponds to the first symbol of the sub-

expression rooted at n.

8. lastpos (n): Set of positions at node ti that corresponds to the last symbol of the sub-

expression rooted at n.

9. followpos (i): Set of positions that follows given position by matching the first or last

symbol of a string generated by sub-expression of the given regular expression.

21

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Rules for computing nullable, firstpos and lastpos

Node n nullable (n) firstpos (n) lastpos (n)

A leaf labeled Ɛ True Ø Ø

A leaf with position
i

False {i} {i}

An or node n = c1|

c2

Nullable (c1) or

Nullable (c2)

firstpos (c1) U

firstpos (c2)

Iastpos (c1) U

Iastpos (c2)

A cat node n = c1c2 Nullable (c1) and

Nullable (c2)

If (Nullable (c1))

firstpos (c1) U

firstpos (c2)

else

firstpos (c1)

If (Nullable (c2))

lastpos (c1) U

Iastpos (c2)

else

lastpos (c1)

A star node n = c1* True firstpos (c1) lastpos (c1)

Computation of followpos

The position of regular expression can follow another in the following ways:

 If n is a cat node with left child c1 and right child c2, then for every position i in

lastpos(c1), all positions in firstpos(c2) are in followpos(i).

 For cat node, for each position i in lastpos of its left child, the firstpos of its

right child will be in followpos(i).

 If n is a star node and i is a position in lastpos(n), then all positions in firstpos(n) are

in followpos(i).

 For star node, the firstpos of that node is in f ollowpos of all positions in lastpos of

that node.

22

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Example:

Thompson's subset construction for

(a+b)*abb

Direct Method for (a+b)*abb #

23

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

FollowPos

A=firstpos(n0)={1,2,3}

Dtran[A,a]=

followpos(1) U followpos(3)= {1,2,3,4}=B

Dtran[A,b]=

followpos(2)={1,2,3}=A

Dtran[B,a]=

followpos(1) U followpos(3)=B

Dtran[B,b]=

followpos(2) U followpos(4)={1,2,3,5}=C

….

24

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Minimizing the Number of States of a DFA

Equivalent automata

{A, C}=123
{B}=1234

{D}=1235

{E}=1236

Exists a minimum state DFA

A LANGUAGE FOR SPECIFYING LEXICAL ANALYZER

There is a wide range of tools for constructing lexical analyzers.

 LEX

 YACC

LEX

Lex is a computer program that generates lexical analyzers. Lex is commonly used with

the yacc parser generator.

Creating a lexical analyzer

First, a specification of a lexical analyzer is prepared by creating a program lex.l in

the Lex language. Then, lex.l is run through the Lex compiler to produce a C program

lex.yy.c.

Finally, lex.yy.c is run through the C compiler to produce an object progra m a.out, which

is the lexical analyzer that transforms an input stream into a sequence of tokens.

25

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Example:

%{

int v=0,c=0;

%}

%%

[aeiouAEIOU] v++;

[a-zA-Z] c++;

%%

main()

{

printf("ENTER INTPUT : \n");

yylex();

printf("VOWELS=%d\nCONSONANTS=%d\

n",v,c);

}

26

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

parser lexical

analyzer

symbol

table

rest of

front end

UNIT-III

SYNTAX ANALYSIS

Need and Role of the Parser-Context Free Grammars -Top Down Parsing -General Strategies-

Recursive Descent Parser Predictive Parser-LL(1) Parser-Shift Reduce Parser-LR Parser-LR

(0)Item-Construction of SLR Parsing Table -Introduction to LALR Parser - Error Handling and

Recovery in Syntax Analyzer-YACC-Design of a syntax Analyzer for a Sample Language .

SYNTAX ANALYSIS

Syntax analysis is the second phase of the compiler. It gets the input from the tokens and

generates a syntax tree or parse tree.

Advantages of grammar for syntactic specification:

1. A grammar gives a precise and easy-to-understand syntactic specification of a

programming language.

2. An efficient parser can be constructed automatically from a properly designed grammar.

3. A grammar imparts a structure to a source program that is useful for its translation into

object code and for the detection of errors.

4. New constructs can be added to a language more easily when there is a grammatical

description of the language.

THE ROLE OF PARSER

The parser or syntactic analyzer obtains a string of tokens from the lexical analyzer and

verifies that the string can be generated by the grammar for the source language. It reports any

syntax errors in the program. It also recovers from commonly occurring errors so that it can

continue processing its input.

Position of parser in compiler model

source

program

token

get next token

parse

 tree

intermediate

representation

Functions of the parser:

1. It verifies the structure generated by the tokens based on the grammar.

2. It constructs the parse tree.

3. It reports the errors.

4. It performs error recovery.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Issues:

Parser cannot detect errors such as:

1. Variable re-declaration

2. Variable initialization before use.

3. Data type mismatch for an operation.

The above issues are handled by Semantic Analysis phase.

CONTEXT-FREE GRAMMARS

A Context-Free Grammar is a quadruple that consists of terminals, non-terminals, start

symbol and productions.

Terminals : These are the basic symbols from which strings are formed.

Non-Terminals : These are the syntactic variables that denote a set of strings. These help to

define the language generated by the grammar.

Start Symbol : One non-terminal in the grammar is denoted as the ―Start-symbol‖ and the set of

strings it denotes is the language defined by the grammar.

Productions : It specifies the manner in which terminals and non-terminals can be combined to

form strings. Each production consists of a non-terminal, followed by an arrow, followed by a

string of non-terminals and terminals.

Example of context-free grammar: The following grammar defines simple arithmetic

expressions:

expr → expr op expr

expr → (expr)

expr → - expr

expr → id

op → +

op → -

op → *

op → /

op → ↑

In this grammar,

 id + - * / ↑ () are terminals.

 expr , op are non-terminals.

 expr is the start symbol.

 Each line is a production.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Derivations:

Two basic requirements for a grammar are :

1. To generate a valid string.

2. To recognize a valid string.

Derivation is a process that generates a valid string with the help of grammar by replacing the

non-terminals on the left with the string on the right side of the production.

Example : Consider the following grammar for arithmetic expressions :

E → E+E | E*E | (E) | - E | id

To generate a valid string - (id+id) from the grammar the steps are

1. E → - E

2. E → - (E)

3. E → - (E+E)

4. E → - (id+E)

5. E → - (id+id)

In the above derivation,

 E is the start symbol.

 - (id+id) is the required sentence (only terminals).

 Strings such as E, -E, -(E), . . . are called sentinel forms.

Types of derivations:

The two types of derivation are:

1. Left most derivation

2. Right most derivation.

 In leftmost derivations, the leftmost non-terminal in each sentinel is always chosen first for

replacement.

 In rightmost derivations, the rightmost non-terminal in each sentinel is always chosen first

for replacement.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Example:

Given grammar G : E → E+E | E*E | (E) | - E | id

Sentence to be derived : – (id+id)

LEFTMOST DERIVATION RIGHTMOST DERIVATION E

→ - E E → - E

E → - (E) E → - (E)

E → - (E+E) E → - (E+E) E

→ - (id+E) E → - (E+id) E

→ - (id+id) E → - (id+id)

 String that appear in leftmost derivation are called left sentinel forms.

 String that appear in rightmost derivation are called right sentinel forms.

Sentinels:

Given a grammar G with start symbol S, if S → α , where α may contain non-terminals or

terminals, then α is called the sentinel form of G.

Yield or frontier of tree:

Each interior node of a parse tree is a non-terminal. The children of node can be a

terminal or non-terminal of the sentinel forms that are read from left to right. The sentinel form

in the parse tree is called yield or frontier of the tree.

Ambiguity:

A grammar that produces more than one parse for some sentence is said to be ambiguous

grammar.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Example : Given grammar G : E → E+E | E*E | (E) | - E | id

The sentence id+id*id has the following two distinct leftmost derivations:

E → E+ E

E → id + E

E → id + E * E

E → id + id * E

E → id + id * id

The two corresponding parse trees are :

E

E → E* E

E → E + E * E

E → id + E * E

E → id + id * E

E → id + id * id

E

E + E

id E * E

E * E

E + E id

id id id id

WRITING A GRAMMAR

There are four categories in writing a grammar :

1. Regular Expression Vs Context Free Grammar

2. Eliminating ambiguous grammar.

3. Eliminating left-recursion

4. Left-factoring.

Each parsing method can handle grammars only of a certain form hence, the initial grammar may

have to be rewritten to make it parsable.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Regular Expressions vs. Context-Free Grammars:

REGULAR EXPRESSION CONTEXT-FREE GRAMMAR

It is used to describe the tokens of programming
languages.

It consists of a quadruple where S → start

symbol, P → production, T → terminal, V →
variable or non- terminal.

It is used to check whether the given input is
valid or not using transition diagram.

It is used to check whether the given input is
valid or not using derivation.

The transition diagram has set of states and
edges.

The context-free
productions.

grammar has set of

It has no start symbol. It has start symbol.

It is useful for describing the structure of lexical
constructs such as identifiers, constants,

keywords, and so forth.

It is useful in describing nested structures
such as balanced parentheses, matching

begin-end‘s and so on.

 The lexical rules of a language are simple and RE is used to describe them.

 Regular expressions provide a more concise and easier to understand notation for tokens

than grammars.

 Efficient lexical analyzers can be constructed automatically from RE than from

grammars.

 Separating the syntactic structure of a language into lexical and nonlexical parts provides

a convenient way of modularizing the front end into two manageable-sized components.

Eliminating ambiguity:

Ambiguity of the grammar that produces more than one parse tree for leftmost or ri ghtmost

derivation can be eliminated by re-writing the grammar.

Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the following

two parse trees for leftmost derivation : Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

1. stmt

if expr then stmt

E1

if expr then stmt else

stmt

E2 S1 S2

2. stmt

if expr then stmt else stmt

if expr then

stmt

E2

S1

To eliminate ambiguity, the following grammar may be used:

stmt → matched_stmt | unmatched_stmt

matched_stmt → if expr then matched_stmt else matched_stmt | other

unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt

E1

S2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Eliminating Left Recursion:

A grammar is said to be left recursive if it has a non-terminal A such that there is a

derivation A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive

grammars. Hence, left recursion can be eliminated as follows:

If there is a production A → Aα | β it can be replaced with a sequence of two productions

A → βA‟

A‟ → αA‟ | ε

without changing the set of strings derivable from A.

Algorithm to eliminate left recursion:

1. Arrange the non-terminals in some order A1, A2 . . . An.

2. for i := 1 to n do begin

for j := 1 to i-1 do begin

replace each production of the form Ai → Aj γ

by the productions Ai → δ1 γ | δ2γ | . . . | δk γ

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions;

end

eliminate the immediate left recursion among the Ai-productions

end

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/

Example : Consider the following grammar for arithmetic expressions: E

→ E+T | T

T → T*F | F F

→ (E) | id

First eliminate the left recursion for E as

E → TE‘

E‘ → +TE‘ | ε

Then eliminate for T as

T → FT‘ T‘→

*FT‘ | ε

Thus the obtained grammar after eliminating left recursion is

E → TE‘

E‘ → +TE‘ | ε

T → FT‘

T‘ → *FT‘ | ε

F → (E) | id

Left factoring:

Left factoring is a grammar transformation that is useful for producing a grammar

suitable for predictive parsing. When it is not clear which of two alternative productions to use to

expand a non-terminal A, we can rewrite the A-productions to defer the decision until we have

seen enough of the input to make the right choice.

If there is any production A → αβ1 | αβ2 , it can be rewritten as

A → αA‟

A‟ → β1 | β2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Consider the grammar , G : S → iEtS | iEtSeS | a

E → b

Left factored, this grammar becomes

S → iEtSS‘ | a

S‘ → eS | ε

E → b

PARSING

It is the process of analyzing a continuous stream of input in order to determine its

grammatical structure with respect to a given formal grammar.

Parse tree:

Graphical representation of a derivation or deduction is called a parse tree. Each interior

node of the parse tree is a non-terminal; the children of the node can be terminals or non-

terminals.

Types of parsing:

1. Top down parsing

2. Bottom up parsing

 Top–down parsing : A parser can start with the start symbol and try to transform it to the

input string.

Example : LL Parsers.

 Bottom–up parsing : A parser can start with input and attempt to rewrite it into the start

symbol.

Example : LR Parsers.

TOP-DOWN PARSING

It can be viewed as an attempt to find a left-most derivation for an input string or an

attempt to construct a parse tree for the input starting from the root to the leaves.

Types of top-down parsing :

1. Recursive descent parsing

2. Predictive parsing Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

1. RECURSIVE DESCENT PARSING

 Recursive descent parsing is one of the top-down parsing techniques that uses a set of

recursive procedures to scan its input.

 This parsing method may involve backtracking, that is, making repeated scans of the

input.

Example for backtracking :

Consider the grammar G : S → cAd

A → ab | a

and the input string w=cad.

The parse tree can be constructed using the following top-down approach :

Step1:

Initially create a tree with single node labeled S. An input pointer points to ‗c‘, the first symbol

of w. Expand the tree with the production of S.

S

c A d

Step2:

The leftmost leaf ‗c‘ matches the first symbol of w, so advance the input pointer to the second

symbol of w ‗a‘ and consider the next leaf ‗A‘. Expand A using the first alternative.

S

c A d

a b

Step3:

The second symbol ‗a‘ of w also matches with second leaf of tree. So advance the input pointer

to third symbol of w ‗d‘. But the third leaf of tree is b which does not match with the input

symbol d.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Hence discard the chosen production and reset the pointer to second position. This is called

backtracking.

Step4:

Now try the second alternative for A.

S

c A d

a

Now we can halt and announce the successful completion of parsing.

Example for recursive decent parsing:

A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop. Hence,

elimination of left-recursion must be done before parsing.

