
 

 

 

 

 
 

 

 

 

 

CS8602 

Compiler Design 

(Anna University - Regulation) 

 

 

 

 

 
 

 

 

 

 

 
 

Downloaded from: annauniversityedu.blogspot.com 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



 

UNIT 1 – INTRODUCTION TO COMPILERS 
 

Topics to be Covered 

 
Translators-Compilation and Interpretation-Language processors -The Phases of Compiler- 

Errors Encountered in Different Phases-The Grouping of Phases-Compiler Construction Tools - 

Programming Language basics. 

 

 Translators: 

 
A translator is a computer program that performs the translation of a program written in a  

given programming language into a functionally equivalent program in a different computer 

language, without losing the functional or logical structure of the original code (the "essence" of 

each program). 

Types of Computer Language Translators: 

 
The widely used translators that translate the code of a computer program into a machine code 

are: 

1. Assemblers 

2. Interpreters 

3. Compilers 

 
Assembler: 

An Assembler converts an assembly program into machine code. 
 
 

 

Compilation and Interpretation: 

 Compilation: 

Compilation is the conceptual process of translating source code into a CPU-executable binary 

target code. 
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Target 

Program 

Compiler 

Compiler: 

 
A compiler is a program that reads a program written in one language – the source language – 

and translates it into an equivalent program in another language – the target language. 
 

 

 

 

source Program target program 

 

 

 

 

error messages 
 

As an important part of this translation process, the compiler reports to its user the presence of 

errors in the source program. 

If the target program is an executable machine-language program, it can then be called by the 

user to process inputs and produce outputs. 

 

 

 

input output 

 

 

 

 

Advantages of Compiler: 

1. Fast in execution 

2. The object/executable code produced by a compiler can be distributed or executed without 

having to have the compiler present. 

3. The object program can be used whenever required without the need to of recompilation. 

 
 

Disadvantages of Compiler: 

1. Debugging a program is much harder. Therefore not so good at finding errors. 

2. When an error is found, the whole program has to be re-compiled. 
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History of Compiler: 

 Until 1952 most of the programs were written in assembly language 

 In 1952 Grace Hopper writes the first compiler for the A-0 programming language 

 Between 1957 – 58 John Backus writes the first Fortran compiler. Optimization  

of the code was the integral component of the compiler. 

Applications of Compiler Technology: 

 Implementation of High Level Programming Languages 

 Optimizations for Computer Architectures (both parallelism and memory hierarchies 

improve the potential performance of a machine, but they must be harnessed effectively 

by the compiler to deliver real performance of an application) 

 Design of a new computer architecture 

 Program Translations ( Program Translation techniques are: Binary Translation, 

Hardware Synthesis, Database Query Interpreters, Compiled Simulation) 

 Software Productivity Tools (Ex. Structure editors, type checking, bound checking, 

memory management tools, etc) 

 Interpretation: 

Interpretation is the conceptual process of translating a high level source code into executable 

code. 

Interpreter: 

 
An Interpreter is also a program that translates high-level source code into executable code. 

However the difference between a compiler and an interpreter is that an interpreter translates 

one line at a time and then executes it: no object code is produced, and so the program has to 

be interpreted each time it is to be run. If the program performs a section code 1000 times, then 

the section is translated into machine code 1000 times since each line is interpreted and then 

executed. Aru
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Advantages of an Interpreter: 

1. Good at locating errors in programs 

2. Debugging is easier since the interpreter stops when it encounters an error. 

3. If an error is deducted there is no need to retranslate the whole program 

 
 

Disadvantages of an Interpreter: 

1. Rather slow 

2. No object code is produced, so a translation has to be done every time the program is running. 

3. For the program to run, the Interpreter must be present 

 

 

Difference between Compiler and Interpreter: 

 
S.No. Compiler Interpreter 

 
1. 

Compiler works on the complete program 

at  once. It takes the entire program as 

input. 

Interpreter Program works line by line. It 

takes one statement at a time as input. 

2. 
Compiler generates intermediate code, 

called the object code or machine code. 

Interpreter does not generate intermediate 

object code or machine code. 

 

 
3. 

Compiler executes conditional control 

statements (like if-else and switch-case) 

and logical constructs faster than 

interpreter. 

 
Interpreter executes conditional control 

statements at a much slower speed. 

 
4. 

Compiled program take more memory 

because the entire object code has to reside 

in memory. 

Interpreter does not generate intermediate 

object  code. As a result, interpreted 

programs are more memory efficient. 
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S.No. Compiler Interpreter 

 
5. 

Compile once and run any time. Compiled 

program does not need to be compiled 

every time. 

Interpreted programs are interpreted line 

by line every time they are executed. 

 

 
6. 

 
Errors are reported after the entire program 

is checked for syntactical and other errors. 

Error is reported as soon as the first error 

is encountered. Rest of the program will 

be checked until the existing error is 

removed. 

 
7. 

A compiled language is more difficult to 

debug. 

Debugging is easy because interpreter 

stops and report errors as it encounters 

them. 

 
8. 

Compiler does not allow a program to run 

until it is completely error-free. 

Interpreter runs the program from the 

first line and stops execution only if it 

encounters an error. 

9. 
Compiled languages are more efficient but 

difficult to debug. 

Interpreted languages are less efficient 

but easier to debug. 

 
10. 

Examples: 

C, C++, COBOL 

Examples: 

BASIC, VISUAL BASIC, Python, Ruby, 

PERL, MATLAB, Lisp 

 

 

Hybrid Compiler: 

 
Hybrid compiler is a compiler which translates a human readable source code to an intermediate 

byte code for later interpretation. So these languages do have both features of a compiler and an 

interpreter. These types of compilers are commonly known as Just In-time Compilers (JIT). 

 
Example of a Hybrid Compiler: 

 
Java is one good example for these types of compilers. Java language processors combine 

compilation and interpretation. A Java Source program may be first compiled into an 

intermediate form called byte codes. The byte codes are then interpreted by a virtual machine. 
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Translator 

A benefit of this arrangement is that the byte codes compiled on one machine can be interpreted 

on another machine, perhaps across a network. 

In order to achieve faster processing of inputs to outputs, some Java compilers called just-in-time 

compilers, translate the byte codes into machine language immediately before they run the 

intermediate program to process the input. 

Source program 
 

 

 

 

 

 

 

 

Intermediate Program 
 

Input 

Output 

 

Compilers are not only used to translate a source language into the assembly or machine 

language but also used in other places. 

Example: 

 
1. Text Formatters: A text formatter takes input that is stream of characters, 

most of which is text, some of which includes commands to indicate paragraphs, figures, 

or mathematical structures like subscripts and superscripts. 

2. Silicon compilers: A silicon compiler has a source language that is similar  

or identical to a conventional programming language. The variable of the language 

represent logical signals (0 or 1) or groups of signals in a switching circuit. The output is 

a circuit design in an appropriate language. 

3. Query Interpreters: A query interpreter translates a predicate containing 

relational and Boolean operators into commands to search a database for records 

satisfying that predicate. 

Virtual 

Machine 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



 

 Language Processors: 
 

A language processor is a program that processes the programs written in programming language 

(source language). A part of a language processor is a language translator, which translates the 

program from the source language into machine code, assembly language or other language. 

 
An integrated software developmental environment includes many different kinds of language 

processors. They are: 

1. Pre Processor 

2. Compiler 

3. Assembler 

4. Linker 

5. Loader 

 
 

1. Pre Processor 

The Pre Processor is the system software which is used to process the source program before fed 

into the compiler. They may perform the following functions: 

1. Macro Processing: A preprocessor may allow a user to define macros that 

are shorthand for longer constructs. 

2. File Inclusion: A preprocessor may include header files into the program 

text. For example, the C pre-processor causes the contents of the file <global.h> to 

replace the statement #include <global.h> when it processes a file containing this 

statement. 

3. Rational Preprocessors: These processors provides the user with built-in 

macros for constructs like while-statements or if-statements etc., 

4. Language Extensions: It provides features similar to built-in macros. For 

example, the language Equel is a database query language embedded in C. 

 

 
2. Interpreter 

An interpreter, like a compiler, translates high-level language into low-level machine language. 

The difference lies in the way they read the source code or input. A compiler reads the whole 
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source code at once, creates tokens, checks semantics, generates intermediate code, executes the 

whole program and may involve many passes. In contrast, an interpreter reads a statement from 

the input, converts it to an intermediate code, executes it, then takes the next statement in 

sequence. If an error occurs, an interpreter stops execution and reports it. whereas a compiler 

reads the whole program even if it encounters several errors. 

 
3. Assembler 

An assembler translates assembly language programs into machine code. The output of an 

assembler is called an object file, which contains a combination of machine instructions as well 

as the data required to place these instructions in memory. 

 
4. Linker 

Linker is a computer program that links and merges various object files together in order to make 

an executable file. All these files might have been compiled by separate assemblers. The major 

task of a linker is to search and locate referenced module/routines in a program and to determine 

the memory location where these codes will be loaded, making the program instruction to have 

absolute references. 

 
5. Loader 

Loader is a part of operating system and is responsible for loading executable files into memory 

and executes them. It calculates the size of a program instructions and data and creates memory 

space for it. It initializes various registers to initiate execution. 

 
 Phases of Compiler: 

A compiler operates in phases, each of which transforms the source program from one 

representation to another. 
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The Analysis – Synthesis Model of Compilation: 
 

There are two parts to compilation: 

 
 Analysis and 

 Synthesis 

 
1. Analysis: 

 
The first three phases forms the bulk of the analysis portion of a compiler. The analysis part 

breaks up the source program into constituent pieces and creates an intermediate representation 

of the source program. During analysis, the operations implied by the source program are 

determined and recorded in a hierarchical structure called a syntax tree, in which each node 

represents an operation and the children of a node represent the arguments of the operation. 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



 

Example: 

 
Syntax tree for position := initial + rate * 60 

 

:= 

 
 

position + 

  

initial * 

rate 60 

 
2. Synthesis Part: 

 
The synthesis part constructs the desired target program from the intermediate representation. 

This part requires most specialized techniques. 

The Analysis Phase: 
 

Lexical Analysis: The lexical analysis phase reads the characters in the source program and 

groups them into a stream of tokens in which each token represents a logically sequence of 

characters, such as identifier, a keyword (if, while, etc), a punctuation character, or a multi- 

character operator work like :=. The character sequence forming a token is called the lexeme for 

the token. 

Certain tokens will be augmented by a ―lexical value‖. Ex. When an identifier rate is found, the 

lexical analyzer generates the token id and also enters rate into the symbol table, if it is not 

already exist. The lexical value associated with this id then points to the symbol-table entry for 

rate. 

Example: position := initial + rate * 60 

Tokens: 
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1. position, initial and rate - id 

2. :=, + and * are signs 

3. 60 is a number 

 
Thus the lexical analyzer will give the output as: 

 
Id1 := id2 + id3 * 60 

Syntax Analysis: 

The next phase is called the syntax analysis or parsing. It takes the token produced by lexical 

analysis as input and generates a parse tree or syntax tree. In this phase, token arrangements are 

checked against the source code grammar, i.e. the parser checks if the expression made by the 

tokens is syntactically correct. 

It imposes a hierarchical structure of the token stream in the form of parse tree or syntax tree. 

The syntax tree can be represented by using suitable data structure. 

Example: position := initial + rate * 60 

 
:= 

 
 

position + 

  

initial * 

rate 60 
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* 

+ 

id 4 

id 3 

id 2 

id 1 

:= 

Data structure of the above tree: 
 
 

Semantic Analysis: 

 
Semantic analysis checks whether the parse tree constructed follows the rules of language. For 

example, assignment of values is between compatible data types, and adding string to an integer. 

Also, the semantic analyzer keeps track of identifiers, their types and expressions; whether 

identifiers are declared before use or not etc. The semantic analyzer produces an annotated 

syntax tree as an output. 

This analysis inserts a conversion from integer to real in the above syntax tree. 

:= 

 
 

position + 

  

initial * 

  
rate inttoreal 

 

 

 
60 
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Synthesis Phase: 
 

Intermediate Code Generation: 

 
After semantic analysis the compiler generates an intermediate code of the source code for the 

target machine. It represents a program for some abstract machine. It is in between the high-level 

language and the machine language. This intermediate code should be generated in such a way 

that it makes it easier to be translated into the target machine code. 

Intermediate code have two properties: easy to produce and easy to translate into the target 

program. An intermediate code representation can have many forms. One of the form is three- 

address code, which is like the assembly language for a machine in which every memory 

location can act like a register and three-address code have at most three operands. 

Example: The output of the semantic analysis can be represented in the following intermediate 

form: 

temp1 := inttoreal ( 60 ) 

temp2 := id3 * temp1 

temp3 := id2 + temp2 

id1 := temp3 

Code Optimization: 

 
The next phase does code optimization of the intermediate code. Optimization can be assumed as 

something that removes unnecessary code lines, and arranges the sequence of statements in order 

to speed up the program execution without wasting resources CPU, memory. In the following 

example the natural algorithm is used for optimizing the code. 

Example: 

 
The output of intermediate code can be optimized as: 

temp1 := id3 * 60.0 

id1 := id2 + temp1 
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The compiler that do most code optimization are called “optimizing compilers”. 

 
Code Generation: 

 
This is the final phase of the compiler which generates the target code, consisting normally of 

relocatable machine code or assembly code. Variables are assigned to the registers. 

Example: 

 
The output of above optimized code can be generated as: 

 
MOVF id3, R2 

MULF #60.0, R2 

MOVF id2, R1 

ADDF R2, R1 

MOVF R1, id3 

The first and the second operands of each instruction specify a source and destination 

respectively. The F in each instruction denotes the floating point numbers. The # signifies that 

60.0 is to be treated as constant. 

 

 

 
Activities of Compiler: 

 
Symbol table manager and error handler are the other two activities in the compiler which is also 

referred as phases. These two activities interact with all the six phases of a compiler. 

Symbol Table Manager: 

 
The symbol table is a data structure containing a record for each identifier, with fields for the 

attributes of the identifier. 

The attributes of the identifiers may provide the information about the storage allocated for an 

identifier, its type, its scope (where in the program it is valid), and in the case of procedure 
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names the attributes provide information about the number and types of its arguments, the 

method of passing each argument (eg. by reference), and the type returned, if any. 

The symbol table allows us to find the record for each identifier quickly and to store or retrieve 

data from that record quickly. Attributes of the identifiers cannot be determined during lexical 

analysis phase. But it can be determined during the syntax and semantic analysis phases. The 

other phase like code generators uses the symbol table to retrieve the details about the identifiers. 

Error Handler: ( Error Detection and Reporting) 

 
Each phase can encounter errors. After the deduction of an error, a phase must somehow deal 

with that error, so that the compilation can proceed, allowing further errors in the source program 

to be detected. 

Lexical Analysis Phase: If the characters remaining in the input do not form any token of the 

language, then the lexical analysis phase detect the error. 

Syntax Analysis Phase: The large fraction of errors is handled by syntax and semantic analysis 

phases. If the token stream violates the structure rules (syntax) of the language, then this phase 

detects the error. 

Semantic Analysis Phase: If the constructs have right syntactic structure but no meaning to the 

operation involved, then this phase detects the error. Ex. Adding two identifiers, one of which is 

the name of the array, and the other the name of a procedure. 
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Translation of statement 
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Errors Encountered in Different Phases: 

Program submitted to a compiler often have errors of various kinds. So, good compiler should  

be able to detect as many errors as possible in various ways and also recover from them. 

Each phase can encounter errors. After the deduction of an error, a phase must somehow deal 

with that error, so that the compilation can proceed, allowing further errors in the source program 

to be detected. 

 

 
Errors during Lexical Analysis: 

 

If the characters remaining in the input do not form any token of the language, then the lexical 

analysis phase detect the error. 

There are relatively few errors which can be detected during lexical analysis. 
 

i. Strange characters 
 

Some programming languages do not use all possible characters, so any strange ones 

which appear can be reported. However almost any character is allowed within a quoted 

string. 

ii. Long quoted strings (1) 
 

Many programming languages do not allow quoted strings to extend over more than one 

line; in such cases a missing quote can be detected. 

iii. Long quoted strings (2) 
 

If quoted strings can extend over multiple lines then a missing quote can cause quite a lot 

of text to be 'swallowed up' before an error is detected. 

iv. Invalid numbers 
 

A number such as 123.45.67 could be detected as invalid during lexical analysis 

(provided the language does not allow a full stop to appear immediately after a number). 

Some compiler writers prefer to treat this as two consecutive numbers 123.45 and .67 as 

far as lexical analysis is concerned and leave it to the syntax analyser to report an error. 

Some languages do not allow a number to start with a full stop/decimal point, in which 

case the lexical analyzer can easily detect this situation. 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



 

Source: A + * B 

Error: | Found '*', expect one of: Identifier, Constant, '(' 

Error Recovery Actions: 

 
The possible error-recovery actions are: 

 
i) Deleting an extraneous character 

ii) Inserting a missing character 

iii) Replacing an incorrect character by correct character 

iv) Transposing two adjacent characters 

For example: 

fi ( a == 1) .... 

 
Here fi is a valid identifier. But the open parentheses followed by the identifier may tell fi is 

misspelling of the keyword if or an undeclared function identifier. 

 

 
Errors in Syntax Analysis: 

The large fraction of errors is handled by syntax and semantic analysis phases. If the token 

stream violates the structure rules (syntax) of the language, then this phase detects the error. 

The errors detected in this phase include misplaced semicolons or extra or missing braces; that 

is, "{" or " } . " As another example, in C or Java, the appearance of a case statement without an 

enclosing switch is a syntactic error. (However, this situation is usually allowed by the parser 

and caught later in the processing, as the compiler attempts to generate code). Unbalanced 

parenthesis in expressions is handled 

During syntax analysis, the compiler is usually trying to decide what to do next on the basis of 

expecting one of a small number of tokens. Hence in most cases it is possible to automatically 

generate a useful error message just by listing the tokens which would be acceptable at that  

point. 

More specific hand-tailored error messages may be needed in cases of bracket mismatch. 
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A parser should be able to detect and report any error in the program. It is expected that when an 

error is encountered, the parser should be able to handle it and carry on parsing the rest of the 

input. Mostly it is expected from the parser to check for errors but errors may be encountered at 

various stages of the compilation process. A program may have the following kinds of errors at 

various stages: 

 Lexical : name of some identifier typed incorrectly 

 Syntactical : missing semicolon or unbalanced parenthesis 

 Semantical : incompatible value assignment 

 Logical : code not reachable, infinite loop 

There are four common error-recovery strategies that can be implemented in the parser to deal 

with errors in the code. 

 
Panic mode 

When a parser encounters an error anywhere in the statement, it ignores the rest of the statement 

by not processing input from erroneous input to delimiter, such as semi-colon. This is the easiest 

way of error-recovery and also, it prevents the parser from developing infinite loops. 

 
Statement mode 

When a parser encounters an error, it tries to take corrective measures so that the rest of inputs of 

statement allow the parser to parse ahead. For example, inserting a missing semicolon, replacing 

comma with a semicolon etc.. Parser designers have to be careful here because one wrong 

correction may lead to an infinite loop. 

 
Error productions 

Some common errors are known to the compiler designers that may occur in the code. In 

addition, the designers can create augmented grammar to be used, as productions that generate 

erroneous constructs when these errors are encountered. 

 

Source: C := ( A + B * 3 ; 

Error: | Missing ')' or earlier surplus '(' 
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Global correction 

The parser considers the program in hand as a whole and tries to figure out what the program is 

intended to do and tries to find out a closest match for it, which is error-free. When an erroneous 

input (statement) X is fed, it creates a parse tree for some closest error-free statement Y. This 

may allow the parser to make minimal changes in the source code, but due to the complexity 

(time and space) of this strategy, it has not been implemented in practice yet. 

 

Errors during Semantic Analysis 

Semantic errors are mistakes concerning the meaning of a program construct; they may be either 

type errors, logical errors or run-time errors: 

(i) Type errors occur when an operator is applied to an argument of the wrong type, or to 

the wrong number of arguments. 

(ii) Logical errors occur when a badly conceived program is executed, for example: while x 

= y do ... when x and y initially have the same value and the body of loop need not 

change the value of either x or y. 

(iii) Run-time errors are errors that can be detected only when the program is executed, for 

example: 

var x : real; readln(x); writeln(1/x) 

which would produce a run time error if the user input 0. 

 
 

Syntax errors must be detected by a compiler and at least reported to the user (in a helpful way). 

If possible, the compiler should make the appropriate correction(s). Semantic errors are much 

harder and sometimes impossible for a computer to detect. 

 

 The Grouping of Phases: 

Depending on the relationship between phases, the phases are grouped together as front end and 

a back end. 

Front End: 
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The front end consists of phases that depend primarily on the source language and are largely 

independent of the target machine. The phases of front end are: 

 Lexical Analysis 

 Syntactic Analysis 

 Creation of the symbol table 

 Semantic Analysis 

 Generation of the intermediate code 

 A part of code optimization 

 Error Handling that goes along with the above said phases 
 

 

 

 

character stream 
 

token stream 
 

intermediate 

representation 

Back End: 

 
The back end includes the phases of the compiler that depend on the target machine, and these 

phases do not depend on the source language, but depend on the intermediate language. The 

phases of back end are: 

 Code Optimization 

 Code Generation 

 Necessary Symbol table and error handling operations 

 
Categories of Compiler Design: 

 
Based on the grouping of phases there are two types of compiler design is possible: 

 
1. A Single Compiler for different Machine - It is possible to produce a single 

compiler for the same source language on a different machine by taking the front end of a 

compiler as common and redo its associated back end. 

2. Several Compiler for One Machine – It is possible to produce several 

compilers for one machine by using a common back end for the different front ends. 

Syntax Directed 
 

Translator 

Lexical 
 

Analyzer 
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 Compiler Construction Tools: 

 
In order to atomize the development of compilers some general tools have been created. These 

tools use specialized languages for specifying and implementing the component. The most 

successful tool should hide the details of the generation algorithm and produce components 

which can be easily integrated into the remainder of the compiler. These tools are often referred 

as compiler – compilers, compiler – generators, or translator-writing systems. 

