
ARUNAI ENGINEERING COLLEGE

DEPARTMENT OF CSE

IV YEAR - VII SEMESTER

CS8079 – HUMAN COMPUTER INTERACTION (R2017)

UNIT I FOUNDATIONS OF HCI

The Human: I/O channels – Memory – Reasoning and problem solving; The

computer: Devices – Memory – processing and networks; Interaction: Models –
frameworks – Ergonomics – styles – elements – interactivity- Paradigms. Case

Studies

FOUNDATIONS OF HCI

The human–computer interaction is the systematic study of human

performance. Ergonomists have been concerned primarily with the physical

characteristics of machines and systems, and how these affect user

performance. Human Factors incorporates these issues and more cognitive

issues as well. Both of these disciplines are concerned with user performance

in the context of any system, whether computer, mechanical or manual. As

computer use became more widespread, an increasing number of researchers

specialized in studying the interaction between people and computers,

concerning themselves with the physical, psychological and theoretical

aspects of this process. This research originally went under the name man–
machine interaction, but this became human–computer interaction in

recognition of the particular interest in computers and the composition of the

user population.

HCI involves the design, implementation and evaluation of interactive

systems in the context of the user’s task and work. By user we may mean an

individual user, a group of users working together, or a sequence of users in

an organization, each dealing with some part of the task or process. The user

is whoever is trying to get the job done using the technology. By computer we

mean any technology ranging from the general desktop computer to a large-

scale computer system, a process control system or an embedded system. The

system may include non-computerized parts, including other people. By

interaction we mean any communication between a user and computer, be it

direct or indirect. Direct interaction involves a dialog with feedback and

control throughout performance of the task. Indirect interaction may involve

batch processing or intelligent sensors controlling the environment. The

important thing is that the user is interacting with the computer in order to

accomplish something.

WHO IS INVOLVED IN HCI?

The ideal designer of an interactive system would have expertise in a

range of topics: psychology and cognitive science to give her knowledge of the

user’s perceptual, cognitive and problem-solving skills; ergonomics for the

user’s physical capabilities; sociology to help her under-stand the wider

context of the interaction; computer science and engineering to be able to

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

build the necessary technology; business to be able to market it; graphic

design to produce an effective interface presentation; technical writing to

produce the manuals, and so it goes on. There is obviously too much

expertise here to be held by one person. So, we must be pragmatists rather

than theorists: we want to know how to apply the theory to the problem

rather than just acquire a deep understanding of the theory. Our goal, then,

is to be multi-disciplinary but practical.

THEORY AND HCI

There is an underlying principle that forms the basis of the views on

HCI, and claims that people use computers to accomplish work. This outlines

the three major issues of concern: the people, the computers and the tasks

that are performed. The system must support the user’s task, which gives us

a fourth focus, usability: if the system forces the user to adopt an

unacceptable mode of work then it is not usable.

The word ‘task’ or the focus on accomplishing ‘work’ is also problematic

when we think of areas such as domestic appliances, consumer electronics

and e-commerce. There are three ‘use’ words that must all be true for a

product to be successful; it must be:

useful – accomplish what is required: play music, cook dinner, format a
document;

usable – do it easily and naturally, without danger of error, etc.;

used – make people want to use it, be attractive, engaging, fun, etc

The other issues like motivation, enjoyment and experience are increasingly
important.

The most impressive structures, the most beautiful buildings, the innovative

and imaginative creations that provide aesthetic pleasure, all require

inventive inspiration in design and a sense of artistry, and in this sense the

discipline is a craft. So it is for HCI, beautiful and/or novel interfaces are

artistically pleasing and capable of fulfilling the tasks. Innovative ideas lead to

more usable systems, but in order to maximize the potential benefit from the

ideas, we need to understand not only that they work, but how and why they

work. we have to pro-vide them with an understanding of the concepts

involved, a scientific view of the reasons why certain things are successful

whilst others are not, and then allow their creative nature to feed off this

information: creative flow, underpinned with science; or maybe scientific

method, accelerated by artistic insight. The truth is that HCI is required to be

both a craft and a science in order to be successful.

 The Human

 Introduction

The human, the user, is, after all, the one whom computer systems are de-

signed to assist. The requirements of the user should therefore be our first

priority.

