
THEORY OF COMPUTATION 

LECTURE NOTES 

THEORY OF COMPUTATION (3-1-0) 

UNIT-I 

Introduction to Automata: The Methods Introduction to Finite Automata, Structural 

Representations, Automata and Complexity. Proving Equivalences about Sets,  The 

Contrapositive, Proof by Contradiction, Inductive Proofs: General Concepts  of  Automata  

Theory: Alphabets Strings, Languages, Applications of Automata Theory. 

Finite Automata: The Ground Rules, The Protocol, Deterministic  Finite Automata: Definition  

of a Deterministic Finite Automata, How a DFA Processes Strings, Simpler  Notations  for  

DFA‘s, Extending the Transition Function to Strings, The Language of a DFA 

Nondeterministic Finite Automata: An Informal View. The Extended Transition Function, The 

Languages of an NFA, Equivalence of Deterministic and Nondeterministic Finite Automata. 

Finite Automata With Epsilon-Transitions: Uses of -Transitions, The Formal Notation for an 

-NFA, Epsilon-Closures, Extended Transitions and Languages for -NFA‘s, Eliminating -

Transitions. 

UNIT-II 

Regular Expressions and Languages: Regular Expressions: The Operators of regular 

Expressions, Building Regular Expressions, Precedence of Regular-Expression Operators, 

Precedence of Regular-Expression Operators 

Finite Automata and Regular Expressions: From DFA‘s to Regular Expressions, Converting 

DFA‘s to Regular Expressions, Converting DFA‘s to Regular Expressions by Eliminating States, 

Converting Regular Expressions to Automata. 

Algebraic Laws for Regular Expressions: 
Properties of Regular Languages: The Pumping Lemma for Regular Languages, Applications  

of the Pumping Lemma Closure Properties of Regular Languages, Decision  Properties  of  

Regular Languages, Equivalence and Minimization of Automata, 

UNIT-III 
Context-Free Grammars and Languages: Definition of Context-Free Grammars, Derivations 

Using a Grammars Leftmost and Rightmost Derivations, The Languages of a Grammar, 

Parse Trees: Constructing Parse Trees, The Yield of a Parse Tree, Inference Derivations, and 

Parse Trees, From Inferences to Trees, From Trees to Derivations, From Derivation to Recursive 

Inferences, 

Applications of Context-Free Grammars: Parsers, Ambiguity in Grammars and Languages: 

Ambiguous Grammars, Removing Ambiguity From Grammars, Leftmost  Derivations as a  Way 

to Express Ambiguity, Inherent Anbiguity 

Pushdown  Automata: Definition Formal Definition of Pushdown Automata, A Graphical 

Notation for PDA‘s, Instantaneous Descriptions of a PDA, 

Languages of PDA: Acceptance by Final State, Acceptance by Empty Stack, From Empty Stack 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



to Final State, From Final State to Empty Stack 

Equivalence of PDA‘s and CFG‘s: From Grammars to Pushdown Automata, From PDA‘s to 

Grammars 

Deterministic Pushdown Automata: Definition of a Deterministic PDA, Regular  Languages  

and Deterministic PDA‘s, DPDA‘s and Context-Free Languages, DPDA‘s and Ambiguous 

Grammars 

Properties of Context-Free Languages: Normal Forms for Context-Free Grammars, The 

Pumping Lemma for Context-Free Languages, Closure Properties of Context-Free Languages, 

Decision Properties of CFL‘s 

UNIT –IV  
Introduction to Turing Machines: The Turing Machine: The Instantaneous Descriptions for 

Turing Machines, Transition Diagrams for Turing Machines, The Language of a  Turing  

Machine, Turing Machines and Halting 

Programming Techniques for Turing Machines, Extensions to the Basic Turing Machine, 

Restricted Turing Machines, Turing Machines and Computers, 

UNIT-V 
Undecidability: A Language That is Not Recursively Enumerable, Enumerating the Binary 

Strings, Codes for Turing Machines, The Diagonalization Language 

An Undecidable Problem That Is RE: Recursive Languages, Complements of Recursive and RE 

languages, The Universal Languages, Undecidability of the Universal Language 

Undecidable Problems About Turing Machines: Reductions, Turing Machines That Accept the 

Empty Language. Post‘s Correspondence Problem: Definition of  Post‘s  Correspondence 

Problem, The ―Modified‖ PCP, Other Undecidable Problems: Undecidability of Ambiguity for 

CFG‘s 

 

 
Text Book: 

 
1. Introduction to Automata Theory Languages, and Computation, by J.E.Hopcroft, 

R.Motwani & J.D.Ullman (3rd Edition) – Pearson Education 

2. Theory of Computer Science (Automata Language & Computations), by K.L.Mishra & 

N. Chandrashekhar, PHI 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



 

UNIT-I 
 

What is TOC? 

In theoretical computer science, the theory of computation is the branch that deals with 

whether and how efficiently problems can be solved on a model of computation, using an 

algorithm. The field is divided into three major branches: automata theory, computability theory 

and computational complexity theory. 

In order to perform a rigorous study of computation, computer scientists work with a 

mathematical abstraction of computers called a model of computation. There are several models 

in use, but the most commonly examined is the Turing machine. 

Automata theory 

In theoretical computer science, automata theory is the study of abstract machines (or more 

appropriately, abstract 'mathematical' machines or systems) and the computational problems that 

can be solved using these machines. These abstract machines are called automata. 

This automaton consists of 

 states (represented in the figure by circles), 

 and transitions (represented by arrows). 

As the automaton sees a symbol of input, it makes a transition (or jump) to another state, 

according to its transition function (which takes the current state and the recent symbol as its 

inputs). 

Uses of Automata: compiler design and parsing. 

 

Introduction to formal proof: 

Basic Symbols used : 

U – Union 
∩- Conjunction 

ϵ - Empty String 

Φ – NULL set 

7- negation 

‘ – compliment 
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Additive inverse: a+(-a)=0 

Multiplicative inverse: a*1/a=1 

Universal set U={1,2,3,4,5} 

Subset A={1,3} 

A‘ ={2,4,5} 

Absorption law: AU(A ∩B) = A, A∩(AUB) = A 

 

De Morgan’s Law: 

(AUB)‘ =A‘ ∩ B‘ 
(A∩B)‘ = A‘ U B‘ 

Double compliment 

(A‘)‘ =A 

A ∩ A‘ = Φ 

 

Logic relations: 

a € b = > 7a U b 
7(a∩b)=7a U 7b 

 

Relations: 

Let a and b be two sets a relation R contains aXb. 

Relations used in TOC: 

Reflexive: a = a 

Symmetric: aRb = > bRa 

Transition: aRb, bRc = > aRc 

If a given relation is reflexive, symmentric and transitive then the relation is called equivalence 

relation. 

 

Deductive proof: Consists of sequence of statements whose truth lead us from some initial 

statement called the hypothesis or the give statement to a conclusion statement. 

 
 

Additional forms of proof: 

Proof of sets 
Proof by contradiction 

Proof by counter example 

 

Direct proof (AKA) Constructive proof: 

If p is true then q is true 
Eg: if a and b are odd numbers then product is also an odd number. 

Odd number can be represented as 2n+1 

a=2x+1, b=2y+1 

product of a X b = (2x+1) X (2y+1) 

= 2(2xy+x+y)+1 = 2z+1 (odd number) 
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Proof by contrapositive: 
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Proof by Contradiction: 

 

H and not C implies falsehood. 
 

 

Be regarded as an observation than a theorem. 
 

 

For any sets a,b,c if a∩b = Φ and c is a subset of b the prove that a∩c =Φ 

Given : a∩b=Φ and c subset b 

Assume: a∩c Φ 

Then 

= > a∩b Φ = > a∩c=Φ(i.e., the assumption is wrong) 
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Proof by mathematical Induction: 
 

 

Languages : 
 

The languages we consider for our discussion is an abstraction of natural languages. That is, 

our focus here is on formal languages that need precise and formal definitions. Programming 

languages belong to this category. 

 

Symbols : 
 

Symbols are indivisible objects or entity that cannot be defined. That is, symbols are the atoms 

of the world of languages. A symbol is any single object such as , a, 0, 1, #, 

begin, or do. 

 

Alphabets : 
 

An alphabet is a finite, nonempty set of symbols. The alphabet of a language is normally denoted 

by . When more than one alphabets are considered for discussion, then 

subscripts may be used (e.g.  etc) or sometimes other symbol like G may also be 

introduced. 

 
 
 
 

 
Example : 

 

Strings or Words over Alphabet : 

 
A string or word over an alphabet         is a finite sequence of concatenated symbols of . 
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Example : 0110, 11, 001 are three strings over the binary alphabet { 0, 1 } . 

aab, abcb, b, cc are four strings over the alphabet { a, b, c }. 

It is not the case that a string over some alphabet should contain all the symbols from the alpha- 

bet. For example, the string cc over the alphabet { a, b, c } does not contain the symbols a and b. 

Hence, it is true that a string over an alphabet is also a string over any superset of that alphabet. 

 

Length of a string : 

The number of symbols in a string w is called its length, denoted by |w|. 

 

Example : | 011 | = 4, |11| = 2, | b | = 1 

 

Convention : We will use small case letters towards the beginning of the English alphabet 

to denote symbols of an alphabet and small case letters towards the end to 

denote strings over an alphabet. That is, 

(symbols) and 

are strings. 
 

Some String Operations : 

Let and be two strings. The concatenation of x and y 

denoted by xy, is the string . That is, the concatenation of x and y 

denoted by xy is the string that has a copy of x followed by a copy of y without any intervening 

space between them. 

 

Example : Consider the string 011 over the binary alphabet. All the prefixes, suffixes and 

substrings of this string are listed below. 

 

Prefixes: ε, 0, 01, 011. 

Suffixes: ε, 1, 11, 011. 

Substrings: ε, 0, 1, 01, 11, 011. 

 

Note that x is a prefix (suffix or substring) to x, for any string x and ε is a prefix (suffix or 

substring) to any string. 

 
A string x is a proper prefix (suffix) of string y if x is a prefix (suffix) of y and x ≠ y. 

In the above example, all prefixes except 011 are proper prefixes. 

Powers of Strings : For any string x and integer , we use to denote the string 
formed by sequentially concatenating n copies of x. We can also give an inductive 

definition of as follows: 

= e, if n = 0 ; otherwise 
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. 

Example : If x = 011, then = 011011011, = 011 and 
 

Powers of Alphabets : 

We write (for some integer k) to denote the set of strings of length k with symbols 

from . In other words, 

= { w | w is a string over and  | w | = k}. Hence, for any alphabet, denotes the set 

of all strings of length zero. That is, = { e }. For the binary alphabet { 0, 1 } we have 

the following. 

 

The  set  of  all  strings  over an alphabet is  denoted  by  . That is, 
 

 
The set contains all the strings that can be generated by iteratively concatenating sym- 

bols from  any number of times. 

 

Example : If = { a, b }, then = { ε, a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, …}. 

Please note that if , then    that is  . It may look odd that one can proceed 

from the empty set to a non-empty set by iterated concatenation. But there is a reason for this 

and we accept this convention 
 

The set of all nonempty strings over an alphabet is denoted by That is, 

 

 

Note that is infinite. It contains no infinite strings but strings of arbitrary lengths. 

 
Reversal : 

For any string the reversal of the string is . 

 

An inductive definition of reversal can be given as follows: 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



Languages : 

A  language  over  an  alphabet  is  a  set  of strings over  that alphabet. Therefore, a 

language L is any subset of . That is, any is a language. 

Example : 
 

1. F is the empty language. 

2. is a language for any . 

3. {e} is a language for any . Note that, . Because the language F does not 

contain any string but {e} contains one string of length zero. 

4. The set of all strings over { 0, 1 } containing equal number of 0's and 1's. 

5. The set of all strings over {a, b, c} that starts with a. 

 

Convention : Capital letters A, B, C, L, etc. with or without subscripts are normally used to 

denote languages. 

 

Set operations on languages : Since languages are set of strings we can apply set operations to 

languages. Here are some simple examples (though there is nothing new in it). 

 

Union : A string 

iff or 
 

Example :  { 0, 11, 01, 011 } { 1, 01, 110 } = { 0, 11, 01, 011, 111 } 
 

Intersection : A string, xϵ L1 ∩ L2 iff x ϵ L1 and x ϵ L2 . 
 

Example : { 0, 11, 01, 011 } { 1, 01, 110 } = { 01 } 
 

Complement  :  Usually, is the universe that a complement is taken with respect to. 

Thus for a language L, the complement is  L(bar) = { | }. 

 
Example : Let L = { x | |x| is even }. Then its complement is the language { | |x| is 
odd }. 

Similarly we can define other usual set operations on languages like relative com- 

plement, symmetric difference, etc. 

 

Reversal of a language : 

The reversal of a language L, denoted as , is defined as: . 

 
Example : 

 
1.   Let L = { 0, 11, 01, 011 }. Then = { 0, 11, 10, 110 }. 
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2.   Let L = { | n is an integer }. Then =  { | n is an integer }. 

 
Language concatenation : The concatenation of languages  and is defined as 

= { xy | and }. 

 

Example : { a, ab }{ b, ba } = { ab, aba, abb, abba }. 

 

Note that , 

1. in general. 

2. 

3. 

 

Iterated concatenation of languages : Since we can concatenate two languages, we also repeat 

this to concatenate any number of languages. Or we can concatenate a language with itself any 

number of times. The operation denotes the concatenation of 

L with itself n times. This is defined formally as follows: 

 

 

 

 
Example : Let L = { a, ab }. Then according to the definition, we have 

 

 

and so on. 

 

 
Kleene's Star operation :  The Kleene star operation on a language L, denoted as is 

defined as follows : 

 
= ( Union n in N ) 

 
= 

 

= { x | x is the concatenation of zero or more strings from L } 
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Thus is the set of all strings derivable by any number of concatenations of strings in 
L. It is also useful to define 

 
= , i.e., all strings derivable by one or more concatenations of strings in L. That is 

 
= (Union n in N and n >0) 

= 
 

Example : Let L = { a, ab }. Then we have, 
 

= 
 

= {e} {a, ab} {aa, aab, aba, abab} … 
 

= 
 

= {a, ab} {aa, aab, aba, abab} … 
 

Note :  ε is in   , for every language L, including . 

The previously introduced definition of is an instance of Kleene star. 

 

 
 

(Generates) (Recognizes) 
Grammar Language Automata 

 

Automata: A algorithm or program that automatically recognizes if a particular string belongs to 

the language or not, by checking the grammar of the string. 

 

An automata is an abstract computing device (or machine). There are different varities of such 

abstract machines (also called models of computation) which can be defined mathematically. 

 
Every Automaton fulfills the three basic requirements. 

 

• Every automaton consists of some essential features as in real computers. It has a mech- 

anism for reading input. The input is assumed to be a sequence of symbols over a given 

alphabet and is placed on an input tape(or written on an input file). The simpler automata 

can only read the input one symbol at a time from left to right but not change. Powerful 

versions can both read (from left to right or right to left) and change the input. 
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 The automaton can produce output of some form. If the output in response to an input 

string is binary (say, accept or reject), then it is called an accepter. If it produces an out- 

put sequence in response to an input sequence, then it is called a transducer(or automaton 

with output). 

• The automaton may have a temporary storage, consisting of an unlimited number of 

cells, each capable of holding a symbol from an alphabet ( whcih may be different from 

the input alphabet). The automaton can both read and change the contents of the storage 

cells in the temporary storage. The accusing capability of this storage varies depending 

on the type of the storage. 