Some of the compiler-construction tools are: 

 
Parser generators: Automatically produce syntax analyzers from a grammatical description 

of a programming language. 

 
Scanner generators: Produce lexical analyzers from a regular-expression description of the 

tokens of a language. 

 
Syntax-directed translation engines: Produce collections of routines for walking a parse tree 

and generating intermediate code. 

 
Code-generator generators: Produce a code generator from a collection of rules for 

translating each operation of the intermediate language into the machine language for a target 

machine. 

Data-flow analysis engines: Facilitate the gathering of information about how values are 

transmitted from one part of a program to each other part. Data-flow analysis is a key part of 

code optimization. 

 
Compiler-construction toolkits: Provide an integrated set of routines for constructing various 

phases of a compiler. 
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Programming Language Basics: 

The important terminology and distinctions that appear in the programming languages are: 

 
 

1. The Static / Dynamic Distinction: 

 A programming language can have static policy and dynamic policy. 

 Static Policy: The issues that can be decided at compile time by compiler is called static 

policy. 

 Dynamic Policy: The issues that can be decided at run time of the program is called 

dynamic policy. 

 One of the issue decision policy in the language is the scope of declarations. 

 Scope Rules: The scope of a declaration of x is the context in which uses of x refer to this 

declaration. A language uses static scope or lexical scope if it is possible to determine the 

scope of a declaration by looking only at the program and can be determined by compiler. 

Otherwise, the language uses dynamic scope. 

 Example in Java: 

public static int x; 

The compiler can determine the location of integer x in memory. 

 
 

2. Environments and States: 

The association of names with locations in memory (the store) and then with values can be 

described by two state mappings that change as the program runs. 

 

 

 

 

Two-State Mapping from Names to Values 

The environment is a mapping from names to locations in the store. 

The state is a mapping from locations in store to their values. That is, the state maps l-values to 

their corresponding r-values, in the terminology of C. 
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Example: 

The storage address 100, associated with variable pi, holds 0. After the assignment pi := 3.14, 

the same storage is associated with pi, but the value held there is 3.14. 

 
3. Static Scope and Block Structure: 

 
 

Scope Rules: The scope of a declaration of x is the context in which uses of x refer to this 

declaration. . A language uses static scope or lexical scope if it is possible to determine the scope 

of a declaration by looking only at the program and can be determined by compiler. Otherwise, 

the language uses dynamic scope. 

 Example in Java: 

public static int x; 

The compiler can determine the location of integer x in memory. 

The static-scope policy is as follows: 

1. A C program consists of a sequence of top-level declarations of variables and functions. 

2. Functions may have variable declarations within them, where variables include local 

variables and parameters. The scope of each such declaration is restricted to the function 

in which it appears. 

3. The scope of a top-level declaration of a name x consists of the entire program that 

follows, with the exception of those statements that lie within a function that also has a 

declaration of x. 

 
Block Structures: 

Languages that allow blocks to be nested are said to have block structure. A name a: in a nested 

block B is in the scope of a declaration D of x in an enclosing block if there is no other 

declaration of x in an intervening block. Aru
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4. Explicit Access Control: 

 Classes and structures introduce a new scope for their members. 

 The use of keywords like public, private, and protected, object oriented languages such 

as C + + or Java provide explicit control over access to member names in a super class. 

 These keywords support encapsulation by restricting access. 

 Thus, 

o Private names are purposely given a scope that includes only the method 

declarations and definitions associated with that class and any "friend" classes 

(the C + + term). 

o Protected names are accessible to subclasses. 

o Public names are accessible from outside the class. 

 

5. Dynamic Scope: 

 Scope Rules: The scope of a declaration of x is the context in which uses of x refer to this 

declaration. 

 A language uses static scope or lexical scope if it is possible to determine the scope of a 

declaration by looking only at the program and can be determined by compiler. 

 Example in Java: 

public static int x; 

The compiler can determine the location of integer x in memory. 

 The language uses dynamic scope if it is not possible to determine the scope of a 

declaration during compile time. 

 Example in Java: 

public int x; 

 With dynamic scope, as the program runs, the same use of x could refer to any of several 

different declarations of x. 

 
6. Parameter Passing Mechanism: Parameters are passed from a calling procedure to the callee 

either by value (call by value) or by reference (call by reference). Depending on the procedure 

call, the actual parameters associated with formal parameters will differ. 
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Call-By-Value: In call-by-value, the actual parameter is evaluated (if it is an expression) or 

copied (if it is a variable). The value is placed in the location belonging to the corresponding 

formal parameter of the called procedure. 

 
Call-By-Reference: 

In call-by-reference, the address of the actual parameter is passed to the callee as the value of the 

corresponding formal parameter. Uses of the formal parameter in the code of the callee are 

implemented by following this pointer to the location indicated by the caller. Changes to the 

formal parameter thus appear as changes to the actual parameter. 

 
Call-By-Name: 

A third mechanism — call-by-name — was used in the early programming language Algol 60. It 

requires that the callee execute as if the actual parameter were substituted literally for the formal 

parameter in the code of the callee, as if the formal parameter were a macro standing for the 

actual parameter (with renaming of local names in the called procedure, to keep them distinct). 

 
When large objects are passed by value, the values passed are really references to the objects 

themselves, resulting in an effective call-by-reference. 

 
7. Aliasing: When parameters are (effectively) passed by reference, two formal parameters can 

refer to the same object, called aliasing. This possibility allows a change in one variable to 

change another. 
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UNIT 2 – LEXICAL ANALYSIS 
 

Topics to be Covered 

 
Need and Role of Lexical Analyzer-Lexical Errors-Expressing Tokens by Regular 

Expressions-Converting Regular Expression to DFA- Minimization of DFA-Language for 

Specifying Lexical Analyzers-LEX-Design of Lexical Analyzer for a sample Language. 

Lexical Analysis 

 
The Role of the Lexical Analyzer 

 
The lexical analyzer is the first phase of a compiler. 

 
Main Task of Lexical Analyzer: 

 
Its main task is to read the input characters and produce as output a sequence of tokens that 

the parser uses for syntax analysis. 

 

 

 

Source 

Program 

token 
 

 

 

 

 

 

 

 

 

 

 

 

The above diagram illustrates that the lexical analyzer is a subroutine or a co routine of the 

parser. Upon receiving a ―get next token‖ command from the parser, the lexical analyzer 

reads input characters until it can identify the next token. 

Secondary Tasks of Lexical Analyzer: 

 
Since Lexical analyzer is the part of the compiler that reads the source text, it may also 

perform certain secondary tasks at the user interface. 
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1. Stripping out from the source program comments and white space in the 

form of blank, tab and newline characters. 

2. Correlating error messages from the compiler with the source program. 

Example, the lexical analyzer may keep track of the number of newline 

characters seen, so that a line number can be associated with an error message. 

Phases of Lexical Analyzer: 

 
Lexical analyzers are divided into a cascade of two phases: 

 
Scanning – the scanner is responsible for doing simple tasks (Example – Fortran 

compiler use a scanner to eliminate blanks from the input) 

Lexical analysis – the lexical analyzer does the more complex operations. 

 
Issues in Lexical Analysis: 

 

There are several reasons for separating the analysis phase of compiling into lexical analysis 

and parsing: 

1. To make the design simpler. The separation of lexical analysis from syntax analysis 

allows the other phases to be simpler. For example, parsing a document with 

comments and white spaces is more complex than it is removed in the previous phase 

itself. 

2. To improve the efficiency of the compiler. A separate lexical analyzer allows to 

construct an efficient processor. A large amount of time is spent in reading the source 

program and partitioning it into tokens. Specialized buffering techniques speed up the 

performance. 

3. To enhance the compiler portability. Input alphabets and device specific anomalies 

can be restricted to the lexical analyzer. 

Tokens, Patterns and Lexemes: 
 

Token: A token is an atomic unit represents a logically cohesive sequence of characters such 

as an identifier, a keyword, an operator, constants, literal strings, punctuation symbols such as 

parentheses, commas and semicolons. 
 

Eg. rate - identifier 

 
+, - - operator 

 
if - keyword 

 

Pattern: A pattern is a rule used to describe lexeme. It is a set of strings in the input for 

which the same token is produced as output. 

 

 

2 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



 

Lexeme: A lexeme is a sequence of characters in the source program which is matched by the 

pattern for a token. i.e. lexemes represents tokens. 
 

Token Sample Lexemes Informal Description of Pattern 

Const Const const 

If If if 

Relation <, <=, =, < >, >, >= < or <= or = or < > or > or >= 

Id pi, count, A2 Letter followed by letters and digits 

Num 3.1416, 0, 6.02E23 any numeric constant 

Literal ―garbage collection‖ any characters between ― and ― except ― 

 

Attributes for Tokens: 
 

When more than one pattern matches a lexeme, the lexical analyzer must provide additional 

information about the particular lexeme that matched to the subsequent phases of the 

compiler. 

For example, the pattern relation matches the operators like <, <=, >, >=, =, < >. It is 

necessary to identify operator which is matched with the pattern. 

The lexical analyzer collects other information about tokens as its attributes. A token has 

only a single attribute, a pointer to the symbol -table entry in which the information about the 

token is kept. 

For example: The tokens and associated attribute-values for the Fortran statement 

X = Y * Z ** 4 

are written below as a sequence of pairs: 
 

<id, pointer to symbol-table entry for X> 
 

<assign_op,> 
 

<id, pointer to symbol-table entry for Y> 
 

<mult_op,> 
 

<id, pointer to symbol-table entry for Z> 
 

<exp_op,> 
 

<num, integer value 4> 
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For certain attribute pairs, there is no need for an attribute value. 

Eg. <assign_op,> 

For others, the compiler stores the character string that forms a value in a symbol table. 
 

Lexical Errors: 
 

A lexical analyzer has a very localized view of a source programs. 

The possible error-recovery actions are: 

i) Deleting an extraneous character 

ii) Inserting a missing character 

iii) Replacing an incorrect character by correct character 

iv) Transposing two adjacent characters 

For example: 

fi ( a == 1) .... 

 
Here fi is a valid identifier. But the open parentheses followed by the identifier may tell fi is 

misspelling of the keyword if or an undeclared function identifier. 

INPUT BUFFERING: 

 
Input buffering is a method used to read the source program and to identify the tokens 

efficiently. There are three general approaches to the implementation of a lexical analyzer. 

1. Use a lexical-analyzer generator to produce the lexical analyzer from a regular- 

expression based specification. In this case, the generator provides routines for 

reading and buffering the input. Example – Lex Compiler 

2. Write the lexical analyzer in a conventional systems-programming language, using 

the I/O facilities of that language to read the input. 

3. Write the lexical analyzer in assembly language and explicitly manage the reading of 

input. 

Since the lexical analyzer is the only phase of the compiler that reads the source program 

character-by-character, it is possible to spend a considerably amount of time in the lexical 

analysis phase. Thus the speed of lexical analysis is a concern in compiler design. 
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The following technique uses two-buffer input scheme to identify the tokens. The speed of 

the lexical .analyzer can be improved by using the sentinels to mark the buffer end. 

Buffer Pairs: 

 
The lexical analyzer needs to look-ahead many characters beyond the lexeme for finding the 

pattern. The lexical analyzer uses a function ungetc( ) to push the look-ahead characters back 

into the input stream. In order to reduce the amount of overhead required to process an input 

character, specialized buffering techniques have been developed. 

A buffer is divided into N-character halves where N is the number of characters on one disk 

block. Example 1024 or 4096 

 

: : : X : : = : : M : * : : C : * : * : 4 : eof : : : : : : 

 

 
forward 

lexeme_beginning 

Input Buffer with two halves 

 
The processing of buffer pair is as follows: 

 
1. Read N input character into each half of the buffer using one system read command 

instead of reading each input character 

2. If fewer than N characters remain in the input, then eof marker is read into the buffer 

after the input characters. 

3. Two pointers to the input buffer are maintained. Initially both pointers point to the 

first character of the next lexeme to be found. 

a. Begin pointer points the s tart of the lexeme 

b. The forward pointer is set to the character at its right end 

4. Once the lexeme is identified, both pointers are set to the character immediately past 

the lexeme. 

If the forward pointer is reaching the halfway mark, the right half is filled with N new input 

characters. If the forward pointer is about to move past the right end of the buffer, the left  

half is filled with N new characters and the forward pointer wraps around to the beginning of 

the buffer. The number of tests to be required is very large. 
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if forward at end of first half then begin 

reload second half; 

forward := forward + 1 

end 

 
 

else if forward at end of second half then begin 

reload first half; 

move forward to beginning of first half 

end 

else 

forward := forward + 1; 

Code to advance forward pointer: 
 

 

 

Sentinels: 

 
In the previous scheme mentioned a check should be made each time when the forward 

pointer is moved that we have not moved off one half of the buffer. i.e. only one eof marker 

at the end. 

A sentinel is a special character which is not a part of the source program used to represent 

the end of file. (eof) 

Instead of testing the forward pointer each time by two tests, extend each buffer half to hold a 

sentinel character at the end and reduce the number of tests to one. 

 

: : : X : : = : : M : * : eof C : * : * : 4 : eof : : : : : eof 

 

 
forward 

lexeme_beginning 

Sentinels at end of each buffer half 
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forward := forward + 1; 

if forward = eof then begin 

if forward at end of first half then begin 

reload second half; 

forward := forward + 1 

end 

else if forward at end of second half then begin 

reload first half; 

move forward to beginning of first half 

end 

else /* eof within a buffer signifying end of input */ 

terminate lexical analysis 

end 

For most of the cases, the code performs only one test to see whether forward point to an eof. 

If it reaches the end of a buffer or the end of the file, then we performs more tests for 

checking each half and to reload other half of the buffer. 

Look ahead code with sentinels: 
 

 

 

SPECIFICATION OF TOKENS: 

 
Regular expressions are an important notation for specifying patterns. Each pattern matches  

a set of strings, so regular expressions will serve as names for set of strings. 

Strings and Languages: 

 
Alphabet: An alphabet or character class denotes any finite set of symbols. For example, 

Letters, Characters, ASCII characters, EBCDIC characters 

String: A string over some alphabet is a finite sequence of symbols drawn from that alphabet. 

For example, 1  0  1  0  1  1  is a string over {0, 1}* , is a empty string over {0, 1}* 

 

Length of the String : The length of the string 1 0 1 is denoted as | 1 0 1 | = 3 i.e. the number 

of occurrences of symbol is S. 

Language: A language denotes any set of strings over some fixed alphabet . 
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Example Language L = {0
n
 1

n
 | n > 0} 

 
Some common terms associated with parts of a string are as follows: 

Let s be the string where S = ―regular‖. 

TERM DEFINITION 

prefix of s 
A string obtained by removing zero or more trailing symbols of 

string s; eg. ban is a prefix of banana 

suffix of s 
A string formed by deleting zero or more of the leading symbols 

of s; eg. nana is a suffix of banana 

substring of s 
A string obtained by deleting a prefix and a suffix from s; eg. 

nan is a substring of banana. 

proper prefix, suffix or 

substring of s 

Any nonempty string x that is, respectively, a prefix, suffix, or 

substring of s such that s ≠ x 

 
subsequence of s 

Any string formed by deleting zero or more not necessarily 

contiguous symbols from s; eg. baaa is a subsequence of 

banana. 

 

 
Operations on Languages: 

 
There are several important operations that ca be applied to languages. For lexical analysis 

the following operations are applied: 

 

OPERATION DEFINITION 

union of L and M 

written L U M 
L U M = { s | s is in L or s is in M } 

concatenation of L and M 

written LM 
LM = { st | s is in L and t is in M } 

 
Kleene closure of L 

written L* 

∞ 

L* = U L
i
 

i=0 

 

L* denotes ―zero or more concatenations of‖ L 

positive closure of L written ∞ 
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L+ L
+
 = U L

i
 

i=1 

 

L
+
 denotes ―one or more concatenations of‖ L 

Example: 

 
Let L = {A, B, . . . , Z, a, b, . . . , z} and 

 
D = {0, 1, . . . , 9} 

 
By applying operators defined above on these languages L and D we get the following new 

languages: 

1. L U D is the set of letters and digits 

i.e. L U D = {A,B, . . . ,Z, a, b, . . . , z, 0, 1, . . . , 9} 

2. LD is the set of strings consisting of a letter followed by a digit 

i.e. LD = {0A, 0B, . . . , 0Z, 0a, 0b, . . . , 0z, 1A, 1B, . . ,1Z, 1a, 1b, . . ,1z, ........ } 

3. L
4
 is the set of all four-letter strings  i.e. L

4
 = { aBAC, MNop, ........ } 

4. L* is the set of all strings of letters, including , the empty string 

i.e. L* = {   , A, B, . . . , Z, a, b, ...... , z, AB, BA, aB, ....... } 

5. L(L U D)* is the set of all strings of letters and digits beginning with a letter 

6. D
+
 is the set of all strings of one or more digits 

 
Regular Expressions: 

 
A regular expression is built out of simple regular expressions using a set of defining rules. 

Each regular expression r denotes a language L(r). 

Rules that define the regular expressions: 

 
Basis: 

 
i) is a regular expression denotes the language { }. 

ii) If a is a symbol in , then a is a regular expression denotes the language { a } 

 
Induction: 

 
iii) Suppose r and s are regular expressions denoting the language L(r) and L(s). Then, 

a. ( r ) | ( s ) is a regular expression denoting L ( r ) U L ( s ). 

b. ( r ) ( s ) is a regular expression denoting L ( r ) L ( s ). 
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c. ( r )* is a regular expression denoting ( L ( r ))*. 

d. ( r ) is a regular expression denoting L ( r ). 

 
A language denoted by a regular expression is said to be a regular set. 

 
The precedence and associativity of operators are as follows: 

 
1. the unary operator * has the highest precedence and is left associative. 

2. concatenation has the second highest precedence and is left associative. 

3. | has the lowest precedence and is left associative. 

 
Unnecessary parentheses can be avoided in the regular expression if the above precedence is 

adopted. For example the regular expression: (a) | ((b)* (c)) is equivalent to a | b*c. 

Example: 

 
Let = {a,b} 

 
1. The regular expression a | b denotes the set { a, b } 

2. The regular expression ( a | b ) ( a | b ) denotes {aa, ab, ba, bb}, the set of all strings 

of a’s and b’s of length two. Another regular expression for this same set is aa | ab | 

ba | bb. 

3. The regular expression a* denotes the set of all strings of zero or more a’s i.e. { , a, 

aa, aaa, . . . } 

4. The regular expression ( a | b )* denotes the set of all strings containing zero or more 

instances of an a or b, that is, the set of all strings of a’s and b’s. An equivalent 

regular expression for this set is ( a*b* )* 

5. The regular expression a | a*b denotes the set containing the string a and all strings 

consisting of zero or more a’s followed by a b. 

If two regular expressions r and s denote the same language, then we say r and s are 

equivalent and write r = s. For example, ( a | b ) = (b | a ). 

There are number of algebraic laws obeyed by regular expressions and these laws can be used 

to manipulate regular expressions into equivalent forms. 

Let r, s and t be the regular expression. The following are the algebraic laws for these regular 

expressions: 
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AXIOM DESCRIPTION 

r | s = s | r | is commutative 

r | ( s | t ) = ( r | s ) | t | is associative 

( rs ) t = r ( st ) Concatenation is associative 

r ( s | t ) = rs | rt 

( s | t ) r = sr | st 
Concatenation distributes over | 

r = r 

r   = r 

 

is the identity element for concatenation 

r* = ( r | )* relation between * and 

r** = r* * is idempotent 

 

 

Regular Definitions: 

 
The regular expressions can be given names and defining regular expressions using these 

names is called regular definition. If is an alphabet of basic symbols, then a regular  

definition is a sequence of definitions of the form: 

d1 -> r1 

d2   -> r2 

. . . . . . . 

 
d n   -> rn 

 
where each di is a distinct name, and each  ri  is  a  regular  expression  over  the  symbols in  

U { d1, d2, ........ , di-1 }, i.e., the basic symbols and the previously defined names. 

 

Example: 

 
1. Regular Definition for identifiers: 

letter   A | B | ...... | Z | a | b | ...... | z 

digit    0 | 1 | ....... | 9 

id  letter ( letter | digit )* 
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2. Regular Definition for num: 

digit  0 | 1 | . . . | 9 

digits  digit digit* 

optional_fraction  . digits | 

optional_exponent  ( E ( + | - | ) digits ) | 

 

num  digits optional_fraction optional_exponent 

 
Notational Shorthands: 

 
Certain constructs occur so frequently in regular expressions that it is convenient to introduce 

notational shorthands for them. 

1. One or more instances( + ): The unary postfix operator + means ―one or more 

instances of‖. Example – (r)
+
 - Set of all strings of one or more occurrences of r. 

2. Zero or One Instance (?): The unary postfix operator ? means ― zero or one instance 

of‖. Example – (r)? – One or zero occurrence of r. 

The regular definition for num can be written by using unary + and unary ? operator 

as follows: 

digit  0 | 1 | . . . | 9 

digits  digit+ 

optional_fraction  ( . digits) ? 

optional_exponent  ( E ( + | - )? digits ) ? 

 
num  digits optional_fraction optional_exponent 

 
3. Character Classes: The notation where a, b and c are alphabet symbols denotes the 

regular expression a | b | c. An abbreviated character class such as [ a – z ] denotes  

the regular expression a | b | . . . | z. 

Using character classes the identifiers can be described as strings generated by regular 

expression: [A – Za – z] [A – Z a – z 0 – 9]* 
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Recognition of Tokens: 

 
The tokens are recognized by following the grammatical specification of tokens. 