The aspects of cognitive psychology have a bearing on the use of computer

systems, how humans perceive the world around them, how they store and

process information and solve problems, and how they physically manipulate

objects.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The Model Human Processor, which is a simplified view of the human

processing involved in interacting with computer systems. The model

comprises three subsystems: the perceptual system, handling sensory

stimulus from the outside world, the motor system , which controls actions,

and the cognitive system , which provides the processing needed to connect

the two. Each of these subsystems has its own processor and memory,

although obviously the complexity of these varies depending on the

complexity of the tasks the subsystem has to perform. The model also

includes a number of principles of operation which dictate the behavior of the

systems under certain conditions.

In conventional computer system, the three components are input–
output, memory and processing. In the human, dealing is with an intelligent

information-processing system, and processing therefore includes problem

solving, learning, and, consequently, making mistakes. The human, unlike

the computer, is also influenced by external factors such as the social and

organizational environment, and we need to be aware of these influences as

well. These factors are ignored for now and concentration is on the human ’s

information processing capabilities only.

 Input– Output Channels
A person’s interaction with the outside world occurs through

information

being received and sent: input and output. In an interaction with a computer

the user receives information that is output by the computer, and responds

by providing input to the computer – the user’s output becomes the

computer’s input and vice versa.

Input in the human occurs mainly through the senses and output

through the

motor control of the effectors. There are five major senses: sight, hearing,

touch, taste and smell. Of these, the first three are the most important to

HCI. Taste and smell do not currently play a significant role in HCI.

Similarly there are a number of effectors, including the limbs, fingers,

eyes, head and vocal system. In the interaction with the computer, the fingers

play the primary role, through typing or mouse control, with some use of

voice, and eye, head and body position.

 Vision
Human vision is a highly complex activity with a range of physical and

perceptual limitations, yet it is the primary source of information for

the average person. We can roughly divide visual perception into two

stages: the physical reception of the stimulus from the outside world,

and the processing and interpretation of that stimulus. On the one

hand the physical properties of the eye and the visual system mean

that there are certain things that cannot be seen by the human; on the

other the interpretative capabilities of visual processing allow images to

be constructed from incomplete information

The human eye
The eye is a mechanism for receiving light and transforming it into

electrical energy. Light is reflected from objects in the world and their image

is focused upside down on the back of the eye. The receptors in the eye

transform it into electrical signals which are passed to the brain.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The eye has a number of important components (Figure 1.1). The cornea and

lens at the front of the eye focus the light into a sharp image on the back of

the eye, the retina. The retina is light sensitive and contains two types of

photoreceptor: rods and cones.

Rods are highly sensitive to light and therefore allow us to see under a low

level of illumination. However, they are unable to resolve fine detail and are

subject to light saturation. This is the reason for the temporary blindness we

get when moving from a darkened room into sunlight: the rods have been

active and are saturated by the sudden light. The cones do not operate either

as they are suppressed by the rods. We are therefore temporarily unable to

see at all. There are approximately 120 million rods per eye which are mainly

situated towards the edges of the retina. Rods therefore dominate peripheral

vision.

Cones are the second type of receptor in the eye. They are less sensitive to

light than the rods and can therefore tolerate more light. There are three

types of cone, each sensitive to a different wavelength of light. This allows

color vision. The eye has approximately 6 million cones, mainly concentrated

on the fovea, a small area of the retina on which images are fixated.

Although the retina is mainly covered with photoreceptors there is one

blind spot where the optic nerve enters the eye. The blind spot has no rods or

cones, yet our visual system compensates for this so that in normal

circumstances we are unaware of it.

The retina also has specialized nerve cells called ganglion cells. There

are two types: X-cells, which are concentrated in the fovea and are

responsible for the early detection of pattern; and Y-cells which are more

widely distributed in the retina and are responsible for the early detection of

movement. The distribution of these cells means that, while we may not be

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

able to detect changes in pattern in peripheral vision, we can perceive

movement

Visual perception
The information received by the visual apparatus must be filtered and

passed to processing elements which allow us to recognize coherent scenes,

disambiguate relative distances and differentiate color. The factors that are

crucial to the design of effective visual interfaces are how we perceive size and

depth, brightness and color.

Perceiving size and depth Imagine you are standing on a hilltop.