Consider the grammar for arithmetic expressions

E → E+T | T

T → T*F | F

F → (E) | id

After eliminating the left-recursion the grammar becomes,

E → TE‘

E‘ → +TE‘ | ε

T → FT‘

T‘ → *FT‘ | ε

F → (E) | id

Now we can write the procedure for grammar as follows:

Recursive procedure:

Procedure E()

begin

end

T();

EPRIME();

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Procedure EPRIME()

begin

end

If input_symbol=‘+‘ then

ADVANCE();

T();

EPRIME();

Procedure T()

begin

end

F();

TPRIME();

Procedure TPRIME()

begin

end

If input_symbol=‘*‘ then

ADVANCE();

F();

TPRIME();

Procedure F()

begin

end

If input-symbol=‘id‘ then

ADVANCE();

else if input-symbol=‘(‗ then

ADVANCE();

E();

else if input-symbol=‘)‘ then

ADVANCE();

else ERROR();

Stack implementation:

To recognize input id+id*id :

PROCEDURE INPUT STRING

E() id+id*id

T() id+id*id

F() id+id*id

ADVANCE() id+id*id

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Parsing Table M

TPRIME() id+id*id

EPRIME() id+id*id

ADVANCE() id+id*id

T() id+id*id

F() id+id*id

ADVANCE() id+id*id

TPRIME() id+id*id

ADVANCE() id+id*id

F() id+id*id

ADVANCE() id+id*id

TPRIME() id+id*id

2. PREDICTIVE PARSING

 Predictive parsing is a special case of recursive descent parsing where no backtracking is

required.

 The key problem of predictive parsing is to determine the production to be applied for a

non-terminal in case of alternatives.

Non-recursive predictive parser

INPUT

STACK

OUTPUT

Predictive parsing program

 a + b $

X

Y

Z

$

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

The table-driven predictive parser has an input buffer, stack, a parsing table and an output

stream.

Input buffer:

It consists of strings to be parsed, followed by $ to indicate the end of the input string.

Stack:

It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack.

Initially, the stack contains the start symbol on top of $.

Parsing table:

It is a two-dimensional array M[A, a], where „A‟ is a non-terminal and „a‟ is a terminal.

Predictive parsing program:

The parser is controlled by a program that considers X, the symbol on top of stack, and a, the

current input symbol. These two symbols determine the parser action. There are three

possibilities:

1. If X = a = $, the parser halts and announces successful completion of parsing.

2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next

input symbol.

3. If X is a non-terminal , the program consults entry M[X, a] of the parsing table M. This

entry will either be an X-production of the grammar or an error entry.

If M[X, a] = {X → UVW},the parser replaces X on top of the stack by WVU.

If M[X, a] = error, the parser calls an error recovery routine.

Algorithm for nonrecursive predictive parsing:

Input : A string w and a parsing table M for grammar G.

Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ in

the input buffer. The program that utilizes the predictive parsing table M to produce a parse for

the input is as follows:

set ip to point to the first symbol of w$;

repeat

let X be the top stack symbol and a the symbol pointed to by ip;

if X is a terminal or $ then

if X = a then

pop X from the stack and advance ip

else error()

else /* X is a non-terminal */

if M[X, a] = X →Y1Y2 … Yk then begin

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

pop X from the stack;

push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top;

output the production X → Y1 Y2 . . . Yk

end

else error()

until X = $ /* stack is empty */

 Predictive parsing table construction:

The construction of a predictive parser is aided by two functions associated with a grammar G :

1. FIRST

2. FOLLOW

Rules for first():

1. If X is terminal, then FIRST(X) is {X}.

2. If X → ε is a production, then add ε to FIRST(X).

3. If X is non-terminal and X → aα is a production then add a to FIRST(X).

4. If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for some

i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε. If ε is

in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X).

Rules for follow():

1. If S is a start symbol, then FOLLOW(S) contains $.

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in

follow(B).

3. If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then

everything in FOLLOW(A) is in FOLLOW(B).

Algorithm for construction of predictive parsing table:

Input : Grammar G

Output : Parsing table M

Method :

1. For each production A → α of the grammar, do steps 2 and 3.

2. For each terminal a in FIRST(α), add A → α to M[A, a].

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $].

4. Make each undefined entry of M be error.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Example:

Consider the following grammar :

E → E+T | T

T → T*F | F

F → (E) | id

After eliminating left-recursion the grammar is

E → TE‘

E‘ → +TE‘ | ε

T → FT‘

T‘ → *FT‘ | ε

F → (E) | id

First() :

FIRST(E) = { (, id}

FIRST(E‘) ={+ , ε }

FIRST(T) = { (, id}

FIRST(T‘) = {*, ε }

FIRST(F) = { (, id }

Follow():

FOLLOW(E) = { $,) }

FOLLOW(E‘) = { $,) }

FOLLOW(T) = { +, $,) }

FOLLOW(T‘) = { +, $,) }

FOLLOW(F) = {+, * , $,) }

Predictive parsing table :

NON-
TERMINAL

id + * () $

E E → TE‘ E → TE‘

E‘ E‘ → +TE‘ E‘ → ε E‘→ ε

T T → FT‘ T → FT‘

T‘ T‘→ ε T‘→ *FT‘ T‘ → ε T‘ → ε

F F → id F → (E)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Stack implementation:

stack Input Output

$E id+id*id $

$E‘T id+id*id $ E → TE‘

$E‘T‘F id+id*id $ T → FT‘

$E‘T‘id id+id*id $ F → id

$E‘T‘ +id*id $

$E‘ +id*id $ T‘ → ε

$E‘T+ +id*id $ E‘ → +TE‘

$E‘T id*id $

$E‘T‘F id*id $ T → FT‘

$E‘T‘id id*id $ F → id

$E‘T‘ *id $

$E‘T‘F* *id $ T‘ → *FT‘

$E‘T‘F id $

$E‘T‘id id $ F → id

$E‘T‘ $

$E‘ $ T‘ → ε

$ $ E‘ → ε

LL(1) grammar:

The parsing table entries are single entries. So each location has not more than one entry. This

type of grammar is called LL(1) grammar.

Consider this following grammar:

S → iEtS | iEtSeS | a

E → b

After eliminating left factoring, we have

S → iEtSS‘ | a

S‘→ eS | ε

E → b

To construct a parsing table, we need FIRST() and FOLLOW() for all the non-terminals.

FIRST(S) = { i, a }

FIRST(S‘) = {e, ε }

FIRST(E) = { b}

FOLLOW(S) = { $,e }

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

FOLLOW(S‘) = {

$,e }

FOLLOW(E) =

{t}

Parsing table:

NON-

TERMINAL
A b e i t $

S S → a S → iEtSS‘

S‘ S‘ → eS
S‘ → ε

 S‘ → ε

E E → b

Since there are more than one production, the grammar is not LL(1) grammar.

Actions performed in predictive parsing:

1. Shift

2. Reduce

3. Accept

4. Error

Implementation of predictive parser:

1. Elimination of left recursion, left factoring and ambiguous grammar.

2. Construct FIRST() and FOLLOW() for all non-terminals.

3. Construct predictive parsing table.

4. Parse the given input string using stack and parsing table.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

BOTTOM-UP PARSING

Constructing a parse tree for an input string beginning at the leaves and going towards the

root is called bottom-up parsing.

A general type of bottom-up parser is a shift-reduce parser.

SHIFT-REDUCE PARSING

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a

parse tree for an input string beginning at the leaves (the bottom) and working up

towards the root (the top).

Example:

Consider the

grammar: S →

aABe

A → Abc | b

B → d

The sentence to be recognized is abbcde.

REDUCTION (LEFTMOST) RIGHTMOST DERIVATION

abbcde (A → b) S → aABe

aAbcde (A → Abc) → aAde

aAde (B → d) → aAbcde

aABe (S → aABe) → abbcde

S

The reductions trace out the right-most derivation in reverse.

Handles:

A handle of a string is a substring that matches the right side of a production, and whose

reduction to the non-terminal on the left side of the production represents one step along the

reverse of a rightmost derivation.

Example:

Consider the grammar:

E → E+E

E → E*E

E → (E)

E → id

And the input string id1+id2*id3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

The rightmost derivation is :

E → E+E

→ E+E*E

→ E+E*id3

→ E+id2*id3

→ id1+id2*id3

In the above derivation the underlined substrings are called handles.

Handle pruning:

A rightmost derivation in reverse can be obtained by ―handle pruning‖.

(i.e.) if w is a sentence or string of the grammar at hand, then w = γn, where γn is the n
th

 right-

sentinel form of some rightmost derivation.

Stack implementation of shift-reduce parsing :

Stack Input Action

$ id1+id2*id3 $ shift

$ id1 +id2*id3 $ reduce by E→id

$ E +id2*id3 $ shift

$ E+ id2*id3 $ shift

$ E+id2 *id3 $ reduce by E→id

$ E+E *id3 $ shift

$ E+E* id3 $ shift

$ E+E*id3 $ reduce by E→id

$ E+E*E $ reduce by E→ E *E

$ E+E $ reduce by E→ E+E

$ E $ accept

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Actions in shift-reduce parser:

 shift – The next input symbol is shifted onto the top of the stack.

 reduce – The parser replaces the handle within a stack with a non-terminal.

 accept – The parser announces successful completion of parsing.

 error – The parser discovers that a syntax error has occurred and calls an error recovery

routine.

Conflicts in shift-reduce parsing:

There are two conflicts that occur in shift shift-reduce parsing:

1. Shift-reduce conflict: The parser cannot decide whether to shift or to reduce.

2. Reduce-reduce conflict: The parser cannot decide which of several reductions to make.

1. Shift-reduce conflict:

Example:

Consider the grammar:

E→E+E | E*E | id and input id+id*id

Stack Input Action Stack Input Action

$ E+E *id $ Reduce by

E→E+E
$E+E *id $ Shift

$ E *id $ Shift $E+E* id $ Shift

$ E* id $ Shift $E+E*id $ Reduce by

E→id

$ E*id $ Reduce by
E→id

$E+E*E $ Reduce by
E→E*E

$ E*E $ Reduce by

E→E*E
$E+E $ Reduce by

E→E*E

$ E $E

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

2. Reduce-reduce conflict:

Consider the grammar:

M → R+R | R+c |

R R → c

and input c+c

Stack Input Action Stack Input Action

$ c+c $ Shift $ c+c $ Shift

$ c +c $ Reduce by
R→c

$ c +c $ Reduce by
R→c

$ R +c $ Shift $ R +c $ Shift

$ R+ c $ Shift $ R+ c $ Shift

$ R+c $ Reduce by
R→c

$ R+c $ Reduce by
M→R+c

$ R+R $ Reduce by
M→R+R

$ M $

$ M $

Viable prefixes:

 α is a viable prefix of the grammar if there is w such that αw is a right sentinel form.

 The set of prefixes of right sentinel forms that can appear on the stack of a shift-reduce parser

are called viable prefixes.

 The set of viable prefixes is a regular language.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

OPERATOR-PRECEDENCE PARSING

An efficient way of constructing shift-reduce parser is called operator-precedence parsing.

Operator precedence parser can be constructed from a grammar called Operator-grammar. These

grammars have the property that no production on right side is ɛ or has two adjacent non -

terminals.

Example:

Consider the grammar:

E → EAE | (E) | -E | id

A → + | - | * | / | ↑

Since the right side EAE has three consecutive non-terminals, the grammar can be written as

follows:

E → E+E | E-E | E*E | E/E | E↑E | -E | id

Operator precedence relations:

There are three disjoint precedence relations namely

<
.
 - less than

= - equal to
.
 > - greater than

The relations give the following meaning:

a <
.
 b – a yields precedence to b

a = b – a has the same precedence as b

a
.
 > b – a takes precedence over b

Rules for binary operations:

1. If operator θ1 has higher precedence than operator θ2, then make

θ1
.
 > θ2 and θ2 <

.
 θ1

2. If operators θ1 and θ2, are of equal precedence, then make

θ1
.
 > θ2 and θ2

.
 > θ1 if operators are left associative

θ1 <
.
 θ2 and θ2 <

.
 θ1 if right associative

3. Make the following for all operators θ:

θ <
.
 id , id

.
 > θ

θ <
.
 (, (<

.
 θ

)
.
 > θ , θ

.
 >)

θ
.
 > $, $ <

.
 θ

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Also make

(=) , (<
.
 (,)

.
 >) , (<

.
 id , id

.
 >) , $ <

.
 id , id

.
 > $, $ <

.
 (,)

.
 > $

Example:

Operator-precedence relations for the grammar

E → E+E | E-E | E*E | E/E | E↑E | (E) | -E | id is given in the following table assuming

1. ↑ is of highest precedence and right-associative

2. * and / are of next higher precedence and left-associative, and

3. + and - are of lowest precedence and left-associative

Note that the blanks in the table denote error entries.

TABLE : Operator-precedence relations

 + - * / ↑ id () $

+
.> .> <. <. <. <. <. .> .>

-
.> .> <. <. <. <. <. .> .>

*
.> .> .> .> <. <. <. .> .>

/
.> .> .> .> <. <. <. .> .>

↑
.> .> .> .> <. <. <. .> .>

id
.> .> .> .> .>

∙
.> .>

(<. <. <. <. <. <. <.
=

)
.> .> .> .> .>

.> .>

$ <. <. <. <. <. <. <.

Operator precedence parsing algorithm:

Input : An input string w and a table of precedence relations.

Output : If w is well formed, a skeletal parse tree ,with a placeholder non-terminal E labeling all

interior nodes; otherwise, an error indication.