• The most important feature of the automaton is its control unit, which can be in any 

one of a finite number of interval states at any point. It can change state in some de- 

fined manner determined by a transition function. 
 

 

Figure 1: The figure above shows a diagrammatic representation of a generic automa- 

tion. 

 

Operation of the automation is defined as follows. 

At any point of time the automaton is in some integral state and is reading a particular symbol 

from the input tape by using the mechanism for reading input. In the next time step the automa- 

ton then moves to some other integral (or remain in the same state) as defined by the transition 

function. The transition function is based on the current state, input symbol read, and the content 

of the temporary storage. At the same time the content of the storage may be changed and the 

input read may be modifed. The automation may also produce some output during this transition. 

The internal state, input and the content of storage at any point defines the configuration of the 

automaton at that point. The transition from one configuration to the next ( as defined by the 

transition function) is called a move. Finite state machine or Finite Automation is the simplest 

type of abstract machine we consider. Any system that is at any point of time in one of a finite 

number of interval state and moves among these states in a defined manner in response to some 

input, can be modeled by a finite automaton. It doesnot have any temporary storage and hence a 

restricted model of computation. 
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Finite Automata 

 

Automata (singular : automation) are a particularly simple, but useful, model of compu- 

tation. They were initially proposed as a simple model for the behavior of neurons. 

 

States, Transitions and Finite-State Transition System : 

 
 

Let us first give some intuitive idea about a state of a system and state transitions before 

describing finite automata. 

 

Informally, a state of a system is an instantaneous description of that system which gives all 

relevant information necessary to determine how the system can evolve from that point on. 

 

Transitions are changes of states that can occur spontaneously or in response to inputs to the 

states. Though transitions usually take time, we assume that state transitions are instantaneous 

(which is an abstraction). 

Some examples of state transition systems are: digital systems, vending machines, etc. A system 

containing only a finite number of states and transitions among them is called 

a finite-state transition system. 

 

Finite-state transition systems can be modeled abstractly by a mathematical model called 

finite automation 

 

Deterministic Finite (-state) Automata 

 

Informally, a DFA (Deterministic Finite State Automaton) is a simple machine that reads an in- 

put string -- one symbol at a time -- and then, after the input has been completely read, decides 

whether to accept or reject the input. As the symbols are read from the tape, the automaton can 

change its state, to reflect how it reacts to what it has seen so far. A machine for which a deter- 

ministic code can be formulated, and if there is only one unique way to formulate the code, then 

the machine is called deterministic finite automata. 

 

Thus, a DFA conceptually consists of 3 parts: 

 

 
 

1. A tape to hold the input string. The tape is divided into a finite number of cells. Each 

cell holds a symbol from . 
2. A tape head for reading symbols from the tape 
3. A control , which itself consists of 3 things: 

o finite number of states that the machine is allowed to be in (zero or more states 

are designated as accept or final states), 

o a current state, initially set to a start state, 
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o a state transition function for changing the current state. 

 

An automaton processes a string on the tape by repeating the following actions until the tape 

head has traversed the entire string: 

 

1. The tape head reads the current tape cell and sends the symbol s found there to the 

control. Then the tape head moves to the next cell. 

2. he control takes s and the current state and consults the state transition function to get 

the next state, which becomes the new current state. 

 

Once the entire string has been processed, the state in which the automation enters is examined. 

If it is an accept state , the input string is accepted ; otherwise, the string is rejected . Summariz- 

ing all the above we can formulate the following formal definition: 

Deterministic Finite State Automaton : A Deterministic Finite State Automaton (DFA) is 

a 5-tuple :  

 Q is a finite set of states. 

• is a finite set of input symbols or alphabet 

 is the ―next state‖ transition function (which is total ). Intuitively, is a 

function that tells which state to move to in response to an input, i.e., if M is in 

state q and sees input a, it moves to state . 

 is the start state. 

• is the set of accept or final states. 

 
Acceptance of Strings : 

 

A DFA accepts a string    if there is a sequence of states        in Q 

such that 

 
1. is the start state. 

2. for all . 

3. 

Language Accepted or Recognized by a DFA : 

 

The language accepted or recognized by a DFA M is the set of all strings accepted by M , and 

is denoted by i.e. The notion of 

acceptance can also be made more precise by extending the transition function . 

Extended transition function : 
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0 1 

Extend (which is function on symbols) to a function on strings, i.e. . 

 

That is, is the state the automation reaches when it starts from the state q and finish 

processing the string w. Formally, we can give an inductive definition as follows: 

The language of the DFA M is the set of strings that can take the start state to one of the 

accepting states i.e. 

 

 
L(M) = { | M accepts w } 

 

= { | } 

 
Example 1 : 

 

 

 
is the start state 

 

 

 

 

It is a formal description of a DFA. But it is hard to comprehend. For ex. The language of the 

DFA is any string over { 0, 1} having at least one 1 

 

We can describe the same DFA by transition table or state transition diagram as follow- 

ing: 

 

 
 

Transition Table : 
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It is easy to comprehend the transition diagram. 

 

 
Explanation  :  We  cannot  reach  find  state w/0 or in the i/p string. There can be any no. 

of 0's at the beginning. ( The self-loop at on label 0 indicates it ). Similarly there 

can be any no. of 0's & 1's in any order at the end of the string. 

 

Transition table : 

 

It is basically a tabular representation of the transition function that takes two arguments (a state 

and a symbol) and returns a value (the ―next state‖). 

 

• Rows correspond to states, 

• Columns correspond to input symbols, 

• Entries correspond to next states 

• The start state is marked with an arrow 

• The accept states are marked with a star (*). 
 

 

 
 

 0 1 

   

 

  
 

 
 

 

(State) Transition diagram : 

 

A state transition diagram or simply a transition diagram is a directed graph which can be 
constructed as follows: 

 

1. For each state in Q there is a node. 

2. There is a directed edge from node q to node p labeled a iff . (If there 

are several input symbols that cause a transition, the edge is labeled by the list of these 

symbols.) 

3. There is an arrow with no source into the start state. 

4. Accepting states are indicated by double circle. 
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5. 
6. Here is an informal description how a DFA operates. An input to a DFA can be any 

s. tring Put a pointer to the start state q. Read the input string w from left 

to right, one symbol at a time, moving the pointer according to the transition 

function, . If the next symbol of w is a and the pointer is on state p, move the 

pointer to  . When the end of the input string w is encountered, the pointer is on 

some state, r. The string is said to be accepted by the DFA if and 

rejected if . Note that there is no formal mechanism for moving the pointer. 

7. A language  is said to be regular if L = L(M) for some DFA M. 
 

 

Regular Expressions: Formal Definition 

 
We construct REs from primitive constituents (basic elements) by repeatedly applying certain 

recursive rules as given below. (In the definition) 

 

Definition : Let S be an alphabet. The regular expressions are defined recursively as follows. 

 

Basis : 

 
i) is a RE 

 

ii) is a RE 

iii) , a is RE. 
 

These are called primitive regular expression i.e. Primitive Constituents 

 

Recursive Step : 

 

If 

and are REs over, then so are 

 

i) 

 
ii) 
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iii) 

iv) 

 

Closure : r is RE over only if it can be obtained from the basis elements (Primitive REs) 

by a finite no of applications of the recursive step (given in 2). 

 
Example : Let = { 0,1,2 }. Then (0+21)*(1+ F ) is a RE, because we can construct this 

expression by applying the above rules as given in the following step. 

Steps RE Constructed Rule Used 

1 1 Rule 1(iii) 

2 
 

 Rule 1(i) 

3 1+ Rule 2(i) & Results of Step 1, 2 

4 (1+ ) Rule 2(iv) & Step 3 

5 2 1(iii) 

6 1 1(iii) 

7 21 2(ii), 5, 6 

8 0 1(iii) 

9 0+21 2(i), 7, 8 

10 (0+21) 2(iv), 9 

11 (0+21)* 2(iii), 10 

12 (0+21)* 2(ii), 4, 11 

Language described by REs : Each describes a language (or a language is associated 

with every RE). We will see later that REs are used to attribute regular languages. 

 

 
Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can 

define the language L(r) associated with (or described by) a REs as follows. 

 
1. is the RE describing the empty language i.e. L(  ) = . 

 
2. is a RE describing the language { } i.e. L( ) = { } . 

 

3. , a is a RE denoting the language {a} i.e . L(a) = {a} . 

 
4. If and are REs denoting language L( ) and L( ) respectively, then 

 
i) is a regular expression denoting the language L( ) = L( )  L( ) 
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ii) is a regular expression denoting the language L( )=L( ) L( ) 

 

iii) is a regular expression denoting the language 

 
iv) ( ) is a regular expression denoting the language L(( )) = L( ) 

 
Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is 

 
L(0*(0+1)) = L(0*) L(0+1) ....................... by 4(ii) 

 

= L(0)*L(0)  L(1) 
 

= { , 0,00,000,. } {0} {1} 
 

= { , 0,00,000,........} {0,1} 
 

= {0, 00, 000, 0000,..........,1, 01, 001, 0001,...............} 

 
Precedence Rule 
Consider the RE ab + c. The language described by the RE can be thought of either 
L(a)L(b+c) or L(ab) L(c) as provided by the rules (of languages described by REs) 
given already. But these two represents two different languages lending to ambiguity. 
To remove this ambiguity we can either 

 
1) Use fully parenthesized expression- (cumbersome) or 

 
2) Use a set of precedence rules to evaluate the options of REs in some order. Like 
other algebras mod in mathematics. 

 
For REs, the order of precedence for the operators is as follows: 

 
i) The star operator precedes concatenation and concatenation precedes union (+) 
operator. 

 
ii) It is also important to note that concatenation & union (+) operators are associative 
and union operation is commutative. 

 
Using these precedence rule, we find that the RE ab+c represents the language L(ab) 

L(c) i.e. it should be grouped as ((ab)+c). 

We can, of course change the order of precedence by using parentheses. For example, 
the language represented by the RE a(b+c) is L(a)L(b+c). 
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Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language 
L(a)(L(b))* L(b) 

 

Example : The RE (ab)*+b represents the language (L(a)L(b))* L(b). 

 
Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all 
strings over {0,1} which are either ended with 0 or 11. 

 
Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an 

even number of 0's followed by an odd number of 1's i.e. 

Note : The notation is used to represent the RE rr*. Similarly, represents the RE 

rr, denotes r, and so on. 

 
An arbitrary string over = {0,1} is denoted as (0+1)*. 

 

Exercise : Give a RE r over {0,1} s.t. L(r)={  has at least one pair of 
consecutive 1's} 

 
Solution : Every string in L(r) must contain 00 somewhere, but what comes before and 
what goes before is completely arbitrary. Considering these observations we can write 
the REs as (0+1)*11(0+1)*. 

 
Example : Considering the above example it becomes clean that the RE 
(0+1)*11(0+1)*+(0+1)*00(0+1)* represents the set of string over {0,1} that contains the 
substring 11 or 00. 

 
Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the 
set of strings over {0,1} that contains exactly two 1's. The presence of two 1's in the RE 
and any no of 0's before, between and after the 1's ensure it. 

 
Example : Consider the language of strings over {0,1} containing two or more 1's. 

 
Solution : There must be at least two 1's in the RE somewhere and what comes before, 
between, and after is completely arbitrary. Hence we can write the RE as 
(0+1)*1(0+1)*1(0+1)*. But following two REs also represent the same language, each 
ensuring presence of least two 1's somewhere in the string 

 
i) 0*10*1(0+1)* 

 
ii) (0+1)*10*10* 

 
Example : Consider a RE r over {0,1} such that 
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L(r) = { has no pair of consecutive 1's} 

 
Solution : Though it looks similar to ex ……., it is harder to construct to construct. We 
observer that, whenever a 1 occurs, it must be immediately followed by a 0. This 
substring may be preceded & followed by any no of 0's. So the final RE must be a 
repetition of strings of the form: 00…0100….00 i.e. 0*100*. So it looks like the RE is 
(0*100*)*. But in this case the strings ending in 1 or consisting of all 0's are not 
accounted for. Taking these observations into consideration, the final RE is r = 
(0*100*)(1+ )+0*(1+ ). 

 
Alternative Solution : 

 
The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as 
r = (0+10)*(1+ ).This is a shorter expression but represents the same language. 

 
Regular Expression and Regular Language : 

 
Equivalence(of REs) with FA : 

 
Recall that, language that is accepted by some FAs are known as Regular language. 
The two concepts : REs and Regular language are essentially same i.e. (for) every 
regular language can be developed by (there is) a RE, and for every RE there is a 
Regular Langauge. This fact is rather suprising, because RE approach to describing 
language is fundamentally differnet from the FA approach. But REs and FA are 
equivalent in their descriptive power. We can put this fact in the focus of the following 
Theorem. 

 
Theorem : A language is regular iff some RE describes it. 

 
This Theorem has two directions, and are stated & proved below as a separate lemma 

 

RE to FA : 
 

REs denote regular languages : 
 

Lemma : If L(r) is a language described by the RE r, then it is regular i.e. there is a FA 
such that L(M) L(r). 

 

Proof : To prove the lemma, we apply structured index on the expression r. First, we 

show how to construct FA for the basis elements: , and for any . Then we show 
how to combine these Finite Automata into Complex Automata that accept the Union, 
Concatenation, Kleen Closure of the languages accepted by the original smaller 
automata. 
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Use of NFAs is helpful in the case i.e. we construct NFAs for every REs which are 
represented by transition diagram only. 

 
Basis : 

 

 Case (i) : . Then . Then and the following NFA N

recognizes L(r). Formally where Q = {q} and 

. 
 
 
 

 
 
 

 Case (ii) : . , and the following NFA N accepts L(r). Formally 

where . 
 

Since the start state is also the accept step, and there is no any transition defined, it will 
accept the only string and nothing else. 

 

 Case (iii) : r = a for some . Then L(r) = {a}, and the following NFA N

accepts L(r). 
 

 
 

 

 
 

Formally, where for or 
 
 

 

Induction : 
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Assume that the start of the theorem is true for REs and . Hence we can assume 

that we have automata and that accepts languages denoted by REs and , 

respectively i.e. and . The FAs are represented 
schematically as shown below. 

 
 
 

 

 
 

 

Each has an initial state and a final state. There are four cases to consider. 
 

 Case (i) : Consider the RE denoting the language . We 

construct FA , from and to accept the language denoted by RE as 
follows :

 

 
Create a new (initial) start state and give - transition to the initial state of and 

.This is the initial state of . 

 
 Create a final state and give -transition from the two final state of and

. is the only final state of and final state of and will be ordinary 

states in . 

 All the state of and are also state of .

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



 All the moves of and are also moves of . [ Formal Construction] 

It is easy to prove that

Proof: To show that we must show that 

 
= 

 
= by following transition of 

 
Starts at initial state and enters the start state of either or follwoing the 
transition i.e. without consuming any input. WLOG, assume that, it enters the start state 

of . From this point onward it has to follow only the transition of to enter the final 

state of , because this is the only way to enter the final state of M by following the e- 
transition.(Which is the last transition & no input is taken at hte transition). Hence the 

whole input w is considered while traversing from the start state of to the final state 

of . Therefore must accept . 

Say, or . 

WLOG, say  

Therefore when process the string w , it starts at the initial state and enters the final 

state when w consumed totally, by following its transition. Then also accepts w, by 

starting at state and taking -transition enters the start state of  -follows the moves 

of to enter the final state of consuming input w thus takes -transition to . 