 
Example: 

 
Consider the following grammar fragment: 

 
stmt  if expr then stmt 

 
| if expr then stmt else stmt 

 
| 

 

expr  term relop term 

 
| term 

term  id 

|  num 

 
where the terminals if, then, else, relop, id and num generate sets of strings given by the 

following regular definitions: 

if  if 

then  then 

else  else 

relop  < | <= | = | < > | > | >= 

id  letter ( letter | digit )* 

num  digit+ ( . digit +)? (E ( + | - )? digit+ ) ? 

 
letter  A | B | . . . | Z | a | b | . . . | z 

 
digit  0 | 1 | . . . | 9 
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Regular definition for White Space (ws) is: 

 
delim  blank | tab | newline 

ws  delim+
 

The goal of the lexical analyzer is to isolate the lexeme for the next token in the input buffer 

and produce as output a pair consisting of the appropriate token and attribute value using the 

table given below: 

 

Regular 

Expression 
Token Attribute - Value 

ws - - 

if if - 

then then - 

else else - 

id id Pointer to table entry 

num num Pointer to table entry 

< relop LT 

<= relop LE 

= relop EQ 

< > relop NE 

> relop GT 

>= relop GE 

 

 
Regular Expression Patterns for Tokens 
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start > = 

0 6 7 
other 

* 

8 

Transition Diagrams: 

 
As an intermediate step in the construction of a lexical analyzer, a stylized flowchart called a 

transition diagram. Transition diagrams depict the actions that take place when a lexical 

analyzer is called by the parser to get the next token. It is used to keep track of information 

about characters that are seen as the forward pointer scans the input. 

Positions in a transition diagram are drawn as circles and are called states. The states are 

connected by arrows, called edges. Edges leaving state s have labels indicating the input 

characters that can next appear after the transition diagram has reached state s. The label 

other refers to any character that is not indicated by any of the other edges leaving s. 

One state is labeled as start state; it is the initial state of the transition diagram where control 

resides when we begin to recognize token. Certain states may have actions that are executed 

when the flow of control reaches that state. On entering a state we read the next input 

character. If there is an edge from the current state whose label matches this input character, 

then we go to the state pointed by the edge. Otherwise, we indicate failure. 

The symbol * is used to indicate states on which the input retraction must take place. 

 
There may be several transition diagram, each specifying a group of tokens. If failure occurs 

in one transition diagram, then the forward pointer is retracted to where it was in the start 

state of this diagram, and activate the next transition diagram. Since the lexeme beginning 

and forward pointers marked the same position in the start state of the diagram, the forward 

pointer is retracted to the position marked by the lexeme_begining pointer. If failure occurs  

in all transition diagrams, then a lexical error has been detected and an error-recovery routine 

is invoked. 

Transition Diagram for >=: 
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start letter other 
9 10 11 

Transition Diagram for Relational Operators: 
 

start 
0 

< = return ( relop, LE) 
1 2 

 

 

> return ( relop, NE) 
3 

 

 

other  

 
* return ( relop, LT) 

4 

= 5 return ( relop, LE) 
 

 
> 

6 
= 

 
 

other 

return ( relop, GE) 

 
7 

 
 

 
* return (relop, GT) 

8 
 

 

Transition Diagram for identifiers and keywords: 

 
letter or digit 

 

* 

 
return(gettoken(),install_id()) 

 

Transition Diagram for Unsigned Numbers in Pascal: 

 
digit digit 

 
return(gettoken(),install_num()) 
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digit digit 
 

start digit . 
20 21 22 

digit other * 
23 24 

return(gettoken(),install_num()) 
 

 

 

 

digit 

 
* 

 

 

 

 

 

Transition Diagram for white space: 

 
delim 

 

* 
 

 

 

 

Convert Regular Expression to DFA - 
 

Regular expression is used to represent the language (lexeme) of finite automata 

(lexical analyzer). 

 

Finite automata 

 

A recognizer for a language is a program that takes as input a string x and answers yes if x is 

a sentence of the language and no otherwise. 

 

A regular expression is compiled into a recognizer by constructing a generalized transition 

diagram called a Finite Automaton (FA). 

 

Finite automata can be Non-deterministic Finite Automata (NFA) or Deterministic Finite 

Automata (DFA). 

 

It is given by M = (Q, Σ, qo, F, δ). 

Where Q - Set of states 

Σ - Set of input symbols 

 

qo - Start state 
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F - set of final states 

 

δ - Transition function (mapping states to input symbol). 

δ :Q x Σ → Q 

• Non-deterministic Finite Automata (NFA) 

 

o More than one transition occurs for any input symbol from a state. 

 

o Transition can occur even on empty string (Ɛ). 

 

• Deterministic Finite Automata (DFA) 

 

o For each state and for each input symbol, exactly one transition occurs from that state. 

Regular expression can be converted into DFA by the following methods: 

(i) Thompson's subset construction 

 

• Given regular expression is converted into NFA 

 

• Resultant NFA is converted into DFA 

 

(ii) Direct Method 

 

• In direct method, given regular expression is converted directly into DFA. 

 

Rules for Conversion of Regular Expression to NFA 

 

• Union 

 

r = r1 + r2 

 

 

 
 

Concatenation 

 

r = r1 r2 
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Closure 
 

r = r1
*
 

 

 

 

 

 

Ɛ –closure 

 

Ɛ - Closure is the set of states that are reachable from the state concerned on taking empty 

string as input. It describes the path that consumes empty string (Ɛ) to reach some states of 

NFA. 

 

Example 1 
 

 
Ɛ -closure(q0) = { q0, q1, q2} 

Ɛ –closure(q1 ) = {q1, q2} 

Ɛ -closure(q2) = { q0} 
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Example 2 
 

 
Ɛ -closure (l) = {l, 2, 3, 4, 6} 

 

Ɛ-closure (2) = {2, 3, 6} 

 

Ɛ-closure (3) = {3, 6} 

 

Ɛ-closure (4) = {4} 

 

Ɛ-closure (5) = {5, 7} 

 

Ɛ -closure (6) = {6} 

 

Ɛ-closure (7) = {7} 

 

Sub-set Construction 

 

• Given regular expression is converted into NFA. 

 

• Then, NFA is converted into DFA. 

 

Steps 

 

l. Convert into NFA using above rules for operators (union, concatenation and closure) and 

precedence. 

 

2. Find Ɛ -closure of all states. 

 

3. Start with epsilon closure of start state of NFA. 

 

4. Apply the input symbols and find its epsilon closure. 

 

Dtran [state, input symbol] = Ɛ -closure (move (state, input symbol)) 

where Dtran transition function of DFA 
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5. Analyze the output state to find whether it is a new state. 

 

6. If new state is found, repeat step 4 and step 5 until no more new states are found. 

 

7. Construct the transition table for Dtran function. 

 

8. Draw the transition diagram with start state as the Ɛ -closure (start state of NFA) and final 

state is the state that contains final state of NFA drawn. 

 

Direct Method 

 

Direct method is used to convert given regular expression directly into DFA. 

 

1. Uses augmented regular expression r#. 

2. Important states of NFA correspond to positions in regular expression that hold 

symbols of the alphabet. 

3. Regular expression is represented as syntax tree where interior nodes correspond to 

operators representing union, concatenation and closure operations. 

4. Leaf nodes corresponds to the input symbols 

5. Construct DFA directly from a regular expression by computing the functions 

nullable(n), firstpos(n), lastpos(n) andfollowpos(i) from the syntax tree. 

6. nullable (n): Is true for * node and node labeled with Ɛ. For other nodes it is false. 

7. firstpos (n): Set of positions at node ti that corresponds to the first symbol of the sub- 

expression rooted at n. 

8. lastpos (n): Set of positions at node ti that corresponds to the last symbol of the sub- 

expression rooted at n. 

9. followpos (i): Set of positions that follows given position by matching the first or last 

symbol of a string generated by sub-expression of the given regular expression. 
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Rules for computing nullable, firstpos and lastpos 

 

Node n nullable (n) firstpos (n) lastpos (n) 

A leaf labeled Ɛ True Ø Ø 

A leaf with position 
i 

False {i} {i} 

An or node n = c1| 

c2 

Nullable (c1 ) or 

 
Nullable (c2 ) 

firstpos (c1) U 

 
firstpos (c2) 

Iastpos (c1) U 

 
Iastpos (c2) 

A cat node n = c1c2 Nullable (c1 ) and 

Nullable (c2 ) 

If (Nullable (c1 )) 

firstpos (c1) U 

firstpos (c2) 

else 

 
firstpos (c1) 

If (Nullable (c2 )) 

lastpos (c1) U 

Iastpos (c2) 

else 

 
lastpos (c1) 

A star node n = c1* True firstpos (c1) lastpos (c1) 

 

 
 

Computation of followpos 

 

The position of regular expression can follow another in the following ways: 

 

 If n is a cat node with left child c1 and right child c2, then for every position i in 

lastpos(c1), all positions in firstpos(c2) are in followpos(i). 

 For cat node, for each position i in lastpos of its left child, the firstpos of its 

right child will be in followpos(i). 

 If n is a star node and i is a position in lastpos(n), then all positions in firstpos(n) are 

in followpos(i). 

 For star node, the firstpos of that node is in f ollowpos of all positions in lastpos of 

that node. 
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Example: 
 

Thompson's subset construction for 

(a+b)*abb 

 

 

 

Direct Method for (a+b)*abb # 
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FollowPos 
 

 

 

 

 

A=firstpos(n0)={1,2,3} 

Dtran[A,a]= 

followpos(1) U followpos(3)= {1,2,3,4}=B 

Dtran[A,b]= 

followpos(2)={1,2,3}=A 

Dtran[B,a]= 

followpos(1) U followpos(3)=B 

Dtran[B,b]= 

followpos(2) U followpos(4)={1,2,3,5}=C 
 

…. 
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Minimizing the Number of States of a DFA 

 
Equivalent automata 

{A, C}=123 
{B}=1234 

{D}=1235 

{E}=1236 

Exists a minimum state DFA 

 
A LANGUAGE FOR SPECIFYING LEXICAL ANALYZER 

 

There is a wide range of tools for constructing lexical analyzers. 

 LEX 

 YACC 

LEX 

 

Lex is a computer program that generates lexical analyzers. Lex is commonly used with 

the yacc parser generator. 

Creating a lexical analyzer 

First, a specification of a lexical analyzer is prepared by creating a program lex.l in 

the Lex language. Then, lex.l is run through the Lex compiler to produce a C program 

lex.yy.c. 
 

Finally, lex.yy.c is run through the C compiler to produce an object progra m a.out, which 

is the lexical analyzer that transforms an input stream into a sequence of tokens. 
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Example: 
 

%{ 

 

int v=0,c=0; 

 

%} 

 

%% 

 

[aeiouAEIOU] v++; 

[a-zA-Z] c++; 

%% 

main() 

 

{ 

 

printf("ENTER INTPUT : \n"); 

yylex(); 

printf("VOWELS=%d\nCONSONANTS=%d\ 

n",v,c); 

 

} 
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parser lexical 

analyzer 

symbol 

table 

rest of 

front end 

UNIT-III 

SYNTAX ANALYSIS 

Need and Role of the Parser-Context Free Grammars -Top Down Parsing -General Strategies- 

Recursive Descent Parser Predictive Parser-LL(1) Parser-Shift Reduce Parser-LR Parser-LR 

(0)Item-Construction of SLR Parsing Table -Introduction to LALR Parser - Error Handling and 

Recovery in Syntax Analyzer-YACC-Design of a syntax Analyzer for a Sample Language . 
 

SYNTAX ANALYSIS 

Syntax analysis is the second phase of the compiler. It gets the input from the tokens and 

generates a syntax tree or parse tree. 

Advantages of grammar for syntactic specification: 
 

1. A grammar gives a precise and easy-to-understand syntactic specification of a 

programming language. 

2. An efficient parser can be constructed automatically from a properly designed grammar. 

3. A grammar imparts a structure to a source program that is useful for its translation into 

object code and for the detection of errors. 

4. New constructs can be added to a language more easily when there is a grammatical 

description of the language. 

THE ROLE OF PARSER 

The parser or syntactic analyzer obtains a string of tokens from the lexical analyzer and 

verifies that the string can be generated by the grammar for the source language. It reports any 

syntax errors in the program. It also recovers from commonly occurring errors so that it can 

continue processing its input. 

Position of parser in compiler model 
 

source 

program 

token 

 
get next token 

parse 

  tree 

intermediate 

representation 

 

 
 

 

 

 

 

Functions of the parser: 

1. It verifies the structure generated by the tokens based on the grammar. 

2. It constructs the parse tree. 

3. It reports the errors. 

4. It performs error recovery. 
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Issues: 

Parser cannot detect errors such as: 

1. Variable re-declaration 

2. Variable initialization before use. 

3. Data type mismatch for an operation. 
 

The above issues are handled by Semantic Analysis phase. 

 
CONTEXT-FREE GRAMMARS 

A Context-Free Grammar is a quadruple that consists of terminals, non-terminals, start 

symbol and productions. 

Terminals : These are the basic symbols from which strings are formed. 
 

Non-Terminals : These are the syntactic variables that denote a set of strings. These help to 

define the language generated by the grammar. 

Start Symbol : One non-terminal in the grammar is denoted as the ―Start-symbol‖ and the set of 

strings it denotes is the language defined by the grammar. 

Productions : It specifies the manner in which terminals and non-terminals can be combined to 

form strings. Each production consists of a non-terminal, followed by an arrow, followed by a 

string of non-terminals and terminals. 

Example of context-free grammar: The following grammar defines simple arithmetic 

expressions: 

expr → expr op expr 

expr → (expr) 

expr → - expr 

expr → id 

op → + 

op → - 

op → * 

op → / 

op → ↑ 

In this grammar, 
 

 id + - * / ↑ ( ) are terminals. 

 expr , op are non-terminals. 

 expr is the start symbol. 

 Each line is a production. 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge

http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/
http://notes.pmr-insignia.org/


 

Derivations: 

Two basic requirements for a grammar are : 

1. To generate a valid string. 

2. To recognize a valid string. 
 

Derivation is a process that generates a valid string with the help of grammar by replacing the 

non-terminals on the left with the string on the right side of the production. 

 
Example : Consider the following grammar for arithmetic expressions : 

E → E+E | E*E | ( E ) | - E | id 

To generate a valid string - ( id+id ) from the grammar the steps are 

1. E → - E 

2. E → - ( E ) 

3.   E  → - ( E+E ) 

4.   E  → - ( id+E ) 

5. E → - ( id+id ) 

 
In the above derivation, 

 E is the start symbol. 

 - (id+id) is the required sentence (only terminals). 

 Strings such as E, -E, -(E), . . . are called sentinel forms. 
 

Types of derivations: 

The two types of derivation are: 
 

1. Left most derivation 

2. Right most derivation. 

 
 In leftmost derivations, the leftmost non-terminal in each sentinel is always chosen first for 

replacement. 

 
 In rightmost derivations, the rightmost non-terminal in each sentinel is always chosen first 

for replacement. 
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Example: 

Given grammar G : E → E+E | E*E | ( E ) | - E | id 

Sentence to be derived : – (id+id) 

LEFTMOST DERIVATION RIGHTMOST DERIVATION E 
 

→ - E E → - E 
 

E → - ( E ) E → - ( E ) 
 

E → - ( E+E ) E → - (E+E ) E 
 

→ - ( id+E ) E → - ( E+id ) E 
 

→ - ( id+id ) E → - ( id+id ) 
 

 String that appear in leftmost derivation are called left sentinel forms. 

 String that appear in rightmost derivation are called right sentinel forms. 

Sentinels: 

Given a grammar G with start symbol S, if S → α , where α may contain non-terminals or 

terminals, then α is called the sentinel form of G. 

 
Yield or frontier of tree: 

Each interior node of a parse tree is a non-terminal. The children of node can be a 

terminal or non-terminal of the sentinel forms that are read from left to right. The sentinel form  

in the parse tree is called yield or frontier of the tree. 

 

Ambiguity: 

A grammar that produces more than one parse for some sentence is said to be ambiguous 

grammar. 
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Example : Given grammar G : E → E+E | E*E | ( E ) | - E | id 
 

The sentence id+id*id has the following two distinct leftmost derivations: 
 

E → E+ E 
 

E → id + E 
 

E → id + E * E 

E → id + id * E 

E → id + id * id 

The two corresponding parse trees are : 
 

E 

E → E* E 
 

E → E + E * E 
 

E → id + E * E 

E → id + id * E 

E → id + id * id 

 

E 
 

      

E + E 
    

id E * E 

E * E 
    

E + E id 
 

  

id id id id 

 

 

WRITING A GRAMMAR 

There are four categories in writing a grammar : 
 

1. Regular Expression Vs Context Free Grammar 

2. Eliminating ambiguous grammar. 

3. Eliminating left-recursion 

4. Left-factoring. 

 
Each parsing method can handle grammars only of a certain form hence, the initial grammar may 

have to be rewritten to make it parsable. 
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Regular Expressions vs. Context-Free Grammars: 
 

REGULAR EXPRESSION CONTEXT-FREE GRAMMAR 

It is used to describe the tokens of programming 
languages. 

It consists of a quadruple where S → start 

symbol, P → production, T → terminal, V → 
variable or non- terminal. 

It is used to check whether the given input is 
valid or not using transition diagram. 

It is used to check whether the given input is 
valid or not using derivation. 

The transition diagram has set of states and 
edges. 

The context-free 
productions. 

grammar has set of 

It has no start symbol. It has start symbol. 

It is useful for describing the structure of lexical 
constructs such as identifiers, constants, 

keywords, and so forth. 

It is useful in describing nested structures 
such as balanced parentheses, matching 

begin-end‘s and so on. 

 

 The lexical rules of a language are simple and RE is used to describe them. 
 

 Regular expressions provide a more concise and easier to understand notation for tokens 

than grammars. 

 Efficient lexical analyzers can be constructed automatically from RE than from 

grammars. 

 Separating the syntactic structure of a language into lexical and nonlexical parts provides 

a convenient way of modularizing the front end into two manageable-sized components. 

Eliminating ambiguity: 

Ambiguity of the grammar that produces more than one parse tree for leftmost or ri ghtmost 

derivation can be eliminated by re-writing the grammar. 

Consider this example, G: stmt → if expr then stmt | if expr then stmt else stmt | other 
 

This grammar is ambiguous since the string if E1 then if E2 then S1 else S2 has the following 

two parse trees for leftmost derivation : Aru
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1. stmt 

 

 

if expr then stmt 

 

 

E1 

 

if expr then stmt else 

stmt 

 

 

E2 S1 S2 

 

 
2. stmt 

 

 

if expr then stmt else stmt 

 
 

if expr then 

stmt 

 

 

E2 

S1 

To eliminate ambiguity, the following grammar may be used: 
 

stmt → matched_stmt | unmatched_stmt 
 

matched_stmt → if expr then matched_stmt else matched_stmt | other 
 

unmatched_stmt → if expr then stmt | if expr then matched_stmt else unmatched_stmt 

E1 

S2 
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Eliminating Left Recursion: 

A grammar is said to be left recursive if it has a non-terminal A such that there is a 

derivation A=>Aα for some string α. Top-down parsing methods cannot handle left-recursive 

grammars. Hence, left recursion can be eliminated as follows: 

 
If there is a production A → Aα | β it can be replaced with a sequence of two productions 

 

A → βA‟ 
 

A‟ → αA‟ | ε 

without changing the set of strings derivable from A. 

 
 

Algorithm to eliminate left recursion: 
 

1. Arrange the non-terminals in some order A1, A2 . . . An. 

2. for i := 1 to n do begin 

for j := 1 to i-1 do begin 

replace each production of the form Ai → Aj γ 

by the productions Ai → δ1 γ | δ2γ | . . . | δk γ 

where Aj → δ1 | δ2 | . . . | δk are all the current Aj-productions; 

end 

eliminate the immediate left recursion among the Ai-productions 

end 
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Example : Consider the following grammar for arithmetic expressions: E 
 

→ E+T | T 
 

T → T*F | F F 
 

→ (E) | id 
 

First eliminate the left recursion for E as 

E → TE‘ 

E‘ → +TE‘ | ε 
 

Then eliminate for T as 

T → FT‘ T‘→ 

*FT‘ | ε 
 

Thus the obtained grammar after eliminating left recursion is 

E → TE‘ 

E‘ → +TE‘ | ε 

T → FT‘ 

T‘ → *FT‘ | ε 

F → (E) | id 

 
Left factoring: 

Left factoring is a grammar transformation that is useful for producing a grammar 

suitable for predictive parsing. When it is not clear which of two alternative productions to use to 

expand a non-terminal A, we can rewrite the A-productions to defer the decision until we have 

seen enough of the input to make the right choice. 

If there is any production A → αβ1 | αβ2 , it can be rewritten as 

A → αA‟ 

A‟ → β1 | β2 
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Consider the grammar , G : S → iEtS | iEtSeS | a 

E → b 

Left factored, this grammar becomes 

S → iEtSS‘ | a 

S‘ → eS | ε 

E → b 
 

PARSING 

It is the process of analyzing a continuous stream of input in order to determine its 

grammatical structure with respect to a given formal grammar. 

Parse tree: 

Graphical representation of a derivation or deduction is called a parse tree. Each interior 

node of the parse tree is a non-terminal; the children of the node can be terminals or non- 

terminals. 

Types of parsing: 

1. Top down parsing 

2. Bottom up parsing 

 
 Top–down parsing : A parser can start with the start symbol and try to transform it to the 

input string. 

Example : LL Parsers. 

 Bottom–up parsing : A parser can start with input and attempt to rewrite it into the start 

symbol. 

Example : LR Parsers. 
 

TOP-DOWN PARSING 
 

It can be viewed as an attempt to find a left-most derivation for an input string or an 

attempt to construct a parse tree for the input starting from the root to the leaves. 

Types of top-down parsing : 

1. Recursive descent parsing 

2. Predictive parsing Aru
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1. RECURSIVE DESCENT PARSING 
 

 Recursive descent parsing is one of the top-down parsing techniques that uses a set of 

recursive procedures to scan its input. 

 This parsing method may involve backtracking, that is, making repeated scans of the 

input. 

Example for backtracking : 

Consider the grammar G : S → cAd 

A → ab | a 

and the input string w=cad. 