Method : Initially the stack contains $ and the input buffer the string w $. To parse, we execute

the following program :

(1) Set ip to point to the first symbol of w$;

(2) repeat forever

(3) if $ is on top of the stack and ip points to $ then

(4) return

else begin

(5) let a be the topmost terminal symbol on the stack

and let b be the symbol pointed to by ip;

(6) if a <
.
 b or a = b then begin

(7) push b onto the stack;

(8) advance ip to the next input symbol;

end;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

(9) else if a
.
 > b then /*reduce*/

(10) repeat

(11) pop the stack

(12) until the top stack terminal is related by <
.

to the terminal most recently popped

(13) else error()

end

Stack implementation of operator precedence parsing:

Operator precedence parsing uses a stack and precedence relation table for its

implementation of above algorithm. It is a shift-reduce parsing containing all four actions shift,

reduce, accept and error.

The initial configuration of an operator precedence parsing is

STACK INPUT

$ w $

where w is the input string to be parsed.

Example:

Consider the grammar E → E+E | E-E | E*E | E/E | E↑E | (E) | id. Input string is id+id*id .The

implementation is as follows:

STACK INPUT COMMENT

$ <∙ id+id*id $ shift id

$ id ∙> +id*id $ pop the top of the stack id

$ <∙ +id*id $ shift +

$ + <∙ id*id $ shift id

$ +id ∙> *id $ pop id

$ + <∙ *id $ shift *

$ + * <∙ id $ shift id

$ + * id ∙> $ pop id

$ + * ∙> $ pop *

$ + ∙> $ pop +

$ $ accept

Advantages of operator precedence parsing:

1. It is easy to implement.

2. Once an operator precedence relation is made between all pairs of terminals of a grammar ,

the grammar can be ignored. The grammar is not referred anymore during implementation.

Disadvantages of operator precedence parsing:

1. It is hard to handle tokens like the minus sign (-) which has two different precedence.

2. Only a small class of grammar can be parsed using operator-precedence parser.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

LR PARSERS

An efficient bottom-up syntax analysis technique that can be used to parse a large class of

CFG is called LR(k) parsing. The ‗L‘ is for left-to-right scanning of the input, the ‗R‘ for

constructing a rightmost derivation in reverse, and the ‗k‘ for the number of input symbols.

When ‗k‘ is omitted, it is assumed to be 1.

Advantages of LR parsing:

 It recognizes virtually all programming language constructs for which CFG can be

written.

 It is an efficient non-backtracking shift-reduce parsing method.

 A grammar that can be parsed using LR method is a proper superset of a grammar that

can be parsed with predictive parser.

 It detects a syntactic error as soon as possible.

Drawbacks of LR method:

It is too much of work to construct a LR parser by hand for a programming language

grammar. A specialized tool, called a LR parser generator, is needed. Example: YACC.

Types of LR parsing method:

1. SLR- Simple LR

 Easiest to implement, least powerful.

2. CLR- Canonical LR

 Most powerful, most expensive.

3. LALR- Look-Ahead LR

 Intermediate in size and cost between the other two methods.

The LR parsing algorithm:

The schematic form of an LR parser is as follows:

INPUT

OUTPUT

STACK

goto action

LR parsing program

a1

… ai

… an $

Sm

Xm

Sm-1

Xm-1

…

S0

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

It consists of : an input, an output, a stack, a driver program, and a parsing table that has two

parts (action and goto).

 The driver program is the same for all LR parser.

 The parsing program reads characters from an input buffer one at a time.

 The program uses a stack to store a string of the form s0X1s1X2s2…Xmsm, where sm is on

top. Each Xi is a grammar symbol and each si is a state.

 The parsing table consists of two parts : action and goto functions.

Action : The parsing program determines sm, the state currently on top of stack, and ai, the

current input symbol. It then consults action[sm,ai] in the action table which can have one of four

values :

1. shift s, where s is a state,

2. reduce by a grammar production A → β,

3. accept, and

4. error.

Goto : The function goto takes a state and grammar symbol as arguments and produces a state.

LR Parsing algorithm:

Input: An input string w and an LR parsing table with functions action and goto for grammar G.

Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error indication.

Method: Initially, the parser has s0 on its stack, where s0 is the initial state, and w$ in the input

buffer. The parser then executes the following program :

set ip to point to the first input symbol of w$;

repeat forever begin

let s be the state on top of the stack and

a the symbol pointed to by ip;
if action[s, a] = shift s‘ then begin

push a then s‘ on top of the stack;

advance ip to the next input symbol

end

else if action[s, a] = reduce A→β then begin

pop 2* | β | symbols off the stack;
let s‘ be the state now on top of the stack;

push A then goto[s‘, A] on top of the stack;

output the production A→ β

end

else if action[s, a] = accept then

return

else error()

end

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

CONSTRUCTING SLR(1) PARSING TABLE:

To perform SLR parsing, take grammar as input and do the following:

1. Find LR(0) items.

2. Completing the closure.

3. Compute goto(I,X), where, I is set of items and X is grammar symbol.

LR(0) items:

An LR(0) item of a grammar G is a production of G with a dot at some position of the

right side. For example, production A → XYZ yields the four items :

A → . XYZ

A → X . YZ

A → XY . Z

A → XYZ .

Closure operation:

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I

by the two rules:

1. Initially, every item in I is added to closure(I).

2. If A → α . Bβ is in closure(I) and B → γ is a production, then add the item B → . γ to I , if it

is not already there. We apply this rule until no more new items can be added to closure(I).

Goto operation:

Goto(I, X) is defined to be the closure of the set of all items [A→ αX . β] such that

[A→ α . Xβ] is in I.

Steps to construct SLR parsing table for grammar G are:

1. Augment G and produce G‘

2. Construct the canonical collection of set of items C for G‘

3. Construct the parsing action function action and goto using the following algorithm that

requires FOLLOW(A) for each non-terminal of grammar.

Algorithm for construction of SLR parsing table:

Input : An augmented grammar G‘

Output : The SLR parsing table functions action and goto for G‘

Method :

1. Construct C = {I0, I1, …. In}, the collection of sets of LR(0) items for G‘.

2. State i is constructed from Ii.. The parsing functions for state i are determined as follows:

(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to ―shift j‖. Here a must be

terminal.

(b) If [A→α∙] is in Ii , then set action[i,a] to ―reduce A→α‖ for all a in FOLLOW(A).

(c) If [S‘→S.] is in Ii, then set action[i,$] to ―accept‖.

If any conflicting actions are generated by the above rules, we say grammar is not SLR(1).

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

3. The goto transitions for state i are constructed for all non-terminals A using the rule:

If goto(Ii,A) = Ij, then goto[i,A] = j.

4. All entries not defined by rules (2) and (3) are made ―error‖

5. The initial state of the parser is the one constructed from the set of items containing

[S‘→.S].

Example for SLR parsing:

Construct SLR parsing for the following grammar :

G : E → E + T | T

T → T * F | F

F → (E) | id

The given grammar is :

G : E → E + T ------ (1)

E →T ------ (2)

T → T * F ------ (3)

T → F ------ (4)

F → (E) ------ (5)

F → id ------ (6)

Step 1 : Convert given grammar into augmented grammar.

Augmented grammar :

E‘ → E

E → E + T

E → T

T → T * F

T → F

F → (E)

F → id

Step 2 : Find LR (0) items.

I0 : E‘ → . E

E → . E + T

E → . T

T → . T * F

T → . F

F → . (E)

F → . id

GOTO (I0 , E)

I1 : E‘ → E .

E → E . + T

GOTO (I4 , id)

I5 : F → id .

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

GOTO (I6 , T)

GOTO (I0 , T) I9 : E → E + T .

I2 : E → T . T → T . * F

T → T . * F

GOTO (I0 , F)

I3 : T → F .

GOTO (I6 , F)

I3 : T → F .

GOTO (I6 , ()

I4 : F → (. E)

GOTO (I0 , ()

I4 : F → (. E)

E → . E + T

E → . T

T → . T * F

T → . F

F → . (E)

F → . id

GOTO (I0 , id)

I5 : F → id .

GOTO (I1 , +)

I6 : E → E + . T

T → . T * F

T → . F

F → . (E)

F → . id

GOTO (I2 , *)

I7 : T → T * . F

F → . (E)

F → . id

GOTO (I4 , E)

I8 : F → (E .)

E → E . + T

GOTO (I6 , id)

I5 : F → id .

GOTO (I7 , F)

I10 : T → T * F .

GOTO (I7 , ()

I4 : F → (. E)

E → . E + T

E → . T

T → . T * F

T → . F

F → . (E)

F → . id

GOTO (I7 , id)

I5 : F → id .

GOTO (I8 ,))

I11 : F → (E) .

GOTO (I8 , +)

I6 : E → E + . T

T → . T * F

T → . F

F → . (E)

F → . id

GOTO (I4 , T)

I2 : E →T .

T → T . * F

GOTO (I4 , F)

I3 : T → F .

GOTO (I9 , *)

I7 : T → T * . F

F → . (E)

F → . id

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

FOLLOW (E) = { $,) , +)

FOLLOW (T) = { $, + ,) , * }

FOOLOW (F) = { * , + ,) , $ }

SLR parsing table:

 ACTION GOTO

id + * () $ E T F

I0 s5 s4 1 2 3

I1 s6 ACC

I2 r2 s7 r2 r2

I3 r4 r4 r4 r4

I4 s5 s4 8 2 3

I5 r6 r6 r6 r6

I6 s5 s4 9 3

I7 s5 s4 10

I8 s6 s11

I9 r1 s7 r1 r1

I10 r3 r3 r3 r3

I11 r5 r5 r5 r5

Blank entries are error entries.

Stack implementation:

Check whether the input id + id * id is valid or not.

GOTO (I4 , ()

I4 : F → (. E)

E → . E + T

E → . T

T → . T * F

T → . F

F → . (E)

F → id

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

STACK INPUT ACTION

0 id + id * id $ GOTO (I0 , id) = s5 ; shift

0 id 5 + id * id $ GOTO (I5 , +) = r6 ; reduce by F→id

0 F 3 + id * id $ GOTO (I0 , F) = 3

GOTO (I3 , +) = r4 ; reduce by T → F

0 T 2 + id * id $ GOTO (I0 , T) = 2

GOTO (I2 , +) = r2 ; reduce by E → T

0 E 1 + id * id $ GOTO (I0 , E) = 1

GOTO (I1 , +) = s6 ; shift

0 E 1 + 6 id * id $ GOTO (I6 , id) = s5 ; shift

0 E 1 + 6 id 5 * id $ GOTO (I5 , *) = r6 ; reduce by F → id

0 E 1 + 6 F 3 * id $ GOTO (I6 , F) = 3

GOTO (I3 , *) = r4 ; reduce by T → F

0 E 1 + 6 T 9 * id $ GOTO (I6 , T) = 9

GOTO (I9 , *) = s7 ; shift

0 E 1 + 6 T 9 * 7 id $ GOTO (I7 , id) = s5 ; shift

0 E 1 + 6 T 9 * 7 id 5 $ GOTO (I5 , $) = r6 ; reduce by F → id

0 E 1 + 6 T 9 * 7 F 10 $ GOTO (I7 , F) = 10

GOTO (I10 , $) = r3 ; reduce by T → T * F

0 E 1 + 6 T 9 $ GOTO (I6 , T) = 9

GOTO (I9 , $) = r1 ; reduce by E → E + T

0 E 1 $ GOTO (I0 , E) = 1

GOTO (I1 , $) = accept

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Building LR(1) itemsets, LR(1) and LALR parse tables

A, S, X: non-terminals

x,y, a, ß: string of terminals and/or non-terminals

C: one terminal or one non-terminal

Start: [S --> . w , $] is the item associated with the start state.

Read: Starting a new state (reading on one terminal or non-terminal, C) comes from

[A --> x.Cy , w] then new state includes [A --> xC.y , w] .

Complete: if [A --> x . X a , u] is an item, then completing on X gives the item(s) [X --
> .ß , z] where z є FIRST(au)

Consider the augmented grammar G‘:

0. S’ --> S$

1. S --> CC

2. C --> eC

3. C --> d

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Syntax error handling :

Programs can contain errors at many different levels. For example :

1. Lexical, such as misspelling a keyword.

2. Syntactic, such as an arithmetic expression with unbalanced parentheses.

3. Semantic, such as an operator applied to an incompatible operand.

4. Logical, such as an infinitely recursive call.

Functions of error handler :

1. It should report the presence of errors clearly and accurately.

2. It should recover from each error quickly enough to be able to detect subsequent errors.

3. It should not significantly slow down the processing of correct programs.

Error recovery strategies :

The different strategies that a parse uses to recover from a syntactic error are:

1. Panic mode

2. Phrase level

3. Error productions

4. Global correction

Panic mode recovery:

On discovering an error, the parser discards input symbols one at a time until a

synchronizing token is found. The synchronizing tokens are usually delimiters, such as

semicolon or end. It has the advantage of simplicity and does not go into an infinite loop. When

multiple errors in the same statement are rare, this method is quite useful.

Phrase level recovery:

On discovering an error, the parser performs local correction on the remaining input that

allows it to continue. Example: Insert a missing semicolon or delete an extraneous semicolon etc.

Error productions:

The parser is constructed using augmented grammar with error productions. If an error

production is used by the parser, appropriate error diagnostics can be generated to indicate the

erroneous constructs recognized by the input.

Global correction:

Given an incorrect input string x and grammar G, certain algorithms can be used to find a

parse tree for a string y, such that the number of insertions, deletions and changes of tokens is as

small as possible. However, these methods are in general too costly in terms of time and space.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

declarations

%%

grammarrules and associatedactions

YACC-Design of a syntax Analyzer for a Sample Language

 Yacc is a tool for constructing parsers.

 It reads a specification file that codifies the grammar of a language and generates a parsing

routine.

 Yacc specification describes a CFG, that can be used to generate a parser.