Hence proved 

 
 Case(ii) : Consider the RE denoting the language . We construct 

FA from & to accept  as follows :
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Create a new start state and a new final state 

 
1. Add - transition from 

o to the start state of 

o to  

o final state of to the start state of 

2. All the states of are also the states of . has 2 more states than that of 

namely and  . 

3. All the moves of are also included in . 

 
By the transition of type (b), can accept . 

By the transition of type (a),  can enters the initial state of w/o any input and then 

follow all kinds moves of to enter the final state of and then following -transition 

can enter . Hence if any is accepted 

the transition of type (b), strings accepted by 

then w is also accepted by . By 

be repeated by any no of times & 

thus accepted by . Hence accepts and any string accepted by repeated (i.e. 

concatenated) any no of times. Hence  

Case(iv) : Let =(   ). Then the FA is also the FA for ( ), since the use of 
parentheses does not change the language denoted by the expression 

 

Non-Deterministic Finite Automata 
Nondeterminism is an important abstraction in computer science. Importance of 
nondeterminism is found in the design of algorithms. For examples, there are many 
problems with efficient nondeterministic solutions but no known efficient deterministic 
solutions. ( Travelling salesman, Hamiltonean cycle, clique, etc). Behaviour of a process 
is in a distributed system is also a good example of nondeterministic situation. Because 

by 

can 
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the behaviour of a process might depend on some messages from other processes that 
might arrive at arbitrary times with arbitrary contents. 
It is easy to construct and comprehend an NFA than DFA for a given regular language. 
The concept of NFA can also be used in proving many theorems and results. Hence, it 
plays an important role in this subject. 
In the context of FA nondeterminism can be incorporated naturally. That is, an NFA is 
defined in the same way as the DFA but with the following two exceptions: 

 multiple next state.
 

 - transitions.
 

Multiple Next State : 
 

 In contrast to a DFA, the next state is not necessarily uniquely determined by the 

current state and input symbol in case of an NFA. (Recall that, in a DFA there is 

exactly one start state and exactly one transition out of every state for each 

symbol in ).
 This means that - in a state q and with input symbol a - there could be one, more

than one or zero next state to go, i.e. the value of is a subset of Q. Thus 

= which means that any one of could be the next 

state. 

 The zero next state case is a special one giving = , which means that 
there is no next state on input symbol when the automata is in state q. In such a 
case, we may think that the automata "hangs" and the input will be rejected.

 
- transitions : 

 
In an -transition, the tape head doesn't do anything- it doesnot read and it doesnot 
move. However, the state of the automata can be changed - that is can go to zero, one 

or more states. This is written formally as implying that the next 

state could by any one of w/o consuming the next input symbol. 

 
 

Acceptance : 

 
Informally, an NFA is said to accept its input if it is possible to start in some start state 

and process , moving according to the transition rules and making choices along the 

way whenever the next state is not uniquely defined, such that when is completely 

processed (i.e. end of is reached), the automata is in an accept state. There may be 

several possible paths through the automation in response to an input  since the start 

state is not determined and there are choices along the way because of multiple next 

states. Some of these paths may lead to accpet states while others may not. The 
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automation is said to accept if at least one computation path on input starting from 
at least one start state leads to an accept state- otherwise, the automation rejects input 

. Alternatively, we can say that, is accepted iff there exists a path with label  from 
some start state to some accept state. Since there is no mechanism for determining 
which state to start in or which of the possible next moves to take (including the - 
transitions) in response to an input symbol we can think that the automation is having 
some "guessing" power to chose the correct one in case the input is accepted 

 
Example 1 : Consider the language L = { {0, 1}* | The 3rd symbol from the right is 
1}. The following four-state automation accepts L. 

 
The m/c is not deterministic since there are two transitions from state on input 1 and 

no transition (zero transition) from on both 0 & 1. 

For any string whose 3rd symbol from the right is a 1, there exists a sequence of legal 

transitions leading from the start state q, to the accept state . But for any string 

where 3rd symbol from the right is 0, there is no possible sequence of legal 

tranisitons leading from and . Hence m/c accepts L. How does it accept any string 

L? 

 
Formal definition of NFA : 

 

Formally, an NFA is a quituple  where Q, , , and F bear 

the same meaning as for a DFA, but , the transition function is redefined as follows: 
 

 
where P(Q) is the power set of Q i.e. . 

 
The Langauge of an NFA : 

 
From the discussion of the acceptance by an NFA, we can give the formal definition of a 
language accepted by an NFA as follows : 

 
If is an NFA, then the langauge accepted by N is writtten as L(N) is 

given by  . 

That is, L(N) is the set of all strings w in such that contains at least one 

accepting state. 
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Removing ϵ-transition: 

- transitions do not increase the power of an NFA . That is, any - NFA ( NFA with 
transition), we can always construct an equivalent NFA without -transitions. The 

equivalent NFA must keep track where the NFA goes at every step during 
computation. This can be done by adding extra transitions for removal of every - 
transitions from the - NFA as follows. 

 
If we removed the - transition from the - NFA , then we need to moves 

from state p to all the state on input symbol which are reachable from state q (in 
the - NFA ) on same input symbol q. This will allow the modified NFA to move from 
state p to all states on some input symbols which were possible in case of -NFA on 
the same input symbol. This process is stated formally in the following theories. 

 
Theorem if L is accepted by an - NFA N , then there is some equivalent 

without transitions accepting the same language L 

Proof: 
 

Let be the given with 
 

We construct  
 

 

Where, for all and and 
 

Other elements of N' and N 

 
We can show that i.e. N' and N are equivalent. 

 
We need to prove that 

 
i.e. 

 

 
We will show something more, that is, 
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We will show something more, that is, 

Basis : , then 

But by definition of . 

 
Induction hypothesis Let the statement hold for all with . 

 
 

By definition of extension of 

By inductions hypothesis. 

Assuming that 
 

By definition of  

Since  

To complete the proof we consider the case 

When i.e. then 
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and by the construction of wherever constrains a state in F. 
 

If (and thus is not in F ), then with leads to an accepting state in N' iff it lead 
to an accepting state in N ( by the construction of N' and N ). 

 

Also, if ( , thus w is accepted by N' iff w is accepted by N (iff ) 

 
If (and, thus in M we load in F ), thus is accepted by both N' and N . 

 
Let . If w cannot lead to in N , then . (Since can add transitions to get an accept 

state). So there is no harm in making an accept state in N'. 

Ex: Consider the following NFA with - transition. 
 

Transition Diagram  

 
 0 1  
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 0 1 
 

 

 

 

 

 

 
 

 

 

 

 
 

 
 

 

 

 

 
 

Since the start state q0 must be final state in the equivalent NFA . 

 

Since  and and we add moves and 

in the equivalent NFA . Other moves are also constructed accordingly. 

-closures: 
 

The concept used in the above construction can be made more formal by defining the 
-closure for a state (or a set of states). The idea of -closure is that, when moving 

from a state p to a state q (or from a set of states Si to a set of states Sj ) an input , 
we need to take account of all -moves that could be made after the transition. 
Formally, for a given state q, 

 

-closures: 

 
Similarly, for a given set 

 

-closures: 

 

So, in the construction of equivalent NFA N' without -transition from any NFA with 

moves. the first rule can now be written as 
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Equivalence of NFA and DFA 

 
It is worth noting that a DFA is a special type of NFA and hence the class of languages 
accepted by DFA s is a subset of the class of languages accepted by NFA s. 
Surprisingly, these two classes are in fact equal. NFA s appeared to have more power 
than DFA s because of generality enjoyed in terms of -transition and multiple next 
states. But they are no more powerful than DFA s in terms of the languages they 
accept. 

 
Converting DFA to NFA 

 
 

Theorem: Every DFA has as equivalent NFA 

Proof: A DFA is just a special type of an NFA . In a DFA , the transition functions is 

defined from whereas in case of an NFA it is defined from and 

be a DFA . We construct an equivalent NFA as 

follows. 

 

 i. e 
 
 

If and 
 

All other elements of N are as in D. 

 

If then there is a sequence of states such that 

Then it is clear from the above construction of N that there is a sequence of states (in N) 

such that and and hence 

Similarly we can show the converse. 

 
Hence , 

 
Given any NFA we need to construct as equivalent DFA i.e. the DFA need to simulate 
the behaviour of the NFA . For this, the DFA have to keep track of all the states where 
the NFA could be in at every step during processing a given input string. 
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There are possible subsets of states for any NFA with n states. Every subset 
corresponds to one of the possibilities that the equivalent DFA must keep track of. Thus, 

the equivalent DFA will have states. 
 

The formal constructions of an equivalent DFA for any NFA is given below. We first 
consider an NFA without transitions and then we incorporate the affects of 

transitions later. 
 

Formal construction of an equivalent DFA for a given NFA without transitions. 

 
Given an without - moves, we construct an equivalent DFA 

 

as follows 

i.e.  

 

 

(i.e. every subset of Q which as an element in F is considered as a final stat 
in DFA D ) 

 

 

for all and 

 

where 
 

 

That is, 
 

To show that this construction works we need to show that L(D)=L(N) i.e. 
 
 
 

 

Or, 
 

We will prove the following which is a stranger statement thus required. 
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Proof : We will show by inductions on 

Basis If =0, then w = 

So, by definition. 

 
Inductions hypothesis : Assume inductively that the statement holds of length 
less than or equal to n. 

 
Inductive step 

 

Let , then with  

Now, 
 

 
Now, given any NFA with -transition, we can first construct an equivalent NFA without 

-transition and then use the above construction process to construct an equivalent 
DFA , thus, proving the equivalence of NFA s and DFA s.. 

 
It is also possible to construct an equivalent DFA directly from any given NFA with - 

transition by integrating the concept of -closure in the above construction. 

 
Recall that, for any 

 
- closure : 
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In the equivalent DFA , at every step, we need to modify the transition functions to 
keep track of all the states where the NFA can go on -transitions. This is done by 

replacing by -closure , i.e. we now compute at every step as 
follows: 

Besides this the initial state of the DFA D has to be modified to keep track of all the 
states that can be reached from the initial state of NFA on zero or more -transitions. 

This can be done by changing the initial state to -closure ( ) . 
It is clear that, at every step in the processing of an input string by the DFA D , it enters 
a state that corresponds to the subset of states that the NFA N could be in at that 
particular point. This has been proved in the constructions of an equivalent NFA for any 

-NFA 

If the number of states in the NFA is n , then there are states in the DFA . That is, 
each state in the DFA is a subset of state of the NFA . 

But, it is important to note that most of these states are inaccessible from the start 
state and hence can be removed from the DFA without changing the accepted 
language. Thus, in fact, the number of states in the equivalent DFA would be much less 

than . 
Example : Consider the NFA given below. 

 
 

 

 

 0 1 
 

 

 

 

 

 

 

 
 

 

 

 { } 
 

 
 

 

 
 

 

 
 

 
 

 

 

Since there are 3 states in the NFA 
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 0 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

There will be states (representing all possible subset of states) in the equivalent 
DFA . The transition table of the DFA constructed by using the subset constructions 
process is produced here. 

 

The start state of the DFA is - closures 

 

The final states are all those subsets that contains (since 

in the NFA). 

Let us compute one entry, 

 

 

Similarly, all other transitions can be computed 
 
 

 

 

Corresponding Transition fig. for DFA.Note that states 

are not accessible and hence can be removed. This 

gives us the following simplified DFA with only 3 states. 

 0 1 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

{ } 
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It is interesting to note that we can avoid encountering all those inaccessible or 
unnecessary states in the equivalent DFA by performing the following two steps 
inductively. 

 
1. If is the start state of the NFA, then make - closure ( ) the start state of the 

equivalent DFA . This is definitely the only accessible state. 

2. If we have already computed a set of states which are accessible. Then 

. compute because these set of states will also be accessible. 

Following these steps in the above example, we get the transition table given below 
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UNIT-II 

 
 

Regular Expressions: Formal Definition 

 
We construct REs from primitive constituents (basic elements) by repeatedly applying certain recursive rules as 
given below. (In the definition) 

 
Definition : Let S be an alphabet. The regular expressions are defined recursively as follows. 

 
Basis : 

 
 

i) is a RE 

 
ii) is a RE 

 
iii) , a is RE. 

 
These are called primitive regular expression i.e. Primitive Constituents 

 
Recursive Step : 

 
 

If and are REs over, then so are 

 
 

i) 

 
 

ii) 

 
 

iii) 

 
 

iv)  

 
 

 
Closure : r is RE over only if it can be obtained from the basis elements (Primitive REs) by a finite no of 

applications of the recursive step (given in 2). 

 
Example : Let = { 0,1,2 }. Then (0+21)*(1+ F ) is a RE, because we can construct this expression by 

applying the above rules as given in the following step. 
 

Steps RE Constructed Rule Used 

1 1 Rule 1(iii) 

2 
 

 Rule 1(i) 

3 1+ Rule 2(i) & Results of Step 1, 2 
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4 (1+   ) Rule 2(iv) & Step 3 

5 2 1(iii) 

6 1 1(iii) 

7 21 2(ii), 5, 6 

8 0 1(iii) 

9 0+21 2(i), 7, 8 

10 (0+21) 2(iv), 9 

11 (0+21)* 2(iii), 10 

12 (0+21)* 2(ii), 4, 11 

Language described by REs : Each describes a language (or a language is associated with every RE). We 
will see later that REs are used to attribute regular languages. 

 

Notation : If r is a RE over some alphabet then L(r) is the language associate with r . We can define the 

language L(r) associated with (or described by) a REs as follows. 

 

1. is the RE describing the empty language i.e. L(   ) = . 

 
2. is a RE describing the language { } i.e. L( ) = { } . 

 
3. , a is a RE denoting the language {a} i.e . L(a) = {a} . 

 

4. If and are REs denoting language L( ) and L( ) respectively, then 

i) is a regular expression denoting the language L( ) = L( )  L( ) 

ii) is a regular expression denoting the language L( )=L( ) L( ) 

iii) is a regular expression denoting the language  

iv) ( ) is a regular expression denoting the language L(( )) = L( ) 
 

Example : Consider the RE (0*(0+1)). Thus the language denoted by the RE is 

 
L(0*(0+1)) = L(0*) L(0+1) ....................... by 4(ii) 

 
= L(0)*L(0)  L(1) 

 
= { , 0,00,000,........} {0} {1} 

 
= { , 0,00,000,........} {0,1} 

 
= {0, 00, 000, 0000,..........,1, 01, 001, 0001,...............} 

 
Precedence Rule 
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Consider the RE ab + c. The language described by the RE can be thought of either L(a)L(b+c) or 

L(ab) L(c) as provided by the rules (of languages described by REs) given already. But these two 

represents two different languages lending to ambiguity. To remove this ambiguity we can either 

 
 
 

1) Use fully parenthesized expression- (cumbersome) or 

 
2) Use a set of precedence rules to evaluate the options of REs in some order. Like other algebras mod in 
mathematics. 

 
For REs, the order of precedence for the operators is as follows: 

 
i) The star operator precedes concatenation and concatenation precedes union (+) operator. 

 
ii) It is also important to note that concatenation & union (+) operators are associative and union operation is 
commutative. 

 
Using these precedence rule, we find that the RE ab+c represents the language L(ab) L(c) i.e. it should be 

grouped as ((ab)+c). 

 
We can, of course change the order of precedence by using parentheses. For example, the language 

represented by the RE a(b+c) is L(a)L(b+c). 

 
 

 
Example : The RE ab*+b is grouped as ((a(b*))+b) which describes the language L(a)(L(b))* L(b) 

 
Example : The RE (ab)*+b represents the language (L(a)L(b))* L(b). 