The parse tree can be constructed using the following top-down approach : 
 

Step1: 

Initially create a tree with single node labeled S. An input pointer points to ‗c‘, the first symbol 

of w. Expand the tree with the production of S. 

S 

   

c A d 
 

Step2: 
 

The leftmost leaf ‗c‘ matches the first symbol of w, so advance the input pointer to the second 

symbol of w ‗a‘ and consider the next leaf ‗A‘. Expand A using the first alternative. 

S 

c A d 
 

a b 
 

Step3: 
 

The second symbol ‗a‘ of w also matches with second leaf of tree. So advance the input pointer  

to third symbol of w ‗d‘. But the third leaf of tree is b which does not match with the input 

symbol d. 
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Hence discard the chosen production and reset the pointer to second position. This is called 

backtracking. 
 

Step4: 
 

Now try the second alternative for A. 
 

S 

 

 

c A d 

 

 

a 
 

Now we can halt and announce the successful completion of parsing. 
 

Example for recursive decent parsing: 

A left-recursive grammar can cause a recursive-descent parser to go into an infinite loop. Hence, 

elimination of left-recursion must be done before parsing. 

Consider the grammar for arithmetic expressions 

E → E+T | T 
 

T → T*F | F 

F → (E) | id 

After eliminating the left-recursion the grammar becomes, 

E → TE‘ 

E‘ → +TE‘ | ε 

T → FT‘ 

T‘ → *FT‘ | ε 

F → (E) | id 

Now we can write the procedure for grammar as follows: 

Recursive procedure: 

Procedure E() 

begin 

 

 
end 

T( ); 

EPRIME( ); 
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Procedure EPRIME( ) 

begin 

 

 

 

 
end 

If input_symbol=‘+‘ then 

ADVANCE( ); 

T( ); 

EPRIME( ); 

 

Procedure T( ) 

begin 

 

 
end 

F( ); 

TPRIME( ); 

 

Procedure TPRIME( ) 

begin 

 

 

 

 
end 

If input_symbol=‘*‘ then 

ADVANCE( ); 

F( ); 

TPRIME( ); 

 

Procedure F( ) 

begin 

 

 

 

 

 

 

 

end 

If input-symbol=‘id‘ then 

ADVANCE( ); 

else if input-symbol=‘(‗ then 

ADVANCE( ); 

E( ); 

else if input-symbol=‘)‘ then 

ADVANCE( ); 

 

else ERROR( ); 
 

Stack implementation: 

To recognize input id+id*id : 
 

PROCEDURE INPUT STRING 

E( ) id+id*id 

T( ) id+id*id 

F( ) id+id*id 

ADVANCE( ) id+id*id 
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Parsing Table M 

TPRIME( ) id+id*id 

EPRIME( ) id+id*id 

ADVANCE( ) id+id*id 

T( ) id+id*id 

F( ) id+id*id 

ADVANCE( ) id+id*id 

TPRIME( ) id+id*id 

ADVANCE( ) id+id*id 

F( ) id+id*id 

ADVANCE( ) id+id*id 

TPRIME( ) id+id*id 

 
 

2. PREDICTIVE PARSING 
 

 Predictive parsing is a special case of recursive descent parsing where no backtracking is 

required. 

 The key problem of predictive parsing is to determine the production to be applied for a 

non-terminal in case of alternatives. 

Non-recursive predictive parser 
 

 
 

INPUT 
 

 
 

STACK 

OUTPUT 
 

 

 

 

 

Predictive parsing program 

 a + b $ 

 

X 

Y 

Z 

$ 
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The table-driven predictive parser has an input buffer, stack, a parsing table and an output 

stream. 

Input buffer: 

It consists of strings to be parsed, followed by $ to indicate the end of the input string. 
 

Stack: 

It contains a sequence of grammar symbols preceded by $ to indicate the bottom of the stack. 

Initially, the stack contains the start symbol on top of $. 

Parsing table: 

It is a two-dimensional array M[A, a], where „A‟ is a non-terminal and „a‟ is a terminal. 
 

Predictive parsing program: 

The parser is controlled by a program that considers X, the symbol on top of stack, and a, the 

current input symbol. These two symbols determine the parser action. There are three 

possibilities: 

1. If X = a = $, the parser halts and announces successful completion of parsing. 

2. If X = a ≠ $, the parser pops X off the stack and advances the input pointer to the next 

input symbol. 

3. If X is a non-terminal , the program consults entry M[X, a] of the parsing table M. This 

entry will either be an X-production of the grammar or an error entry. 

If M[X, a] = {X → UVW},the parser replaces X on top of the stack by WVU. 

If M[X, a] = error, the parser calls an error recovery routine. 

 

Algorithm for nonrecursive predictive parsing: 

Input : A string w and a parsing table M for grammar G. 
 

Output : If w is in L(G), a leftmost derivation of w; otherwise, an error indication. 
 

Method : Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ in 

the input buffer. The program that utilizes the predictive parsing table M to produce a parse for 

the input is as follows: 

set ip to point to the first symbol of w$; 

repeat 

let X be the top stack symbol and a the symbol pointed to by ip; 

if X is a terminal or $ then 

if X = a then 

pop X from the stack and advance ip 

else error() 

else /* X is a non-terminal */ 

if M[X, a] = X →Y1Y2 … Yk then begin 
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pop X from the stack; 

push Yk, Yk-1, … ,Y1 onto the stack, with Y1 on top; 

output the production X → Y1 Y2 . . . Yk 

end 

else error() 

until X = $ /* stack is empty */ 
 

 Predictive parsing table construction: 

The construction of a predictive parser is aided by two functions associated with a grammar G : 
 

1. FIRST 
 

2. FOLLOW 
 

Rules for first( ): 

1. If X is terminal, then FIRST(X) is {X}. 

2. If X → ε is a production, then add ε to FIRST(X). 

3. If X is non-terminal and X → aα is a production then add a to FIRST(X). 
 

4. If X is non-terminal and X → Y1 Y2…Yk is a production, then place a in FIRST(X) if for some  

i, a is in FIRST(Yi), and ε is in all of FIRST(Y1),…,FIRST(Yi-1); that is, Y1,….Yi-1 => ε.  If ε is 

in FIRST(Yj) for all j=1,2,..,k, then add ε to FIRST(X). 

Rules for follow( ): 

1. If S is a start symbol, then FOLLOW(S) contains $. 

 

2. If there is a production A → αBβ, then everything in FIRST(β) except ε is placed in  

follow(B). 

 

3.  If there is a production A → αB, or a production A → αBβ where FIRST(β) contains ε, then 

everything in FOLLOW(A) is in FOLLOW(B). 

Algorithm for construction of predictive parsing table: 

Input : Grammar G 

Output : Parsing table M 

Method : 

1. For each production A → α of the grammar, do steps 2 and 3. 

2. For each terminal a in FIRST(α), add A → α to M[A, a]. 

3. If ε is in FIRST(α), add A → α to M[A, b] for each terminal b in FOLLOW(A). If ε is in 

FIRST(α) and $ is in FOLLOW(A) , add A → α to M[A, $]. 

4. Make each undefined entry of M be error. 
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Example: 

Consider the following grammar : 

E → E+T | T 

T → T*F | F 

F → (E) | id 

After eliminating left-recursion the grammar is 

E → TE‘ 

E‘ → +TE‘ | ε 

T → FT‘ 

T‘ → *FT‘ | ε 

F → (E) | id 

First( ) : 
 

FIRST(E) = { ( , id} 
 

FIRST(E‘) ={+ , ε } 
 

FIRST(T) = { ( , id} 
 

FIRST(T‘) = {*, ε } 
 

FIRST(F) = { ( , id } 
 

Follow( ): 
 

FOLLOW(E) = { $, ) } 
 

FOLLOW(E‘) = { $, ) } 
 

FOLLOW(T) = { +, $, ) } 
 

FOLLOW(T‘) = { +, $, ) } 
 

FOLLOW(F) = {+, * , $ , ) } 

 

 

Predictive parsing table : 
 

NON- 
TERMINAL 

id + * ( ) $ 

E E → TE‘   E → TE‘   

E‘  E‘ → +TE‘   E‘ → ε E‘→ ε 

T T → FT‘   T → FT‘   

T‘  T‘→ ε T‘→ *FT‘  T‘ → ε T‘ → ε 

F F → id   F → (E)   
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Stack implementation: 
 

stack Input Output 

$E id+id*id $  

$E‘T id+id*id $ E → TE‘ 

$E‘T‘F id+id*id $ T → FT‘ 

$E‘T‘id id+id*id $ F → id 

$E‘T‘ +id*id $  

$E‘ +id*id $ T‘ → ε 

$E‘T+ +id*id $ E‘ → +TE‘ 

$E‘T id*id $  

$E‘T‘F id*id $ T → FT‘ 

$E‘T‘id id*id $ F → id 

$E‘T‘ *id $  

$E‘T‘F* *id $ T‘ → *FT‘ 

$E‘T‘F id $  

$E‘T‘id id $ F → id 

$E‘T‘ $  

$E‘ $ T‘ → ε 

$ $ E‘ → ε 

 

LL(1) grammar: 

The parsing table entries are single entries. So each location has not more than one entry. This 

type of grammar is called LL(1) grammar. 

Consider this following grammar: 
 

S → iEtS | iEtSeS | a 

E → b 

After eliminating left factoring, we have 

S → iEtSS‘ | a 

S‘→ eS | ε 

E → b 

To construct a parsing table, we need FIRST() and FOLLOW() for all the non-terminals. 

FIRST(S) = { i, a } 

FIRST(S‘) = {e, ε } 

FIRST(E) = { b} 

FOLLOW(S) = { $ ,e } 
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FOLLOW(S‘) = { 
 

$ ,e } 

FOLLOW(E) = 

{t} 
 

Parsing table: 
 

NON- 

TERMINAL 
A b e i t $ 

S S → a   S → iEtSS‘   

S‘   S‘ → eS 
S‘ → ε 

  S‘ → ε 

E  E → b     

 
Since there are more than one production, the grammar is not LL(1) grammar. 

 

Actions performed in predictive parsing: 

1. Shift 

2. Reduce 

3. Accept 

4. Error 
 

Implementation of predictive parser: 

1. Elimination of left recursion, left factoring and ambiguous grammar. 

2. Construct FIRST() and FOLLOW() for all non-terminals. 

3. Construct predictive parsing table. 

4. Parse the given input string using stack and parsing table. 
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BOTTOM-UP PARSING 

Constructing a parse tree for an input string beginning at the leaves and going towards the 

root is called bottom-up parsing. 

A general type of bottom-up parser is a shift-reduce parser. 
 

SHIFT-REDUCE PARSING 

Shift-reduce parsing is a type of bottom-up parsing that attempts to construct a 

parse tree for an input string beginning at the leaves (the bottom) and  working  up  

towards the root (the top). 

 
Example: 

Consider the 

grammar: S → 

aABe 

A → Abc | b 

B → d 

The sentence to be recognized is abbcde. 

 
REDUCTION (LEFTMOST) RIGHTMOST DERIVATION 

 
 

abbcde (A → b) S → aABe 

aAbcde (A → Abc) → aAde 

aAde (B → d) → aAbcde 

aABe (S → aABe) → abbcde 

S   

The reductions trace out the right-most derivation in reverse. 

 
Handles: 

A handle of a string is a substring that matches the right side of a production, and whose 

reduction to the non-terminal on the left side of the production represents one step along the 

reverse of a rightmost derivation. 

Example: 

Consider the grammar: 

E → E+E 

E → E*E 

E → (E) 

E → id 
 

And the input string id1+id2*id3 
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The rightmost derivation is : 
 

E → E+E 

→ E+E*E 

→ E+E*id3 

→ E+id2*id3 
 

→ id1+id2*id3 
 

In the above derivation the underlined substrings are called handles. 

Handle pruning: 

A rightmost derivation in reverse can be obtained by ―handle pruning‖. 

(i.e.) if w is a sentence or string of the grammar at hand, then w = γn, where γn is the n
th

 right- 

sentinel form of some rightmost derivation. 

Stack implementation of shift-reduce parsing : 
 
 

Stack Input Action 

$ id1+id2*id3 $ shift 

$ id1 +id2*id3 $ reduce by E→id 

$ E +id2*id3 $ shift 

$ E+ id2*id3 $ shift 

$ E+id2 *id3 $ reduce by E→id 

$ E+E *id3 $ shift 

$ E+E* id3 $ shift 

$ E+E*id3 $ reduce by E→id 

$ E+E*E $ reduce by E→ E *E 

$ E+E $ reduce by E→ E+E 

$ E $ accept 
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Actions in shift-reduce parser: 

 shift – The next input symbol is shifted onto the top of the stack. 

 reduce – The parser replaces the handle within a stack with a non-terminal. 

 accept – The parser announces successful completion of parsing. 

 error – The parser discovers that a syntax error has occurred and calls an error recovery 

routine. 

 
Conflicts in shift-reduce parsing: 

There are two conflicts that occur in shift shift-reduce parsing: 
 

1. Shift-reduce conflict: The parser cannot decide whether to shift or to reduce. 
 

2. Reduce-reduce conflict: The parser cannot decide which of several reductions to make. 
 

1. Shift-reduce conflict: 
 

Example: 
 

Consider the grammar: 
 

E→E+E | E*E | id and input id+id*id 
 

Stack Input Action Stack Input Action 

$ E+E *id $ Reduce by 

E→E+E 
$E+E *id $ Shift 

$ E *id $ Shift $E+E* id $ Shift 

$ E* id $ Shift $E+E*id $ Reduce by 

E→id 

$ E*id $ Reduce by 
E→id 

$E+E*E $ Reduce by 
E→E*E 

$ E*E $ Reduce by 

E→E*E 
$E+E $ Reduce by 

E→E*E 

$ E   $E   
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2. Reduce-reduce conflict: 

Consider the grammar: 
 

M → R+R | R+c | 

R R → c 

and input c+c 
 

Stack Input Action Stack Input Action 

$ c+c $ Shift $ c+c $ Shift 

$ c +c $ Reduce by 
R→c 

$ c +c $ Reduce by 
R→c 

$ R +c $ Shift $ R +c $ Shift 

$ R+ c $ Shift $ R+ c $ Shift 

$ R+c $ Reduce by 
R→c 

$ R+c $ Reduce by 
M→R+c 

$ R+R $ Reduce by 
M→R+R 

$ M $  

$ M $     

 
Viable prefixes: 

 α is a viable prefix of the grammar if there is w such that αw is a right sentinel form. 

 The set of prefixes of right sentinel forms that can appear on the stack of a shift-reduce parser 

are called viable prefixes. 

 The set of viable prefixes is a regular language. 
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OPERATOR-PRECEDENCE PARSING 
 

An efficient way of constructing shift-reduce parser is called operator-precedence parsing. 
 

Operator precedence parser can be constructed from a grammar called Operator-grammar. These 

grammars have the property that no production on right side is ɛ or has two adjacent non - 

terminals. 

Example: 
 

Consider the grammar: 
 

E → EAE | (E) | -E | id 

A → + | - | * | / | ↑ 

Since the right side EAE has three consecutive non-terminals, the grammar can be written as 

follows: 

E → E+E | E-E | E*E | E/E | E↑E | -E | id 
 

Operator precedence relations: 

There are three disjoint precedence relations namely 

< 
.
 - less than 

= - equal to 
.
 > - greater than 

The relations give the following meaning: 

a < 
.
 b – a yields precedence to b 

a = b – a has the same precedence as b 

a 
.
 > b – a takes precedence over b 

 
Rules for binary operations: 

1. If operator θ1 has higher precedence than operator θ2, then make 

θ1 
.
 > θ2 and θ2 < 

.
 θ1 

2. If operators θ1 and θ2, are of equal precedence, then make 

θ1 
.
 > θ2 and θ2 

.
 > θ1  if operators are left associative 

θ1 < 
.
 θ2 and θ2 < 

.
 θ1 if right associative 

3. Make the following for all operators θ: 

θ < 
.
 id , id 

.
 > θ 

θ < 
.
 ( ,  ( < 

.
 θ 

) 
.
 > θ , θ 

.
 > ) 

θ 
.
 > $ , $ < 

.
 θ 
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Also make 

( = ) , ( < 
.
 ( , ) 

.
 > ) , ( < 

.
 id , id 

.
 > ) , $ < 

.
 id , id 

.
 > $ , $ < 

.
 ( , ) 

.
 > $ 

Example: 

Operator-precedence relations for the grammar 
 

E → E+E | E-E | E*E | E/E | E↑E | (E) | -E | id is given in the following table assuming 
 

1. ↑ is of highest precedence and right-associative 

2. * and / are of next higher precedence and left-associative, and 

3. + and - are of lowest precedence and left-associative 

Note that the blanks in the table denote error entries. 

 
TABLE : Operator-precedence relations 

 + - * / ↑ id ( ) $ 

+ 
.> .> <. <. <. <. <. .> .> 

- 
.> .> <. <. <. <. <. .> .> 

* 
.> .> .> .> <. <. <. .> .> 

/ 
.> .> .> .> <. <. <. .> .> 

↑ 
.> .> .> .> <. <. <. .> .> 

id 
.> .> .> .> .> 

∙   
.> .> 

( <. <. <. <. <. <. <. 
=  

) 
.> .> .> .> .> 

  
.> .> 

$ <. <. <. <. <. <. <. 
  

 
Operator precedence parsing algorithm: 

 

Input : An input string w and a table of precedence relations. 

Output : If w is well formed, a skeletal parse tree ,with a placeholder non-terminal E labeling all 

interior nodes; otherwise, an error indication. 

Method : Initially the stack contains $ and the input buffer the string w $. To parse, we execute 

the following program : 

 
(1) Set ip to point to the first symbol of w$; 

(2) repeat forever 

(3) if $ is on top of the stack and ip points to $ then 

(4) return 

else begin 

(5) let a be the topmost terminal symbol on the stack 

and let b be the symbol pointed to by ip; 

(6) if a <
.
 b or a = b then begin 

(7) push b onto the stack; 

(8) advance ip to the next input symbol; 

end; 
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(9) else if a 
.
 > b then /*reduce*/ 

(10) repeat 

(11) pop the stack 

(12) until the top stack terminal is related by <
.
 

to the terminal most recently popped 

(13) else error( ) 

end 

 
Stack implementation of operator precedence parsing: 

Operator precedence parsing uses a stack and precedence relation table for its 

implementation of above algorithm. It is a shift-reduce parsing containing all four actions shift, 

reduce, accept and error. 

The initial configuration of an operator precedence parsing is 

STACK INPUT 

$ w $ 
 

where w is the input string to be parsed. 
 

Example: 
 

Consider the grammar E → E+E | E-E | E*E | E/E | E↑E | (E) | id. Input string is id+id*id .The 

implementation is as follows: 
 

STACK INPUT COMMENT 

$ <∙ id+id*id $ shift id 

$ id ∙> +id*id $ pop the top of the stack id 

$ <∙ +id*id $ shift + 

$ + <∙ id*id $ shift id 

$ +id ∙> *id $ pop id 

$ + <∙ *id $ shift * 

$ + * <∙ id $ shift id 

$ + * id ∙> $ pop id 

$ + * ∙> $ pop * 

$ + ∙> $ pop + 

$ $ accept 

 

Advantages of operator precedence parsing: 

1. It is easy to implement. 

2. Once an operator precedence relation is made between all pairs of terminals of a grammar , 

the grammar can be ignored. The grammar is not referred anymore during implementation. 

 
Disadvantages of operator precedence parsing: 

1. It is hard to handle tokens like the minus sign (-) which has two different precedence. 

2. Only a small class of grammar can be parsed using operator-precedence parser. 
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LR PARSERS 

An efficient bottom-up syntax analysis technique that can be used to parse a large class of 

CFG is called LR(k) parsing. The ‗L‘ is for left-to-right scanning of the input, the ‗R‘ for 

constructing a rightmost derivation in reverse, and the ‗k‘ for the number of input  symbols. 

When ‗k‘ is omitted, it is assumed to be 1. 

 
Advantages of LR parsing: 

 It recognizes virtually all programming language constructs for which CFG can be 

written. 

 It is an efficient non-backtracking shift-reduce parsing method. 

 A grammar that can be parsed using LR method is a proper superset of a grammar that 

can be parsed with predictive parser. 

 It detects a syntactic error as soon as possible. 

 
Drawbacks of LR method: 

It is too much of work to construct a LR parser by hand for a programming language 

grammar. A specialized tool, called a LR parser generator, is needed. Example: YACC. 

 
Types of LR parsing method: 

1. SLR- Simple LR 

 Easiest to implement, least powerful. 

2. CLR- Canonical LR 

 Most powerful, most expensive. 

3. LALR- Look-Ahead LR 

 Intermediate in size and cost between the other two methods. 
 

The LR parsing algorithm: 

The schematic form of an LR parser is as follows: 

 

 

INPUT 
 

OUTPUT 

 

 

 

 

 

 

 

STACK 

goto action 

LR parsing program 

a1 
 

… ai 
 

… an $ 

 

Sm 

Xm 

Sm-1 

Xm-1 

… 

S0 
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It consists of : an input, an output, a stack, a driver program, and a parsing table that has two 

parts (action and goto). 

 The driver program is the same for all LR parser. 
 

 The parsing program reads characters from an input buffer one at a time. 
 

 The program uses a stack to store a string of the form s0X1s1X2s2…Xmsm, where sm is on 

top. Each Xi is a grammar symbol and each si is a state. 

 The parsing table consists of two parts : action and goto functions. 
 

Action : The parsing program determines sm, the state currently on top of stack, and ai, the 

current input symbol. It then consults action[sm,ai] in the action table which can have one of four 

values : 

1. shift s, where s is a state, 

2. reduce by a grammar production A → β, 

3. accept, and 

4. error. 
 

Goto : The function goto takes a state and grammar symbol as arguments and produces a state. 
 

LR Parsing algorithm: 

Input: An input string w and an LR parsing table with functions action and goto for grammar G. 
 