 Elements of a CFG:

1. Terminals: tokens and literal characters,

2. Variables (nonterminals): syntactical elements,

3. Production rules, and

4. Start rule.

Skeleton of a yacc specification (.y file)

Example:

A -> Bc is written in yacc as a: b 'c';

Format of a yacc specification file:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Declarations:

To define tokens and their characteristics

%token: declare names of tokens

%left: define left-associative operators

%right: define right-associative operators

%nonassoc: define operators that may not associate with themselves

%type: declare the type of variables

%union: declare multiple data types for semantic values

%start: declare the start symbol (default is the first variable in rules)

%prec: assign precedence to a rule

%{

C declarations directly copied to the resulting C program

%} (E.g., variables, types, macros…)

Eg:Yacc program to recognize L = {a
n

b
n

| n >=0}.
%{

#include<stdio.h>

int valid=1;

%}

%token A B

%%

str:S'\n' {return 0;}

S:A S B

|

;

%%

main()

{

printf("Enter the string:\n");

yyparse();

if(valid==1)

printf("\nvalid string");

}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

UNIT IV- SYNTAX DIRECTEDTRANSLATION & RUN TIME ENVIRONMENT

Syntax directed Definitions-Construction of Syntax Tree-Bottom-up Evaluation of S-Attribute

Definitions- Design of predictive translator - Type Systems-Specification of a simple type checker-

Equivalence of Type Expressions-Type Conversions. RUN-TIME ENVIRONMENT: Source

Language Issues-Storage Organization-Storage Allocation-Parameter Passing-Symbol Tables-

Dynamic Storage Allocation-Storage Allocation in FORTAN.

SEMANTIC ANALYSIS

➢ Semantic Analysis computes additional information related to the meaning of the

program once the syntactic structure is known.

➢ In typed languages as C, semantic analysis involves adding information to the symbol

table and performing type checking.

➢ The information to be computed is beyond the capabilities of standard parsing

techniques, therefore it is not regarded as syntax.

➢ As for Lexical and Syntax analysis, also for Semantic Analysis we need both a

Representation Formalism and an Implementation Mechanism.

➢ As representation formalism this lecture illustrates what are called Syntax Directed

Translations.

SYNTAX DIRECTED TRANSLATION

➢ The Principle of Syntax Directed Translation states that the meaning of an input

sentence is related to its syntactic structure, i.e., to its Parse-Tree.

➢ By Syntax Directed Translations we indicate those formalisms for specifying

translations for programming language constructs guided by context-free grammars.

o We associate Attributes to the grammar symbols representing the language

constructs.

o Values for attributes are computed by Semantic Rules associated with

grammar productions.

➢ Evaluation of Semantic Rules may:

o Generate Code;

o Insert information into the Symbol Table;

o Perform Semantic Check;

o Issue error messages;

o etc.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

There are two notations for attaching semantic rules:

1. Syntax Directed Definitions. High-level specification hiding many implementation

details (also called Attribute Grammars).

2. Translation Schemes. More implementation oriented: Indicate the order in which

semantic rules are to be evaluated.

Syntax Directed Definitions

• Syntax Directed Definitions are a generalization of context-free grammars in which:

1. Grammar symbols have an associated set of Attributes;

2. Productions are associated with Semantic Rules for computing the values of attributes.

▪ Such formalism generates Annotated Parse-Trees where each node of the tree is a

record with a field for each attribute (e.g.,X.a indicates the attribute a of the grammar

symbol X).

▪ The value of an attribute of a grammar symbol at a given parse-tree node is defined by

a semantic rule associated with the production used at that node.

We distinguish between two kinds of attributes:

1. Synthesized Attributes. They are computed from the values of the attributes of the

children nodes.

2. Inherited Attributes. They are computed from the values of the attributes of both the

siblings and the parent nodes

Syntax Directed Definitions: An Example

• Example. Let us consider the Grammar for arithmetic expressions. The Syntax Directed

Definition associates to each non terminal a synthesized attribute called val.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

S-ATTRIBUTED DEFINITIONS

Definition. An S-Attributed Definition is a Syntax Directed Definition that uses only

synthesized attributes.

• Evaluation Order. Semantic rules in a S-Attributed Definition can be evaluated by a

bottom-up, or PostOrder, traversal of the parse-tree.

• Example. The above arithmetic grammar is an example of an S-Attributed

Definition. The annotated parse-tree for the input 3*5+4n is:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

L-attributed definition

Definition: A SDD its L-attributed if each inherited attribute of Xi in the RHS of A ! X1 :

:Xn depends only on

1. attributes of X1;X2; : : : ;Xi1 (symbols to the left of Xi in the RHS)

2. inherited attributes of A.

Restrictions for translation schemes:

1. Inherited attribute of Xi must be computed by an action before Xi.

2. An action must not refer to synthesized attribute of any symbol to the right of that action.

3. Synthesized attribute for A can only be computed after all attributes it references have been

completed (usually at end of RHS).

SDD For Simple Type Declarations

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

CONSTRUCTION OF SYNTAX TREE

➢ SDDs are useful for is construction of syntax trees. A syntax tree is a condensed form
of parse tree.

➢ Syntax trees are useful for representing programming language constructs like
expressions and statements.

➢ They help compiler design by decoupling parsing from translation.

➢ Each node of a syntax tree represents a construct; the children of the node represent the
meaningful components of the construct.

e.g. a syntax-tree node representing an expression E1 + E2 has label + and two

children representing the sub expressions E1 and E2

➢ Each node is implemented by objects with suitable number of fields; each object will
have an op field that is the label of the node with additional fields as follows:

i) If the node is a leaf, an additional field holds the lexical value for the

leaf . This is created by function Leaf(op, val)

ii) If the node is an interior node, there are as many fields as the node has

children in the syntax tree. This is created by function Node(op, c1, c2,...,ck) .

➢ Example: The S-attributed definition in figure below constructs syntax trees for a
simple expression grammar involving only the binary operators + and -. As usual,
these operators are at the same precedence level and are jointly left associative. All
nonterminals have one synthesized attribute node, which represents a node of the
syntax

tree.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Steps in the construction of the syntax tree for a-4+c

If the rules are evaluated during a post order traversal of the parse tree, or with reductions during

a bottom-up parse, then the sequence of steps shown below ends with p5 pointing to the root of

the constructed syntax tree.

Syntax tree for a-4+c using the above SDD is shown below.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Bottom-up Evaluation of S-Attribute Definitions

 Syntax-directed definition with only synthesized attributes is called S-attributed

 Use LR Parser

 Implementation:

 Stack to hold info about subtrees that have been parsed

 A SDD is a context free grammar with attributes and rules

 Attributes are associated with grammar symbols and rules with productions

 Attributes may be of many kinds: numbers, types, table references, strings, etc.

 Synthesized attributes

o A synthesized attribute at node N is defined only in terms of attribute values of
children of N and at N it

 If an SDT uses only synthesized attributes, it is called as S-attributed SDT. These
attributes are evaluated using S-attributed SDTs that have their semantic actions written

after the production (right hand side).

 As depicted above, attributes in S-attributed SDTs are evaluated in bottom-up parsing, as

the values of the parent nodes depend upon the values of the child nodes.

Syntax Directed Definitions: An Example

• Example. Let us consider the Grammar for arithmetic expressions. The Syntax Directed

Definition associates to each non terminal a synthesized attribute called val.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• The above arithmetic grammar is an example of an S-Attributed

Definition. The annotated parse-tree for the input 3*5+4n is:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Input Stack Attribute Production Used

3 * 5 + 4 $ - -

* 5 + 4 $ 3 3

* 5 + 4 $ F 3 F ---> digit

* 5 + 4 $ T 3 T ---> F

5 + 4 $ T * 3

+ 4 $ T * 5 3 * 5

+ 4 $ T * F 3 * 5 F - digit

+ 4 $ T 15 T ---> T * F

+ 4 $ E 15 E ---> T

4 $ E + 15

$ E + 4 15 + 4

$ E + F 15 + 4 F ---> digit

$ E + T 15 4 T ---> F

$ E 19 E ---> E + T

 E 19

 L 19 L ---> E $

TYPE CHECKING

A compiler must check that the source program follows both syntactic and semantic

conventions of the source language.

This checking, called static checking, detects and reports

programming errors. Some examples of static checks:

1. Type checks – A compiler should report an error if an operator is applied to an

incompatible operand. Example: If an array variable and function variable are added

together.

2. Flow-of-control checks – Statements that cause flow of control to leave a construct must

have some place to which to transfer the flow of control. Example: An error occurs when an

enclosing statement, such as break, does not exist in switchstatement.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

intermediate

code generator

type checker parser

Position of type checker

token syntax syntax intermediate

stream tree tree representation

 A type checker verifies that the type of a construct matches that expected by its

context. For example : arithmetic operator mod in Pascal requires integer operands, so

a type checker verifies that the operands of mod have type integer.

 Type information gathered by a type checker may be needed when code is generated.

TYPE SYSTEMS

The design of a type checker for a language is based on information about the syntactic

constructs in the language, the notion of types, and the rules for assigning types to language

constructs.

For example : ― if both operands of the arithmetic operators of +,- and * are of type integer, then

the result is of type integer ‖

Type Expressions

 The type of a language construct will be denoted by a ―type expression.‖

 A type expression is either a basic type or is formed by applying an operator called a

type constructor to other type expressions.

 The sets of basic types and constructors depend on the language to be

checked.

The following are the definitions of type expressions:

1. Basic types such as boolean, char, integer, real are type expressions.

A special basic type, type_error , will signal an error during type checking; void denoting

―the absence of a value‖ allows statements to be checked.

2. Since type expressions may be named, a type name is a type expression.

3. A type constructor applied to type expressions is a type

expression. Constructors include:

Arrays : If T is a type expression then array (I,T) is a type expression denoting the type

of an array with elements of type T and index set I.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Products : If T1 and T2 are type expressions, then their Cartesian product T1 X T2

is a type expression.

Records : The difference between a record and a product is that the fields of a record have

names. The record type constructor will be applied to a tuple formed from field names

and field types.

For example:

type row = record

address: integer;

lexeme: array[1..15] of char

end;

var table: array[1...101] of row;

declares the type name row representing the type expression record((address X integer) X

(lexeme X array(1..15,char))) and the variable table to be an array of records of this type.

Pointers : If T is a type expression, then pointer(T) is a type expression denoting the type

―pointer to an object of type T‖.

For example, var p: ↑ row declares variable p to have type pointer(row).

Functions : A function in programming languages maps a domain type D to a range type R.

The type of such function is denoted by the type expression D → R

4. Type expressions may contain variables whose values are type expressions.

Tree representation for char x char → pointer (integer)

→

x pointer

char char integer

Type systems

 A type system is a collection of rules for assigning type expressions to the various parts

of a program.

 A type checker implements a type system. It is specified in a syntax-directedmanner.

 Different type systems may be used by different compilers or processors of the

same language.

Static and Dynamic Checking of Types

 Checking done by a compiler is said to be static, while checking done when the

target program runs is termed dynamic.

 Any check can be done dynamically, if the target code carries the type of an element

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

along with the value of that element.

Sound type system

A sound type system eliminates the need for dynamic checking for type errors because it

allows us to determine statically that these errors cannot occur when the target program runs.

That is, if a sound type system assigns a type other than type_error to a program part, then type

errors cannot occur when the target code for the program part is run.

Strongly typed language

A language is strongly typed if its compiler can guarantee that the programs it accepts

will execute without type errors.

Error Recovery

 Since type checking has the potential for catching errors in program, it is desirable

for type checker to recover from errors, so it can check the rest of theinput.

 Error handling has to be designed into the type system right from the start; the

type checking rules must be prepared to cope with errors.

SPECIFICATION OF A SIMPLE TYPE CHECKER

Here, we specify a type checker for a simple language in which the type of each

identifier must be declared before the identifier is used. The type checker is a translation scheme

that synthesizes the type of each expression from the types of its subexpressions. The type

checker can handle arrays, pointers, statements and functions.

A Simple Language

Consider the following grammar:

P → D ; E

D → D ; D | id : T

T → char | integer | array [num] of T | ↑ T

E → literal | num | id | E mod E | E [E] | E

↑

Translation scheme:

P → D ; E

D → D ; D

D → id : T { addtype (id.entry , T.type) }

T → char { T.type : = char }

T → integer { T.type : = integer }

T → ↑ T1 { T.type : = pointer(T1.type)

}

T → array [num] of T1 { T.type : = array (1… num.val , T1.type) }

In the above language,

→ There are two basic types : char and integer ;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

→ type_error is used to signal errors;

→ the prefix operator ↑ builds a pointer type. Example , ↑ integer leads to the type expression

pointer (integer).

Type checking of expressions

In the following rules, the attribute type for E gives the type expression assigned to the

expression generated by E.

1. E → literal { E.type : = char }

E → num { E.type : = integer }

Here, constants represented by the tokens literal and num have type char and integer.

2. E → id { E.type : = lookup (id.entry) }

lookup (e) is used to fetch the type saved in the symbol table entry pointed to by e.

3. E → E1 mod E2 { E.type : = if E1. type = integer and

E2. type = integer then integer

else type_error }

The expression formed by applying the mod operator to two subexpressions of type integer has

type integer; otherwise, its type is type_error.

4. E → E1 [E2] { E.type : = if E2.type = integer and

E1.type = array(s,t) then t

else type_error }

In an array reference E1 [E2] , the index expression E2 must have type integer. The result is

the element type t obtained from the type array(s,t) of E1.

5. E → E1 ↑ { E.type : = if E1.type = pointer (t) then t

else type_error }

The postfix operator ↑ yields the object pointed to by its operand. The type of E ↑ is the type t

of the object pointed to by the pointer E.

Type checking of statements

Statements do not have values; hence the basic type void can be assigned to them. If an error is

detected within a statement, then type_error is assigned.