 
Example : It is easy to see that the RE (0+1)*(0+11) represents the language of all strings over {0,1} which are 
either ended with 0 or 11. 

 
Example : The regular expression r =(00)*(11)*1 denotes the set of all strings with an even number of 0's 

followed by an odd number of 1's i.e.  

 
Note : The notation is used to represent the RE rr*. Similarly, represents the RE rr, denotes r, 
and so on. 

 
An arbitrary string over = {0,1} is denoted as (0+1)*. 

 

Exercise : Give a RE r over {0,1} s.t. L(r)={ has at least one pair of consecutive 1's} 

 
Solution : Every string in L(r) must contain 00 somewhere, but what comes before and what goes before is 

completely arbitrary. Considering these observations we can write the REs as (0+1)*11(0+1)*. 

 
Example : Considering the above example it becomes clean that the RE (0+1)*11(0+1)*+(0+1)*00(0+1)* 
represents the set of string over {0,1} that contains the substring 11 or 00. 
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Example : Consider the RE 0*10*10*. It is not difficult to see that this RE describes the set of strings over {0,1} 
that contains exactly two 1's. The presence of two 1's in the RE and any no of 0's before, between and after the 
1's ensure it. 

 
Example : Consider the language of strings over {0,1} containing two or more 1's. 

 
Solution : There must be at least two 1's in the RE somewhere and what comes before, between, and after is 
completely arbitrary. Hence we can write the RE as (0+1)*1(0+1)*1(0+1)*. But following two REs also represent 
the same language, each ensuring presence of least two 1's somewhere in the string 

 
 

 
i) 0*10*1(0+1)* 

 
ii) (0+1)*10*10* 

 
Example : Consider a RE r over {0,1} such that 

 

 
L(r) = { has no pair of consecutive 1's} 

 
Solution : Though it looks similar to ex ……., it is harder to construct to construct. We observer that, whenever 
a 1 occurs, it must be immediately followed by a 0. This substring may be preceded & followed by any no of 
0's. So the final RE must be a repetition of strings of the form: 00…0100….00 i.e. 0*100*. So it looks like the 
RE is (0*100*)*. But in this case the strings ending in 1 or consisting of all 0's are not accounted for. Taking 

these observations into consideration, the final RE is r = (0*100*)(1+ )+0*(1+ ). 

 
Alternative Solution : 

The language can be viewed as repetitions of the strings 0 and 01. Hence get the RE as r = (0+10)*(1+ ).This 

is a shorter expression but represents the same language. 

Regular Expression: 
 

FA to regular expressions: 
 

FA to RE (REs for Regular Languages) : 

 
Lemma : If a language is regular, then there is a RE to describe it. i.e. if L = L(M) for some DFA M, then there 

is a RE r such that L = L(r). 

 
 

Proof : We need to construct a RE r such that . Since M is a DFA, it has a finite 

no of states. Let the set of states of M is Q = {1, 2, 3,..., n} for some integer n. [ Note : if the n states of M were 

denoted by some other symbols, we can always rename those to indicate as 1, 2, 3,..., n ]. The required RE is 

constructed inductively. 

 
 

Notations : is a RE denoting the language which is the set of all strings w such that w is the label of a 

path from state i to state j in M, and that path has no intermediate state whose number is 

greater then k. ( i & j (begining and end pts) are not considered to be "intermediate" so i and /or j can be 
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greater than k ) 
 

We now construct inductively, for all i, j Q starting at k = 0 and finally reaching k = n. 

 
 

Basis : k = 0, i.e. the paths must not have any intermediate state ( since all states are numbered 1 or 

above). There are only two possible paths meeting the above condition : 

 
1. A direct transition from state i to state j. 

 

o = a if then is a transition from state i to state j on symbol the single symbol a. 
 

o = if there are multiple transitions from state i to state j on symbols 

. 
 

o = f if there is no transition at all from state i to state j. 
2. All paths consisting of only one node i.e. when i = j. This gives the path of length 0 (i.e. the RE 

denoting the string ) and all self loops. By simply adding Î to various cases above we get the 
corresponding REs i.e. 

o = + a if there is a self loop on symbol a in state i . 

o = + if there are self loops in state i as multiple symbols 

. 

o = if there is no self loop on state i. 

 
Induction : 

 
Assume that there exists a path from state i to state j such that there is no intermediate state whose number is 

greater than k. The corresponding Re for the label of the path is . 

There are only two possible cases : 

 
1. The path dose not go through the state k at all i.e. number of all the intermediate states are less than 

 

k. So, the label of the path from state i to state j is tha language described by the RE . 

2. The path goes through the state k at least once. The path may go from i to j and k may appear more 

than once. We can break the into pieces as shown in the figure 7. 
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Figure 7 

 
1. The first part from the state i to the state k which is the first recurence. In this path, all intermediate 

states are less than k and it starts at iand ends at k. So the RE denotes the language of the 

label of path. 

2. The last part from the last occurence of the state k in the path to state j. In this path also, no 

intermediate state is numbered greater than k. Hence the RE denoting the language of the label 

of the path. 

3. In the middle, for the first occurence of k to the last occurence of k , represents a loop which may be 

taken zero times, once or any no of times. And all states between two consecutive k's are numbered 

less than k. 

Hence the label of the path of the part is denoted by the RE .The label of the path from state i to state 

j is the concatenation of these 3 parts which is 

 

Since either case 1 or case 2 may happen the labels of all paths from state i to j is denoted by the following RE 

 

 

We can construct for all i, j {1,2,..., n} in increasing order of k starting with the basis k = 0 upto k = n 

 
since depends only on expressions with a small superscript (and hence will be available). WLOG, assume 

that state 1 is the start state and are the m final states where ji {1, 2, ... , n }, and 

. According to the convention used, the language of the automatacan be denoted by the RE 
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Since is the set of all strings that starts at start state 1 and finishes at final state following the transition 

of the FA with any value of the intermediate state (1, 2, ... , n) and hence accepted by the automata. 

 
Regular Grammar: 

 
 

A grammar is right-linear if each production has one of the following three forms: 

 
 A cB , 

 A c, 

 A 

 
Where A, B ( with A = B allowed) and . A grammar G is left-linear if each production has once of 

the following three forms. 

 
A Bc , A c, A 

 

A right or left-linear grammar is called a regular grammar. 

 
Regular grammar and Finite Automata are equivalent as stated in the following theorem. 

 
Theorem : A language L is regular iff it has a regular grammar. We use the following two lemmas to prove the 

above theorem. 

 
Lemma 1 : If L is a regular language, then L is generated by some right-linear grammar. 

 

Proof : Let be a DFA that accepts L. 

Let and . 

We construct the right-linear grammar by letting 

 
 

N = Q , and 

 

[ Note: If , then ] 

 

Let . For M to accept w, there must be a sequence of states such that Aru
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and 

 

By construction, the grammar G will have one production for each of the above transitions. Therefore, we have 
the corresponding derivation. 

 

 
Hence w L(g). 

 
 

Conversely, if , then the derivation of w in G must have the form as given above. But, 

then the construction of G from M implies that 

 

, where , completing the proof. 

Lemma 2 : Let be a right-linear grammar. Then L(G) is a regular language. 

Proof: To prove it, we construct a FA M from G to accept the same language. 

is constructed as follows: 

( is a special sumbol not in N ) 

, 

 

For any and and is defined as 

 
 

if 

 

 
and , if . 

 
We now show that this construction works. 

 

Let . Then there is a derivation of w in G of the form 
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By contradiction of M, there must be a sequence of transitions 

 

 

implying that i.e. w is accepted by M. 

 
 

Conversely, if is accepted by M, then because is the only accepting state of M, the 

transitions causing w to be accepted by M will be of the form given above. These transitions corresponds to a 

derivationof w in the grammar G. Hence , completing the proof of the lemma. 

Given any left-linear grammar G with production of the form , we can construct from it a right- 

linear grammar by replacing every production of G of the form with  

It is easy to prove that . Since is right-linear, is regular. But then so are 

i.e. because regular languages are closed under reversal. 

Putting the two lemmas and the discussions in the above paragraph together we get the proof of the theorem- 

A language L is regular iff it has a regular grammar 

Example : Consider the grammar 

It is easy to see that G generates the language denoted by the regular expression (01)*0. 

The construction of lemma 2 for this grammar produces the follwoing FA. 

This FA accepts exactly (01)*1. 

Decisions Algorithms for CFL 

In this section, we examine some questions about CFLs we can answer. A CFL may be represented using a 
CFG or PDA. But an algorithm that uses one representation can be made to work for the others, since we can 
construct one from the other. Aru
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Testing Emptiness : 

 
Theorem : There are algorithms to test emptiness of a CFL. 

 
Proof : Given any CFL L, there is a CFG G to generate it. We can determine, using the construction described 

in the context of elimination of useless symbols, whether the start symbol is useless. If so, then ; 
otherwise not. 

 
Testing Membership : 

 

Given a CFL L and a string x, the membership, problem is to determine whether ? 
 

Given a PDA P for L, simulating the PDA on input string x doesnot quite work, because the PDA can grow its 

stack indefinitely on input, and the process may never terminate, even if the PDA is deterministic. 

 

So, we assume that a CFG is given such that L = L(G). 

Let us first present a simple but inefficient algorithm. 

Convert G to in CNF generating . If the input string , then we need to 

 

determine whether and it can easily be done using the technique given in the context of elimination of 

-production. If , then iff . Consider a derivation under a grammar in CNF. At 
every step, a production in CNF in used, and hence it adds exactly one terminal symbol to the sentential form. 

Hence, if the length of the input string x is n, then it takes exactly n steps to derive x ( provided x is in ). 

Let the maximum number of productions for any nonterminal in is K. So at every step in derivation, there 

are atmost k choices. We may try out all these choices, systematically., to derive the string x in . Since 

there are atmost i.e. choices. This algorithms is of exponential time complexity. We now present an 

efficient (polynomial time) membership algorithm. 

 

Pumping Lemma: 
 

Limitations of Finite Automata and Non regular Languages : 

 
The class of languages recognized by FA s is strictly the regular set. There are certain languages which are 
non regular i.e. cannot be recognized by any FA 

 

 
Consider the language 

 
In order to accept is language, we find that, an automaton seems to need to remember when passing the 

center point between a's and b's how many a's it has seen so far. Because it would have to compare that with 

the number of b's to either accept (when the two numbers are same) or reject (when they are not same) the 

input string. 
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Proof : Let 

we can assume that 

and 

. Let 

from and 

But the number of a's is not limited and may be much larger than the number of states since the string may be 

arbitrarily long. So, the amount of information the automaton need to remember is unbounded. 

 
A finite automaton cannot remember this with only finite memory (i.e. finite number of states). The fact that FA 

s have finite memory imposes some limitations on the structure of the languages recognized. Inductively, we 

can say that a language is regular only if in processing any string in this language, the information that has to 

be remembered at any point is strictly limited. The argument given above to show that is non regular is 

informal. We now present a formal method for showing that certain languages such as  are non regular 

Properties of CFL’s 

Closure properties of CFL: 

We consider some important closure properties of CFLs. 

 

Theorem : If and are CFLs then so is 

 

be CFGs generating. Without loss of generality, 

is a nonterminal not in or . We construct the grammar 

, where 

 
 

, 

 

 

 

We now show that  
 

Thus proving the theorem. 

 
 

Let . Then . All productions applied in their derivation are also in . Hence i.e. 

 

 
Similarly, if , then 

 
 

Thus . 
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Conversely, let . Then and the first step in this derivation must be either or 

 

. Considering the former case, we have 

 
 

Since and are disjoint, the derivation must use the productions of only ( which are also in 

 

) Since is the start symbol of . Hence, giving . 

 
 

Using similar reasoning, in the latter case, we get . Thus . 

 
 

So, , as claimed 

 
 

Theorem : If and are CFLs, then so is . 

 
Proof : Let and be the CFGs generating and respectively. 

Again, we assume that  and  are disjoint, and is a nonterminal not in or . we construct the CFG 

from and  , where 

 

 

 

 
 

We claim that 

 
 
 
 

To prove it, we first assume that and . Then and . We can derive the string xy in 

as shown below. 

 

 
 

since and . Hence . 
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For the converse, let . Then the derivation of w in will be of the form 

 
 
 

i.e. the first step in the derivation must see the rule  . Again, since and are 

disjoint and and , some string x will be generated from using productions in ( which are 

also in ) and such that . 

Thus 

 
Hence and . 

This means that w can be divided into two parts x, y such that and . Thus .This 

completes the proof 

Theorem : If L is a CFL, then so is . 

Proof : Let be the CFG generating L. Let us construct the CFG from G 
 

where . 

 
We now prove that , which prove the theorem. 

can generate in one step by using the production since , can generate any string in L. 

Let  for any n >1 we can write where for . w can be generated by 

using following steps. 

 

 

First (n-1)-steps uses the production S SS producing the sentential form of n numbers of S 's. The 

nonterminal S in the i-th position then generates using production in P ( which are also in ) 

 
It is also easy to see that G can generate the empty string, any string in L and any string for n >1 and 

none other. 

 

 
Hence 

 
Theorem : CFLs are not closed under intersection 

 

 
Proof : We prove it by giving a counter example. Consider the language .The following 

CFG generates L1 and hence a CFL Aru
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The nonterminal X generates strings of the form and C generates strings of the form , . 

These are the only types of strings generated by X and C. Hence, S generates . 

 

Using similar reasoning, it can be shown that the following grammar and hence it is 
also a CFL. 

 

 

But, and is already shown to be not context-free. 

Hence proof. 

 

Theorem : A CFL's are not closed under complementations 

 
Proof : Assume, for contradiction, that CFL's are closed under complementation. SInce, CFL's are also closed 

under union, the language , where and are CFL's must be CFL. But by DeMorgan's law 

 

This contradicts the already proved fact that CFL's are not closed under intersection. 

But it can be shown that the CFL's are closed under intersection with a regular set. 

Theorem : If L is a CFL and R is a regular language, then is a CFL. 

 
 

Proof : Let be a PDA for L and let be a DFA for R. 

 
We construct a PDA M from P and D as follows 

 

 
 

where is defined as 

 
 

contains iff 
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and contains 
 

The idea is that M simulates the moves of P and D parallely on input w, and accepts w iff both P and D 
accepts. That means, we want to show that 

 

 
We apply induction on n, the number of moves, to show that 

 
 

iff 

 
 

and 

 

Basic Case is n=0. Hence , and . For this case it is trivially true 

 
Inductive hypothesis : Assume that the statement is true for n -1. 

 
Inductive Step : Let w = xa and 

 

Let  

By inductive hypothesis, and  

From the definition of and considering the n-th move of the PDA M above, we have 

and 

 
 

Hence and 

 
 

If and , then and we got that if M accepts w, then both P and D accepts it. 

We can show that converse, in a similar way. Hence is a CFL ( since it is accepted by a PDA M ) 
This property is useful in showing that certain languages are not context-free. 

Example : Consider the language 

Intersecting L with the regular set , we get 
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Which is already known to be not context-free. Hence L is not context-free 

Theorem : CFL's are closed under reversal. That is if L is a CFL, then so is 

Proof : Let the CFG generates L. We construct a CFG where 
 

. We now show that , thus proving the theorem. 
We need to prove that 

 

iff . 

The proof is by induction on n, the number of steps taken by the derivation. We assume, for simplicity (and of 

course without loss of generality), that G and hence are in CNF. 

The basis is n=1 in which case it is trivial. Because must be either or BC with . 