Output: If w is in L(G), a bottom-up-parse for w; otherwise, an error indication. 
 

Method: Initially, the parser has s0 on its stack, where s0 is the initial state, and w$ in the input 

buffer. The parser then executes the following program : 

set ip to point to the first input symbol of w$; 

repeat forever begin 

let s be the state on top of the stack and 

a the symbol pointed to by ip; 
if action[s, a] = shift s‘ then begin 

push a then s‘ on top of the stack; 

advance ip to the next input symbol 

end 

else if action[s, a] = reduce A→β then begin 

pop 2* | β | symbols off the stack; 
let s‘ be the state now on top of the stack; 

push A then goto[s‘, A] on top of the stack; 

output the production A→ β 

end 

else if action[s, a] = accept then 

return 

else error( ) 

end 
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CONSTRUCTING SLR(1) PARSING TABLE: 

To perform SLR parsing, take grammar as input and do the following: 

1. Find LR(0) items. 

2. Completing the closure. 

3. Compute goto(I,X), where, I is set of items and X is grammar symbol. 
 

LR(0) items: 

An LR(0) item of a grammar G is a production of G with a dot at some position of the 

right side. For example, production A → XYZ yields the four items : 

A → . XYZ 

A → X . YZ 

A → XY . Z 

A → XYZ . 

Closure operation: 

If I is a set of items for a grammar G, then closure(I) is the set of items constructed from I 

by the two rules: 

1. Initially, every item in I is added to closure(I). 

2. If A → α . Bβ is in closure(I) and B → γ is a production, then add the item B → . γ to I , if it 

is not already there. We apply this rule until no more new items can be added to closure(I). 

Goto operation: 

Goto(I, X) is defined to be the closure of the set of all items [A→ αX . β] such that 

[A→ α . Xβ] is in I. 

Steps to construct SLR parsing table for grammar G are: 
 

1. Augment G and produce G‘ 

2. Construct the canonical collection of set of items C for G‘ 

3. Construct the parsing action function action and goto using the following algorithm that 

requires FOLLOW(A) for each non-terminal of grammar. 

 
Algorithm for construction of SLR parsing table: 

 

Input : An augmented grammar G‘ 

Output : The SLR parsing table functions action and goto for G‘ 

Method : 

1. Construct C = {I0, I1, …. In}, the collection of sets of LR(0) items for G‘. 

2. State i is constructed from Ii.. The parsing functions for state i are determined as follows: 

(a) If [A→α∙aβ] is in Ii and goto(Ii,a) = Ij, then set action[i,a] to ―shift j‖. Here a must be 

terminal. 

(b) If [A→α∙] is in Ii , then set action[i,a] to ―reduce A→α‖ for all a in FOLLOW(A). 

(c) If [S‘→S.] is in Ii, then set action[i,$] to ―accept‖. 

If any conflicting actions are generated by the above rules, we say grammar is not SLR(1). 
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3. The goto  transitions for state  i  are constructed  for all  non-terminals A  using the  rule:    

If goto(Ii,A) = Ij, then goto[i,A] = j. 

4. All entries not defined by rules (2) and (3) are made ―error‖ 

5. The initial state of the parser is the one constructed from the set of items containing 

[S‘→.S]. 

 
Example for SLR parsing: 

Construct SLR parsing for the following grammar : 

G : E → E + T | T 

T → T * F | F 

F → (E) | id 

 
The given grammar is : 

G : E → E + T ------ (1) 

E →T ------ (2) 

T → T * F ------ (3) 

T → F ------ (4) 

F → (E) ------ (5) 

F → id ------ (6) 

 
Step 1 : Convert given grammar into augmented grammar. 

Augmented grammar : 

E‘ → E 

E → E + T 

E → T 

T → T * F 

T → F 

F → (E) 

F → id 

Step 2 : Find LR (0) items. 

I0 : E‘ → . E 

E → . E + T 

E → . T 

T → . T * F 

T → . F 

F → . (E) 

F → . id 
 

 

 
 

GOTO ( I0 , E) 

I1 : E‘ → E . 

E → E . + T 

GOTO ( I4 , id ) 

I5 : F → id . 
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GOTO ( I6 , T ) 

GOTO ( I0 , T) I9 : E → E + T . 

I2 : E  → T . T → T . * F 

T → T . * F 

 
GOTO ( I0 , F) 

I3 : T → F . 

GOTO ( I6 , F ) 

I3 : T → F . 

 
GOTO ( I6 , ( ) 

I4 : F → ( . E ) 
 

GOTO ( I0 , ( ) 

I4 : F  → ( . E) 

E → . E + T 

E → . T 

T → . T * F 

T → . F 

F → . (E) 

F → . id 

 
GOTO ( I0 , id ) 

I5 : F → id . 

 
GOTO ( I1 , + ) 

I6 : E → E + . T 

T → . T * F 

T → . F 

F → . (E) 

F → . id 

 
GOTO ( I2 , * ) 

I7 :  T → T * . F 

F  → . (E) 

F → . id 

 
GOTO ( I4 , E ) 

I8 : F → ( E . ) 

E → E . + T 

GOTO ( I6 , id) 

I5 : F → id . 

 
GOTO ( I7 , F ) 

I10 : T → T * F . 

 
GOTO ( I7 , ( ) 

I4 : F → ( . E ) 

E → . E + T 

E → . T 

T → . T * F 

T → . F 

F → . (E) 

F → . id 

 
GOTO ( I7 , id ) 

I5 : F → id . 

 
GOTO ( I8  , ) ) 

I11 : F → ( E ) . 

 
GOTO ( I8 , + ) 

I6 : E → E + . T 

T → . T * F 

T → . F 

F → . ( E ) 

F → . id 

 

GOTO ( I4 , T) 

I2 : E →T . 

T → T . * F 

 
GOTO ( I4 , F) 

I3 : T → F . 

GOTO ( I9 , *) 

I7 : T → T * . F 

F → . ( E ) 

F → . id 
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FOLLOW (E) = { $ , ) , +) 

FOLLOW (T) = { $ , + , ) , * } 

FOOLOW (F) = { * , + , ) , $ } 
 

SLR parsing table: 
 

 ACTION GOTO 

id + * ( ) $ E T F 

I0 s5   s4   1 2 3 

I1  s6    ACC    

I2  r2 s7  r2 r2    

I3  r4 r4  r4 r4    

I4 s5   s4   8 2 3 

I5  r6 r6  r6 r6    

I6 s5   s4    9 3 

I7 s5   s4     10 

I8  s6   s11     

I9  r1 s7  r1 r1    

I10  r3 r3  r3 r3    

I11  r5 r5  r5 r5    

 
Blank entries are error entries. 

 

Stack implementation: 

Check whether the input id + id * id is valid or not. 

GOTO ( I4 , ( ) 

I4 : F  → ( . E) 

E → . E + T 

E → . T 

T → . T * F 

T → . F 

F → . (E) 

F → id 
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STACK INPUT ACTION 

0 id + id * id $ GOTO ( I0 , id ) = s5 ; shift 

0 id 5 + id * id $ GOTO ( I5 , + ) = r6 ; reduce by F→id 

0 F 3 + id * id $ GOTO ( I0 , F ) = 3 

GOTO ( I3 , + ) = r4 ; reduce by T → F 

0 T 2 + id * id $ GOTO ( I0 , T ) = 2 

GOTO ( I2 , + ) = r2 ; reduce by E → T 

0 E 1 + id * id $ GOTO ( I0 , E ) = 1 

GOTO ( I1 , + ) = s6 ; shift 

0 E 1 + 6 id * id $ GOTO ( I6 , id ) = s5 ; shift 

0 E 1 + 6 id 5 * id $ GOTO ( I5 , * ) = r6 ; reduce by F → id 

0 E 1 + 6 F 3 * id $ GOTO ( I6 , F ) = 3 

GOTO ( I3 , * ) = r4 ; reduce by T → F 

0 E 1 + 6 T 9 * id $ GOTO ( I6 , T ) = 9 

GOTO ( I9 , * ) = s7 ; shift 

0 E 1 + 6 T 9 * 7 id $ GOTO ( I7 , id ) = s5 ; shift 

0 E 1 + 6 T 9 * 7 id 5 $ GOTO ( I5 , $ ) = r6 ; reduce by F → id 

0 E 1 + 6 T 9 * 7 F 10 $ GOTO ( I7 , F ) = 10 

GOTO ( I10 , $ ) = r3 ; reduce by T → T * F 

0 E 1 + 6 T 9 $ GOTO ( I6 , T ) = 9 

GOTO ( I9 , $ ) = r1 ; reduce by E → E + T 

0 E 1 $ GOTO ( I0 , E ) = 1 

GOTO ( I1 , $ ) = accept 
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Building LR(1) itemsets, LR(1) and LALR parse tables 

 
A, S, X: non-terminals 

x,y, a, ß: string of terminals and/or non-terminals 

C: one terminal or one non-terminal 

Start: [S --> . w , $] is the item associated with the start state. 

Read: Starting a new state (reading on one terminal or non-terminal, C) comes from 

[A --> x.Cy , w] then new state includes [A --> xC.y , w] . 

Complete: if [A --> x . X a , u] is an item, then completing on X gives the item(s) [X -- 
> .ß , z] where z є FIRST(au) 

Consider the augmented grammar G‘: 

0. S’ --> S$ 

1. S --> CC 

2. C --> eC 

3. C --> d 
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Syntax error handling : 

Programs can contain errors at many different levels. For example : 

1. Lexical, such as misspelling a keyword. 

2. Syntactic, such as an arithmetic expression with unbalanced parentheses. 

3. Semantic, such as an operator applied to an incompatible operand. 

4. Logical, such as an infinitely recursive call. 

Functions of error handler : 

1. It should report the presence of errors clearly and accurately. 

2. It should recover from each error quickly enough to be able to detect subsequent errors. 

3. It should not significantly slow down the processing of correct programs. 
 

Error recovery strategies : 
 

The different strategies that a parse uses to recover from a syntactic error are: 
 

1. Panic mode 

2. Phrase level 

3. Error productions 

4. Global correction 
 

Panic mode recovery: 

On discovering an error, the parser discards input symbols one at a time until a 

synchronizing token is found. The synchronizing tokens are usually delimiters, such as  

semicolon or end. It has the advantage of simplicity and does not go into an infinite loop. When 

multiple errors in the same statement are rare, this method is quite useful. 

Phrase level recovery: 

On discovering an error, the parser performs local correction on the remaining input that 

allows it to continue. Example: Insert a missing semicolon or delete an extraneous semicolon etc. 

Error productions: 

The parser is constructed using augmented grammar with error productions. If an error 

production is used by the parser, appropriate error diagnostics can be generated to indicate the 

erroneous constructs recognized by the input. 

Global correction: 

Given an incorrect input string x and grammar G, certain algorithms can be used to find a 

parse tree for a string y, such that the number of insertions, deletions and changes of tokens is as 

small as possible. However, these methods are in general too costly in terms of time and space. 
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declarations 

%% 

grammarrules and associatedactions 

YACC-Design of a syntax Analyzer for a Sample Language  

 Yacc is a tool for constructing parsers. 

 It reads a specification file that codifies the grammar of a language and generates a parsing 

routine. 

 Yacc specification describes a CFG, that can be used to generate a parser. 

 
 Elements of a CFG: 

1. Terminals: tokens and literal characters, 

2. Variables (nonterminals): syntactical elements, 

3. Production rules, and 

4. Start rule. 

 

Skeleton of a yacc specification (.y file) 

 

 

 

Example: 

A -> Bc is written in yacc as a: b 'c'; 

Format of a yacc specification file: 
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Declarations: 

To define tokens and their characteristics 

%token: declare names of tokens 

%left: define left-associative operators 

%right: define right-associative operators 

%nonassoc: define operators that may not associate with themselves 

%type: declare the type of variables 

%union: declare multiple data types for semantic values 

%start: declare the start symbol (default is the first variable in rules) 

%prec: assign precedence to a rule 

%{ 

C declarations directly copied to the resulting C program 

%} (E.g., variables, types, macros…) 

 

Eg:Yacc program to recognize L = {a
n

b
n 

| n >=0}. 
%{ 

#include<stdio.h> 

int valid=1; 

%} 

%token A B 

%% 

str:S'\n' {return 0;} 

S:A S B 

| 

; 

%% 

main() 

{ 

printf("Enter the string:\n"); 

yyparse(); 

if(valid==1) 

printf("\nvalid string"); 

} 
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UNIT IV- SYNTAX DIRECTEDTRANSLATION & RUN TIME ENVIRONMENT 

 
Syntax directed Definitions-Construction of Syntax Tree-Bottom-up Evaluation of S-Attribute 

Definitions- Design of predictive translator - Type Systems-Specification of a simple type checker- 

Equivalence of Type Expressions-Type Conversions. RUN-TIME ENVIRONMENT: Source 

Language Issues-Storage Organization-Storage Allocation-Parameter Passing-Symbol Tables- 

Dynamic Storage Allocation-Storage Allocation in FORTAN. 

 

SEMANTIC ANALYSIS 

➢ Semantic Analysis computes additional information related to the meaning of the 

program once the syntactic structure is known. 

➢ In typed languages as C, semantic analysis involves adding information to the symbol 

table and performing type checking. 

➢ The information to be computed is beyond the capabilities of standard parsing 

techniques, therefore it is not regarded as syntax. 

➢ As for Lexical and Syntax analysis, also for Semantic Analysis we need both a 

Representation Formalism and an Implementation Mechanism. 

➢ As representation formalism this lecture illustrates what are called Syntax Directed 

Translations. 

SYNTAX DIRECTED TRANSLATION 

➢ The Principle of Syntax Directed Translation states that the meaning of an input 

sentence is related to its syntactic structure, i.e., to its Parse-Tree. 

➢ By Syntax Directed Translations we indicate those formalisms for specifying 

translations for programming language constructs guided by context-free grammars. 

o We associate Attributes to the grammar symbols representing the language 

constructs. 

o Values for attributes are computed by Semantic Rules associated with 

grammar productions. 

➢ Evaluation of Semantic Rules may: 

o Generate Code; 

o Insert information into the Symbol Table; 

o Perform Semantic Check; 

o Issue error messages; 

o etc. 
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There are two notations for attaching semantic rules: 

1. Syntax Directed Definitions. High-level specification hiding many implementation 

details (also called Attribute Grammars). 

2. Translation Schemes. More implementation oriented: Indicate the order in which 

semantic rules are to be evaluated. 

Syntax Directed Definitions 

• Syntax Directed Definitions are a generalization of context-free grammars in which: 

1. Grammar symbols have an associated set of Attributes; 

2. Productions are associated with Semantic Rules for computing the values of attributes. 

▪ Such formalism generates Annotated Parse-Trees where each node of the tree is a 

record with a field for each attribute (e.g.,X.a indicates the attribute a of the grammar 

symbol X). 

▪ The value of an attribute of a grammar symbol at a given parse-tree node is defined by 

a semantic rule associated with the production used at that node. 

 

We distinguish between two kinds of attributes: 

1. Synthesized Attributes. They are computed from the values of the attributes of the 

children nodes. 

2. Inherited Attributes. They are computed from the values of the attributes of both the 

siblings and the parent nodes 

 

Syntax Directed Definitions: An Example 

• Example. Let us consider the Grammar for arithmetic expressions. The Syntax Directed 

Definition associates to each non terminal a synthesized attribute called val. 
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S-ATTRIBUTED DEFINITIONS 

Definition. An S-Attributed Definition is a Syntax Directed Definition that uses only 

synthesized attributes. 

• Evaluation Order. Semantic rules in a S-Attributed Definition can be evaluated by a 

bottom-up, or PostOrder, traversal of the parse-tree. 

• Example. The above arithmetic grammar is an example of an S-Attributed 

Definition. The annotated parse-tree for the input 3*5+4n is: 
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L-attributed definition 

Definition: A SDD its L-attributed if each inherited attribute of Xi in the RHS of A ! X1 : 

:Xn depends only on 

1. attributes of X1;X2; : : : ;Xi1 (symbols to the left of Xi in the RHS) 

2. inherited attributes of A. 

Restrictions for translation schemes: 

1. Inherited attribute of Xi must be computed by an action before Xi. 

2. An action must not refer to synthesized attribute of any symbol to the right of that action. 

3. Synthesized attribute for A can only be computed after all attributes it references have been 

completed (usually at end of RHS). 

 
 

SDD For Simple Type Declarations 
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CONSTRUCTION OF SYNTAX TREE 

➢ SDDs are useful for is construction of syntax trees. A syntax tree is a condensed form 
of parse tree. 

➢ Syntax trees are useful for representing programming language constructs like 
expressions and statements. 

➢ They help compiler design by decoupling parsing from translation. 

➢ Each node of a syntax tree represents a construct; the children of the node represent the 
meaningful components of the construct. 

e.g. a syntax-tree node representing an expression E1 + E2 has label + and two 

children representing the sub expressions E1 and E2 

➢  Each node is implemented by objects with suitable number of fields; each object will 
have an op field that is the label of the node with additional fields as follows: 

i) If the node is a leaf, an additional field holds the lexical value for the 

leaf . This is created by function Leaf(op, val) 

ii) If the node is an interior node, there are as many fields as the node has 

children in the syntax tree. This is created by function Node(op, c1, c2,...,ck) . 

➢ Example: The S-attributed definition in figure below constructs syntax trees for a 
simple expression grammar involving only the binary operators + and -. As usual, 
these operators are at the same precedence level and are jointly left associative. All 
nonterminals have one synthesized attribute node, which represents a node of the 
syntax 

tree. 
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Steps in the construction of the syntax tree for a-4+c 

 
 

If the rules are evaluated during a post order traversal of the parse tree, or with reductions during 

a bottom-up parse, then the sequence of steps shown below ends with p5 pointing to the root of 

the constructed syntax tree. 

 

 
Syntax tree for a-4+c using the above SDD is shown below. 
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Bottom-up Evaluation of S-Attribute Definitions 

 

 
 Syntax-directed definition with only synthesized attributes is called S-attributed 

 Use LR Parser 

 Implementation: 

 Stack to hold info about subtrees that have been parsed 

 A SDD is a context free grammar with attributes and rules 

 Attributes are associated with grammar symbols and rules with productions 

 Attributes may be of many kinds: numbers, types, table references, strings, etc. 

 Synthesized attributes 

o A synthesized attribute at node N is defined only in terms of attribute values of 
children of N and at N it 

 If an SDT uses only synthesized attributes, it is called as S-attributed SDT. These 
attributes are evaluated using S-attributed SDTs that have their semantic actions written 

after the production (right hand side). 

  

 As depicted above, attributes in S-attributed SDTs are evaluated in bottom-up parsing, as 

the values of the parent nodes depend upon the values of the child nodes. 

 

Syntax Directed Definitions: An Example 

• Example. Let us consider the Grammar for arithmetic expressions. The Syntax Directed 

Definition associates to each non terminal a synthesized attribute called val. 
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• The above arithmetic grammar is an example of an S-Attributed 

Definition. The annotated parse-tree for the input 3*5+4n is: 
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Input Stack Attribute Production Used 

3 * 5 + 4 $ - -  

* 5 + 4 $ 3 3  

* 5 + 4 $ F 3 F ---> digit 

* 5 + 4 $ T 3 T ---> F 

5 + 4 $ T * 3  

+ 4 $ T * 5 3 * 5  

+ 4 $ T * F 3 * 5 F - digit 

+ 4 $ T 15 T ---> T * F 

+ 4 $ E 15 E ---> T 

4 $ E + 15  

$ E + 4 15 + 4  

$ E + F 15 + 4 F ---> digit 

$ E + T 15 4 T ---> F 

$ E 19 E ---> E + T 

 E 19  

 L 19 L ---> E $ 

 

 

 

TYPE CHECKING 

 
A compiler must check that the source program follows both syntactic and semantic 

conventions of the source language. 

This checking, called static checking, detects and reports 

programming errors. Some examples of static checks: 

1. Type checks – A compiler should report an error if an operator is applied to an 

incompatible operand. Example: If an array variable and function variable are added 

together. 

2. Flow-of-control checks – Statements that cause flow of control to leave a construct must 

have some place to which to transfer the flow of control. Example: An error occurs when an 

enclosing statement, such as break, does not exist in switchstatement. 
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intermediate 

code generator 

type checker parser 

Position of type checker 

 
token syntax syntax intermediate 

stream tree tree representation 

 

 

 A type checker verifies that the type of a construct matches that expected by its 

context. For example : arithmetic operator mod in Pascal requires integer operands, so 

a type checker verifies that the operands of mod have type integer. 

 Type information gathered by a type checker may be needed when code is generated. 

 

TYPE SYSTEMS 

 
The design of a type checker for a language is based on information about the syntactic 

constructs in the language, the notion of types, and the rules for assigning types to language 

constructs. 

For example : ― if both operands of the arithmetic operators of +,- and * are of type integer, then 

the result is of type integer ‖ 

Type Expressions 

 

 The type of a language construct will be denoted by a ―type expression.‖ 

 

 A type expression is either a basic type or is formed by applying an operator called a 

type constructor to other type expressions. 
 

 The sets of basic types and constructors depend on the language to be 

checked. 

 

 

 
The following are the definitions of type expressions: 

 

1. Basic types such as boolean, char, integer, real are type expressions. 

 

A special basic type, type_error , will signal an error during type checking; void denoting 

―the absence of a value‖ allows statements to be checked. 

2. Since type expressions may be named, a type name is a type expression. 

 

3. A type constructor applied to type expressions is a type 

expression. Constructors include: 

Arrays : If T is a type expression then array (I,T) is a type expression denoting the type 

of an array with elements of type T and index set I. 
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Products : If T1 and T2 are type expressions, then their Cartesian product T1 X T2 

is a type expression. 

Records : The difference between a record and a product is that the fields of a record have 

names. The record type constructor will be applied to a tuple formed from field names 

and field types. 

For example: 

type row = record 

address: integer; 

lexeme: array[1..15] of char 

end; 

var table: array[1...101] of row; 

declares the type name row representing the type expression record((address X integer) X 

(lexeme X array(1..15,char))) and the variable table to be an array of records of this type. 