Translation scheme for checking the type of statements:

1. Assignment statement:

S → id : = E { S.type : = if id.type = E.type then void

else type_error }

2. Conditional statement:

S → if E then S1 { S.type : = if E.type = boolean then S1.type

else type_error }

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

3. While statement:

S → while E do S1 { S.type : = if E.type = boolean then S1.type

else type_error }

4. Sequence of statements:

S → S1 ; S2 { S.type : = if S1.type = void and

S1.type = void then void

else type_error }

Type checking of functions

The rule for checking the type of a function application is :

E → E1 (E2) { E.type : = if E2.type = s and

E1.type = s → t then t

else type_error }

RUNTIME ENVIRONMENT

➢ Runtime organization of different storage locations

➢ Representation of scopes and extents during program execution.

➢ Components of executing program reside in blocks of memory (supplied by OS).

➢ Three kinds of entities that need to be managed at runtime:

o Generated code for various procedures and programs.

forms text or code segment of your program: size known at compile time.

o Data objects:

Global variables/constants: size known at compile time

Variables declared within procedures/blocks: size

known Variables created dynamically: size unknown.

o Stack to keep track of procedure

activations. Subdivide memory conceptually

into code and data areas:

▪ Cod

e: Program

instructions

▪ Stack: Manage activation of procedures at runtime.

▪ Heap: holds variables created dynamically

SOURCE LANGUAGE ISSUES

Procedures:

A procedure definition is a declaration that associates an identifier with a statement. The

identifier is the procedure name, and the statement is the procedure body.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/

For example, the following is the definition of procedure named readarray :

procedure readarray;

var i : integer;

begin

for i : = 1 to 9 do read(a[i])

end;

When a procedure name appears within an executable statement, the procedure is said to be

called at that point.

Activation trees:

An activation tree is used to depict the way control enters and leaves activations. In an

activation tree,

1. Each node represents an activation of a procedure.

2. The root represents the activation of the main program.

3. The node for a is the parent of the node for b if and only if control flows from activation a to

b.

4. The node for a is to the left of the node for b if and only if the lifetime of a occurs before the

lifetime of b.

Control stack:

 A control stack is used to keep track of live procedure activations. The idea is to push the

node for an activation onto the control stack as the activation begins and to pop the node

when the activation ends.

 The contents of the control stack are related to paths to the root of the activation tree.

When node n is at the top of control stack, the stack contains the nodes along the path

from n to the root.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

The Scope of a Declaration:

A declaration is a syntactic construct that associates information with a name.

Declarations may be explicit, such as:

var i : integer ;

or they may be implicit. Example, any variable name starting with I is assumed to denote an

integer.

The portion of the program to which a declaration applies is called the scope of that declaration.

Binding of names:

Even if each name is declared once in a program, the same name may denote different

data objects at run time. ―Data object‖ corresponds to a storage location that holds values.

The term environment refers to a function that maps a name to a storage location.

The term state refers to a function that maps a storage location to the value held there.

environment state

name storage value

When an environment associates storage location s with a name x, we say that x is bound

to s. This association is referred to as a binding of x.

STORAGE ORGANISATION

 The executing target program runs in its own logical address space in which each

program value has a location.

 The management and organization of this logical address space is shared between the

complier, operating system and target machine. The operating system maps the logical

address into physical addresses, which are usually spread throughoutmemory.

Typical subdivision of run-time memory:

Code

Static Data

Stac
k

free memory

Heap

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 Run-time storage comes in blocks, where a byte is the smallest unit of addressable

memory. Four bytes form a machine word. Multibyte objects are stored in consecutive

bytes and given the address of first byte.

 The storage layout for data objects is strongly influenced by the addressingconstraints of

the target machine.

 A character array of length 10 needs only enough bytes to hold 10 characters, a compiler

may allocate 12 bytes to get alignment, leaving 2 bytesunused.

 This unused space due to alignment considerations is referred to aspadding.

 The size of some program objects may be known at run time and may be placed inan

area called static.

 The dynamic areas used to maximize the utilization of space at run time are stack and

heap.

Activation records:

 Procedure calls and returns are usually managed by a run time stack called the control

stack.

 Each live activation has an activation record on the control stack, with the root of the

activation tree at the bottom, the latter activation has its record at the top of the stack.

 The contents of the activation record vary with the language being implemented. The

diagram below shows the contents of activation record.

 Temporary values such as those arising from the evaluation ofexpressions.

 Local data belonging to the procedure whose activation record this is.

 A saved machine status, with information about the state of the machine just before the

call to procedures.

 An access link may be needed to locate data needed by the called procedure butfound

elsewhere.

 A control link pointing to the activation record of thecaller.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 Space for the return value of the called functions, if any. Again, not all called procedures

return a value, and if one does, we may prefer to place that value in a register for

efficiency.

 The actual parameters used by the calling procedure. These are not placed in activation

record but rather in registers, when possible, for greaterefficiency.

STORAGE ALLOCATION STRATEGIES

The different storage allocation strategies are :

1. Static allocation – lays out storage for all data objects at compile time

2. Stack allocation – manages the run-time storage as a stack.

3. Heap allocation – allocates and deallocates storage as needed at run time from a data area

known as heap.

STATIC ALLOCATION

 In static allocation, names are bound to storage as the program is compiled, so there is no

need for a run-time support package.

 Since the bindings do not change at run-time, everytime a procedure is activated, its

names are bound to the same storage locations.

 Therefore values of local names are retained across activations of a procedure. That is,

when control returns to a procedure the values of the locals are the same as they were

when control left the last time.

 From the type of a name, the compiler decides the amount of storage for the name and

decides where the activation records go. At compile time, we can fill in the addresses at

which the target code can find the data it operates on.

STACK ALLOCATION OF SPACE

 All compilers for languages that use procedures, functions or methods as units of user-

defined actions manage at least part of their run-time memory as a stack.

 Each time a procedure is called , space for its local variables is pushed onto a stack, and

when the procedure terminates, that space is popped off the stack.

Calling sequences:

 Procedures called are implemented in what is called as calling sequence, whichconsists

of code that allocates an activation record on the stack and enters information into its

fields.

 A return sequence is similar to code to restore the state of machine so the calling

procedure can continue its execution after the call.

 The code in calling sequence is often divided between the calling procedure (caller) and

the procedure it calls (callee).

 When designing calling sequences and the layout of activation records, the following

principles are helpful:

 Values communicated between caller and callee are generally placed at the

beginning of the callee‘s activation record, so they are as close as possible to the

caller‘s activation record.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

 Fixed length items are generally placed in the middle. Such items typicallyinclude

the control link, the access link, and the machine status fields.

 Items whose size may not be known early enough are placed at the end of the

activation record. The most common example is dynamically sized array, where the

value of one of the callee‘s parameters determines the length of thearray.

 We must locate the top-of-stack pointer judiciously. A common approach is tohave

it point to the end of fixed-length fields in the activation record. Fixed-length data

can then be accessed by fixed offsets, known to the intermediate-code generator,

relative to the top-of-stack pointer.

caller‘s

activation

record

 caller‘s

responsibility

callee‘s

activation

record

op_sp

callee‘s

responsibility

Division of tasks between caller and callee

 The calling sequence and its division between caller and callee are as follows.

 The caller evaluates the actual parameters.

 The caller stores a return address and the old value of top_sp into the callee‘s

activation record. The caller then increments the top_sp to the respective

positions.

 The callee saves the register values and other status information.

 The callee initializes its local data and begins execution.

 A suitable, corresponding return sequence is:

 The callee places the return value next to the parameters.

 Using the information in the machine-status field, the callee restores top_sp and

other registers, and then branches to the return address that the caller placed in

the status field.

 Although top_sp has been decremented, the caller knows where the return value

is, relative to the current value of top_sp; the caller therefore may use that value.

. . .

t

temporaries and local data

Parameters and returned values

control link

links and saved status

Parameters and returned values

control link

links and saved status

temporaries and local data

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Variable length data on

stack:

 The run-time memory management system must deal frequently with the allocation of

space for objects, the sizes of which are not known at the compile time, but which are

local to a procedure and thus may be allocated on the stack.

 The reason to prefer placing objects on the stack is that we avoid the expense of garbage

collecting their space.

 The same scheme works for objects of any type if they are local to the procedurecalled

and have a size that depends on the parameters of the call.

activation

record for p

arrays of p

activation record for

procedure q called by p

arrays of q

Access to dynamically allocated arrays

 Procedure p has three local arrays, whose sizes cannot be determined at compile time.

The storage for these arrays is not part of the activation record for p.

 Access to the data is through two pointers, top and top-sp. Here the top marks the actual

top of stack; it points the position at which the next activation record will begin.

 The second top-sp is used to find local, fixed-length fields of the top activationrecord.

 The code to reposition top and top-sp can be generated at compile time, in terms ofsizes

that will become known at run time.

.

control link

pointer to A

pointer to B

pointer to C

control link top_sp

top

array A

array B

array C

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

HEAP ALLOCATION

Stack allocation strategy cannot be used if either of the following is possible :

1. The values of local names must be retained when an activation ends.

2. A called activation outlives the caller.

 Heap allocation parcels out pieces of contiguous storage, as needed for activation

records or other objects.

 Pieces may be deallocated in any order, so over the time the heap will consist of

alternate areas that are free and in use.

 Position in

the

Activation records in the heap Remarks

s

r q (1 , 9)

s

control link

r

control link

q(1,9)

control link

Retained activation

record for r

 The record for an activation of procedure r is retained when the activationends.

 Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically.

 If the retained activation record for r is deallocated, there will be free space in the

heap between the activation records for s and q.

PARAMETERS PASSING

A language has first-class functionsif functions can bedeclared within any

scope passed as arguments to other functions returned as results of functions.In a

language with first-class functions and static scope, a function value is generally

represented by a closure. a pair consisting of a pointer to function code a pointer

to an activation record.Passing functions as arguments is very useful in structuring

of systems using upcalls

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/

Call-by-Value

The actual parameters are evaluated and their r-values are passed to the

called procedure

A procedure called by value can affect its caller either through nonlocal names or

through pointers.

Parameters in C are always passed by value. Array is unusual, what is passed by

value is a pointer.

Pascal uses pass by value by default, but var parameters are passed by reference.

Call-by-Reference

Also known as call-by-address or call-by-location. The caller passes to the

called procedure the l-valueof the parameter.

If the parameter is an expression, then the expression is evaluated in a new

location, and the address of the new location is passed.

Parameters in Fortran are passed by reference an old implementation bug in

Fortran

func(a,b) { a = b};

call func(3,4); print(3);

Copy-Restore

A hybrid between call-by-value and call-by reference.

The actual parameters are evaluated and their r-values are passed as in call- by-value.

In addition, l values are determined before the call.

When control returns, the current r-values of the formal parameters are copied back

into the l-values of the actual parameters.

Call-by-Name

The actual parameters literally substituted for the formals. This is like a macro-

expansion or in-line expansion Call-by-name is not used in practice. However, the

conceptually related technique of in-line expansion is commonly used. In-lining may

be one of the most effective optimization transformations if they are guided by

execution profiles. Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

SYMBOL TABLE

Symbol table is an important data structure created and maintained by compilers

in order to store information about the occurrence of various entities such as variable

names, function names, objects, classes, interfaces, etc. Symbol table is used by both

the analysis and the synthesis parts of a compiler.

 A symbol table may serve the following purposes depending upon the

language in hand:

 To store the names of all entities in a structured form at one place.

 To verify if a variable has been declared.

 To implement type checking, by verifying assignments and expressions

in the source code are semantically correct.

 To determine the scope of a name (scope resolution).

Implementation

If a compiler is to handle a small amount of data, then the symbol table can be

implemented as an unordered list, which is easy to code, but it is only suitable for small

tables only. A symbol table can be implemented in one of the following ways: \

 Linear (sorted or unsorted) list

 Binary Search Tree

 Hash table

Among all, symbol tables are mostly implemented as hash tables, where the

source code symbol itself is treated as a key for the hash function and the return value is

the information about the symbol.

Operations

A symbol table, either linear or hash, should provide the following operations.

insert()

This operation is more frequently used by analysis phase, i.e., the first half of

the compiler where tokens are identified and names are stored in the table. This

operation is used to add information in the symbol table about unique names occurring

in the source code. The format or structure in which the names are stored depends upon

the compiler in hand.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

An attribute for a symbol in the source code is the information associated with

that symbol. This information contains the value, state, scope, and type about the

symbol. The insert() function takes the symbol and its attributes as arguments and stores

the information in the symbol table.

For example: int a; should be processed by the compiler as:

insert(a, int);

Lookup()

lookup() operation is used to search a name in the symbol table to determine:

 if the symbol exists in the table.

 if it is declared before it is being used.

 if the name is used in the scope.

 if the symbol is initialized.

 if the symbol declared multiple times.

The format of lookup() function varies according to the programming language.

The basic format should match the following:

lookup(symbol)

This method returns 0 (zero) if the symbol does not exist in the symbol table. If

the symbol exists in the symbol table, it returns its attributes stored in the table.

Scope Management

A compiler maintains two types of symbol tables: a global symbol table which

can be accessed by all the procedures and scope symbol tables that are created for each

scope in the program.

To determine the scope of a name, symbol tables are arranged in hierarchical

structure as shown in the example below:

. . . int value=10;

void pro_one()

{

int one_1;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

int one_2;

{

\ int one_3; |_ inner scope 1 int one_4; |

} / int one_5;

{

\ int one_6; |_ inner scope 2 int one_7; |

} / }

void pro_two()

{

int two_1; int two_2;

{ \ int two_3; |_ inner scope 3 int two_4; | }

/ int two_5; } . . .

The global symbol table contains names for one global variable (int value) and

two procedure names, which should be available to all the child nodes shown above.

The names mentioned in the pro_one symbol table (and all its child tables) are not

available for pro_two symbols and its child tables.