 

Hence iff 

Assume that it is true for (n-1)-steps. Let . Then the first step must apply a rule of the form 

and it gives 

 

where and 

By constructing of G', 
Hence 

 
The converse case is exactly similar 

Substitution : 

, let be a language (over any alphabet). This defines a function S, called substitution, on which is 

denoted as - for all 
This definition of substitution can be extended further to apply strings and langauge as well. 

If , where , is a string in , then 

. 
Similarly, for any language L, 

The following theorem shows that CFLs are closed under substitution. 

 
Thereom : Let is a CFL, and s is a substitution on such that is a CFL for all , thus 

s(L) is a CFL 

Proof : Let L = L(G) for a CFG and for every , for some 

. Without loss of generality, assume that the sets of nonterminals N and 's are 

disjoint. 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



Now, we construct a grammar , generating s(L), from G and 's as follows : 
 



  

  

 consists of 

 

1. and 

2. The production of P but with each terminal a in the right hand side of a production replaced by 

everywhere. 

We now want to prove that this construction works i.e. iff . 

If Part : Let  then according to the definition there is some string and 

for  such that 

We will show that . 

From the construction of , we find that, there is a derivation corresponding to the string 

(since  contains all productions of G but every ai replaced with  in the RHS of any 
production). 

 

Every is the start symbol of and all productions of are also included in . 
Hence 

 
 

(Only-if Part) Let . Then there must be a derivative as follows : 

 

(using the production of G include in as modified by (step 2) of the construction of .) 

 

Each ( ) can only generate a string , since each 's and N are disjoin. Therefore, 

we get 

 

 
since 

Therefore, 
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since 

 

The string is formed by substituting strings for each and hence . 

 

Theorem : CFL's are closed under homomorphism 

 

Proof : Let be a CFL, and h is a homomorphism on i.e for some alphabets . consider 

the following substitution S:Replace each symbol by the language consisting of the only string h(a), i.e. 

for all . Then, it is clear that, h(L) = s(L). Hence, CFL's being closed under substitution 

must also be closed under homomorphism. 
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Grammar 

 
A grammar is a mechanism used for describing languages. This is one of the most simple but yet powerful 
mechanism. There are other notions to do the same, of course. 

 
In everyday language, like English, we have a set of symbols (alphabet), a set of words constructed from these 
symbols, and a set of rules using which we can group the words to construct meaningful sentences. The 
grammar for English tells us what are the words in it and the rules to construct sentences. It also tells us 
whether a particular sentence is well-formed (as per the grammar) or not. But even if one follows the rules of 
the english grammar it may lead to some sentences which are not meaningful at all, because of impreciseness 
and ambiguities involved in the language. In english grammar we use many other higher level constructs like 
noun-phrase, verb-phrase, article, noun, predicate, verb etc. A typical rule can be defined as 

 
< sentence > < noun-phrase > < predicate > 

 
meaning that "a sentence can be constructed using a 'noun-phrase' followed by a predicate". 

Some more rules are as follows: 

< noun-phrase > < article >< noun > 

 
< predicate > < verb > 

with similar kind of interpretation given above. 

If we take {a, an, the} to be <article>; cow, bird, boy, Ram, pen to be examples of <noun>; and eats, runs, 
swims, walks, are associated with <verb>, then we can construct the sentence- a cow runs, the boy eats, an 
pen walks- using the above rules. Even though all sentences are well-formed, the last one is not meaningful. 
We observe that we start with the higher level construct <sentence> and then reduce it to <noun-phrase>, 
<article>, <noun>, <verb> successively, eventually leading to a group of words associated with these 
constructs. 

 
These concepts are generalized in formal language leading to formal grammars. The word 'formal' here refers 
to the fact that the specified rules for the language are explicitly stated in terms of what strings or symbols can 
occur. There can be no ambiguity in it. 

 
Formal definitions of a Grammar 
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A grammar G is defined as a quadruple. 

 

 
N is a non-empty finite set of non-terminals or variables, 

is a non-empty finite set of terminal symbols such that 

, is a special non-terminal (or variable) called the start symbol, and is a 
finite set of production rules. 

 
 

The binary relation defined by the set of production rules is denoted by , i.e. iff . 

 

 
In other words, P is a finite set of production rules of the form , where and 

 
Production rules: 

 

The production rules specify how the grammar transforms one string to another. Given a string , we say 

that the production rule is applicable to this string, since it is possible to use the rule  to rewrite 

the (in ) to obtaining a new string . We say that derives and is denoted as 

 

 
Successive strings are dervied by applying the productions rules of the grammar in any arbitrary order. A 
particular rule can be used if it is applicable, and it can be applied as many times as described. 

 

We write  if the string can be derived from the string in zero or more steps; if can be 

derived from in one or more steps. 

 
By applying the production rules in arbitrary order, any given grammar can generate many strings of terminal 

symbols starting with the special start symbol, S, of the grammar. The set of all such terminal strings is called 

the language generated (or defined) by the grammar. 

 
 

Formaly, for a given grammar the language generated by G is 

 

 

 
That is iff . 
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If , we must have for some , , denoted as a 

derivation sequence of w, The strings are denoted as sentential forms of the 

derivation. 

 
 

Example : Consider the grammar , where N = {S}, ={a, b} and P is the set of the following 

production rules 

 
{ S ab, S aSb} 

 

Some terminal strings generated by this grammar together with their derivation is given below. 

 
S ab 

 
S aSb aabb 

 
S aSb aaSbb aaabbb 

 
It is easy to prove that the language generated by this grammar is 

 

 

By using the first production, it generates the string ab ( for i =1 ). 

 
To generate any other string, it needs to start with the production S aSb and then the non-terminal S in the 

RHS can be replaced either by ab (in which we get the string aabb) or the same production S aSb can be 

used one or more times. Every time it adds an 'a' to the left and a 'b' to the right of S, thus giving the sentential 

form . When the non-terminal is replaced by ab (which is then only possibility for generating a 

terminal string) we get a terminal string of the form . 

There is no general rule for finding a grammar for a given language. For many languages we can devise 
grammars and there are many languages for which we cannot find any grammar. 

 

 
Example: Find a grammar for the language . 

 
It is possible to find a grammar for L by modifying the previous grammar since we need to generate an extra b 

at the end of the string . We can do this  by  adding  a  production  S  Bb  where  the  non-terminal  B 

generates as given in the previous example. 

Using the above concept we devise the follwoing grammar for L. 

 
 

where, N = { S, B }, P = { S Bb, B ab, B aBb } 

 
Parse Trees: 
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Construction of a Parse tree: 
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Yield of a Parse tree: 

 

 
Ambiguity in languages and grammars: 
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When a grammar fails to provide riiiique structures, it is sometirrics possible 

to redesign the grammar to Inake the structure unique for each string in the 

language. Unfortunately, sometimes we cannot do so. That is. there are some 

CFL‘s that we *inherentlv ambiguous" ; every grammar for the laiiguage puts 
morP t,hun Giie st.riictiire oIl sonic strings in the language. 

grammar  lets tls generate  expressions  u Atm any sequence an‹i operators, 

and  the  productions  E E + 2f | A s H allow us to generate these oxI' res8ioiis 

in any orcler we choose. 

Exarriple  5.25:  For instance,  consider  the sentential form  N + AN It has 
two derivations from IS: 

 

 

 

Notice that in derivation (1), the second fi is replaced by N  s  F,  while  in 

derivation (2), the first A ss replaced b,v  fi  + fi.  Figure  5.17  shows  the  tu o 

parse trees, whirh we should note are distinct trees. 
 

E 
 

  

E + E 
 

  

E * 

 
(a) 

E 
 

 

E * E 
 

  

E 

 
(b) 

 

Figure u.17: Two parse trees with tht* s‹ame yield 

we say a CFG G — i k“ P. P, S is nmfiiyuous if there is at least one string 

in T* for which we can find two diflerent parse trees, each With root labeled S 

and yield w. If each sti‗ing has at 

graTninai is unfimbipuous. 

most one parse tree in the grammar, then the 
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UNIT-III 

 

 

Push down automata: 

Regular language can be charaterized as the language accepted by finite automata. Similarly, we can 
characterize the context-free language as the langauge accepted by a class of machines called "Pushdown 
Automata" (PDA). A pushdown automation is an extension of the NFA. 

 
It is observed that FA have limited capability. (in the sense that the class of languages accepted or 
characterized by them is small). This is due to the "finite memory" (number of states) and "no external memory" 
involved with them. A PDA is simply an NFA augmented with an "external stack memory". The addition of a 
stack provides the PDA with a last-in, first-out memory management cpapability. This "Stack" or "pushdown 
store" can be used to record a potentially unbounded information. It is due to this memory management 
capability with the help of the stack that a PDA can overcome the memory limitations that prevents a FA to 

accept many interesting languages like . Although, a PDA can store an unbounded amount of 
information on the stack, its access to the information on the stack is limited. It can push an element onto the 
top of the stack and pop off an element from the top of the stack. To read down into the stack the top elements 
must be popped off and are lost. Due to this limited access to the information on the stack, a PDA still has 
some limitations and cannot accept some other interesting languages. 

 
 

 

 

As shown in figure, a PDA has three components: an input tape with read only head, a finite control and a 
pushdown store. 

 
The input head is read-only and may only move from left to right, one symbol (or cell) at a time. In each step, 
the PDA pops the top symbol off the stack; based on this symbol, the input symbol it is currently reading, and Aru
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its present state, it can push a sequence of symbols onto the stack, move its read-only head one cell (or 
symbol) to the right, and enter a new state, as defined by the transition rules of the PDA. 

 
PDA are nondeterministic, by default. That is, - transitions are also allowed in which the PDA can pop and 
push, and change state without reading the next input symbol or moving its read-only head. Besides this, there 
may be multiple options for possible next moves. 

 
 

Formal Definitions : Formally, a PDA M is a 7-tuple M = 

where, 

 

 is a finite set of states, 

 is a finite set of input symbols (input alphabets), 

 is a finite set of stack symbols (stack alphabets), 

 is a transition function from to subset of 

 

 is the start state 

 , is the initial stack symbol, and 

 , is the final or accept states. 

 

Explanation of the transition function, : 

If, for any , . This means intitutively that whenever the 

PDA is in state q reading input symbol a and z on top of the stack, it can nondeterministically for any i, 

 

 go to state  

 pop z off the stack 

 push onto the stack (where ) (The usual convention is that if , then 

will be at the top and at the bottom.) 

 move read head right one cell past the current symbol a. 

 

If a = , then means intitutively that whenver the PDA is in 

state q with z on the top of the stack regardless of the current input symbol, it can nondeterministically for any 

i,  , 

 

 go to state 

 pop z off the stack 

 push onto the stack, and 

 leave its read-only head where it is. 
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State transition diagram : A PDA can also be depicted by a state transition diagram. The labels on the arcs 

indicate both the input and the stack operation. The transition 
 

for and is depicted by 

 

 
Final states are indicated by double circles and the start state is indicated by an arrow to it from nowhere. 

 

 
Configuration or Instantaneous Description (ID) : 

 
A configuration or an instantaneous description (ID) of PDA at any moment during its computation is an 

element of describing the current state, the portion of the input remaining to be read (i.e. 

under and to the right of the read head), and the current stack contents. Only these three elements can 

affect the computation from that point on and, hence, are parts of the ID. 

 

The start or inital configuartion (or ID) on input is . That is, the PDA always starts in its 

start state, with its read head pointing to the leftmost input symbol and the stack containing only the 

start/initial stack symbol, . 

The "next move relation" one figure describes how the PDA can move from one configuration to another 

in one step. 

 
Formally, 

 
 

 

iff 

'a' may be or an input symbol. 

 

Let I, J, K be IDs of a PDA. We define we write I K, if ID I can become K after exactly i moves. The 

relations and define as follows 

 
I K 

 
 

I J if such that I K and K J 

 
 

I J if such that I J. 
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That is, is the reflexive, transitive closure of . We say that I J if the ID J follows from the ID I in 

zero or more moves. 

 
( Note : subscript M can be dropped when the particular PDA M is understood. ) 

 

Language accepted by a PDA M 
 

There are two alternative definiton of acceptance as given below. 

 
1. Acceptance by final state : 

 
 

Consider the PDA . Informally, the PDA M is said to accept its input by final 

state if it enters any final state in zero or more moves after reading its entire input, starting in the start 

configuration on input . 

 
Formally, we define L(M), the language accepted by final state to be 

 

{ | for some and } 
 
 

 

2. Acceptance by empty stack (or Null stack) : The PDA M accepts its input by empty stack if starting in the 

start configuration on input , it ever empties the stack w/o pushing anything back on after reading the entire 

input. Formally, we define N(M), the language accepted by empty stack, to be 

 

{ | for some } 

Note that the set of final states, F is irrelevant in this case and we usually let the F to be the empty set i.e. F = 

Q . 

 

 
Example 1 : Here is a PDA that accepts the language . 

 

 

 
 

 

 
 

, and consists of the following transitions Aru
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The PDA can also be described by the adjacent transition diagram. 

 

 

Informally, whenever the PDA M sees an input a in the start state with the start symbol z on the top of the 

stack it pushes a onto the stack and changes state to . (to remember that it has seen the first 'a'). On state 

if it sees anymore a, it simply pushes it onto the stack. Note that when M is on state , the symbol on the 

top of the stack can only be a. On state if it sees the first b with a on the top of the stack, then it needs to 

start comparison of numbers of a's and b's, since all the a's at the begining of the input have already been 

pushed onto the stack. It start this process by popping off the a from the top of the stack and enters in state q3 

(to remember that the comparison process has begun). On state , it expects only b's in the input (if it sees 
any more a in the input thus the input will not be in the proper form of anbn). Hence there is no more on input a 

when it is in state . On state it pops off an a from the top of the stack for every b in the input. When it 
sees the last b on state q3 (i.e. when the input is exaushted), then the last a from the stack will be popped off 

and the start symbol z is exposed. This is the only possible case when the input (i.e. on -input ) the PDA M 

will move to state which is an accept state. 
we can show the computation of the PDA on a given input using the IDs and next move relations. For example, 
following are the computation on two input strings. 

 
Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs using the 
transition function defined 

 
 

( using transition 1 ) 

 
 

( using transition 2 ) 

 
 

( using transition 3 ) 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



( using transition 4 ), ( using transition 5 ) , is final state. Hence , accept. So the 

string aabb is rightly accepted by M 

 
we can show the computation of the PDA on a given input using the IDs and next move relations. For example, 
following are the computation on two input strings. 

 
i) Let the input be aabab. 

 

 

 

 

No further move is defined at this point. 

 
Hence the PDA gets stuck and the string aabab is not accepted. 

 
Example 2 : We give an example of a PDA M that accepts the set of balanced strings of parentheses [] by 

empty stack. 

The PDA M is given below. 

 

where is defined as 

 

Informally, whenever it sees a [, it will push the ] onto the stack. (first two transitions), and whenever it sees a ] 
and the top of the stack symbol is [, it will pop the symbol [ off the stack. (The third transition). The fourth 
transition is used when the input is exhausted in order to pop z off the stack ( to empty the stack) and accept. 
Note that there is only one state and no final state. The following is a sequence of configurations leading to the 
acceptance of the string [ [ ] [ ] ] [ ]. 

 

 

 

Equivalence of acceptance by final state and empty stack. 

 
It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final state and empty 
stack- are equivalent in the sense that if a language can be accepted by empty stack by some PDA, it can also 
be accepted by final state by some other PDA and vice versa. Hence it doesn't matter which one we use, since 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



each kind of machine can simulate the other.Given any arbitrary PDA M that accpets the language L by final 

state or empty stack, we can always construct an equivalent PDA M with a single final state that accpets 

exactly the same language L. The construction process of M' from M and the proof of equivalence of M & M' 

are given below. 