 

Pointers : If T is a type expression, then pointer(T) is a type expression denoting the type 

―pointer to an object of type T‖. 

For example, var p: ↑ row declares variable p to have type pointer(row). 

 

Functions : A function in programming languages maps a domain type D to a range type R. 

The type of such function is denoted by the type expression D → R 

4. Type expressions may contain variables whose values are type expressions. 

 

Tree representation for char x char → pointer (integer) 

 
→ 

 

x pointer 

 

char char integer 

 

Type systems 

 
 A type system is a collection of rules for assigning type expressions to the various parts 

of a program. 

 A type checker implements a type system. It is specified in a syntax-directedmanner. 

 

 Different type systems may be used by different compilers or processors of the 

same language. 

Static and Dynamic Checking of Types 

 
 Checking done by a compiler is said to be static, while checking done when the 

target program runs is termed dynamic. 

 Any check can be done dynamically, if the target code carries the type of an element 
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along with the value of that element. 

Sound type system 

A sound type system eliminates the need for dynamic checking for type errors because it 

allows us to determine statically that these errors cannot occur when the target program runs. 

That is, if a sound type system assigns a type other than type_error to a program part, then type 

errors cannot occur when the target code for the program part is run. 

Strongly typed language 

A language is strongly typed if its compiler can guarantee that the programs it accepts 

will execute without type errors. 

Error Recovery 

 
 Since type checking has the potential for catching errors in program, it is desirable 

for type checker to recover from errors, so it can check the rest of theinput. 

 Error handling has to be designed into the type system right from the start; the 

type checking rules must be prepared to cope with errors. 

SPECIFICATION OF A SIMPLE TYPE CHECKER 

 
Here, we specify a type checker for a simple language in which the type of each 

identifier must be declared before the identifier is used. The type checker is a translation scheme 

that synthesizes the type of each expression from the types of its subexpressions. The type 

checker can handle arrays, pointers, statements and functions. 

A Simple Language 

 

Consider the following grammar: 

 

P → D ; E 

D → D ; D | id : T 

T → char | integer | array [ num ] of T | ↑ T 

E → literal | num | id | E mod E | E [ E ] | E 

↑ 
 

Translation scheme: 
 

P → D ; E 

D → D ; D 

D → id : T { addtype (id.entry , T.type) } 

T → char { T.type : = char } 

T → integer { T.type : = integer } 

T → ↑ T1 { T.type : = pointer(T1.type) 

} 

T → array [ num ] of T1 { T.type : = array ( 1… num.val , T1.type) } 

In the above language, 

→ There are two basic types : char and integer ; 
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→ type_error is used to signal errors; 

→ the prefix operator ↑ builds a pointer type. Example , ↑ integer leads to the type expression 

pointer ( integer ). 

Type checking of expressions 
 

In the following rules, the attribute type for E gives the type expression assigned to the 

expression generated by E. 

1. E → literal { E.type : = char } 

E → num { E.type : = integer } 

Here, constants represented by the tokens literal and num have type char and integer. 

 

2. E → id { E.type : = lookup ( id.entry ) } 

lookup ( e ) is used to fetch the type saved in the symbol table entry pointed to by e. 

 

3. E → E1 mod E2 { E.type : = if E1. type = integer and 

E2. type = integer then integer 

else type_error } 

The expression formed by applying the mod operator to two subexpressions of type integer has 

type integer; otherwise, its type is type_error. 

4. E → E1  [ E2 ] { E.type : = if E2.type = integer and 

E1.type = array(s,t) then t 

else type_error } 

In an array reference E1 [ E2 ] , the index expression E2 must have type integer. The result is 

the element type t obtained from the type array(s,t) of E1. 

5. E → E1   ↑ { E.type : = if E1.type = pointer (t) then t 

else type_error } 

 

The postfix operator ↑ yields the object pointed to by its operand. The type of E ↑ is the type t 

of the object pointed to by the pointer E. 

 

Type checking of statements 

 

Statements do not have values; hence the basic type void can be assigned to them. If an error is 

detected within a statement, then type_error is assigned. 

Translation scheme for checking the type of statements: 

 
1. Assignment statement: 

S → id : = E { S.type : = if id.type = E.type then void 

else type_error } 

 

2. Conditional statement: 

S → if E then S1 { S.type : = if E.type = boolean then S1.type 

else type_error } 
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3. While statement: 

S → while E do S1 { S.type : = if E.type = boolean then S1.type 

else type_error } 

4. Sequence of statements: 

S → S1 ; S2 { S.type : = if S1.type = void and 

S1.type = void then void 

else type_error } 

 

Type checking of functions 

 

The rule for checking the type of a function application is : 

E → E1 ( E2) { E.type : = if E2.type = s and 

E1.type = s → t then t 

else type_error } 

RUNTIME ENVIRONMENT 

➢ Runtime organization of different storage locations 

➢ Representation of scopes and extents during program execution. 

➢ Components of executing program reside in blocks of memory (supplied by OS). 

➢ Three kinds of entities that need to be managed at runtime: 

o Generated code for various procedures and programs. 

forms text or code segment of your program: size known at compile time. 

o Data objects: 

Global variables/constants: size known at compile time 

Variables declared within procedures/blocks: size 

known Variables created dynamically: size unknown. 

o Stack to keep track of procedure 

activations. Subdivide memory conceptually 

into code and data areas: 

▪ Cod 

e: Program 

instructions 

▪ Stack: Manage activation of procedures at runtime. 

▪ Heap: holds variables created dynamically 
 

SOURCE LANGUAGE ISSUES 
 

Procedures: 

A procedure definition is a declaration that associates an identifier with a statement. The 

identifier is the procedure name, and the statement is the procedure body. 
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For example, the following is the definition of procedure named readarray : 

 
procedure readarray; 

var i : integer; 

begin 

for i : = 1 to 9 do read(a[i]) 

end; 

When a procedure name appears within an executable statement, the procedure is said to be 

called at that point. 

 

Activation trees: 

An activation tree is used to depict the way control enters and leaves activations. In an 

activation tree, 

1. Each node represents an activation of a procedure. 

2. The root represents the activation of the main program. 

3. The node for a is the parent of the node for b if and only if control flows from activation a to 

b. 

4. The node for a is to the left of the node for b if and only if the lifetime of a occurs before the 

lifetime of b. 

Control stack: 

 A control stack is used to keep track of live procedure activations. The idea is to push the 

node for an activation onto the control stack as the activation begins and to pop the node 

when the activation ends. 

 The contents of the control stack are related to paths to the root of the activation tree. 

When node n is at the top of control stack, the stack contains the nodes along the path 

from n to the root. 
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The Scope of a Declaration: 

A declaration is a syntactic construct that associates information with a name. 

Declarations may be explicit, such as: 

var i : integer ; 

or they may be implicit. Example, any variable name starting with I is assumed to denote an 

integer. 

The portion of the program to which a declaration applies is called the scope of that declaration. 

 

Binding of names: 

Even if each name is declared once in a program, the same name may denote different 

data objects at run time. ―Data object‖ corresponds to a storage location that holds values. 

The term environment refers to a function that maps a name to a storage location. 

The term state refers to a function that maps a storage location to the value held there. 
 

environment state 

name storage value 
 

When an environment associates storage location s with a name x, we say that x is bound 

to s. This association is referred to as a binding of x. 

 

 

STORAGE ORGANISATION 

 The executing target program runs in its own logical address space in which each 

program value has a location. 

 The management and organization of this logical address space is shared between the 

complier, operating system and target machine. The operating system maps the logical 

address into physical addresses, which are usually spread throughoutmemory. 

 

Typical subdivision of run-time memory: 
 
 

Code 

Static Data 

Stac 
k 

 
free memory 

Heap 
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 Run-time storage comes in blocks, where a byte is the smallest unit of addressable 

memory. Four bytes form a machine word. Multibyte objects are stored in consecutive 

bytes and given the address of first byte. 

 The storage layout for data objects is strongly influenced by the addressingconstraints of 

the target machine. 

 A character array of length 10 needs only enough bytes to hold 10 characters, a compiler 

may allocate 12 bytes to get alignment, leaving 2 bytesunused. 

 This unused space due to alignment considerations is referred to aspadding. 

 The size of some program objects may be known at run time and may be placed inan 

area called static. 

 The dynamic areas used to maximize the utilization of space at run time are stack and 

heap. 

 

Activation records: 

 Procedure calls and returns are usually managed by a run time stack called the control 

stack. 

 Each live activation has an activation record on the control stack, with the root of the 

activation tree at the bottom, the latter activation has its record at the top of the stack. 

 The contents of the activation record vary with the language being implemented. The 

diagram below shows the contents of activation record. 

 

 
 Temporary values such as those arising from the evaluation ofexpressions. 

 Local data belonging to the procedure whose activation record this is. 

 A saved machine status, with information about the state of the machine just before the 

call to procedures. 

 An access link may be needed to locate data needed by the called procedure butfound 

elsewhere. 

 A control link pointing to the activation record of thecaller. 
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 Space for the return value of the called functions, if any. Again, not all called procedures 

return a value, and if one does, we may prefer to place that value in a register for 

efficiency. 

 The actual parameters used by the calling procedure. These are not placed in activation 

record but rather in registers, when possible, for greaterefficiency. 

 

STORAGE ALLOCATION STRATEGIES 

The different storage allocation strategies are : 

1. Static allocation – lays out storage for all data objects at compile time 

2. Stack allocation – manages the run-time storage as a stack. 

3. Heap allocation – allocates and deallocates storage as needed at run time from a data area 

known as heap. 

 
STATIC ALLOCATION 

 In static allocation, names are bound to storage as the program is compiled, so there is no 

need for a run-time support package. 

 Since the bindings do not change at run-time, everytime a procedure is activated, its 

names are bound to the same storage locations. 

 Therefore values of local names are retained across activations of a procedure. That is, 

when control returns to a procedure the values of the locals are the same as they were 

when control left the last time. 

 From the type of a name, the compiler decides the amount of storage for the name and 

decides where the activation records go. At compile time, we can fill in the addresses at 

which the target code can find the data it operates on. 

 
STACK ALLOCATION OF SPACE 

 

 All compilers for languages that use procedures, functions or methods as units of user- 

defined actions manage at least part of their run-time memory as a stack. 

 Each time a procedure is called , space for its local variables is pushed onto a stack, and 

when the procedure terminates, that space is popped off the stack. 

 

Calling sequences: 

 Procedures called are implemented in what is called as calling sequence, whichconsists 

of code that allocates an activation record on the stack and enters information into its 

fields. 

 A return sequence is similar to code to restore the state of machine so the calling 

procedure can continue its execution after the call. 

 The code in calling sequence is often divided between the calling procedure (caller) and 

the procedure it calls (callee). 

 When designing calling sequences and the layout of activation records, the following 

principles are helpful: 

 Values communicated between caller and callee are generally placed at the 

beginning of the callee‘s activation record, so they are as close as possible to the 

caller‘s activation record. 
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 Fixed length items are generally placed in the middle. Such items typicallyinclude 

the control link, the access link, and the machine status fields. 

 Items whose size may not be known early enough are placed at the end of the 

activation record. The most common example is dynamically sized array, where the 

value of one of the callee‘s parameters determines the length of thearray. 

 We must locate the top-of-stack pointer judiciously. A common approach is tohave 

it point to the end of fixed-length fields in the activation record. Fixed-length data 

can then be accessed by fixed offsets, known to the intermediate-code generator, 

relative to the top-of-stack pointer. 

 

 

caller‘s    

activation 

record 

   caller‘s 

responsibility 

callee‘s 

activation 

record 

op_sp 

callee‘s 

responsibility 

 
 

Division of tasks between caller and callee 

 
 The calling sequence and its division between caller and callee are as follows. 

 
 The caller evaluates the actual parameters. 

 The caller stores a return address and the old value of top_sp into the callee‘s 

activation record. The caller then increments the top_sp to the respective 

positions. 

 The callee saves the register values and other status information. 

 The callee initializes its local data and begins execution. 

 A suitable, corresponding return sequence is: 

 
 The callee places the return value next to the parameters. 

 Using the information in the machine-status field, the callee restores top_sp and 

other registers, and then branches to the return address that the caller placed in 

the status field. 

 Although top_sp has been decremented, the caller knows where the return value 

is, relative to the current value of top_sp; the caller therefore may use that value. 

. . . 

t 

temporaries and local data 

Parameters and returned values 

control link 

links and saved status 

Parameters and returned values 

 
control link 

links and saved status 

 
temporaries and local data 
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Variable length data on 

stack: 

 The run-time memory management system must deal frequently with the allocation of 

space for objects, the sizes of which are not known at the compile time, but which are 

local to a procedure and thus may be allocated on the stack. 

 The reason to prefer placing objects on the stack is that we avoid the expense of garbage 

collecting their space. 

 The same scheme works for objects of any type if they are local to the procedurecalled 

and have a size that depends on the parameters of the call. 

 

 

 

 

 

activation 

record for p 

 
arrays of p 

 

activation record for 

procedure q called by p 

 
arrays of q 

 

Access to dynamically allocated arrays 

 
 Procedure p has three local arrays, whose sizes cannot be determined at compile time. 

The storage for these arrays is not part of the activation record for p. 

 Access to the data is through two pointers, top and top-sp. Here the top marks the actual 

top of stack; it points the position at which the next activation record will begin. 

 The second top-sp is used to find local, fixed-length fields of the top activationrecord. 

 The code to reposition top and top-sp can be generated at compile time, in terms ofsizes 

that will become known at run time. 

. 

control link 

pointer to A 

pointer to B 

pointer to C 

control link top_sp 

top 

array A 

array B 

array C 
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HEAP ALLOCATION 

Stack allocation strategy cannot be used if either of the following is possible : 

1. The values of local names must be retained when an activation ends. 

2. A called activation outlives the caller. 

 
 Heap allocation parcels out pieces of contiguous storage, as needed for activation 

records or other objects. 

 Pieces may be deallocated in any order, so over the time the heap will consist of 

alternate areas that are free and in use. 
 

 
 

 Position in 

the 

Activation records in the heap Remarks 

s 

 
r q ( 1 , 9) 

 

s 

 
control link 

 
r 

 
control link 

 

 

q(1,9) 

 
control link 

Retained activation 

record for r 

 

 
 

 The record for an activation of procedure r is retained when the activationends. 

 Therefore, the record for the new activation q(1 , 9) cannot follow that for s physically. 

 If the retained activation record for r is deallocated, there will be free space in the 

heap between the activation records for s and q. 

PARAMETERS PASSING 

A language has first-class functionsif functions can bedeclared within any 

scope passed as arguments to other functions returned as results of functions.In a 

language with first-class functions and static scope, a function value is generally 

represented by a closure. a pair consisting of a pointer  to  function  code  a  pointer  

to an  activation  record.Passing functions as arguments is very useful in structuring  

of systems using upcalls 
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Call-by-Value 

 

The actual parameters are evaluated and their r-values are passed to the 

called procedure 

 

A procedure called by value can affect its caller either through nonlocal names or 

through pointers. 

Parameters in C are always passed by value. Array is unusual, what is passed by 

value is a pointer. 

Pascal uses pass by value by default, but var parameters are passed by reference. 

 
Call-by-Reference 

 
Also known as call-by-address or call-by-location. The caller passes to the 

called procedure the l-valueof the parameter. 

If the parameter is an expression, then the expression is evaluated in a new 

location, and the address of the new location is passed. 

Parameters in Fortran are passed by reference an old implementation bug in 

Fortran 

 

func(a,b) { a = b}; 

call func(3,4); print(3); 

 
Copy-Restore 

A hybrid between call-by-value and call-by reference. 

The actual parameters are evaluated and their r-values are passed as in call- by-value. 

In addition, l values are determined before the call. 

When control returns, the current r-values of the formal parameters are copied back 

into the l-values of the actual parameters. 

Call-by-Name 

The actual parameters literally substituted for the formals. This is like a macro- 

expansion or in-line expansion Call-by-name is not used in practice. However, the 

conceptually related technique of in-line expansion is commonly used. In-lining may 

be one of the most effective optimization transformations if they are guided by 

execution profiles. Aru
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SYMBOL TABLE 

 

Symbol table is an important data structure created and maintained by compilers 

in order to store information about the occurrence of various entities such as variable 

names, function names, objects, classes, interfaces, etc. Symbol table is used by both 

the analysis and the synthesis parts of a compiler. 

 A symbol table may serve the following purposes depending upon the 

language in hand: 

 To store the names of all entities in a structured form at one place.



 To verify if a variable has been declared. 

 

 To implement type checking, by verifying assignments and expressions 

in the source code are semantically correct. 

 To determine the scope of a name (scope resolution). 

 

Implementation 

 

If a compiler is to handle a small amount of data, then the symbol table can be 

implemented as an unordered list, which is easy to code, but it is only suitable for small 

tables only. A symbol table can be implemented in one of the following ways: \ 

 Linear (sorted or unsorted) list 

 

 Binary Search Tree 

 

 Hash table 

 

Among all, symbol tables are mostly implemented as hash tables, where the 

source code symbol itself is treated as a key for the hash function and the return value is 

the information about the symbol. 

Operations 
 

A symbol table, either linear or hash, should provide the following operations. 

insert() 
 

This operation is more frequently used by analysis phase, i.e., the first half of 

the compiler where tokens are identified and names are stored in the table. This 

operation is used to add information in the symbol table about unique names occurring 

in the source code. The format or structure in which the names are stored depends upon 

the compiler in hand. 
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An attribute for a symbol in the source code is the information associated with 

that symbol. This information contains the value, state, scope, and type about the 

symbol. The insert() function takes the symbol and its attributes as arguments and stores 

the information in the symbol table. 

For example: int a; should be processed by the compiler as: 

insert(a, int); 

Lookup() 

 

lookup() operation is used to search a name in the symbol table to determine: 

 

 if the symbol exists in the table. 

 

 if it is declared before it is being used. 

 

 if the name is used in the scope. 

 

 if the symbol is initialized. 

 

 if the symbol declared multiple times. 

 

The format of lookup() function varies according to the programming language. 

The basic format should match the following: 

 

lookup(symbol) 

 

This method returns 0 (zero) if the symbol does not exist in the symbol table. If 

the symbol exists in the symbol table, it returns its attributes stored in the table. 

Scope Management 

 

A compiler maintains two types of symbol tables: a global symbol table which 

can be accessed by all the procedures and scope symbol tables that are created for each 

scope in the program. 

To determine the scope of a name, symbol tables are arranged in hierarchical 

structure as shown in the example below: 

. . . int value=10; 

void pro_one() 

{ 

 

int one_1; 
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int one_2; 

 

{ 

 

\ int one_3; |_ inner scope 1 int one_4; | 

 

} / int one_5; 

 

{ 

 

\ int one_6; |_ inner scope 2 int one_7; | 

 

} / } 

 

void pro_two() 

 

{ 

 

int two_1; int two_2; 

 

{ \ int two_3; |_ inner scope 3 int two_4; | } 

 

/ int two_5; } . . . 

 

 

The global symbol table contains names for one global variable (int value) and 

two procedure names, which should be available to all the child nodes shown above. 

The names mentioned in the pro_one symbol table (and all its child tables) are not 

available for pro_two symbols and its child tables. 

This symbol table data structure hierarchy is stored in the semantic analyzer and 

whenever a name needs to be searched in a symbol table, it is searched using the 

following algorithm: 

 first a symbol will be searched in the current scope, i.e., current symbol 

table, 

 if a name is found, then search is completed, else it will be searched in 

the parent symbol table until, 

 either the name is found or the global symbol table has been searched for 

the name. 
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UNIT V - CODE OPTIMIZATION AND CODE GENERATION 

 

Topics to be Covered 

Principal Sources of Optimization-DAG- Optimization of Basic Blocks-Global Data Flow Analysis- 

Efficient Data Flow Algorithms-Issues in Design of a Code Generator - A Simple Code Generator 

Algorithm. 

INTRODUCTION 
 

➢ The code produced by the straight forward compiling algorithms can often be made to run 

faster or take less space, or both. This improvement is achieved by program transformations 

that are traditionally called optimizations. Compilers that apply code-improving 

transformations are called optimizing compilers. 

➢ Optimizations are classified into two categories. They are 
Machine independentoptimizations: 

Machine dependant optimizations: 
 

Machine independent optimizations: 
 

Machine independent optimizations are program transformations that improve the target code 

without taking into consideration any properties of the target machine. 

Machine dependant optimizations: 
 

Machine dependant optimizations are based on register allocation and utilization of special 

machine-instruction sequences. 

The criteria for code improvement transformations: 
 

✓ Simply stated, the best program transformations are those that yield the most benefit for the 
least effort. 

 

✓ The transformation must preserve the meaning of programs. That is, the optimization must 
not change the output produced by a program for a given input, or cause an error such as 
division by zero, that was not present in the original source program. At all times we take the 
―safe‖ approach of missing an opportunity to apply a transformation rather than risk  
changing what the programdoes. 

 

✓ A transformation must, on the average, speed up programs by a measurable amount. We are 
also interested in reducing the size of the compiled code although the size of the code has  
less importance than it once had. Not every transformation succeeds in improving every 
program, occasionally an ―optimization‖ may slow down a program slightly. 

 

✓ The transformation must be worth the effort. It does not make sense for a compiler writer to 

expend the intellectual effort to implement a code improving transformation and to have the 
compiler expend the additional time compiling source programs if this effort is not repaid 

when the target programs are executed. ―Peephole‖ transformations of this kind are simple 
enough and beneficial enough to be included in any compiler. 
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Organization for an OptimizingCompiler: 
 

 

 

 

 

➢ Flow analysis is a fundamental prerequisite for many important types of code 
improvement. 

Generally control flow analysis precedes data flow analysis. 

Control flow analysis (CFA) represents flow of control usually in form of graphs, CFA 
constructs such as 

control flow graph 

Call graph 

Data flow analysis (DFA) is the process of ascerting and collecting information prior to 

program execution about the possible modification, preservation, and use of certain 

entities (such as values or attributes of variables) in a computer program. 