This symbol table data structure hierarchy is stored in the semantic analyzer and

whenever a name needs to be searched in a symbol table, it is searched using the

following algorithm:

 first a symbol will be searched in the current scope, i.e., current symbol

table,

 if a name is found, then search is completed, else it will be searched in

the parent symbol table until,

 either the name is found or the global symbol table has been searched for

the name.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

UNIT V - CODE OPTIMIZATION AND CODE GENERATION

Topics to be Covered

Principal Sources of Optimization-DAG- Optimization of Basic Blocks-Global Data Flow Analysis-

Efficient Data Flow Algorithms-Issues in Design of a Code Generator - A Simple Code Generator

Algorithm.

INTRODUCTION

➢ The code produced by the straight forward compiling algorithms can often be made to run

faster or take less space, or both. This improvement is achieved by program transformations

that are traditionally called optimizations. Compilers that apply code-improving

transformations are called optimizing compilers.

➢ Optimizations are classified into two categories. They are
Machine independentoptimizations:

Machine dependant optimizations:

Machine independent optimizations:

Machine independent optimizations are program transformations that improve the target code

without taking into consideration any properties of the target machine.

Machine dependant optimizations:

Machine dependant optimizations are based on register allocation and utilization of special

machine-instruction sequences.

The criteria for code improvement transformations:

✓ Simply stated, the best program transformations are those that yield the most benefit for the
least effort.

✓ The transformation must preserve the meaning of programs. That is, the optimization must
not change the output produced by a program for a given input, or cause an error such as
division by zero, that was not present in the original source program. At all times we take the
―safe‖ approach of missing an opportunity to apply a transformation rather than risk
changing what the programdoes.

✓ A transformation must, on the average, speed up programs by a measurable amount. We are
also interested in reducing the size of the compiled code although the size of the code has
less importance than it once had. Not every transformation succeeds in improving every
program, occasionally an ―optimization‖ may slow down a program slightly.

✓ The transformation must be worth the effort. It does not make sense for a compiler writer to

expend the intellectual effort to implement a code improving transformation and to have the
compiler expend the additional time compiling source programs if this effort is not repaid

when the target programs are executed. ―Peephole‖ transformations of this kind are simple
enough and beneficial enough to be included in any compiler.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Organization for an OptimizingCompiler:

➢ Flow analysis is a fundamental prerequisite for many important types of code
improvement.

Generally control flow analysis precedes data flow analysis.

Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA
constructs such as

control flow graph

Call graph

Data flow analysis (DFA) is the process of ascerting and collecting information prior to

program execution about the possible modification, preservation, and use of certain

entities (such as values or attributes of variables) in a computer program.

PRINCIPAL SOURCES OF OPTIMISATION

A transformation of a program is called local if it can be performed by looking only at the
statements in a basic block; otherwise, it is called global.

Many transformations can be performed at both the local and global levels. Local

transformations are usually performed first.

Function-Preserving Transformations

There are a number of ways in which a compiler can improve a program without

changing the function it computes.

The transformations

✓ Common sub expression elimination,

✓ Copy propagation,

✓ Dead-code elimination, and

✓ Constant folding

are common examples of such function-preserving transformations. The other

transformations come up primarily when global optimizations are performed.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Frequently, a program will include several calculations of the same value, such as an
offset in an array. Some of the duplicate calculations cannot be avoided by the

programmer because they lie below the level of detail accessible within the source
language.

➢ Common Sub expressionselimination:

An occurrence of an expression E is called a common sub-expression if E was previously

computed, and the values of variables in E have not changed since the previous

computation. We can avoid recomputing the expression if we can use the previously

computed value.

For example
t1: = 4*i
t2: = a [t1]
t3: = 4*j
t4: = 4*i
t5: = n
t6: = b [t4] +t5

The above code can be optimized using the common sub-expression elimination as

t1: = 4*i
t2: = a [t1]
t3: = 4*j
t5: = n
t6: = b [t1] +t5

The common sub expression t4: =4*i is eliminated as its computation is already in t1. And

value of i is not been changed from definition to use.

➢ Copy Propagation:

Assignments of the form f : = g called copy statements, or copies for short. The idea

behind the copy-propagation transformation is to use g for f, whenever possible after the

copy statement f: = g. Copy propagation means use of one variable instead of another.

This may not appear to be an improvement, but as we shall see it gives us an opportunity

to eliminate x.

For example:

x=Pi;
……

A=x*r*r;

The optimization using copy propagation can be done as follows:

A=Pi*r*r;

Here the variable x is eliminated

➢ Dead-Code Eliminations:

A variable is live at a point in a program if its value can be used subsequently; otherwise,

it is dead at that point. A related idea is dead or useless code, statements that compute

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

values that never get used. While the programmer is unlikely to introduce any dead code

intentionally, it may appear as the result of previous transformations. An optimization can

be done by eliminating dead code.

Example:

i=0;

if(i=1)

{

a=b+5;

}

Here, „if‟ statement is dead code because this condition will never get satisfied.

➢ Constant folding:

We can eliminate both the test and printing from the object code. More generally,

deducing at compile time that the value of an expression is a constant and using the
constant instead is known as constant folding.

One advantage of copy propagation is that it often turns the copy statement into dead

code.

✓ For example,
a=3.14157/2 can be replaced by
a=1.570 there by eliminating a division operation.

➢ Loop Optimizations:

We now give a brief introduction to a very important place for optimizations, namely

loops, especially the inner loops where programs tend to spend the bulk of their time. The

running time of a program may be improved if we decrease the number of instructions in
an inner loop, even if we increase the amount of code outside that loop.

Three techniques are importantfor loop optimization:

✓ code motion, which moves code outside a loop;

✓ Induction-variable elimination, which we apply to replace variables from inner loop.
✓ Reduction in strength, which replaces and expensive operation by a cheaper one, suchas

a multiplication by an addition.

➢ Code Motion:

An important modification that decreases the amount of code in a loop is code motion.

This transformation takes an expression that yields the same result independent of the

number of times a loop is executed (a loop-invariant computation) and places the

expression before the loop. Note that the notion ―before the loop‖ assumes the existence

of an entry for the loop. For example, evaluation of limit-2 is a loop-invariant

computation in the following while-statement:

while (i <= limit-2) /* statement does not change limit*/

Code motion will result in the equivalent of Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

t= limit-2;

while (i<=t) /* statement does not change limit or t */

➢ Induction Variables :

Loops are usually processed inside out. For example consider the loop around B3.

Note that the values of j and t4 remain in lock-step; every time the value of j decreases by
1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called
induction variables.

When there are two or more induction variables in a loop, it may be possible to get rid of
all but one, by the process of induction-variable elimination. For the inner loop around

B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4.
However, we can illustrate reduction in strength and illustrate a part of the process of

induction-variable elimination. Eventually j will be eliminated when the outer loop of B2

- B5 is considered.

Example:

As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is not
changed elsewhere in the inner loop around B3, it follows that just after the statement
j:=j-1 the relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t4:=
4*j by t4:= t4-4. The only problem is that t4 does not have a value when we enter block B3
for the first time. Since we must maintain the relationship t4=4*j on entry to the block B3,
we place an initializations of t4 at the end of the block where j itself is

before after

initialized, shown by the dashed addition to block B1 in second Fig.

The replacement of a multiplication by a subtraction will speed up the object code if

multiplication takes more time than addition or subtraction, as is the case on many machines.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Input: A basic block

Output: A DAG for the basic block containing the following information:

1. A label for each node. For leaves, the label is an identifier. For interior
nodes, an operator symbol.

2. For each node a list of attached identifiers to hold the computed
values. Case (i) x : = y OP z

Case (ii) x : =

OP y Case (iii) x

: = y

Method:

Step 1: If y is undefined then create node(y).

If z is undefined, create node(z) for case(i).

Step 2: For the case(i), create a node(OP) whose left child is node(y) and

right child is node(z). (Checking for common sub expression). Let n

be this node.

For case(ii), determine whether there is node(OP) with one child node(y). If not create

such a node.

For case(iii), node n will be node(y).

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of

attached identifiers for the node n found in step 2 and set node(x) to n.

➢ Reduction In Strength:

 Reduction in strength replaces expensive operations by equivalent cheaper ones on

the target machine. Certain machine instructions are considerably cheaper than
others and can often be used as special cases of more expensive operators.

For example, x is invariably cheaper to implement as x*x than as a call to an
exponentiation routine. Fixed-point multiplication or division by a power of two is

cheaper to implement as a shift. Floating-point division by a constant can be
implemented as multiplication by a constant, which may be cheaper.

THE DAG REPRESENTATION FOR BASIC BLOCKS

 A DAG for a basic block is a directed acyclic graph with the following labels on

nodes:

1. Leaves are labeled by unique identifiers, either variable names or constants.
2. Interior nodes are labeled by an operator symbol.
3. Nodes are also optionally given a sequence of identifiers for labels to store

the computed values.

DAGs are useful data structures for implementing transformations on basic blocks.

It gives a picture of how the value computed by a statement is used in subsequent

statements.

It provides a good way of determining common sub - expressions.

Algorithm for construction of DAG

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1. t1 := 4* i
2. t2 := a[t1]
3. t3 := 4* i
4. t4 := b[t3]
5. t5 := t2*t4

6. t6 := prod+t5

7. prod :=
t6 8. t7 :=
i+1 9. i
:= t7

10. if i<=20 goto (1)

Example: Consider the block of three- address statements:

Stages in DAG Construction

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Application of DAGs:

1. We can automatically detect commonsub expressions.

2. We can determine which identifiers have their values used in the block.

3. We can determine which statements compute values that could be used outside the block.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

GENERATING CODE FROM DAGs

The advantage of generating code for a basic block from its dag representation is that,

from a dag we can easily see how to rearrange the order of the final computation sequence than

we can starting from a linear sequence of three-address statements or quadruples.

Rearranging the order

The order in which computations are done can affect the cost of resulting object code.

For example, consider the following basic block:

t1 : = a + b

t2 : = c + d

t3 : = e – t2

t4 : = t1 – t3

Generated code sequence for basic block:

MOV a , R0

ADD b , R0

MOV c , R1

ADD d , R1

MOV R0 , t1

MOV e , R0

SUB R1 , R0

MOV t1 , R1

SUB R0 , R1

MOV R1 , t4

Rearranged basic block:

Now t1 occurs immediately before t4.

t2 : = c + d

t3 : = e – t2

t1 : = a + b

t4 : = t1 – t3

Revised code sequence:

MOV c , R0

ADD d , R0

MOV a , R0

SUB R0 , R1

MOV a , R0

ADD b , R0

SUB R1 , R0

MOV R0 , t4

In this order, two instructions MOV R0 , t1 and MOV t1 , R1 have been saved.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

A Heuristic ordering for Dags

The heuristic ordering algorithm attempts to make the evaluation of a node immediately follow

the evaluation of its leftmost argument.

The algorithm shown below produces the ordering in reverse.

Algorithm:

1) while unlisted interior nodesremain do begin

2) select an unlisted node n, all of whose parents have been listed;

3) list n;

4) while the leftmost child m of n has no unlisted parents and is not a leaf do

begin

5) list m;

6) n : = m

end

end

Example: Consider the DAG shown below:

12

Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line (3).

Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6).

Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we

select a new n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left

chain, listing 4, 5 and 6. This leaves only 8 among the interior nodes so we list that.

The resulting list is 1234568 and the order of evaluation is 8654321.

1
*

2 + - 3

4
*

5
- + 8

6 + 7 c d 11 e

a
9

b
10

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Code sequence:

t8 : = d + e t6 : = a

+ b t5 : = t6 – c t4

: = t5 * t8 t3 : = t4

– e t2 : = t6 + t4 t1

: = t2 * t3

This will yield an optimal code for the DAG on machine whatever be the number of registers.

OPTIMIZATION OF BASIC BLOCKS

There are two types of basic block optimizations. They are :

✓ Structure-Preserving Transformations

✓ Algebraic Transformations

Structure-Preserving Transformations:

The primary Structure-Preserving Transformation on basic blocks are:

✓ Common sub-expressionelimination

✓ Dead code elimination

✓ Renaming of temporaryvariables

✓ Interchange of two independentadjacent statements.

➢ Common sub-expressionelimination:

Common sub expressions need not be computed over and over again. Instead they can be

computed once and kept in store from where it‟s referenced when encountered again – of course

providing the variable values in the expression still remain constant.

Example:

a: =b+c

b: =a-d

c: =b+c

d: =a-d

The 2

nd
 and 4

th
 statements compute the same expression: b+c and a-d

Basic block can be transformed to

a: = b+c

b: = a-d

c: = a

d: = b Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

➢ Dead code elimination:

It‟s possible that a large amount of dead (useless) code may exist in the program. This

might be especially caused when introducing variables and procedures as part of constructio n or

error-correction of a program – once declared and defined, one forgets to remove them in case

they serve no purpose. Eliminating these will definitely optimize the code.

➢ Renaming of temporary variables:

A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is

another temporary name, and change all uses of t to u.

In this we can transform a basic block to its equivalent block called normal-form block.

➢ Interchange of two independent adjacent statements:
Two statements

t1:=b+c

t2:=x+y

can be interchanged or reordered in its computation in the basic block when value of t1

does not affect the value of t2.

Algebraic Transformations:

Algebraic identities represent another important class of optimizations on basic blocks.
This includes simplifying expressions or replacing expensive operation by cheaper ones

i.e. reduction in strength.

Another class of related optimizations is constant folding. Here we evaluate constant

expressions at compile time and replace the constant expressions by their values. Thus
the expression 2*3.14 would be replaced by 6.28.

The relational operators <=, >=, <, >, + and = sometimes generate unexpected common

sub expressions.