Describing such a scene the notions of size and distance predominate. To

understand how does the eye perceive size, depth and relative distances, we

must consider how the image appears on the retina. Reflected light from the

object forms an upside-down image on the retina. The size of that image is

specified as a visual angle. Figure 1.2 illustrates how the visual angle is

calculated.

If we were to draw a line from the top of the object to a central point on

the front of the eye and a second line from the bottom of the object to the

same point, the visual angle of the object is the angle between these two lines.

Visual angle is affected by both the size of the object and its distance from the

eye. Therefore if two objects are at the same distance, the larger one will have

the larger visual angle. Similarly, if two objects of the same size are placed at

different distances from the eye, the furthest one will have the smaller visual

angle. The visual angle indicates how much of the field of view is taken by the

object. The visual angle measurement is given in either degrees or minutes of

arc, where 1 degree is equivalent to 60 minutes of arc, and 1 minute of arc to

60 seconds of arc.

So, an object’s visual angle affect our perception of its size. First, if the

visual angle of an object is too small we will be unable to perceive it at all.

Visual acuity is the ability of a person to perceive fine detail. A number of

measurements have been established to test visual acuity, most of which are

included in standard eye tests. For example, a person with normal vision can

detect a single line if it has a visual angle of 0.5 seconds of arc. Spaces

between lines can be detected at 30 seconds to 1 minute of visual arc. These

represent the limits of human visual acuity.

Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Our perception of an object’s size remains constant even if its visual

angle changes. So a person’s height is perceived as constant even if they move

further from you. This is the law of size constancy, and it indicates that our

perception of size relies on factors other than the visual angle.

One of these factors is our perception of depth. If we return to the

hilltop scene there are a number of cues which we can use to determine the

relative positions and distances of the objects which we see. If objects overlap,

the object which is partially covered is perceived to be in the background, and

therefore further away. Similarly, the size and height of the object in our field

of view provides a cue to its distance.

Perceiving brightness:

A second aspect of visual perception is the perception of brightness.

Brightness is in fact a subjective reaction to levels of light. It is affected by

luminance which is the amount of light emitted by an object. The luminance

of an object is dependent on the amount of light falling on the object ’s surface

and its reflective properties. Luminance is a physical characteristic and can

be measured using a photometer. Contrast is related to luminance: it is a

function of the luminance of an object and the luminance of its background

The visual system itself also compensates for changes in brightness. In

dim lighting, the rods predominate vision. Since there are fewer rods on the

fovea, objects in low lighting can be seen less easily when fixated upon, and

are more visible in peripheral vision. In normal lighting, the cones take over.

Perceiving color :

A third factor that we need to consider is perception of color. Color is

usually regarded as being made up of three components: hue, intensity and

saturation. Hue is determined by the spectral wavelength of the light. Blues

have short wavelengths, greens medium and reds long. Intensity is the

brightness of the color, and saturation is the amount of whiteness in the

color. By varying these two, we can perceive in the region of 7 million different

colors.

The eye perceives color because the cones are sensitive to light of

different wave-lengths. There are three different types of cone, each

sensitive to a different color (blue, green and red). Color vision is best in the

fovea, and worst at the periphery where rods predominate.

The capabilities and limitations of visual processing:

Visual processing compensates for the movement of the image on the

retina which occurs as we move around and as the object which we see

moves. Although the retinal image is moving, the image that we perceive is

stable. Similarly, color and brightness of objects are perceived as constant, in

spite of changes in luminance.

This ability to interpret and exploit our expectations can be used to resolve

ambiguity.
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

Figure 1.8 Is this text correct?

Figure 1.3:Ambiguous shape? Figure 1.4:BABC Figure 1.4:12 13 14

Figure 1.6 : The Muller–Lyer illusion – which line is longer?
Consider Figure 1.6. Which line is longer? Most people when

presented with this will say that the top line is longer than the bottom. In

fact, the two lines are the same length.

A similar illusion is the Ponzo illusion (Figure 1.7). Here the top line

appears longer, owing to the distance effect, although both lines are the same

length. These illusions demonstrate that our perception of size is not

completely reliable.

Another illusion created by our expectations compensating an image is

the proof-reading illusion. Read the text in Figure 1.8 quickly. What does it

say? Most people reading this rapidly will read it correctly, although closer

inspection shows that the word ‘the’ is repeated in the second and third line.