 
There are two cases to be considered. 

 
 

CASE I : PDA M accepts by final state, Let   Let qf be a new state not in Q. 

Consider the PDA where as well as the following transition. 

 

contains and . It is easy to show that M and M' are equivalent i.e. 

L(M) = L( ) 

 
 

Let L(M) . Then for some and 
 

Then 

 

Thus accepts  

 
 

Conversely, let accepts i.e. L( ), then  for 

inherits all other moves except the last one from M. Hence for some 

. 

 

Thus M accepts . Informally, on any input simulate all the moves of M and enters in its own final state 

whenever M enters in any one of its final status in F. Thus accepts a string iff M accepts it. 

CASE II : PDA M accepts by empty stack. 

We will construct from M in such a way that simulates M and detects when M empties its stack. 

enters its final state    when and only when M empties its stack.Thus will accept a string iff M 
accepts. 

 

 
Let  where and X and contains all the 

transition of , as well as the following two transitions. 

 

and 
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Transitions 1 causes to enter the initial configuration of M except that will have its own bottom-of-stack 

marker X which is below the symbols of M's stack. From this point onward  will simulate every move of M 

since all the transitions of M are also in 

If M ever empties its stack, then when simulating M will empty its stack except the symbol X at the bottom. 

At this point, will enter its final state by using transition rule 2, thereby (correctly) accepting the input. 

We will prove that M and are equivalent. 

 
Let M accepts . Then 

 
 

for some . But then 

 
 

( by transition rule 1) 

 

( Since includes all the moves of M ) 

( by transition rule 2 ) 

Hence, also accepts . Conversely, let accepts . 

 
Then for some  

 

 

Every move in the sequence, were taken from M. 

 
Hence, M starting with its initial configuration will eventually empty its stack and accept the input i.e. 

 

 

Equivalence of PDA’s and CFG’s: 
We will now show that pushdown automata and context-free grammars are equivalent in expressive power, 
that is, the language accepted by PDAs are exactly the context-free languages. To show this, we have to prove 
each of the following: 

i) Given any arbitrary CFG G there exists some PDA M that accepts exactly the same language 

generated by G. 

ii) Given any arbitrary PDA M there exists a CFG G that generates exactly the same language 

accpeted by M. 

 
(i) CFA to PDA 

 
We will first prove that the first part i.e. we want to show to convert a given CFG to an equivalent PDA. 
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Let the given CFG is . Without loss of generality we can assume that G is in Greibach 

Normal Form i.e. all productions of G are of the form . 

 
 

where and . 

 
From the given CFG G we now construct an equivalent PDA M that accepts by empty stack. Note that there is 

only one state in M. Let 

 
 

, where 

 
 q is the only state 

 is the input alphabet, 

 N is the stack alphabet , 

 q is the start state. 

 S is the start/initial stack symbol, and , the transition relation is defined as follows 

 

For each production , . We now want to show 

that M and G are equivalent i.e. L(G)=N(M). i.e. for any .  iff . 

 
If , then by definition of L(G), there must be a leftmost derivation starting with S and deriving w. 

 
 

i.e. 

 

Again if , then one sysmbol. Therefore we need to show that for any . 

 
iff . 

 
But we will prove a more general result as given in the following lemma. Replacing A by S (the start symbol) 

and by gives the required proof. 

 

 
Lemma For any , and , via a leftmost derivative iff 

 

. 

 
Proof : The proof is by induction on n. 

 
Basis : n = 0 
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iff i.e. and 

 

 
iff 

 
 

iff 
 

Induction Step : 
 
 
 

First, assume that via a leftmost derivation. Let the last production applied in their derivation is 

for some  and . 

Then, for some , 

 

 

where and  
 

Now by the indirection hypothesis, we get, 

 

 
.............................................................................(1) 

 
Again by the construction of M, we get 

 

 
so, from (1), we get 

 

 
 

since and , we get 

 
 

That is, if , then  . Conversely, assume that 

and let 
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be the transition used in the last move. Then for some , and 

 

 
where and . 

 

Now, by the induction hypothesis, we get 

 
 

via a leftmost derivation. 

 

Again, by the construction of M, must be a production of G. [ Since ]. 

Applying the production to the sentential form we get 

 

 
 
 

i.e. 

 
via a leftmost derivation. 

Hence the proof. 

Example : Consider the CFG G in GNF 

 
S aAB 

A a / aA 

B a / bB 

 
The one state PDA M equivalent to G is shown below. For convenience, a production of G and the 

corresponding transition in M are marked by the same encircled number. 

 
(1) S aAB 

(2) A a 

(3) A aA 

(4) B a 

(5) B bB 

 
 

. We have used the same construction discussed earlier 

 
Some Useful Explanations : 

Consider the moves of M on input aaaba leading to acceptance of the string. 

Steps 
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1. (q, aaaba, s) ( q, aaba, AB ) 

 

2. ( q, aba, AB ) 

 

3. ( q, ba, B ) 

 

4. ( q, a, B ) 

 

5. ( q, , ) Accept by empty stack. 

 

Note : encircled numbers here shows the transitions rule applied at every step. 

Now consider the derivation of the same string under grammar G. Once again, the production used at every 
step is shown with encircled number. 

 
 
 

 S aAB aaAB aaaB aaabB aaaba 

Steps 1 2 3 4 5  

 
Observations: 

 There is an one-to-one correspondence of the sequence of moves of the PDA M and the derivation 

sequence under the CFG G for the same input string in the sense that - number of steps in both the 

cases are same and transition rule corresponding to the same production is used at every step (as 
shown by encircled number). 

 considering the moves of the PDA and derivation under G together, it is also observed that at every 

step the input read so far and the stack content together is exactly identical to the corresponding 
sentential form i.e. 
<what is Read><stack> = <sentential form> 

Say, at step 2, Read so far = a 
stack = AB 

Sentential form = aAB From this property we claim that iff . If the claim is 

true, then apply with and we get iff or iff ( by 
definition ) 

 
Thus N(M) = L(G) as desired. Note that we have already proved a more general version of the claim 

PDA and CFG: 

We now want to show that for every PDA M that accpets by empty stack, there is a CFG G such that L(G) = 

N(M) 

 
we first see whether the "reverse of the construction" that was used in part (i) can be used here to construct an 

equivalent CFG from any PDA M. 

 
It can be show that this reverse construction works only for single state PDAs. 
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 That is, for every one-state PDA M there is CFG G such that L(G) = N(M). For every move of the 

PDA  M  we introduce a production in the 

grammar where N = T and . 

we can now apply the proof in part (i) in the reverse direction to show that L(G) = N(M). 

 
But the reverse construction does not work for PDAs with more than one state. For example, consider the PDA 

M produced here to accept the langauge  

 

 
Now let us construct CFG using the "reverse" construction. 

 
 

( Note ). 

 
Transitions in M Corresponding Production in G 

 

 

 

 

 

 

 

 

 
We can drive strings like aabaa which is in the language. 

 

 
But under this grammar we can also derive some strings which are not in the language. e.g 

 

 

 
and . But 

 
Therefore, to complete the proof of part (ii) we need to prove the following claim also. 

 
 

Claim: For every PDA M there is some one-state PDA such that . 

 
It is quite possible to prove the above claim. But here we will adopt a different approach. We start with any 

arbitrary PDA M that accepts by empty stack and directly construct an equivalent CFG G. 
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If 

, . 

PDA to CFG 

We want to construct a CFG G to simulate any arbitrary PDA M with one or more states. Without loss of 

generality we can assume that the PDA M accepts by empty stack. 

The idea is to use nonterminal of the form <PAq> whenever PDA M in state P with A on top of the stack goes 

to state . That is, for example, for a given transition of the PDA corresponding production in the grammar as 
shown below, 

 
And, we would like to show, in general, that  iff the PDA M, when started from state P with A on 

the top of the stack will finish processing , arrive at state q and remove A from the stack. 

we are now ready to give the construction of an equivalent CFG G from a given PDA M. we need to introduce 

two kinds of producitons in the grammar as given below. The reason for introduction of the first kind of 
production will be justified at a later point. Introduction of the second type of production has been justified in the 
above discussion. 

 
 

Let be a PDA. We construct from M a equivalent CFG 

Where 

 N is the set of nonterminals of the form <PAq> for and and P contains the follwoing 

two kind of production 
 

1. 

2. , then for every choice of the sequence , 

 
 
 

Include the follwoing production 

 

 

If n = 0, then the production is .For the whole exercise to be meaningful we want 

means there is a sequence of transitions ( for PDA M ), starting in state q, ending in , 

during which the PDA M consumes the input string and removes A from the stack (and, of course, all other 

symbols pushed onto stack in A's place, and so on.) 

 
That is we want to claim that 

 
 

iff 

 
 

If this claim is true, then let to get iff for some 

. But for all we have as production in G. Therefore, 
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iff i.e. iff PDA M accepts w by empty stack or L(G) = N(M) 
 

Now, to show that the above construction of CFG G from any PDA M works, we need to prove the proposed 

claim. 

 
 

Note: At this point, the justification for introduction of the first type of production (of the form ) in 

the CFG G, is quite clear. This helps use deriving a string from the start symbol of the grammar. 

 
 

Proof : Of the claim iff for some , and 

The proof is by induction on the number of steps in a derivation of G (which of course is equal to the number of 

moves taken by M). Let the number of steps taken is n. 

 
The proof consists of two parts: ' if ' part and ' only if ' part. First, consider the ' if ' part 

 

If then . 

Basis is n =1 

Then . In this case, it is clear that . Hence, by construction is 

a production of G. 

 
Then 

 
Inductive Hypothesis : 

 

 
 

Inductive Step : 
 

 

For n >1, let w = ax for some and consider the first move of the PDA M which uses the 

general transition   = 

. Now M must remove from stack while 

consuming x in the remaining n-1 moves. 

 

Let , where is the prefix of x that M has consumed when first appears at top of 

the stack. Then there must exist a sequence of states in M (as per construction)  (with 

), such that 
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... 

] 
 

[ This step implies ] 

 

 
 

                      = 
 

[ Note: Each step takes less than or equal to n -1 moves because the total number of moves required assumed 

to be n-1.] 

 
That is, in general 

 
 

, . 

 
So, applying inductive hypothesis we get 

 
 

, . But corresponding to the original move 

in M we have added the following production in G. 

 
We can show the computation of the PDA on a given input using the IDs and next move relations. For example, 
following are the computation on two input strings. 

i) Let the input be aabb. we start with the start configuration and proceed to the subsequent IDs using the 

transition function defined 

 
 

( using transition 1 ) , ( using transition 2 ) 

( using transition 3 ), ( using transition 4 ) 

( using transition 5 ) , is final state. Hence, accept. 

 
So the string aabb is rightly accepted by M. 

 
we can show the computation of the PDA on a given input using the IDs and next move relations. For example, 
following are the computation on two input strings. 

 
i) Let the input be aabab. 

 

 

 

 
[ This step implies 
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No further move is defined at this point. 

 
Hence the PDA gets stuck and the string aabab is not accepted. 

 
The following is a sequence of configurations leading to the acceptance of the string [ [ ] [ ] ] [ ]. 

 

 

 

 

Equivalence of acceptance by final state and empty stack. 

 
It turns out that the two definitions of acceptance of a language by a PDA - accpetance by final state and empty 
stack- are equivalent in the sense that if a language can be accepted by empty stack by some PDA, it can also 
be accepted by final state by some other PDA and vice versa. Hence it doesn't matter which one we use, since 

each kind of machine can simulate the other.Given any arbitrary PDA M that accpets the language L by final 

state or empty stack, we can always construct an equivalent PDA M with a single final state that accpets 

exactly the same language L. The construction process of M' from M and the proof of equivalence of M & M' 

are given below 

 
There are two cases to be considered. 

 

CASE 1 : PDA M accepts by final state, Let   . Let be a new state not in Q. 

Consider the PDA where as well as the following transition. 

contains and . It is easy to show that M and are equivalent i.e. 

 
. 

 
 

Let . Then for some and 

 

 
Then . 

 
Thus accepts . Aru
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Conversely, let accepts i.e. , then for some 

. inherits all other moves except the last one from M. Hence for some 

. 

 
Thus M accepts . Informally, on any input simulate all the moves of M and enters in its own final state 

whenever M enters in any one of its final status in F. Thus accepts a string iff M accepts it. 

CASE 2 : PDA M accepts by empty stack. 

we will construct from M in such a way that simulates M and detects when M empties its stack. 

enters its final state when and only when M empties its stack.Thus will accept a string iff M 
accepts. 

 

 
Let where and and contains all 

the transition of , as well as the following two transitions. 

 
 

and 

 

 

Transitions 1 causes to enter the initial configuration of M except that will have its own bottom-of-stack 

marker X which is below the symbols of M's stack. From this point onward M' will simulate every move of M 

since all the transitions of M are also in . 

 

If M ever empties its stack, then when simulating M will empty its stack except the symbol X at the bottom. 

At this point , will enter its final state by using transition rule 2, thereby (correctly) accepting the input. 

we will prove that M and are equivalent. 

 
Let M accepts . 

Then 

 

for some . But then, 

 

 
( by transition rule 1 ) 

 
 

( since include all the moves of M ) 
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( by transition rule 2 ) 

 

Hence, also accepts .Conversely, let accepts . 

 
 

Then for some Q . 

 
Every move in the sequence 

 
 

were taken from M. 
 

Hence, M starting with its initial configuration will eventually empty its stack and accept the input i.e. 

 
 

. 

 
Deterministic PDA: 

 

 

Regular Languages and DPDA’s The DPDA’s accepts a class of languages that is in between the regular 
languages and CFL’s. 
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Deterministic Pushdown Automata (DPDA) and Deterministic Context-free Languages (DCFLs) 
 

Pushdown automata that we have already defined and discussed are nondeterministic by default, that is , there may be two or 
more moves involving the same combinations of state, input symbol, and top of the stock, and again, for some state and 

top of the stock the machine may either read and input symbol or make an - transition (without consuming any input). 
 

In deterministic PDA , there is never a choice of move in any situation. This is handled by preventing the above mentioned two 
cases as described in the definition below. 

 

Defnition : Let be a PDA . Then M is deterministic if and only if both the following conditions are 
satisfied. 

 

 
1.  has at most one element for any and (this condition prevents multiple choice f 

any combination of ) 

2. If and for every 
 

(This condition prevents the possibility of a choice between a move with or without an input symbol). 
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Empty Production Removal 

The productions of context-free grammars can be coerced into a variety of forms without 

affecting the expressive power of the grammars. If the empty string does not belong to a language, 

then there is a way to eliminate the productions of the form A  from the grammar. 

If the empty string belongs to a language, then we can eliminate  from all productions 

save for the single production S  . In this case we can also eliminate any occurrences of S from 

the right-hand side of productions. 

Procedure to find CFG with out empty Productions 
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Unit production removal 

 
Left Recursion Removal Aru

na
i E

ng
in

ee
rin

g 
Col

le
ge



 
 

NORMAL FORMS 
Two kinds of normal forms viz., Chomsky Normal Form and Greibach Normal Form (GNF) are 
considered here. 

 

Chomsky Normal Form (CNF) 

Any context-free language L without any -production is generated by a grammar is 

which productions are of the form A  BC or A a, where A, B VN , and a  V . 

Procedure to find Equivalent Grammar in CNF 

(i) Eliminate the unit productions, and -productions if any, 

(ii) Eliminate the terminals on the right hand side of length two or more. 