PRINCIPAL SOURCES OF OPTIMISATION 

 
A transformation of a program is called local if it can be performed by looking only at the 
statements in a basic block; otherwise, it is called global. 

Many transformations can be performed at both the local and global levels. Local 

transformations are usually performed first. 

Function-Preserving Transformations 
 

There are a number of ways in which a compiler can improve a program without 

changing the function it computes. 

The transformations 

✓ Common sub expression elimination, 

✓ Copy propagation, 

✓ Dead-code elimination, and 

✓ Constant folding 

are   common   examples   of such function-preserving  transformations. The other 

transformations come up primarily when global optimizations are performed. 
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Frequently, a program will include several calculations of the same value, such as an 
offset in an array. Some of the duplicate calculations cannot be avoided by the 

programmer because they lie below the level of detail accessible within the source 
language. 

 

➢ Common Sub expressionselimination: 

An occurrence of an expression E is called a common sub-expression if E was previously 

computed, and the values of variables in E have not changed since the previous 

computation. We can avoid recomputing the expression if we can use the previously 

computed value. 

For example 
t1: = 4*i 
t2: = a [t1] 
t3: = 4*j 
t4: = 4*i 
t5: = n 
t6: = b [t4] +t5 

 

The above code can be optimized using the common sub-expression elimination as 

t1: = 4*i 
t2: = a [t1] 
t3: = 4*j 
t5: = n 
t6: = b [t1] +t5 

 

The common sub expression t4: =4*i is eliminated as its computation is already in t1. And 

value of i is not been changed from definition to use. 
 

➢ Copy Propagation: 

Assignments of the form f : = g called copy statements, or copies for short. The idea 

behind the copy-propagation transformation is to use g for f, whenever possible after the 

copy statement f: = g. Copy propagation means use of one variable instead of another. 

This may not appear to be an improvement, but as we shall see it gives us an opportunity 

to eliminate x. 

For example: 
 

x=Pi; 
…… 

A=x*r*r; 

The optimization using copy propagation can be done as follows: 

A=Pi*r*r; 

Here the variable x is eliminated 
 

➢ Dead-Code Eliminations: 
 

A variable is live at a point in a program if its value can be used subsequently; otherwise, 

it is dead at that point. A related idea is dead or useless code, statements that compute 
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values that never get used. While the programmer is unlikely to introduce any dead code 

intentionally, it may appear as the result of previous transformations. An optimization can 

be done by eliminating dead code. 

Example: 
 

i=0; 

if(i=1) 

{ 

a=b+5; 

} 

 

Here, „if‟ statement is dead code because this condition will never get satisfied. 
 

➢ Constant folding: 
 

We can eliminate both the test and printing from the object code. More generally, 

deducing at compile time that the value of an expression is a constant and using the 
constant instead is known as constant folding. 

One advantage of copy propagation is that it often turns the copy statement into dead 

code. 

✓ For example, 
a=3.14157/2 can be replaced by 
a=1.570 there by eliminating a division operation. 

 

➢ Loop Optimizations: 

We now give a brief introduction to a very important place for optimizations, namely 

loops, especially the inner loops where programs tend to spend the bulk of their time. The 

running time of a program may be improved if we decrease the number of instructions in 
an inner loop, even if we increase the amount of code outside that loop. 

Three techniques are importantfor loop optimization: 

✓ code motion, which moves code outside a loop; 

✓ Induction-variable elimination, which we apply to replace variables from inner loop. 
✓ Reduction in strength, which replaces and expensive operation by a cheaper one, suchas 

a multiplication by an addition. 

➢ Code Motion: 

An important modification that decreases the amount of code in a loop is code motion. 

This transformation takes an expression that yields the same result independent of the 

number of times a loop is executed ( a loop-invariant computation) and places the 

expression before the loop. Note that the notion ―before the loop‖ assumes the existence 

of an entry for the loop. For example, evaluation of limit-2 is a loop-invariant 

computation in the following while-statement: 

while (i <= limit-2) /* statement does not change limit*/ 

Code motion will result in the equivalent of Aru
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t= limit-2; 

while (i<=t) /* statement does not change limit or t */ 
 

➢ Induction Variables : 

Loops are usually processed inside out. For example consider the loop around B3. 

Note that the values of j and t4 remain in lock-step; every time the value of j decreases by 
1, that of t4 decreases by 4 because 4*j is assigned to t4. Such identifiers are called 
induction variables. 

When there are two or more induction variables in a loop, it may be possible to get rid of 
all but one, by the process of induction-variable elimination. For the inner loop around 

B3 in Fig. we cannot get rid of either j or t4 completely; t4 is used in B3 and j in B4. 
However, we can illustrate reduction in strength and illustrate a part of the process of 

induction-variable elimination. Eventually j will be eliminated when the outer loop of B2 

- B5 is considered. 

Example: 

As the relationship t4:=4*j surely holds after such an assignment to t4 in Fig. and t4 is not 
changed elsewhere in the inner loop around B3, it follows that just after the statement 
j:=j-1 the relationship t4:= 4*j-4 must hold. We may therefore replace the assignment t4:= 
4*j by t4:= t4-4. The only problem is that t4 does not have a value when we enter block B3 
for the first time. Since we must maintain the relationship t4=4*j on entry to the block B3, 
we place an initializations of t4 at the end of the block where j itself is 

 

before after 

 

initialized, shown by the dashed addition to block B1 in second Fig. 

The replacement of a multiplication by a subtraction will speed up the object code if 

multiplication takes more time than addition or subtraction, as is the case on many machines. 
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Input: A basic block 
 

Output: A DAG for the basic block containing the following information: 
 

1. A label for each node. For leaves, the label is an identifier. For interior 
nodes, an operator symbol. 

2. For each node a list of attached identifiers to hold the computed 
values. Case (i) x : = y OP z 

 

Case (ii) x : = 

OP y Case (iii) x 

: = y 

Method: 
 

Step 1: If y is undefined then create node(y). 
 

If z is undefined, create node(z) for case(i). 
 

Step 2: For the case(i), create a node(OP) whose left child is node(y) and 

right child is node(z). ( Checking for common sub expression). Let n 

be this node. 

For case(ii), determine whether there is node(OP) with one child node(y). If not create 

such a node. 

For case(iii), node n will be node(y). 

Step 3: Delete x from the list of identifiers for node(x). Append x to the list of 

attached identifiers for the node n found in step 2 and set node(x) to n. 

➢ Reduction In Strength: 

    Reduction in strength replaces expensive operations by equivalent cheaper ones on 

the target machine. Certain machine instructions are considerably cheaper than 
others and can often be used as special cases of more expensive operators. 

For example, x is invariably cheaper to implement as x*x than as a call to an 
exponentiation routine. Fixed-point multiplication or division by a power of two is 

cheaper to implement as a shift. Floating-point division by a constant can be 
implemented as multiplication by a constant, which may be cheaper. 

THE DAG REPRESENTATION FOR BASIC BLOCKS 

   A DAG for a basic block is a directed acyclic graph with the following labels on 

nodes: 

1. Leaves are labeled by unique identifiers, either variable names or constants. 
2. Interior nodes are labeled by an operator symbol. 
3. Nodes are also optionally given a sequence of identifiers for labels to store 

the computed values. 

DAGs are useful data structures for implementing transformations on basic blocks. 

It gives a picture of how the value computed by a statement is used in subsequent 

statements. 

It provides a good way of determining common sub - expressions. 

Algorithm for construction of DAG 
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1. t1 := 4* i 
2.    t2 := a[t1] 
3.    t3 := 4* i 
4.    t4 := b[t3] 
5.    t5 := t2*t4 

6. t6 := prod+t5 

7. prod := 
t6 8.    t7 := 
i+1 9. i 
:= t7 

10. if i<=20 goto (1) 

Example: Consider the block of three- address statements: 
 

 

Stages in DAG Construction 
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Application of DAGs: 

1. We can automatically detect commonsub expressions. 

2. We can determine which identifiers have their values used in the block. 

3. We can determine which statements compute values that could be used outside the block. 
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GENERATING CODE FROM DAGs 

The advantage of generating code for a basic block from its dag representation is that, 

from a dag we can easily see how to rearrange the order of the final computation sequence than 

we can starting from a linear sequence of three-address statements or quadruples. 

Rearranging the order 

The order in which computations are done can affect the cost of resulting object code. 
 

For example, consider the following basic block: 

t1 : = a + b 

t2 : = c + d 

t3 : = e – t2 

t4 : = t1 – t3 

Generated code sequence for basic block: 

MOV a , R0 

ADD b , R0 

MOV c , R1 

ADD d , R1 

MOV R0 , t1 

MOV e , R0 

SUB R1 , R0 

MOV t1 , R1 

SUB R0 , R1 

MOV R1 , t4 

Rearranged basic block: 

Now t1 occurs immediately before t4. 
 

t2 : = c + d 

t3 : = e – t2 

t1 : = a + b 

t4 : = t1 – t3 

Revised code sequence: 
 

MOV c , R0 

ADD d , R0 

MOV a , R0 

SUB R0 , R1 

MOV a , R0 

ADD b , R0 

SUB R1 , R0 

MOV R0 , t4 

In this order, two instructions MOV R0 , t1 and MOV t1 , R1 have been saved. 
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A Heuristic ordering for Dags 

The heuristic ordering algorithm attempts to make the evaluation of a node immediately follow 

the evaluation of its leftmost argument. 

The algorithm shown below produces the ordering in reverse. 
 

Algorithm: 

1) while unlisted interior nodesremain do begin 

2) select an unlisted node n, all of whose parents have been listed; 

3) list n; 

4) while the leftmost child m of n has no unlisted parents and is not a leaf do 

begin 

5) list m; 

6) n : = m 

end 

end 

 

Example: Consider the DAG shown below: 

 

 

 

 

 

 

 

 

 

 

 

 
12 

 

 

 

 
Initially, the only node with no unlisted parents is 1 so set n=1 at line (2) and list 1 at line (3). 

Now, the left argument of 1, which is 2, has its parents listed, so we list 2 and set n=2 at line (6). 

Now, at line (4) we find the leftmost child of 2, which is 6, has an unlisted parent 5. Thus we 

select a new n at line (2), and node 3 is the only candidate. We list 3 and proceed down its left 

chain, listing 4, 5 and 6. This leaves only 8 among the interior nodes so we list that. 

The resulting list is 1234568 and the order of evaluation is 8654321. 

1 
* 

2 + - 3 

4 
* 

5 
- + 8 

6 + 7 c d 11 e 

a 
9 

b 
10 
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Code sequence: 

t8 : = d + e t6 : = a 

+ b t5  : = t6  – c t4 

: = t5  * t8 t3 : = t4 

– e t2 : = t6 + t4 t1 

: = t2 * t3 

This will yield an optimal code for the DAG on machine whatever be the number of registers. 

 

OPTIMIZATION OF BASIC BLOCKS 

There are two types of basic block optimizations. They are : 

✓ Structure-Preserving Transformations 

✓ Algebraic Transformations 

Structure-Preserving Transformations: 

The primary Structure-Preserving Transformation on basic blocks are: 

✓ Common sub-expressionelimination 

✓ Dead code elimination 

✓ Renaming of temporaryvariables 

✓ Interchange of two independentadjacent statements. 

➢ Common sub-expressionelimination: 

Common sub expressions need not be computed over and over again. Instead they can be 

computed once and kept in store from where it‟s referenced when encountered again – of course 

providing the variable values in the expression still remain constant. 

 

Example: 

 

a: =b+c 

b: =a-d 

c: =b+c 

d: =a-d 

 
The 2

nd
 and 4

th
 statements compute the same expression: b+c and a-d 

Basic block can be transformed to 

a: = b+c 

b: = a-d 

c: = a 

d: = b Aru
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➢ Dead code elimination: 

It‟s possible that a large amount of dead (useless) code may exist in the program. This 

might be especially caused when introducing variables and procedures as part of constructio n or 

error-correction of a program – once declared and defined, one forgets to remove them in case 

they serve no purpose. Eliminating these will definitely optimize the code. 
 

➢ Renaming of temporary variables: 

A statement t:=b+c where t is a temporary name can be changed to u:=b+c where u is 

another temporary name, and change all uses of t to u. 

In this we can transform a basic block to its equivalent block called normal-form block. 
 

➢ Interchange of two independent adjacent statements: 
Two statements 

t1:=b+c 

t2:=x+y 

 

can be interchanged or reordered in its computation in the basic block when value of t1 

does not affect the value of t2. 
 

Algebraic Transformations: 

Algebraic identities represent another important class of optimizations on basic blocks. 
This includes simplifying expressions or replacing expensive operation by cheaper ones 

i.e. reduction in strength. 

Another class of related optimizations is constant folding. Here we evaluate constant 

expressions at compile time and replace the constant expressions by their values. Thus  
the expression 2*3.14 would be replaced by 6.28. 

The relational operators <=, >=, <, >, + and = sometimes generate unexpected common 

sub expressions. 

Associative laws may also be applied to expose common sub expressions. For example, if 

the source code has the assignments 
 

a :=b+c 

e :=c+d+b 

the following intermediate code may be generated: 

a :=b+c 

t :=c+d 

e :=t+b 
 

Example: 

 

x:=x+0 can be removed 

 

x:=y**2 can be replaced by a cheaper statement x:=y*y 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



 

The compiler writer should examine the language carefully to determine what 
rearrangements of computations are permitted, since computer arithmetic does not always 

obey the algebraic identities of mathematics. Thus, a compiler may evaluate x*y-x*z as 
x*(y-z) but it may not evaluate a+(b-c) as (a+b)-c. 

 

LOOPS IN FLOW GRAPH 
 

A graph representation of three-address statements, called a flow graph, is useful for 

understanding code-generation algorithms, even if the graph is not explicitly constructed by a 

code-generation algorithm. Nodes in the flow graph represent computations, and the edges 

represent the flow of control. 

 
Dominators: 

In a flow graph, a node d dominates node n, if every path from initial node of the flow 

graph to n goes through d. This will be denoted by d dom n. Every initial node dominates all the 

remaining nodes in the flow graph and the entry of a loop dominates all nodes in the loop. 

Similarly every node dominates itself. 

Example: 

*In the flow graph below, 
*Initial node,node1 dominates every node. 

*node 2 dominates itself 

*node 3 dominates all but 1 and 2. 

*node 4 dominates all but 1,2 and 3. 

*node 5 and 6 dominates only themselves,since flow of control can skip around either by goin 

through the other. 

*node 7 dominates 7,8 ,9 and 10. 

*node 8 dominates 8,9 and 10. 

*node 9 and 10 dominates only themselves. 
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The way of presenting dominator information is in a tree, called the dominator tree in 

which the initial node is the root. 

The parent of each other node is its immediate dominator. 

Each node d dominates only its descendents in the tree. 

The existence of dominator tree follows from a property of dominators; each node has a 

unique immediate dominator in that is the last dominator of n on any path from the initial 

node to n. 

In terms of the dom relation, the immediate dominator m has the property is d=!n and d 
dom n, then d dom m. 

 

 
 

 

 

D(1)={1} D(2)={1,2} 

D(3)={1,3} 

D(4)={1,3,4} 

 

D(5)={1,3,4,5} 

 

D(6)={1,3,4,6} 

 

D(7)={1,3,4,7} 

 

D(8)={1,3,4,7,8} 

 

D(9)={1,3,4,7,8,9} 

 

D(10)={1,3,4,7,8,10} 
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Natural Loop: 
 

One application of dominator information is in determining the loops of a flow graph suitable 

for improvement. 
 

The properties of loops are 
 

✓ A loop must have a single entry point, called the header. This entry point-dominates all 
nodes in the loop, or it would not be the sole entry to the loop. 

✓ There must be at least one way to iterate the loop(i.e.)at least one path back to the header. 
 

One way to find all the loops in a flow graph is to search for edges in the flow graph whose 

heads dominate their tails. If a→b is an edge, b is the head and a is the tail. These types of 

edges are called as back edges. 
 

✓ Example: 

In the above graph, 

 

7 → 4 4 DOM 7 

10 →7 7 DOM 10 

4 → 3 

8 → 3 

9 →1 

 
The above edges will form loop in flow graph. 

Given a back edge n → d, we define the natural loop of the edge to be d plus the set of nodes 

that can reach n without going through d. Node d is the header of the loop. 
 

Algorithm: Constructing the natural loop of a back edge. 

 

Input: A flow graph G and a back edge n→d. 

 

Output: The set loop consisting of all nodes in the natural loop n→d. 

 

Method: Beginning with node n, we consider each node m*d that we know is in loop, to make 

sure that m‟s predecessors are also placed in loop. Each node in loop, except for d, is placed once 

on stack, so its predecessors will be examined. Note that because d is put in the loop initially, we 

never examine its predecessors, and thus find only those nodes that reach n without going  

through d. 

 

Procedure insert(m); 

if m is not in loop then begin 

loop := loop U {m}; 

push m onto stack 

end; 
 

stack : = empty; 
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header 

header pre-header 

loop : = {d}; 

insert(n); 

while stack is not empty do begin 

pop m, the first element of stack, off stack; 

for each predecessor p of m do insert(p) 

end 

 

Inner loop: 
 

If we use the natural loops as ―the loops‖, then we have the useful property that unless 

two loops have the same header, they are either disjointed or one is entirely contained in 

the other. Thus, neglecting loops with the same header for the moment, we have a natural 
notion of inner loop: one that contains no other loop. 

When two natural loops have the same header, but neither is nested within the other, they 
are combined and treated as a singleloop. 

 

Pre-Headers: 

Several transformations require us to move statements ―before the header‖. Therefore 

begin treatment of a loop L by creating a new block, called the preheater. 
 

The pre-header has only the header as successor, and all edges which formerly entered 

the header of L from outside L instead enter the pre-header. 
 

Edges from inside loop L to the header are not changed. 
 

Initially the pre-header is empty, but transformations on L may place statements in it. 

loop L 

 

 

loop L 
 

(a) Before (b) After 

 

Reducible flow graphs: 
 

Reducible flow graphs are special flow graphs, for which several code optimization 

transformations are especially easy to perform, loops are unambiguously defined, 

dominators can be easily calculated, data flow analysis problems can also be solved 

efficiently. 
 

Exclusive use of structured flow-of-control statements such as if-then-else, while-do, 

continue, and break statements produces programs whose flow graphs are always 

reducible. 
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The most important properties of reducible flow graphs are that there are no jumps into 

the middle of loops from outside; the only entry to a loop is through its header. 
 

Definition: 

A flow graph G is reducible if and only if we can partition the edges into two disjoint 

groups, forward edges and back edges, with the following properties. 

✓ The forward edges from an acyclic graph in which every node can be reached from initial 

node of G. 

✓ The back edges consist only of edges where heads dominate theirs tails. 

✓ Example: The above flow graph isreducible. 

If we know the relation DOM for a flow graph, we can find and remove all the back 

edges. 
 

The remaining edges are forwardedges. 
 

If the forward edges form an acyclic graph, then we can say the flow graph reducible. 
 

In the above example remove the five back edges 4→3, 7→4, 8→3, 9→1 and 10→7 

whose heads dominate their tails, the remaining graph is acyclic. 
 

The key property of reducible flow graphs for loop analysis is that in such flow graphs 

every set of nodes that we would informally regard as a loop must contain a back edge. 

PEEPHOLE OPTIMIZATION 
 

A statement-by-statement code-generations strategy often produce target code that 

contains redundant instructions and suboptimal constructs .The quality of such target 

code can be improved by applying ―optimizing‖ transformations to the targetprogram. 

A simple but effective technique for improving the target code is peephole optimization, 

a method for trying to improving the performance of the target program by examining a 
short sequence of target instructions (called the peephole) and replacing these 

instructions by a shorter or faster sequence, whenever possible. 

The peephole is a small, moving window on the target program. The code in the peephole 

need not contiguous, although some implementations do require this.it is characteristic of 
peephole optimization that each improvement may spawn opportunities for additional 

improvements. 

We shall give the following examples of program transformations that are characteristic 

of peephole optimizations: 

✓ Redundant-instructions elimination 

✓ Flow-of-control optimizations 

✓ Algebraic simplifications 

✓ Use of machine idioms 

✓ Unreachable Code 
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Redundant Loads And Stores: 

 

If we see the instructions sequence 

 

(1) MOV R0,a 
 

(2) MOV a,R0 

 

we can delete instructions (2) because whenever (2) is executed. (1) will ensure that the value of a is 

already in register R0.If (2) had a label we could not be sure that (1) was always executed immediately 

before (2) and so we could not remove (2). 

 

Unreachable Code: 

Another opportunity for peephole optimizations is the removal of unreachable instructions. An 

unlabeled instruction immediately following an unconditional jump may be removed. This operation 

can be repeated to eliminate a sequence of instructions. For example, for debugging purposes, a large 

program may have within it certain segments that are executed only if a variable debug is 1. In C, the 

source code might look like: 

 

#define debug 0 

…. 

If ( debug ) { 

Print debugging information 

} 
 

In the intermediate representations the if-statement may be translated as: 

 
If debug =1 goto L2 

goto L2 

L1: print debugging information 

L2 ......................................... (a) 
 

One obvious peephole optimization is to eliminate jumps over jumps .Thus no matter what the value 

of debug; (a) can be replaced by: 
 

If debug ≠1 goto L2 

Print debugging information 

L2: ............................................ (b) 
 

As the argument of the statement of (b) evaluates to a constant  true it can be replaced by 
If debug ≠0 goto L2 
Print debugging information 

L2: ............................................ (c) 
 

As the argument of the first statement of (c) evaluates to a constant true, it can be replaced by goto L2. 
Then all the statement that print debugging aids are manifestly unreachable and  can be eliminated  

one at a time. 
 

 

 

 

 

 

Flows-Of-Control Optimizations: 
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The unnecessary jumps can be eliminated in either the intermediate code or th e target code by the 

following types of peephole optimizations. We can replace the jump sequence 
 

goto L1 

…. 