Associative laws may also be applied to expose common sub expressions. For example, if

the source code has the assignments

a :=b+c

e :=c+d+b

the following intermediate code may be generated:

a :=b+c

t :=c+d

e :=t+b

Example:

x:=x+0 can be removed

x:=y**2 can be replaced by a cheaper statement x:=y*y

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The compiler writer should examine the language carefully to determine what
rearrangements of computations are permitted, since computer arithmetic does not always

obey the algebraic identities of mathematics. Thus, a compiler may evaluate x*y-x*z as
x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c.

LOOPS IN FLOW GRAPH

A graph representation of three-address statements, called a flow graph, is useful for

understanding code-generation algorithms, even if the graph is not explicitly constructed by a

code-generation algorithm. Nodes in the flow graph represent computations, and the edges

represent the flow of control.

Dominators:

In a flow graph, a node d dominates node n, if every path from initial node of the flow

graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the

remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop.

Similarly every node dominates itself.

Example:

*In the flow graph below,
*Initial node,node1 dominates every node.

*node 2 dominates itself

*node 3 dominates all but 1 and 2.

*node 4 dominates all but 1,2 and 3.

*node 5 and 6 dominates only themselves,since flow of control can skip around either by goin

through the other.

*node 7 dominates 7,8 ,9 and 10.

*node 8 dominates 8,9 and 10.

*node 9 and 10 dominates only themselves.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The way of presenting dominator information is in a tree, called the dominator tree in

which the initial node is the root.

The parent of each other node is its immediate dominator.

Each node d dominates only its descendents in the tree.

The existence of dominator tree follows from a property of dominators; each node has a

unique immediate dominator in that is the last dominator of n on any path from the initial

node to n.

In terms of the dom relation, the immediate dominator m has the property is d=!n and d
dom n, then d dom m.

D(1)={1} D(2)={1,2}

D(3)={1,3}

D(4)={1,3,4}

D(5)={1,3,4,5}

D(6)={1,3,4,6}

D(7)={1,3,4,7}

D(8)={1,3,4,7,8}

D(9)={1,3,4,7,8,9}

D(10)={1,3,4,7,8,10}

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Natural Loop:

One application of dominator information is in determining the loops of a flow graph suitable

for improvement.

The properties of loops are

✓ A loop must have a single entry point, called the header. This entry point-dominates all
nodes in the loop, or it would not be the sole entry to the loop.

✓ There must be at least one way to iterate the loop(i.e.)at least one path back to the header.

One way to find all the loops in a flow graph is to search for edges in the flow graph whose

heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of

edges are called as back edges.

✓ Example:

In the above graph,

7 → 4 4 DOM 7

10 →7 7 DOM 10

4 → 3

8 → 3

9 →1

The above edges will form loop in flow graph.

Given a back edge n → d, we define the natural loop of the edge to be d plus the set of nodes

that can reach n without going through d. Node d is the header of the loop.

Algorithm: Constructing the natural loop of a back edge.

Input: A flow graph G and a back edge n→d.

Output: The set loop consisting of all nodes in the natural loop n→d.

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make

sure that m‟s predecessors are also placed in loop. Each node in loop, except for d, is placed once

on stack, so its predecessors will be examined. Note that because d is put in the loop initially, we

never examine its predecessors, and thus find only those nodes that reach n without going

through d.

Procedure insert(m);

if m is not in loop then begin

loop := loop U {m};

push m onto stack

end;

stack : = empty;

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

header

header pre-header

loop : = {d};

insert(n);

while stack is not empty do begin

pop m, the first element of stack, off stack;

for each predecessor p of m do insert(p)

end

Inner loop:

If we use the natural loops as ―the loops‖, then we have the useful property that unless

two loops have the same header, they are either disjointed or one is entirely contained in

the other. Thus, neglecting loops with the same header for the moment, we have a natural
notion of inner loop: one that contains no other loop.

When two natural loops have the same header, but neither is nested within the other, they
are combined and treated as a singleloop.

Pre-Headers:

Several transformations require us to move statements ―before the header‖. Therefore

begin treatment of a loop L by creating a new block, called the preheater.

The pre-header has only the header as successor, and all edges which formerly entered

the header of L from outside L instead enter the pre-header.

Edges from inside loop L to the header are not changed.

Initially the pre-header is empty, but transformations on L may place statements in it.

loop L

loop L

(a) Before (b) After

Reducible flow graphs:

Reducible flow graphs are special flow graphs, for which several code optimization

transformations are especially easy to perform, loops are unambiguously defined,

dominators can be easily calculated, data flow analysis problems can also be solved

efficiently.

Exclusive use of structured flow-of-control statements such as if-then-else, while-do,

continue, and break statements produces programs whose flow graphs are always

reducible.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The most important properties of reducible flow graphs are that there are no jumps into

the middle of loops from outside; the only entry to a loop is through its header.

Definition:

A flow graph G is reducible if and only if we can partition the edges into two disjoint

groups, forward edges and back edges, with the following properties.

✓ The forward edges from an acyclic graph in which every node can be reached from initial

node of G.

✓ The back edges consist only of edges where heads dominate theirs tails.

✓ Example: The above flow graph isreducible.

If we know the relation DOM for a flow graph, we can find and remove all the back

edges.

The remaining edges are forwardedges.

If the forward edges form an acyclic graph, then we can say the flow graph reducible.

In the above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7

whose heads dominate their tails, the remaining graph is acyclic.

The key property of reducible flow graphs for loop analysis is that in such flow graphs

every set of nodes that we would informally regard as a loop must contain a back edge.

PEEPHOLE OPTIMIZATION

A statement-by-statement code-generations strategy often produce target code that

contains redundant instructions and suboptimal constructs .The quality of such target

code can be improved by applying ―optimizing‖ transformations to the targetprogram.

A simple but effective technique for improving the target code is peephole optimization,

a method for trying to improving the performance of the target program by examining a
short sequence of target instructions (called the peephole) and replacing these

instructions by a shorter or faster sequence, whenever possible.

The peephole is a small, moving window on the target program. The code in the peephole

need not contiguous, although some implementations do require this.it is characteristic of
peephole optimization that each improvement may spawn opportunities for additional

improvements.

We shall give the following examples of program transformations that are characteristic

of peephole optimizations:

✓ Redundant-instructions elimination

✓ Flow-of-control optimizations

✓ Algebraic simplifications

✓ Use of machine idioms

✓ Unreachable Code

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Redundant Loads And Stores:

If we see the instructions sequence

(1) MOV R0,a

(2) MOV a,R0

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of a is

already in register R0.If (2) had a label we could not be sure that (1) was always executed immediately

before (2) and so we could not remove (2).

Unreachable Code:

Another opportunity for peephole optimizations is the removal of unreachable instructions. An

unlabeled instruction immediately following an unconditional jump may be removed. This operation

can be repeated to eliminate a sequence of instructions. For example, for debugging purposes, a large

program may have within it certain segments that are executed only if a variable debug is 1. In C, the

source code might look like:

#define debug 0

….

If (debug) {

Print debugging information

}

In the intermediate representations the if-statement may be translated as:

If debug =1 goto L2

goto L2

L1: print debugging information

L2 ... (a)

One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what the value

of debug; (a) can be replaced by:

If debug ≠1 goto L2

Print debugging information

L2: .. (b)

As the argument of the statement of (b) evaluates to a constant true it can be replaced by
If debug ≠0 goto L2
Print debugging information

L2: .. (c)

As the argument of the first statement of (c) evaluates to a constant true, it can be replaced by goto L2.
Then all the statement that print debugging aids are manifestly unreachable and can be eliminated

one at a time.

Flows-Of-Control Optimizations:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The unnecessary jumps can be eliminated in either the intermediate code or th e target code by the

following types of peephole optimizations. We can replace the jump sequence

goto L1

….

L1: gotoL2 by the sequence

goto L2

….

L1: goto L2

If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto L2

provided it is preceded by an unconditional jump .Similarly, the sequence

if a < b goto L1

….

L1: goto L2 can be replaced by

If a < b goto L2

….
L1: goto L2

Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto.
Then the sequence

goto L1

……..

L1: if a < b goto L2

L3: ... (1)

May be replaced by

If a < b goto L2 goto L3

…….
L3:.. (2)

While the number of instructions in (1) and (2) is the same, we sometimes skip the unconditional jump

in (2), but never in (1).Thus (2) is superior to (1) in execution time

Algebraic Simplification:

 There is no end to the amount of algebraic simplification that can be attempted through peephole

optimization. Only a few algebraic identities occur frequently enough that it is worth considering
implementing them .For example, statements such as

x := x+0 Or

x := x * 1

Are often produced by straightforward intermediate code-generation algorithms, and they can be

eliminated easily through peephole optimization.

Reduction in Strength:

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target

machine. Certain machine instructions are considerably cheaper than others and can often be used

as special cases of more expensiveoperators.

For example, x is invariably cheaper to implement as x*x than as a call to an exponentiation routine.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fixed-point multiplication or division by a power of two is cheaper to implement as a shift. Floating-

point division by a constant can be implemented as multiplication by a constant, which may be

cheaper.

X
2
 → X*X

Use of Machine Idioms:

The target machine may have hardware instructions to implement certain specific operations
efficiently. For example, some machines have auto-increment and auto-decrement addressing modes.

These add or subtract one from an operand before or after using its value.

The use of these modes greatly improves the quality of code when pushing or popping a stack, as in

parameter passing. These modes can also be used in code for statements like

i :=i+1.

i:=i+1 → i++ i:=i-1 →

i- -

INTRODUCTION TO GLOBAL DATAFLOW ANALYSIS

 In order to do code optimization and a good job of code generation , compiler needs to collect

information about the program as a whole and to distribute this information to each block in the

flow graph.

A compiler could take advantage of ―reaching definitions‖ , such as knowing where a variable like

debug was last defined before reaching a given block, in order to perform transformations are just a

few examples of data-flow information that an optimizing compiler collects by a process known as

data-flow analysis.

Data-flow information can be collected by setting up and solving systems of equations of the form :

out [S] = gen [S] U (in [S] – kill [S])

This equation can be read as ― the information at the end of a statement is either generated within

the statement , or enters at the beginning and is not killed as control flows through the statement.‖

The details of how data-flow equations are set and solved depend on three factors.

✓ The notions of generating and killing depend on the desired information, i.e., on the data flow

analysis problem to be solved. Moreover, for some problems, instead of proceeding along with

flow of control and defining out[s] in terms of in[s], we need to proceed backwards and define

in[s] in terms ofout[s].

✓ Since data flows along control paths, data-flow analysis is affected by the constructs in a program.

In fact, when we write out[s] we implicitly assume that there is unique end point where control

leaves the statement; in general, equations are set up at the level of basic blocks rather than

statements, because blocks do have unique end points.

✓ There are subtleties that go along with such statements as procedure calls, assignments through

pointer variables, and even assignments to array variables.

Points and Paths:

Within a basic block, we talk of the point between two adjacent statements, as well as the point

before the first statement and after the last. Thus, block B1 has four points: one before any of the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

B
4

B
6

d6 :a :=u2

B
2

d4 : I :=
i+1

B
3 d5: j := j-1

d1 : i :=m-

1 d2: j :=n

d3: a := u1

assignments and one after each of the three assignments.

B1

B5

Now let us take a global view and consider all the points in all the blocks. A path from p1

to pn is a sequence of points p1, p2,….,pn such that for each i between 1 and n-1, either

✓ Pi is the point immediately preceding a statement and pi+1 is the point immediately following
that statement in the same block, or

✓ Pi is the end of some block and pi+1 is the beginning of a successor block.

Reaching definitions:

 A definition of variable x is a statement that assigns, or may assign, a value to x. The most

common forms of definition are assignments to x and statements that read a value from an i/o

device and store it in x.

These statements certainly define a value for x, and they are referred to as unambiguous

definitions of x. There are certain kinds of statements that may define a value for x; they are called

ambiguous definitions. The most usual forms of ambiguous definitions of x are:

✓ A call of a procedure with x as a parameter or a procedure that can access x because x is in the

scope of the procedure.

✓ An assignment through a pointer that could refer to x. For example, the assignment *q: = y is a

definition of x if it is possible that q points to x. we must assume that an assignment through a

pointer is a definition of everyvariable.

We say a definition d reaches a point p if there is a path from the point immediately following d

to p, such that d is not ―killed‖ along that path. Thus a point can be reached

by an unambiguous definition and an ambiguous definition of the same variable

appearing later along one path.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

S
1

S
2

If E goto s1

S
1

If E goto
s1

Data-flow analysis of structured programs:

Flow graphs for control flow constructs such as do-while statements have a useful

property: there is a single beginning point at which control enters and a single end point

that control leaves from when execution of the statement is over. We exploit this property

when we talk of the definitions reaching the beginning and the end of statements with the

following syntax.

S id: = E| S; S | if E then S else S | do S while E

E id + id| id

Expressions in this language are similar to those in the intermediate code, but the flow

graphs for statements have restrictedforms.

S1 ; S2

IF E then S1 else S2 do S1 while E

We define a portion of a flow graph called a region to be a set of nodes N that includes a

header, which dominates all other nodes in the region. All edges between nodes in N are

in the region, except for some that enter the header.

The portion of flow graph corresponding to a statement S is a region that obeys the
further restriction that control can flow to just one outside block when it leaves the
region.

S
1

S
2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

S S
1

S
2

We say that the beginning points of the dummy blocks at the entry and exit of a

statement‟s region are the beginning and end points, respectively, of the statement. The
equations are inductive, or syntax-directed, definition of the sets in[S], out[S], gen[S],

and kill[S] for all statements S.

gen[S] is the set of definitions “generated” by S while kill[S] is the set of definitions

that never reach the end of S.