Figure 1.7:The Ponzo illusion – are these the same size?

Reading :

During reading, the eye makes jerky movements called saccades

followed by fixations. Perception occurs during the fixation periods, which

account for approximately 94% of the time elapsed. The eye moves backwards

over the text as well as forwards, in what are known as regressions. If the text

is complex there will be more regressions. Adults read approximately 250

words a minute. It is unlikely that words are scanned serially, character by

character, since experiments have shown that words can be recognized as

quickly as single characters. Instead, familiar words are recognized using

word shape.

Hearing
The sense of hearing is often considered secondary to sight. As I sit at

my desk I can hear cars passing on the road outside, machinery working on a

site nearby, the drone of a plane overhead and bird song. But I can also tell

where the sounds are coming from, and estimate how far away they are. So

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

from the sounds I hear I can tell that a car is passing on a particular road

near my house, and which direction it is traveling in.

The human ear
Hearing begins with vibrations in the air or sound waves. The ear

receives these vibrations and transmits them, through various stages, to the

auditory nerves. The ear comprises three sections, commonly known as the

outer ear, middle ear and inner ear

The outer ear is the visible part of the ear. It has two parts: the pinna,

which is the structure that is attached to the sides of the head, and the

auditory canal, along which sound waves are passed to the middle ear. The

outer ear serves two purposes. First, it protects the sensitive middle ear from

damage. The auditory canal contains wax which prevents dust, dirt and over-

inquisitive insects reaching the middle ear. It also maintains the middle ear at

a constant temperature. Secondly, the pinna and auditory canal serve to

amplify some sounds.

The middle ear is a small cavity connected to the outer ear by the

tympanic membrane, or ear drum, and to the inner ear by the cochlea. Within

the cavity are the ossicles, the smallest bones in the body. Sound waves pass

along the auditory canal and vibrate the ear drum which in turn vibrates the

ossicles, which transmit the vibrations to the cochlea, and so into the inner

ear. This ‘relay’ is required because, unlike the air-filled outer and middle

ears, the inner ear is filled with a denser cochlean liquid. If passed directly

from the air to the liquid, the transmission of the sound waves would be poor.

By transmitting them via the ossicles the sound waves are concentrated and

amplified.

The waves are passed into the liquid-filled cochlea in the inner ear.

Within the cochlea are delicate hair cells or cilia that bend because of the

vibrations in the cochlean liquid and release a chemical transmitter which

causes impulses in the auditory nerve.

Processing Sound

Sound is changes or vibrations in air pressure. It has a number of

characteristics which we can differentiate. Pitch is the frequency of the

sound. A low frequency produces a low pitch, a high frequency, a high pitch.

Loudness is proportional to the amplitude of the sound; the frequency

remains constant. Timbre relates to the type of the sound: sounds may have

the same pitch and loudness but be made by different instruments and so

vary in timbre. The human ear can hear frequencies from about 20 Hz to 15

kHz. The auditory system performs some filtering of the sounds received,

allowing us to ignore background noise and concentrate on important

information.

Touch

The third and last of the senses is touch or haptic perception. Touch

provides us with vital information about our environment. It tells us when we

touch something hot or cold, and can therefore act as a warning. It also

provides us with feedback when we attempt to lift an object, for example.

Touch is therefore an important means of feedback, and this is no less so in

using computer systems. Feeling buttons depress is an important part of the

task of pressing the button. Also, we should be aware that, although for the

average person, haptic perception is a secondary source of informa-tion, for

those whose other senses are impaired, it may be vitally important. For such

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

users, interfaces such as braille may be the primary source of information in

the interaction. We should not therefore underestimate the importance of

touch.

We receive stimuli through the skin. The skin contains three types of

sensory receptor: thermoreceptors respond to heat and cold, nociceptors

respond to intense pressure, heat and pain, and mechanoreceptors respond

to pressure. It is the last of these that we are concerned with in relation to

human–computer interaction.

There are two kinds of mechanoreceptor, which respond to different

types of pressure. Rapidly adapting mechanoreceptors respond to

immediate pressure as the skin is indented. These receptors also react more

quickly with increased pressure. However, they stop responding if continuous

pressure is applied. Slowly adapting mechanoreceptors respond to

continuously applied pressure.