L1: gotoL2 by the sequence 

goto L2 

…. 

L1: goto L2 
 

If there are now no jumps to L1, then it may be possible to eliminate the statement L1:goto L2 

provided it is preceded by an unconditional jump .Similarly, the sequence 

 
if a < b goto L1 

…. 

L1: goto L2 can be replaced by 

If a < b goto L2 

…. 
L1: goto L2 

 

Finally, suppose there is only one jump to L1 and L1 is preceded by an unconditional goto. 
Then the sequence 

goto L1 

…….. 

L1: if a < b goto L2 

L3: ........................................................... (1) 
 

May be replaced by 

If a < b goto L2 goto L3 

……. 
L3:............................................................ (2) 

 

While the number of instructions in (1) and (2) is the same, we sometimes skip the unconditional jump 

in (2), but never in (1).Thus (2) is superior to (1) in execution time 
 

Algebraic Simplification: 

     There is no end to the amount of algebraic simplification that can be attempted through peephole 

optimization. Only a few algebraic identities occur frequently enough that it is worth considering 
implementing them .For example, statements such as 

 
x := x+0 Or 

x := x * 1 

Are often produced by straightforward intermediate code-generation algorithms, and they can be 

eliminated easily through peephole optimization. 

 

Reduction in Strength: 

Reduction in strength replaces expensive operations by equivalent cheaper ones on the target 

machine. Certain machine instructions are considerably cheaper than others and can often be used 

as special cases of more expensiveoperators. 
 

 

 

 

 

For example, x is invariably cheaper to implement as x*x than as a call to an exponentiation routine. 
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Fixed-point multiplication or division by a power of two is cheaper to implement as a shift. Floating- 

point division by a constant can be implemented as multiplication by a constant, which may be 

cheaper. 

 

X
2
 → X*X 

 

Use of Machine Idioms: 

The target machine may have hardware instructions to implement certain specific operations 
efficiently. For example, some machines have auto-increment and auto-decrement addressing modes. 

These add or subtract one from an operand before or after using its value. 

The use of these modes greatly improves the quality of code when pushing or popping a stack, as in 

parameter passing. These modes can also be used in code for statements like 

i :=i+1. 

i:=i+1 → i++ i:=i-1 → 

i- - 
 

INTRODUCTION TO GLOBAL DATAFLOW ANALYSIS 

   In order to do code optimization and a good job of code generation , compiler needs to collect 

information about the program as a whole and to distribute this information to each block in the 

flow graph. 
 

A compiler could take advantage of ―reaching definitions‖ , such as knowing where a variable like 

debug was last defined before reaching a given block, in order to perform transformations are just a 

few examples of data-flow information that an optimizing compiler collects by a process known as 

data-flow analysis. 
 

Data-flow information can be collected by setting up and solving systems of equations of the form : 

out [S] = gen [S] U ( in [S] – kill [S] ) 

This equation can be read as ― the information at the end of a statement is either generated within 

the statement , or enters at the beginning and is not killed as control flows through the statement.‖ 
 

The details of how data-flow equations are set and solved depend on three factors. 

✓ The notions of generating and killing depend on the desired information, i.e., on the data flow 

analysis problem to be solved. Moreover, for some problems, instead of proceeding along with 

flow of control and defining out[s] in terms of in[s], we need to proceed backwards and define 

in[s] in terms ofout[s]. 

✓ Since data flows along control paths, data-flow analysis is affected by the constructs in a program. 

In fact, when we write out[s] we implicitly assume that there is unique end point where control 

leaves the statement; in general, equations are set up at the level of basic blocks rather than 

statements, because blocks do have unique end points. 

✓ There are subtleties that go along with such statements as procedure calls, assignments through 

pointer variables, and even assignments to array variables. 

 
Points and Paths: 

 

Within a basic block, we talk of the point between two adjacent statements, as well as the point 

before the first statement and after the last. Thus, block B1 has four points: one before any of the 
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B
4 

B
6 

d6 :a :=u2 

B
2 

d4 : I := 
i+1 

B
3 d5: j := j-1 

d1 : i :=m-

1 d2: j :=n 

d3: a := u1 

assignments and one after each of the three assignments. 

B1 
 

 
 
 

 
B5 

 
 
 

 

Now let us take a global view and consider all the points in all the blocks. A path from p1 

to pn is a sequence of points p1, p2,….,pn such that for each i between 1 and n-1, either 

✓ Pi is the point immediately preceding a statement and pi+1 is the point immediately following 
that statement in the same block, or 

✓ Pi is the end of some block and pi+1 is the beginning of a successor block. 

 
Reaching definitions: 

   A definition of variable x is a statement that assigns, or may assign, a value to x. The most 

common forms of definition are assignments to x and statements that read a value from an i/o 

device and store it in x. 
 

These statements certainly define a value for x, and they are referred to as unambiguous 

definitions of x. There are certain kinds of statements that may define a value for x; they are called 

ambiguous definitions. The most usual forms of ambiguous definitions of x are: 

✓ A call of a procedure with x as a parameter or a procedure that can access x because x is in the 

scope of the procedure. 

✓ An assignment through a pointer that could refer to x. For example, the assignment *q: = y is a 

definition of x if it is possible that q points to x. we must assume that an assignment through a 

pointer is a definition of everyvariable. 
 

We say a definition d reaches a point p if there is a path from the point immediately following d 

to p, such that d is not ―killed‖ along that path. Thus a point can be reached 

by an unambiguous definition and an ambiguous definition of the same variable 

appearing later along one path. 
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S
1 

S
2 

If E goto s1 

S
1 

If E goto 
s1 

Data-flow analysis of structured programs: 
 

Flow graphs for control flow constructs such as do-while statements have a useful 

property: there is a single beginning point at which control enters and a single end point 

that control leaves from when execution of the statement is over. We exploit this property 

when we talk of the definitions reaching the beginning and the end of statements with the 

following syntax. 

S  id: = E| S; S | if E then S else S | do S while E 

E id + id| id 

Expressions in this language are similar to those in the intermediate code, but the flow 

graphs for statements have restrictedforms. 

 

 

 

 
S1 ; S2 

 
IF E then S1 else S2 do S1 while E 

 

We define a portion of a flow graph called a region to be a set of nodes N that includes a 

header, which dominates all other nodes in the region. All edges between nodes in N are 

in the region, except for some that enter the header. 

The portion of flow graph corresponding to a statement S is a region that obeys the 
further restriction that control can flow to just one outside block when it leaves the  
region. 

S
1 

S
2 
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S S
1 

S
2 

We say that the beginning points of the dummy blocks at the entry and exit of a 

statement‟s region are the beginning and end points, respectively, of the statement. The 
equations are inductive, or syntax-directed, definition of the sets in[S], out[S], gen[S],  

and kill[S] for all statements S. 

gen[S] is the set of definitions “generated” by S while kill[S] is the set of definitions 

that never reach the end of S. 

Consider the following data-flow equations for reaching definitions : 
 

i ) 
 

 

 

 

 

 

gen [S] = { d } 
kill [S] = Da – { d } 

out [S] = gen [S] U ( in[S] – kill[S] ) 
 

Observe the rules for a single assignment of variable a. Surely that assignment is a 

definition of a, say d. Thus 
Gen[S]={d} 

On the other hand, d ―kills‖ all other definitions of a, so we write 

Kill[S] = Da – {d} 
Where, Da is the set of all definitions in the program for variable a. ii ) 

 

 

gen[S]=gen[S2] U (gen[S1]-kill[S2]) 
Kill[S] = kill[S2] U (kill[S1] – gen[S2]) 

 

in [S1] = in [S] 
in [S2] = out [S1] 
out [S] = out [S2] 

S d : a : = b + c 
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Under what circumstances is definition d generated by S=S1; S2? First of all, if it is 
generated by S2, then it is surely generated by S. if d is generated by S1, it will reach the 
end of S provided it is not killed by S2. Thus, we write 
gen[S]=gen[S2] U (gen[S1]-kill[S2] 

Similar reasoning applies to the killing of a definition, so we have 

Kill[S] = kill[S2] U (kill[S1] – gen[S2]) 
 

Conservative estimation of data-flow information: 
 

There is a subtle miscalculation in the rules for gen and kill. We have made the 

assumption that the conditional expression E in the if and do statements are 

―uninterpreted‖; that is, there exists inputs to the program that make their branches go 

either way. 
 

We assume that any graph-theoretic path in the flow graph is also an execution path, i.e., 

a path that is executed when the program is run with least one possible input. 
 

When we compare the computed gen with the ―true‖ gen we discover that the true gen is 

always a subset of the computed gen. on the other hand, the true kill is always a superset 

of the computed kill. 
 

These containments hold even after we consider the other rules. It is natural to wonder 

whether these differences between the true and computed gen and kill sets present a 

serious obstacle to data-flow analysis. The answer lies in the use intended for these data. 
 

Overestimating the set of definitions reaching a point does not seem serious; it merely 

stops us from doing an optimization that we could legitimately do. On the other hand, 

underestimating the set of definitions is a fatal error; it could lead us into making a 

change in the program that changes what the program computes. For the case of reaching 

definitions, then, we call a set of definitions safe or conservative if the estimate is a 

superset of the true set of reaching definitions. We call the estimate unsafe, if it is not 

necessarily a superset of the truth. 
 

Returning now to the implications of safety on the estimation of gen and kill for reaching 

definitions, note that our discrepancies, supersets for gen and subsets for kill are both in 

the safe direction. Intuitively, increasing gen adds to the set of definitions that can reach a 

point, and cannot prevent a definition from reaching a place that it truly reached. 

Decreasing kill can only increase the set of definitions reaching any given point. 
 

Computation of in and out: 

Many data-flow problems can be solved by synthesized translations similar to those used 

to compute gen and kill. It can be used, for example, to determine loop-invariant 

computations. 

However, there are other kinds of data-flow information, such as the reaching-definitions 

problem. It turns out that in is an inherited attribute, and out is a synthesized attribute 

depending on in. 
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S, taking into account the flow of control throughout the entire program, including 

statements outside of S or within which S is nested. 
 

The set out[S] is defined similarly for the end of s. it is important to note the distinction 

between out[S] and gen[S]. The latter is the set of definitions that reach the end of S 

without following paths outside S. 
 

Assuming we know in[S] we compute out by equation, that 

is Out[S] = gen[S] U (in[S] - kill[S]) 

Considering cascade of two statements S1; S2, as in the second case. We start by 

observing in[S1]=in[S]. Then, we recursively compute out[S1], which gives us in[S2], 

since a definition reaches the beginning of S2 if and only if it reaches the end of S1. Now 

we can compute out[S2],and this set is equal to out[S]. 

Considering if-statement we have conservatively assumed that control can follow either 

branch, a definition reaches the beginning of S1 or S2 exactly when it reaches the 

beginning of S. 

In[S1] = in[S2] = in[S] 
 

If a definition reaches the end of S if and only if it reaches the end of one or both sub 

statements; i.e, 

Out[S]=out[S1] U out[S2] 
 

Representation of sets: 
 

Sets of definitions, such as gen[S] and kill[S], can be represented compactly using bit 

vectors. We assign a number to each definition of interest in the flow graph. Then bit 

vector representing a set of definitions will have 1 in position I if and only if the 

definition numbered I is inthe set. 
 

The number of definition statement can be taken as the index of statement in an array 

holding pointers to statements. However, not all definitions may be of interest during 

global data-flow analysis. Therefore the number of definitions of interest will typically be 

recorded in a separate table. 
 

A bit vector representation for sets also allows set operations to be implemented 

efficiently. The union and intersection of two sets can be implemented by logical or and 

logical and, respectively, basic operations in most systems-oriented programming 

languages. The difference A-B of sets A and B can be implemented by taking the 

complement of B and then using logical and to compute A 

 

 
. 
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Local reaching definitions: 
 

Space for data-flow information can be traded for time, by saving information only at 

certain points and, as needed, recomputing information at intervening points. Basic 

blocks are usually treated as a unit during global flow analysis, with attention restricted to 

only those points that are the beginnings of blocks. 
 

Since there are usually many more points than blocks, restricting our effort to blocks is a 

significant savings. When needed, the reaching definitions for all points in a block can be 

calculated from the reaching definitions for the beginning of a block. 
 

Use-definition chains: 
 

It is often convenient to store the reaching definition information as‖ use-definition 

chains‖ or ―ud-chains‖, which are lists, for each use of a variable, of all the definitions 

that reaches that use. If a use of variable a in block B is preceded by no unambiguous 

definition of a, then ud-chain for that use of a is the set of definitions in in[B] that are 

definitions of a.in addition, if there are ambiguous definitions of a ,then all of these for 

which no unambiguous definition of a lies between it and the use of a are on the ud-chain 

for this use of a. 
 

Evaluation order: 
 

The techniques for conserving space during attribute evaluation, also apply to the 

computation of data-flow information using specifications. Specifically, the only 

constraint on the evaluation order for the gen, kill, in and out sets for statements is that 

imposed by dependencies between these sets. Having chosen an evaluation order, we are 

free to release the space for a set after all uses of it have occurred. 
 

Earlier circular dependencies between attributes were not allowed, but we have seen that 

data-flow equations may have circular dependencies. 
 

General control flow: 

     Data-flow analysis must take all control paths into account. If the control paths are 

evident from the syntax, then data-flow equations can be set up and solved in a syntax- 

directed manner. 
 

When programs can contain goto statements or even the more disciplined break and 

continue statements, the approach we have taken must be modified to take the actual 

control paths into account. 
 

Several approaches may be taken. The iterative method works arbitrary flow graphs. 

Since the flow graphs obtained in the presence of break and continue statements are 

reducible, such constraints can be handled systematically using the interval -based 

methods 
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However, the syntax-directed approach need not be abandoned when break and continue 

statements are allowed. 

CODE GENERATION 

The final phase in compiler model is the code generator. It takes as input an intermediate 

representation of the source program and produces as output an equivalent target program. The 

code generation techniques presented below can be used whether or not an optimizing phase 

occurs before code generation. 

Position of code generator 
 
 

source intermediate code intermediate
 code 

target 

program code   optimizer  code generato
r 

program 

 

 

 
 

ISSUES IN THE DESIGN OF A CODE GENERATOR 

The following issues arise during the code generation phase : 
 

1. Input to code generator 

2. Target program 

3. Memory management 

4. Instruction selection 

5. Register allocation 

6. Evaluation order 

 
1. Input to code generator: 

The input to the code generation consists of the intermediate representation of the source 
program produced by front end , together with information in the symbol table to 

determine run-time addresses of the data objects denoted by the names in the 
intermediate representation. 

Intermediate representationcan be : 

a. Linear representation such as postfix notation 

b. Three address representation such asquadruples 

c. Virtual machine representation such as stack machine code 
d. Graphical representations such as syntax trees and dags. 

Prior to code generation, the front end must be scanned, parsed and translated into 
intermediate representation along with necessary type checking. Therefore, input to code 

generation is assumed to beerror-free. 

2. Target program: 

   The output of the code generator is the target program. The output may be : 

a. Absolute machinelanguage 

- It can be placed in a fixed memory location and can be executed immediately. 

symbo

l 

table 

front end 
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b. Relocatable machine language 

- It allows subprograms to be compiled separately. 
 

c. Assembly language 

- Code generation is made easier. 
 

3. Memory management: 

Names in the source program are mapped to addresses of data objects in run-time 

memory by the front end and code generator. 
It makes use of symbol table, that is, a name in a three-address statement refers to a 
symbol-table entry for the name. 

Labels in three-address statements have to be converted to addresses of instructions. 

For example, 
j : goto i generates jump instruction as follows : 

➢ if i < j, a backward jump instruction with target address equal to location of 
code for quadruple i is generated. 

➢ if i > j, the jump is forward. We must store on a list for quadruple i the 

location of the first machine instruction generated for quadruple j. When i is 

processed, the machine locations for all instructions that forward jumps to i 

are filled. 

 

4. Instruction selection: 

The instructions of target machine should be complete and uniform. 

Instruction speeds and machine idioms are important factors when efficiency of target 
program is considered. 

The quality of the generated code is determined by its speed and size. 

The former statement can be translated into the latter statement as shown below: 

 

 

5. Register allocation 

Instructions involving register operands are shorter and faster than those involving 
operands in memory. 
The use of registers is subdivided into two subproblems : 
➢ Register allocation – the set of variables that will reside in registers at a point in 

the program is selected. 
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➢ Register assignment – the specific register that a variable will reside in is 
picked 

Certain machine requires even-odd register pairs for some operands and results. 

For example , consider the division instruction of the form : 

D x, y 
 

where, x – dividend even register in even/odd register pair 

y – divisor 

even register holds the remainder 

odd register holds the quotient 

6. Evaluation order 

The order in which the computations are performed can affect the efficiency of the 
target code. Some computation orders require fewer registers to hold intermediate 
results than others. 

 

TARGET MACHINE 

   Familiarity with the target machine and its instruction set is a prerequisite for designing a 

good code generator. 

The target computer is a byte-addressable machine with 4 bytes to a word. 

It has n general-purpose registers, R0, R1, . . . , Rn-1. 
It has two-address instructions of the form: 

op source, destination 

where, op is an op-code, and source and destination are data fields. 

It has the following op-codes : 
MOV (move source to destination) 

ADD (add source to destination) 

SUB (subtract source from destination) 

The source and destination of an instruction are specified by combining registers and 

memory locations with address modes. 

Address modes with their assembly-language forms 

 
MODE FORM ADDRESS ADDED COST 

absolute M M 1 

register R R 0 

indexed c(R) c+contents(R) 1 

indirect register *R contents (R) 0 

indirect indexed *c(R) contents(c+ 

contents(R)) 

1 

literal #c c 1 
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For example : MOV R0, M stores contents of Register R0 into memory location M ; MOV 

4(R0), M stores the value contents(4+contents(R0)) into M. 
 

Instruction costs : 

   Instruction cost = 1+cost for source and destination addressmodes. This cost corresponds 

to the length of the instruction. 

Address modes involving registers have cost zero. 

Address modes involving memory location or literal have cost one. 

Instruction length should be minimized if space is important. Doing so also minimizes the 

time taken to fetch and perform the instruction. 

For example : MOV R0, R1 copies the contents of register R0 into R1. It has cost one, 

since it occupies only one word of memory. 

The three-address statement a : = b + c can be implemented by many different instruction 

sequences : 
 

i) MOV b, R0 

ADD c, R0 cost = 6 

MOV R0, a 

ii) MOV b, a 

ADD c, a cost = 6 
 

iii) Assuming R0, R1 and R2 contain the addresses of a, b, and c : 

MOV *R1, *R0 

ADD *R2, *R0 cost = 2 
 

In order to generate good code for target machine, we must utilize its addressing 

capabilities efficiently. 

 
A SIMPLE CODE GENERATOR 

   A code generator generates target code for a sequence of three- address statements and 

effectivelyuses registers to store operands of the statements. 
 

For example: consider the three-address statement a := b+c 

It can have the following sequence of codes: 
 

ADD Rj, Ri Cost = 1 // if Ri contains b and Rj contains c 

(or) 

ADD c, Ri  Cost = 2 // if c is in a memory location 

(or) 

MOV c, Rj Cost = 3 // move c from memory to Rjand add 

ADD Rj, Ri 
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Register and Address Descriptors: 
 

A register descriptor is used to keep track of what is currently in each registers. The 

register descriptors show that initially all the registers are empty. 

An address descriptor stores the location where the current value of the name can be 

found at run time. 

A code-generation algorithm: 
 

The algorithm takes as input a sequence of three-address statements constituting a basic block. 

For each three-address statement of the form x : = y op z, perform the following actions: 

 

2. Invoke a function getreg to determine the location L where the result of the computation y op 

z should be stored. 

 

3. Consult the address descriptor for y to determine y‟, the current location of y. Prefer the 

register for y‟ if the value of y is currently both in memory and a register. If the value of y is 

not already in L, generate the instruction MOV y‟ , L to place a copy of y in L. 

 

4. Generate the instruction OP z‟ , L where z‟ is a current location of z. Prefer a register to a 

memory location if z is in both. Update the address descriptor of x to indicate that x is in 

location L. If x is in L, update its descriptor and remove x from all other descriptors. 

 

5. If the current values of y or z have no next uses, are not live on exit from the block, and are in 

registers, alter the register descriptor to indicate that, after execution of x : = y op z , those 

registers will no longer contain y or z. 

 

Generating Code for Assignment Statements: 
 

The assignment d : = (a-b) + (a-c) + (a-c) might be translated into the following three- 

address code sequence: 

t : = a – b 

u : = a – c 

v : = t + u 

d : = v + u 

with d live at the end. 

Code sequence for the example is: 
 

Statements Code Generated Register descriptor Address descriptor 

  Register empty  

t : = a - b MOV a, R0 SUB b, 

R0 

R0 contains t t in R0 

u : = a - c MOV a , R1 SUB c 

, R1 

R0 contains t R1 

contains u 

t in R0 u in 

R1 

v : = t + u ADD R1, R0 R0 contains v R1 

contains u 

u in R1 v in 

R0 

d : = v + u ADD R1, R0 MOV 

R0, d 

R0 contains d d in R0 

d in R0 and memory 
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Generating Code for Indexed Assignments 

The table shows the code sequences generated for the indexed assignment statements 

a : = b [ i ] and a [ i ] : = b 
 

Statements Code Generated Cost 

a : = b[i] MOV b(Ri), R 2 

a[i] : = b MOV b, a(Ri) 3 

 

Generating Code for Pointer Assignments 

The table shows the code sequences generated for the pointer assignments 

a : = *p and *p : = a 
 

Statements Code Generated Cost 

a : = *p MOV *Rp, a 2 

*p : = a MOV a, *Rp 2 

 

Generating Code for Conditional Statements 
 

Statement Code 

if x < y goto z CMP x, y 

CJ<  z /* jump to z if condition code 

is negative */ 

x : = y +z MOV y, R0 

if x < 0 goto z ADD z, R0 

 MOV R0,x 
 CJ< z 
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