Consider the following data-flow equations for reaching definitions :

i)

gen [S] = { d }
kill [S] = Da – { d }

out [S] = gen [S] U (in[S] – kill[S])

Observe the rules for a single assignment of variable a. Surely that assignment is a

definition of a, say d. Thus
Gen[S]={d}

On the other hand, d ―kills‖ all other definitions of a, so we write

Kill[S] = Da – {d}
Where, Da is the set of all definitions in the program for variable a. ii)

gen[S]=gen[S2] U (gen[S1]-kill[S2])
Kill[S] = kill[S2] U (kill[S1] – gen[S2])

in [S1] = in [S]
in [S2] = out [S1]
out [S] = out [S2]

S d : a : = b + c

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Under what circumstances is definition d generated by S=S1; S2? First of all, if it is
generated by S2, then it is surely generated by S. if d is generated by S1, it will reach the
end of S provided it is not killed by S2. Thus, we write
gen[S]=gen[S2] U (gen[S1]-kill[S2]

Similar reasoning applies to the killing of a definition, so we have

Kill[S] = kill[S2] U (kill[S1] – gen[S2])

Conservative estimation of data-flow information:

There is a subtle miscalculation in the rules for gen and kill. We have made the

assumption that the conditional expression E in the if and do statements are

―uninterpreted‖; that is, there exists inputs to the program that make their branches go

either way.

We assume that any graph-theoretic path in the flow graph is also an execution path, i.e.,

a path that is executed when the program is run with least one possible input.

When we compare the computed gen with the ―true‖ gen we discover that the true gen is

always a subset of the computed gen. on the other hand, the true kill is always a superset

of the computed kill.

These containments hold even after we consider the other rules. It is natural to wonder

whether these differences between the true and computed gen and kill sets present a

serious obstacle to data-flow analysis. The answer lies in the use intended for these data.

Overestimating the set of definitions reaching a point does not seem serious; it merely

stops us from doing an optimization that we could legitimately do. On the other hand,

underestimating the set of definitions is a fatal error; it could lead us into making a

change in the program that changes what the program computes. For the case of reaching

definitions, then, we call a set of definitions safe or conservative if the estimate is a

superset of the true set of reaching definitions. We call the estimate unsafe, if it is not

necessarily a superset of the truth.

Returning now to the implications of safety on the estimation of gen and kill for reaching

definitions, note that our discrepancies, supersets for gen and subsets for kill are both in

the safe direction. Intuitively, increasing gen adds to the set of definitions that can reach a

point, and cannot prevent a definition from reaching a place that it truly reached.

Decreasing kill can only increase the set of definitions reaching any given point.

Computation of in and out:

Many data-flow problems can be solved by synthesized translations similar to those used

to compute gen and kill. It can be used, for example, to determine loop-invariant

computations.

However, there are other kinds of data-flow information, such as the reaching-definitions

problem. It turns out that in is an inherited attribute, and out is a synthesized attribute

depending on in.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

S, taking into account the flow of control throughout the entire program, including

statements outside of S or within which S is nested.

The set out[S] is defined similarly for the end of s. it is important to note the distinction

between out[S] and gen[S]. The latter is the set of definitions that reach the end of S

without following paths outside S.

Assuming we know in[S] we compute out by equation, that

is Out[S] = gen[S] U (in[S] - kill[S])

Considering cascade of two statements S1; S2, as in the second case. We start by

observing in[S1]=in[S]. Then, we recursively compute out[S1], which gives us in[S2],

since a definition reaches the beginning of S2 if and only if it reaches the end of S1. Now

we can compute out[S2],and this set is equal to out[S].

Considering if-statement we have conservatively assumed that control can follow either

branch, a definition reaches the beginning of S1 or S2 exactly when it reaches the

beginning of S.

In[S1] = in[S2] = in[S]

If a definition reaches the end of S if and only if it reaches the end of one or both sub

statements; i.e,

Out[S]=out[S1] U out[S2]

Representation of sets:

Sets of definitions, such as gen[S] and kill[S], can be represented compactly using bit

vectors. We assign a number to each definition of interest in the flow graph. Then bit

vector representing a set of definitions will have 1 in position I if and only if the

definition numbered I is inthe set.

The number of definition statement can be taken as the index of statement in an array

holding pointers to statements. However, not all definitions may be of interest during

global data-flow analysis. Therefore the number of definitions of interest will typically be

recorded in a separate table.

A bit vector representation for sets also allows set operations to be implemented

efficiently. The union and intersection of two sets can be implemented by logical or and

logical and, respectively, basic operations in most systems-oriented programming

languages. The difference A-B of sets A and B can be implemented by taking the

complement of B and then using logical and to compute A

.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Local reaching definitions:

Space for data-flow information can be traded for time, by saving information only at

certain points and, as needed, recomputing information at intervening points. Basic

blocks are usually treated as a unit during global flow analysis, with attention restricted to

only those points that are the beginnings of blocks.

Since there are usually many more points than blocks, restricting our effort to blocks is a

significant savings. When needed, the reaching definitions for all points in a block can be

calculated from the reaching definitions for the beginning of a block.

Use-definition chains:

It is often convenient to store the reaching definition information as‖ use-definition

chains‖ or ―ud-chains‖, which are lists, for each use of a variable, of all the definitions

that reaches that use. If a use of variable a in block B is preceded by no unambiguous

definition of a, then ud-chain for that use of a is the set of definitions in in[B] that are

definitions of a.in addition, if there are ambiguous definitions of a ,then all of these for

which no unambiguous definition of a lies between it and the use of a are on the ud-chain

for this use of a.

Evaluation order:

The techniques for conserving space during attribute evaluation, also apply to the

computation of data-flow information using specifications. Specifically, the only

constraint on the evaluation order for the gen, kill, in and out sets for statements is that

imposed by dependencies between these sets. Having chosen an evaluation order, we are

free to release the space for a set after all uses of it have occurred.

Earlier circular dependencies between attributes were not allowed, but we have seen that

data-flow equations may have circular dependencies.

General control flow:

 Data-flow analysis must take all control paths into account. If the control paths are

evident from the syntax, then data-flow equations can be set up and solved in a syntax-

directed manner.

When programs can contain goto statements or even the more disciplined break and

continue statements, the approach we have taken must be modified to take the actual

control paths into account.

Several approaches may be taken. The iterative method works arbitrary flow graphs.

Since the flow graphs obtained in the presence of break and continue statements are

reducible, such constraints can be handled systematically using the interval -based

methods

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

However, the syntax-directed approach need not be abandoned when break and continue

statements are allowed.

CODE GENERATION

The final phase in compiler model is the code generator. It takes as input an intermediate

representation of the source program and produces as output an equivalent target program. The

code generation techniques presented below can be used whether or not an optimizing phase

occurs before code generation.

Position of code generator

source intermediate code intermediate
 code

target

program code optimizer code generato
r

program

ISSUES IN THE DESIGN OF A CODE GENERATOR

The following issues arise during the code generation phase :

1. Input to code generator

2. Target program

3. Memory management

4. Instruction selection

5. Register allocation

6. Evaluation order

1. Input to code generator:

The input to the code generation consists of the intermediate representation of the source
program produced by front end , together with information in the symbol table to

determine run-time addresses of the data objects denoted by the names in the
intermediate representation.

Intermediate representationcan be :

a. Linear representation such as postfix notation

b. Three address representation such asquadruples

c. Virtual machine representation such as stack machine code
d. Graphical representations such as syntax trees and dags.

Prior to code generation, the front end must be scanned, parsed and translated into
intermediate representation along with necessary type checking. Therefore, input to code

generation is assumed to beerror-free.

2. Target program:

 The output of the code generator is the target program. The output may be :

a. Absolute machinelanguage

- It can be placed in a fixed memory location and can be executed immediately.

symbo

l

table

front end

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

b. Relocatable machine language

- It allows subprograms to be compiled separately.

c. Assembly language

- Code generation is made easier.

3. Memory management:

Names in the source program are mapped to addresses of data objects in run-time

memory by the front end and code generator.
It makes use of symbol table, that is, a name in a three-address statement refers to a
symbol-table entry for the name.

Labels in three-address statements have to be converted to addresses of instructions.

For example,
j : goto i generates jump instruction as follows :

➢ if i < j, a backward jump instruction with target address equal to location of
code for quadruple i is generated.

➢ if i > j, the jump is forward. We must store on a list for quadruple i the

location of the first machine instruction generated for quadruple j. When i is

processed, the machine locations for all instructions that forward jumps to i

are filled.

4. Instruction selection:

The instructions of target machine should be complete and uniform.

Instruction speeds and machine idioms are important factors when efficiency of target
program is considered.

The quality of the generated code is determined by its speed and size.

The former statement can be translated into the latter statement as shown below:

5. Register allocation

Instructions involving register operands are shorter and faster than those involving
operands in memory.
The use of registers is subdivided into two subproblems :
➢ Register allocation – the set of variables that will reside in registers at a point in

the program is selected.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

➢ Register assignment – the specific register that a variable will reside in is
picked

Certain machine requires even-odd register pairs for some operands and results.

For example , consider the division instruction of the form :

D x, y

where, x – dividend even register in even/odd register pair

y – divisor

even register holds the remainder

odd register holds the quotient

6. Evaluation order

The order in which the computations are performed can affect the efficiency of the
target code. Some computation orders require fewer registers to hold intermediate
results than others.

TARGET MACHINE

 Familiarity with the target machine and its instruction set is a prerequisite for designing a

good code generator.

The target computer is a byte-addressable machine with 4 bytes to a word.

It has n general-purpose registers, R0, R1, . . . , Rn-1.
It has two-address instructions of the form:

op source, destination

where, op is an op-code, and source and destination are data fields.

It has the following op-codes :
MOV (move source to destination)

ADD (add source to destination)

SUB (subtract source from destination)

The source and destination of an instruction are specified by combining registers and

memory locations with address modes.

Address modes with their assembly-language forms

MODE FORM ADDRESS ADDED COST

absolute M M 1

register R R 0

indexed c(R) c+contents(R) 1

indirect register *R contents (R) 0

indirect indexed *c(R) contents(c+

contents(R))

1

literal #c c 1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

For example : MOV R0, M stores contents of Register R0 into memory location M ; MOV

4(R0), M stores the value contents(4+contents(R0)) into M.

Instruction costs :

 Instruction cost = 1+cost for source and destination addressmodes. This cost corresponds

to the length of the instruction.

Address modes involving registers have cost zero.

Address modes involving memory location or literal have cost one.

Instruction length should be minimized if space is important. Doing so also minimizes the

time taken to fetch and perform the instruction.

For example : MOV R0, R1 copies the contents of register R0 into R1. It has cost one,

since it occupies only one word of memory.

The three-address statement a : = b + c can be implemented by many different instruction

sequences :

i) MOV b, R0

ADD c, R0 cost = 6

MOV R0, a

ii) MOV b, a

ADD c, a cost = 6

iii) Assuming R0, R1 and R2 contain the addresses of a, b, and c :

MOV *R1, *R0

ADD *R2, *R0 cost = 2

In order to generate good code for target machine, we must utilize its addressing

capabilities efficiently.

A SIMPLE CODE GENERATOR

 A code generator generates target code for a sequence of three- address statements and

effectivelyuses registers to store operands of the statements.

For example: consider the three-address statement a := b+c

It can have the following sequence of codes:

ADD Rj, Ri Cost = 1 // if Ri contains b and Rj contains c

(or)

ADD c, Ri Cost = 2 // if c is in a memory location

(or)

MOV c, Rj Cost = 3 // move c from memory to Rjand add

ADD Rj, Ri

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Register and Address Descriptors:

A register descriptor is used to keep track of what is currently in each registers. The

register descriptors show that initially all the registers are empty.

An address descriptor stores the location where the current value of the name can be

found at run time.

A code-generation algorithm:

The algorithm takes as input a sequence of three-address statements constituting a basic block.

For each three-address statement of the form x : = y op z, perform the following actions:

2. Invoke a function getreg to determine the location L where the result of the computation y op

z should be stored.

3. Consult the address descriptor for y to determine y‟, the current location of y. Prefer the

register for y‟ if the value of y is currently both in memory and a register. If the value of y is

not already in L, generate the instruction MOV y‟ , L to place a copy of y in L.

4. Generate the instruction OP z‟ , L where z‟ is a current location of z. Prefer a register to a

memory location if z is in both. Update the address descriptor of x to indicate that x is in

location L. If x is in L, update its descriptor and remove x from all other descriptors.

5. If the current values of y or z have no next uses, are not live on exit from the block, and are in

registers, alter the register descriptor to indicate that, after execution of x : = y op z , those

registers will no longer contain y or z.

Generating Code for Assignment Statements:

The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three-

address code sequence:

t : = a – b

u : = a – c

v : = t + u

d : = v + u

with d live at the end.

Code sequence for the example is:

Statements Code Generated Register descriptor Address descriptor

 Register empty

t : = a - b MOV a, R0 SUB b,

R0

R0 contains t t in R0

u : = a - c MOV a , R1 SUB c

, R1

R0 contains t R1

contains u

t in R0 u in

R1

v : = t + u ADD R1, R0 R0 contains v R1

contains u

u in R1 v in

R0

d : = v + u ADD R1, R0 MOV

R0, d

R0 contains d d in R0

d in R0 and memory

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Generating Code for Indexed Assignments

The table shows the code sequences generated for the indexed assignment statements

a : = b [i] and a [i] : = b

Statements Code Generated Cost

a : = b[i] MOV b(Ri), R 2

a[i] : = b MOV b, a(Ri) 3

Generating Code for Pointer Assignments

The table shows the code sequences generated for the pointer assignments

a : = *p and *p : = a

Statements Code Generated Cost

a : = *p MOV *Rp, a 2

*p : = a MOV a, *Rp 2

Generating Code for Conditional Statements

Statement Code

if x < y goto z CMP x, y

CJ< z /* jump to z if condition code

is negative */

x : = y +z MOV y, R0

if x < 0 goto z ADD z, R0

 MOV R0,x
 CJ< z

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