(iii) Restrict the number of variables on the right hand side of productions to two. 

Proof: 

For Step (i): Apply the following theorem: ―Every context free language can be generated by a 

grammar with no useless symbols and no unit productions‖. 

At the end of this step the RHS of any production has a single terminal or two or more symbols. 

Let us assume the equivalent resulting grammar as G  (VN ,VT ,P ,S ). 

For Step (ii): Consider any production of the form 
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Example 

Obtain a grammar in Chomsky Normal Form (CNF) equivalent to the grammar G with 

productions P given 

 
Solution 
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(i) There are no iinit productions in the gis en set of P. 

(ii) Amonest the given piodiictions. u‗e liai‗c 
 
 

 

v‘liic1i are in proper foriii 

For S —› re4hB. v e have 
 

 

 
 

(In) IH P‘ aboi e. we liar e only 

.S B  .4BGB 

not in pi―oper foi―m. 

Hence u e assume new° variables D1 and D, and the productions 
 

Tlieiefore the eranuiiar in C homely Normal ForNi (CNF) is G2 with the 

productions given by 
 

 
B h. 
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Pumping Lemma for CFG 

A ―Pumping Lemma‖ is a theorem used to show that, if certain strings belong to a 

language, then certain other strings must also belong to the language. Let us discuss a Pumping 

Lemma for CFL. We will show that , if L is a context-free language, then strings of L that are at 

least ‗m‘ symbols long can be ―pumped‖ to produce additional strings in L. The value of ‗m‘ 

depends on the particular language. Let L be an infinite context-free language. Then there is some 

positive integer ‗m‘ such that, if S is a string of L of Length at least ‗m‘, then 

(i) S = uvwxy (for some u, v, w, x, y) 

(ii) | vwx|  m 

(iii) | vx| 1 

(iv) uv iwx i yL. 

for all non-negative values of i. 

It should be understood that 

(i) If S is sufficiently long string, then there are two substrings, v and x, somewhere in S. 

There is stuff (u) before v, stuff (w) between v and x, and stuff (y), after x. 

(ii) The stuff between v and x won‘t be too long, because | vwx | can‘t be larger than m. 
(iii) Substrings v and x won‘t both be empty, though either one could be. 

(iv) If we duplicate substring v, some number (i) of times, and duplicate x the same number 

of times, the resultant string will also be in L. 

Definitions 

A variable is useful if it occurs in the derivation of some string. This requires that 
(a) the variable occurs in some sentential form (you can get to the variable if you start from S), and 

(b) a string of terminals can be derived from the sentential form (the variable is not a ―dead end‖). 

A variable is ―recursive‖ if it can generate a string containing itself. For example, variable A is 

recursive if 

 
Proof of Pumping Lemma 

(a) Suppose we have a CFL given by L. Then there is some context-free Grammar G that generates 

L. Suppose 

(i) L is infinite, hence there is no proper upper bound on the length of strings belonging to L. 

(ii) L does not contain l. 

(iii) G has no productions or l-productions. 
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There are only a finite number of variables in a grammar and the productions for each 
variable have finite lengths. The only way that a grammar can generate arbitrarily long strings is if 

one or more variables is both useful and recursive. Suppose no variable is recursive. Since the start 

symbol is non recursive, it must be defined only in terms of terminals and other variables. Then 

since those variables are non recursive, they have to be defined in terms of terminals and still other 

variables and so on. 

After a while we run out of ―other variables‖ while the generated string is still finite. Therefore 

there is an upper bond on the length of the string which can be generated from the start symbol. 

This contradicts our statement that the language is finite. 

Hence, our assumption that no variable is recursive must be incorrect. 
(b) Let us consider a string X belonging to L. If X is sufficiently long, then the derivation of X must 

have involved recursive use of some variable A. Since A was used in the derivation, the derivation 

should have started as 
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Usage of Pumping Lemma 
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Hence our original assumption, that L is context free should be false. Hence the language L is not 
con text-free. 

Example 

Check whether the language given by L  {a mbmcn : m  n  2m} is a CFL or not. 

Solution 
 

 

 
 

Closure properties of CFL – Substitution 
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Let Z be an alphabet, and suppose that for every gyinbol u in £, z e choose a 

language ñq. ‘These chosrn languages can be over' any alphabets. not necessarily 

Z and not necessarily the  ,siunr.  this rhoirr of lall  lages defines a fiinction  s  

(a iié,sftfvfion) on L, anh we shall refer to L as a(it) for each symbol o. 

If  ir'    ut nt     f2„  is a string in  L‗,  then  s(u)  is  the language  of  all striligs 

ri <s' - .r„ such t,hat string zi is in the language s(ai), for i — 1, 2, . . , ii. Put 

another way, ,s(r') is the concatenat lOn of  the languages  s(ut)s(ut)  - - s(o„). 
Vfi cam further extend the definition of .s to apply  to  lnngtiages:  s(L)  is the 

union of s(in) for all strings in in L 

Theorem  7.23 :   If  £   is  a  f ontrxt-fire  lan    iagr  over  alphabet   Z,  and  s  is a 

substitution  on  Z such  thfit  ,s(n) is a CFL for  t!at h o  in  Z, then  6(ñ)  is a CFL, 

PROOr: The essential idea is Hurt not: rnav take a CFR for £ and replat!e each 

terminal a by  the start spnbvi  yr » crs  rv  language  s(a)  the  result 1s a 
single CFG that generates s(£). However. there are a few details that  riiust  be 
gutten right to make this idea work. 

Mere formally, start with  grammars for  e‘ar2i  of  the  relevant  languages,  say 

N —  V,  Z , P, S)  for £  and  Nq  (I  , Tq, Pg, Sz)  for each a  in Z.  Since we 

can choose we wish for variables. let u£ make sure that the sets of 

variahles  are  dis]oint;  that  is,  there  is  iio  syI   bol  A  that   i5  in   two  or   more  of 

1" and any of thr Vq‘s.  The  purpose of  this  choice of  names is to  make sure 

that  when  we  ooml›ine  the  productions  of  the   various  grammars  into  one  set 

of productions, o•e cannot get accidental mixing of the prodilctitins from two 

grammars  and  thus  have  derivatiiins  that  do  not  resemble  the   derivations  in 

any of the given grammars. 

\I*e construct a nen grammar G' —— (I‖, F‘, P’, S for s(L ), as follows: 
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Applications of substitution theorem 
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Reversal 
 

 

Inverse Homomorphism: 
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Theorem Z.30 : Let £ be a CFL and fi a hornomorphism. Then h* (£) is a 

CFL. 

PROOF: Suppose h applies  to  symbols  of  alphabet  Z  and  produceB  strings  in 

T‗. We also assume  that  £  is a  language over  alphabet  Y.  As suggested  above, 

we start with a  PDA  P ——  Q,  T,  F, é, %, No. > ) that  accepts fi  by final state. 

We construct a new PDA 
 

 

 
where: 

*” = (e‘, €,a‘,(eo •) zc,r x !‹j) (7.1) 

 

1. Q‘ is the set of pairs (q, z) such that: 

(a) q is  a  state izt 01  °• ‹d 

(b) z is a su8ix {not necessarily proper) of some st ring ñ(o) for some input 

symbol o in L. 

 
That is, the first component of the state of P’ is the state of P, and the 

second component is the buffer We assume that the buffer will period- 

ically be loarled with a string h(a) and then allowed to shrink from the 

front, as we use its symbols to feed the simulated PDA P. Note that since 

Z is finite, and fi(o) is finite for all o, there are only a finite number of 

states for P‘. 

2. d' is defined by the follow‗ing rules: 
 

(a) â’((q,‹), a, X)   (   (q, it(a)), A) t  for all syzobols a izt  E, aJl states 

q in Q, and stack symbols A in 6. Note that  a cannot  be c here.  

V‘hen the buffer is empty, P' can consume its next input symbol o 

and place h a) in the buffer. 

(b) If d(q, b, X) contains (p, J), where h is in Y or b —- c, then 

+’(( .bx)1*7*) 

contains ((p, z), q).  That  is,  P’  always  has the option  of simulating 

a move of P, using the front of its buffer. If h is a symbol in T,  then 

the buffer must not be empty, but if b — e, then the buffer can be 
empty. 
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UNIT-IV 
Turing machine: 

 
Informal Definition: 

 

We consider here a basic model of TM which is deterministic and have one-tape. There are many variations, all 
are equally powerfull. 

 
The basic model of TM has a finite set of states, a semi-infinite tape that has a leftmost cell but is infinite to the 
right and a tape head that can move left and right over the tape, reading and writing symbols. 

 
For any input w with |w|=n, initially it is written on the n leftmost (continguous) tape cells. The infinitely many 
cells to the right of the input all contain a blank symbol, B whcih is a special tape symbol that is not an input 
symbol. The machine starts in its start state with its head scanning the leftmost symbol of the input w. De- 
pending upon the symbol scanned by the tape head and the current state the machine makes a move which 
consists of the following: 

 
 writes a new symbol on that tape cell, 

moves its head one cell either to the left or to the right and 

 (possibly) enters a new state. 

 
The action it takes in each step is determined by a transition functions. The machine continues computing (i.e. 
making moves) until 

 
 it decides to "accept" its input by entering a special state called accept or final state or 

 halts without accepting i.e. rejecting the input when there is no move defined. 

 
On some inputs the TM many keep on computing forever without ever accepting or rejecting the input, in which 
case it is said to "loop" on that input 

 
Formal Definition : 

 
 

Formally, a deterministic turing machine (DTM) is a 7-tuple , where 

 
 Q is a finite nonempty set of states. 

 is a finite non-empty set of tape symbols, callled the tape alphabet of M. 

 is a finite non-empty set of input symbols, called the input alphabet of M. 

 is the transition function of M, 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



 is the initial or start state. 

 is the blank symbol 

 is the set of final state. 

 
So, given the current state and tape symbol being read, the transition function describes the next state, symbol 

to be written on the tape, and the direction in which to move the tape head ( L and R denote left and right, 

respectively ). 

 
Transition function : 

 
 The heart of the TM is the transition function, because it tells us how the machine gets one step to 

the next. 

 when the machine is in a certain state q Q and the head is currently scanning the tape symbol 

, and if , then the machine 

 
1. replaces the symbol X by Y on the tape 

2. goes to state p, and 

3. the tape head moves one cell ( i.e. one tape symbol ) to the left ( or right ) if D is L ( or R ). 

 
The ID (instantaneous description) of a TM capture what is going out at any moment i.e. it contains all the 
information to exactly capture the "current state of the computations". 

 
It contains the following: 

 
 The current state, q 

 The position of the tape head, 

 The constants of the tape up to the rightmost nonblank symbol or the symbol to the left of the head, 
whichever is rightmost. 

 
Note that, although there is no limit on how far right the head may move and write nonblank symbols on the 
tape, at any finite 

 
time, the TM has visited only a finite prefix of the infinite tape. 

 

An ID (or configuration) of a TM M is denoted by where and 

 

 is the tape contents to the left of the head 

 q is the current state. 

 is the tape contents at or to the right of the tape head 

 

That is, the tape head is currently scanning the leftmost tape symbol of . ( Note that if , then the tape 
head is scanning a blank symbol) 

 
 

If is the start state and w is the input to a TM M then the starting or initial configuration of M is onviously 

denoted by 
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Moves of Turing Machines 

 

To indicate one move we use the symbol . Similarly, zero, one, or more moves will be represented by . A 
move of a TM 

 
M is defined as follows. 

 

Let be an ID of M where , and  . 

Let there exists a transition   of M. 

Then we write meaning that ID yields 

 
 

 Alternatively , if  is a transition of M, then we write which 

means that the ID yields 

 In other words, when two IDs are related by the relation , we say that the first one yields the second 
( or the second is the result of the first) by one move. 

 If IDj results from IDi by zero, one or more (finite) moves then we write ( If the TM M is understand, 

then the subscript M can be dropped from or ) 

 
Special Boundary Cases 

 

 Let be an ID and be an transition of M. Then . That is, the head is not 

allowed to fall off the left end of the tape. 

 Let be an ID and then figure (Note that is equivalent to ) 

 Let be an ID and then figure 

 Let be an ID and then figure 

 
 

The language accepted by a TM , denoted as L(M) is 

 

L(M) = { w | and figure for some p   F and } 

 
In other words the TM M accepts a string that cause M to enter a final or accepting state when started 

in its initial ID (i.e. ). That is a TM M accepts the string if a sequence of IDs, 

exists such that 

 

 is the initial or starting ID of M 

 ; 
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 The representation of IDk contains an accepting state. 

 
The set of strings that M accepts is the language of M, denoted L(M), as defined above 

More about configuration and acceptance 

 An ID of M is called an accepting (or final) ID if 

 An ID is called a blocking (or halting) ID if is undefined i.e. the TM has no move at this 
point. 

 is called reactable from if 

  is the initial (or starting) ID if is the input to the TM and is the initial (or start) state 

of M. 

 

On any input string 

either 

 M halts on w if there exists a blocking (configuration) ID, such that 
 

There are two cases to be considered 

 

 M accepts w if I is an accepting ID. The set of all accepted by M is denoted as L(M) as 

already defined 

 M rejects w if is a blocking configuration. Denote by reject (M), the set of all rejected by M. 

or 
 

 M loops on w if it does not halt on w. 

 

Let loop(M) be the set of all on which M loops for. 

It is quite clear that 

 

 
That is, we assume that a TM M halts 

 

 When it enters an accepting or 

 When it enters a blocking i.e. when there is no next move. 

 
However, on some input string, , , it is possible that the TM M loops for ever i.e. it never halts 
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The Halting Problem 
The input to a Turing machine is a string. Turing machines themselves can be written as 

strings. Since these strings can be used as input to other Turing machines. A ―Universal Turing 

machine‖ is one whose input consists of a description M of some arbitrary Turing machine, and 

some input w to which machine M is to be applied, we write this combined input as M + w. This 

produces the same output that would be produced by M. This is written as 

Universal Turing Machine (M + w) = M (w). 

As a Turing machine can be represented as a string, it is fully possible to supply a Turing 

machine as input to itself, for example M (M). This is not even a particularly bizarre thing to do for 

example, suppose you have written a C pretty printer in C, then used the Pretty printer on itself. 

Another common usage is Bootstrapping—where some convenient languages used to write a 

minimal compiler for some new language L, then used this minimal compiler for L to write a new, 

improved compiler for language L. Each time a new feature is added to language L, you can 

recompile and use this new feature in the next version of the compiler. Turing machines sometimes 

halt, and sometimes they enter an infinite loop. 

A Turing machine might halt for one input string, but go into an infinite loop when given 

some other string. The halting problem asks: ―It is possible to tell, in general, whether a given 

machine will halt for some given input?‖ If it is possible, then there is an effective procedure to look 

at a Turing machine and its input and determine whether the machine will halt with that input. If 

there is an effective procedure, then we can build a Turing machine to implement it. Suppose we 

have a Turing machine ―WillHalt‖ which, given an input string M + w, will halt and accept the string 

if Turing machine M halts on input w and will halt and reject the string if Turing machine M does not 

halt on input w. When viewed as a Boolean function, ―WillHalt (M, w)‖ halts and returns ―TRUE‖ in 

the first case, and (halts and) returns ―FALSE‖ in the second. 

Theorem 

Turing Machine ―WillHalt (M, w)‖ does not exist. 

Proof: This theorem is proved by contradiction. Suppose we could build a machine ―WillHalt‖. 

Then we can certainly build a second machine, ―LoopIfHalts‖, that will go into an infinite loop if 

and only if ―WillHalt‖ accepts its input: 
Function LoopIfHalts (M, w): 
if WillHalt (M, w) then 
while true do { } 

else 
return false; 

We will also define a machine ―LoopIfHaltOnItSelf‖ that, for any given input M, representing a 
Turing machine, will determine what will happen if M is applied to itself, and loops if M will halt in 

this case. 
Function LoopIfHaltsOnItself (M): 

return LoopIfHalts (M, M): 

Finally, we ask what happens if we try: 
Func tion Impos sible: 

return LoopIfHaltsOnItself (LoopIfHaltsOnItself): 

This machine, when applied to itself, goes into an infinite loop if and only if it halts when 

applied to itself. This is impossible. Hence the theorem is proved. Aru
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Implications of Halting Problem 

Programming 

The Theorem of ―Halting Problem‖ does not say that we can never determine whether or not 
a given program halts on a given input. Most of the times, for practical reasons, we could eliminate 

infinite loops from programs. Sometimes a ―meta-program‖ is used to check another program for 

potential infinite loops, and get this meta-program to work most of the time. 

The theorem says that we cannot ever write such a meta-program and have it work all of the 

time. This result is also used to demonstrate that certain other programs are also impossible. 

The basic outline is as follows: 

(i) If we could solve a problem X, we could solve the Halting problem 
(ii) We cannot solve the Halting Problem 

(iii) Therefore, we cannot solve problem X 
 

 

 

 
 

A Turing machine can be "programmed," in much the same manner as a computer is 

programmed. When one specifies the function which we usually call  for a Tm, he is really writing 

a program for the Tm. 
 

1. Storage in finite Control 

The finite control can be used to hold a finite amount of information. To do so, the state is 

written as a pair of elements, one exercising control and the other storing a symbol. It should be 

emphasized that this arrangement is for conceptual purposes only. No modification in the definition 

of the Turing machine has been made. 
Example 

Consider the Turing machine 
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2. Multiple Tracks 

We can imagine that the tape of the Turing machine is divided into k tracks, for any finite k. This 

arrangement is shown in Fig., with k = 3. What is actually done is that the symbols on the tape are 

considered as k-tuples. One component for each track. 

Example 

The tape in Fig. can be imagined to be that of a Turing machine which takes a binary input 
greater than 2, written on the first track, and determines if it is a prime. The input is surrounded by ¢ 

and $ on the first track. 

Thus, the allowable input symbols are [¢, B, B], [0, B, B ], [1, B, B ], and [$, B, B]. These 

symbols can be identified with ¢, 0, 1, and $, respectively, when viewed as input symbols. The blank 
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symbol can be represented by [B, B, B ] 
To test if its input is a prime, the Tm first writes the number two in binary on the second track 

and copies the first track onto the third track. Then, the second track is subtracted, as many times as 

possible, from the third track, effectively dividing the third track by the second and leaving the 

remainder. If the remainder is zero, the number on the first track is not a prime. If the remainder is 

nonzero, increase the number on the second track by one. 

If now the second track equals the first, the number on the first track is a prime, because it cannot 

be divided by any number between one and itself. If the second is less than the first, the whole 

operation is repeated for the new number on the second track. In Fig., the Tm is testing to determine 

if 47 is a prime. The Tm is dividing by 5; already 5 has been subtracted twice, so 37 appears on the 

third track. 
 

3. Subroutines 
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UNIT-V 

UNDECIDABILITY 

 
Design a Turing machine to add two given integers. 

Solution: 

 

Some unsolvable Problems are as follows: 

(i) Does a given Turing machine M halts on all input? 

(ii) Does Turing machine M halt for any input? 

(iii) Is the language L(M) finite? 

(iv) Does L(M) contain a string of length k, for some given k? 

(v) Do two Turing machines M1 and M2 accept the same language? 

It is very obvious that if there is no algorithm that decides, for an arbitrary given Turing machine M 

and input string w, whether or not M accepts w. These problems for which no algorithms exist are 

called ―UNDECIDABLE‖ or ―UNSOLVABLE‖. 
 

Code for Turing Machine: 
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Our next goal is to devise a binary code fDr Turing machines so that each 'PM 

with input alphabet (0, 1} may be thought of as a binary string. Since we just 

saw how to enumerate the binary strings, we shall then  have an  identification uf 

the T uring machines with the integers, and we can talk about ―the Atm Turing 

machine, A/„" To represent a TM M  ——  pQ,  [0, I  , Y, 6, q , B, I)  as  a  binary 

string, we must first assign integers to the states, tape symbols, and directions 

£ md R. 
 

» We shall assume the states are qt .sz. - - , qp for some r. The start state 

u‗ill always be ii . and sz will be the only accepting  state.  Note  that, since 

we may assume  the TM halts whenever  it  enters  an  accepting state,  there 
is never any need for more than one accepting state. 

• We shall assume the tape symbol8 are A , N2, ...  , X  for  some  s.  Ai 

always will be the symbol 0, <2 will be 1, and As will be B, the blank. 

Hon•ever, other tape symbols can be assigned to the remaining integers 

arbitrarily. 

• We shall refer  to direction  ñ as D and direction fi as D . 
 

Since each TM M can have integers assigned to its states and tape symbols  in 

many different orders, there will be more than one encoding of the typical TM. 

However, that fact is unimportant in what follows, since we shall show that no 

encoding can represent a TM M such that L(5?) = d - 

Once we have established an integer to represent each state, symbol, and 

direction, we can encode the transition  function  â.  Suppose  one  transition  rule 

is é(q;, Xj) = (q , X , D„, , for some integer° '. 3. k, 1, and m. We shall code 

this rule by the string 0'lfF10‗10' 10‗. Notice that, since all of i )! k, 1, and  in 

are at least one, there are no occurrences of two or more consecutive 1's within 
the code for a single transition. 

 
A code for the entire TM M consists of all the codes for the transitions, in 

some order, separated by pairs of 1's: 
 

where each of the U‘s is the code for one tra dition of M. 
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Diagonalization language: 

 
 

 

This table represents language acceptable by Turing machine 
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Proof that Ld is not recursively enumerable: 
 

Recursive Languages: 
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Thecirem 9.8 : If fi is a recursive language, so is €. 

PROOF: Let  L  SQM ) for some TM 3/  that always halts-  \Ve construct  a TM 

A/ such that I = L M) by the construction suggested in Fig. 9.3- That is, M 

behaves just like i\f. However, M is modified as follows to create 1/: 

 
1, The accepting states of M are made nonaceepting stat.es of M with no 

transitions; i.e., in these states 1/ will halt. without accepting. 
 

2. M has a new accepting state r; there are no transitions from r. 
 

3. For each combination of a nonaccepting state of AJ and a tape symbol of  

31 such that M  has  no  transition  (i.e.,  M  halts  without  accepting),  add 

a transition to t.he accepting state r. 
 

 

 

 

 

 
 

 

 

 

 

 

Since M is guaranteed to halt, we 

Accept 

Reject 

 

 

know that 1/ is also guaranteed to halt. 
Moreover, M accepts exactly those strings that M does not accept. 'Thus âf 
accepts £. n 

 

Accept 

Reject 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



 
 

Universal 

Language: 
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Undecidability of Universal Language: 
 

 

Problem -Reduction : 

If P1 reduced to P2, 

Then P2 is at least as hard as P1. 

Theorem: If P1 reduces to P2 then, 

 If P1 is undecidable the so is P2. 

 If P1 is Non-RE then so is P2. 
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i xi yi 

1   

2   

3   

 

Post's Correspondence Problem (PCP) 
 

 
A post correspondence system consists of a finite set of ordered pairs where 

for some alphabet . 

 
Any sequence of numbers 

 
is called a solution to a Post Correspondence System. 

 
 

The Post's Correspondence Problem is the problem of determining whether a 
Post Correspondence system has a solutions. 

 
Example 1 : Consider the post correspondence system 

 

 
The list 1,2,1,3 is a solution to it. 

 
Because 

 

 
 
 
 

 
(A post correspondence system is also denoted as an instance of the PCP) 

Example 2 : The following PCP instance has no solution 

i xi yi 

1 
 

 
 

 

2 
 

 

 

 

 

 
This can be proved as follows. cannot be chosen at the start, since than the LHS and RHS would 

differ in the first symbol ( in LHS and  in RHS). So, we must start with . The next pair must be 

so that the 3 rd symbol in the RHS becomes identical to that of the LHS, which is a  . After this 

step, LHS and RHS are not matching. If is selected next, then would be mismatched in the 7 th symbol 
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( in LHS and in RHS). If is selected, instead, there will not be any choice to match the both side in 
the next step. 

 
Example3 : The list 1,3,2,3 is a solution to the following PCP instance. 

 
i xi yi 

1 1 101 

2 10 00 

3 011 11 

 
The following properties can easily be proved. 

 
Proposition The Post Correspondence System 

 

 
has solutions if and only if 

 

 
Corollary : PCP over one-letter alphabet is decidable. 

 

Proposition Any PCP instance over an alphabet with is equivalent to a PCP instance over an 

alphabet with  

Proof : Let  

Consider  We can now encode every as any PCP instance over will now 

have only two symbols, 0 and 1 and, hence, is equivalent to a PCP instance over 

 
Theorem : PCP is undecidable. That is, there is no algorithm that determines whether an arbitrary Post 
Correspondence System has a solution. 

 
Proof: The halting problem of turning machine can be reduced to PCP to show the undecidability of PCP. Since 
halting problem of TM is undecidable (already proved), This reduction shows that PCP is also undecidable. The 
proof is little bit lengthy and left as an exercise. 

 
Some undecidable problem in context-free languages 

 
We can use the undecidability of PCP to show that many problem concerning the context-free languages are 
undecidable. To prove this we reduce the PCP to each of these problem. The following discussion makes it 
clear how PCP can be used to serve this purpose. 
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Let be a Post Correspondence System over the alphabet . We construct 
two CFG's Gx and Gy from the ordered pairs x,y respectively as follows. 

 
 

and 

 

 
where 

 

 
 

 
 

 

 

and  

it is clear that the grammar generates the strings that can appear in the LHS of a sequence while solving 
the PCP followed by a sequence of numbers. The sequence of number at the end records the sequence of 

strings from the PCP instance (in reverse order) that generates the string. Similarly, generates the strings 
that can be obtained from the RHS of a sequence and the corresponding sequence of numbers (in reverse 
order). 

 
Now, if the Post Correspondence System has a solution, then there must be a sequence 

 

 
 

 

 
According to the construction of and 

 

 
 

 
In this case 
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Hence , and implying 

 

 

 
Conversely, let 

 
 

Hence, w must be in the form w1w2 where  and w2 in a sequence (since, only that kind of 

strings can be generated by each of and ). 

 
Now, the string is a solution to the Post Correspondence System. 

 
It is interesting to note that we have here reduced PCP to the language of pairs of CFG,s whose intersection is 
nonempty. The following result is a direct conclusion of the above. 

 

Theorem : Given any two CFG's G1 and G2 the question "Is " is undecidable. 

Proof: Assume for contradiction that there exists an algorithm A to decide this question. This would imply that 
PCP is decidable as shown below. 

 

For any Post Correspondence System, P construct grammars and by using the constructions 

elaborated already. We can now use the algorithm A to decide whether and 

Thus, PCP is decidable, a contradiction. So, such an algorithm does not exist. 

 
 

If and are CFG's constructed from any arbitrary Post Correspondence System, than it is not difficult to 

 
show that and are also context-free, even though the class of context-free languages are not 
closed under complementation. 

 

 
and their complements can be used in various ways to show that many other questions 

related to CFL's are undecidable. We prove here some of those. 

 
 

Theorem : Foe any two arbitrary CFG's the following questions are undecidable 

 
 

i. Is 
 

ii. Is 
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iii. Is 

 
Proof : 

 
 

i. If then, 

 

 
Hence, it suffice to show that the question “Is " is undecidable. 

 

 
Since, and are CFl's and CFL's are closed under union, is also context- 

free. By DeMorgan's theorem, 

 
If there is an algorithm to decide whether we can use it to decide whether 

 
or not. But this problem has already been proved to be undecidable. 

 

Hence there is no such algorithm to decide or not.  

ii. 

Let P be any arbitrary Post correspondence system and and are CFg's constructed from the pairs of 
strings. 

 

 
must be a CFL and let G1generates L1. That is, 

 

 
 

by De Morgan's theorem, as shown already, any string, represents a solution to the 

PCP. Hence, contains all but those strings representing the solution to the PCP. 

 
Let for same CFG G2. 

 
 

It is now obvious that if and only if the PCP has no solutions, which is already proved to be 

undecidable. Hence, the question “Is  ?" is undecidable. 

iii. 
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Let be a CFG generating the language and G2 be a CFG generating 

 
where and are CFG.s constructed from same arbitrary instance of PCP. 

 

 
iff 

 

i.e. iff the PCP instance has no solutions as discussed in part (ii). 

 
Hence the proof. 

 
Theorem : It is undecidable whether an arbitrary CFG is ambiguous. 

 
 

Proof : Consider an arbitrary instance of PCP and construct the CFG's and from the ordered pairs of 
strings. 

 

We construct a new grammar G from and as follows. 

 where 

 

is same as that of and . 

 

This constructions gives a reduction of PCP to the --------- of whether a CFG is ambiguous, thus leading to the 
undecidability of the given problem. That is, we will now show that the PCP has a solution if and only if G is 
ambiguous. (where G is constructed from an arbitrary instance of PCP). 

 
 

Only if Assume that is a solution sequence to this instance of PCP. 

 
 

Consider the following two derivation in . 
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But , 

 

 
 

is a solution to the PCP. Hence the same string of terminals has two derivations. Both these 
derivations are, clearly, leftmost. Hence G is ambiguous. 

 
 

If It is important to note that any string of terminals cannot have more than one derivation in and 
 

Because, every terminal string which are derivable under these grammars ends with a sequence of integers 

This sequence uniquely determines which productions must be used at every step of the derivation. 

Hence, if a terminal string, , has two leftmost derivations, then one of them must begin with the 
step. 

 

then continues with derivations under  

In both derivations the resulting string must end with a sequence for same The reverse of 
this sequence must be a solution to the PCP, because the string that precede in one case is 

 

in the other case. Since the string derived in both cases are identical, the 
 

sequence 

 
must be a solution to the PCP. 

Hence the proof 

and 

Aru
na

i E
ng

in
ee

rin
g 

Col
le

ge



Class p-problem solvable in polynomial time: 

 
Non deterministic polynomial time: 

A nondeterministic TM that never makes more than p(n) moves in any sequence of choices for some 

polynomial p is said to be non polynomial time NTM. 

 NP is the set of languags that are accepted by polynomial time NTM‘s 

 Many problems are in NP but appear not to be in p. 

 One of the great mathematical questions of our age: is there anything in NP that is not in p? 

NP-complete problems: 

If We cannot resolve the ―p=np question, we can at least demonstrate that certain problems in NP are 

the hardest , in the sense that if any one of them were in P , then P=NP. 

 These are called NP-complete. 

 Intellectual leverage: Each NP-complete problem‘s apparent difficulty reinforces the belief 

that they are all hard. 

Methods for proving NP-Complete problems: 

 Polynomial time reduction (PTR): Take time that is some polynomial in the input size to 

convert instances of one problem to instances of another. 

 If P1 PTR to P2 and P2 is in P1 the so is P1. 

 Start by showing every problem in NP has a PTR to Satisfiability of Boolean formula. 

 Then, more problems can be proven NP complete by showing that SAT PTRs to them 

directly or indirectly. 
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