Although the whole of the body contains such receptors, some areas

have greater sensitivity or acuity than others. It is possible to measure the

acuity of different areas of the body using the two-point threshold test. Take

two pencils, held so their tips are about 12 mm apart. Touch the points to

your thumb and see if you can feel two points. If you cannot, move the points

a little further apart. When you can feel two points, measure the distance

between them. The greater the distance, the lower the sensitivity. You can

repeat this test on different parts of your body. You should find that the

measure on the forearm is around 10 times that of the finger or thumb. The

fingers and thumbs have the highest acuity.

A second aspect of haptic perception is kinesthesis: awareness of the

position of the body and limbs. This is due to receptors in the joints. Again

there are three types: rapidly adapting, which respond when a limb is moved

in a particular direc-tion; slowly adapting, which respond to both movement

and static position; and positional receptors, which only respond when a limb

is in a static position. This perception affects both comfort and performance.

For example, for a touch typist, awareness of the relative positions of the

fingers and feedback from the keyboard are very important.

 Movement

The stimulus is received through the sensory receptors and transmitted

to the brain. The question is processed and a valid response generated. The

brain then tells the appropriate muscles to respond. Each of these stages

takes time, which can be roughly divided into reaction time and movement

time. Movement time is dependent largely on the physical characteristics of

the subjects: their age and fitness, for example. Reaction time varies

according to the sensory channel through which the stimulus is received.

A second measure of motor skill is accuracy. One question that we

should ask is whether speed of reaction results in reduced accuracy. This is

dependent on the task and the user. In some cases, requiring increased

reaction time reduces accuracy. This is the premise behind many arcade and

video games where less skilled users fail at levels of play that require faster

responses. However, for skilled operators this is not necessarily the case.

Studies of keyboard operators have shown that, although the faster operators

were up to twice as fast as the others, the slower ones made 10 times the

errors.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Speed and accuracy of movement are important considerations in the design

of interactive systems, primarily in terms of the time taken to move to a

particular target on a screen. The target may be a button, a menu item or an

icon, for example. The time taken to hit a target is a function of the size of the

target and the distance that has to be moved. This is formalized in Fitts’ law

[135]. There are many vari-ations of this formula, which have varying

constants, but they are all very similar. One common form is

Movement time = a + b log2(distance/size + 1)

where a and b are empirically determined constants.

This affects the type of target we design. Since users will find it more difficult

to manipulate small objects, targets should generally be as large as possible

and the distance to be moved as small as possible. This has led to

suggestions that pie-chart-shaped menus are preferable to lists since all

options are equidistant. However, the trade-off is increased use of screen

estate, so the choice may not be so simple.

 MEMORY

 Much of our everyday activity relies on memory. As well as storing all our

factual knowledge, our memory contains our knowledge of actions or

procedures. It allows us to repeat actions, to use language, and to use new

information received via our senses. It also gives us our sense of identity,

by preserving information from our past experiences.
 Memory is the second part of our model of the human as an information-

processing system. It is generally agreed that there are three types of

memory or memory function: sensory buffers, short-term memory or

working memory, and long-term memory. There is some disagreement as

to whether these are three separate systems or different functions of the

same system as shown in figure 1.9.

Figure 1.9: A model of the structure of memory

a. Sensory memory:

 The sensory memories act as buffers for stimuli received through the

senses. A sensory memory exists for each sensory channel: iconic memory

for visual stimuli, echoic memory for aural stimuli and haptic memory for

touch. These memories are constantly overwritten by new information

coming in on these channels.
 We can demonstrate the existence of iconic memory by moving a finger in

front of the eye. Can you see it in more than one place at once? This

indicates a persistence of the image after the stimulus has been removed.

A similar effect is noticed most vividly at firework displays where moving

sparklers leave a persistent image. Information remains in iconic memory

very briefly, in the order of 0.5 seconds.
 Similarly, the existence of echoic memory is evidenced by our ability to

ascertain the direction from which a sound originates. This is due to

information being received by both ears. However, since this information is

received at different times, we must store the stimulus in the meantime.

Echoic memory allows brief ‘play-back’ of information.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Information is passed from sensory memory into short-term memory by

attention, thereby filtering the stimuli to only those which are of interest at

a given time. Attention is the concentration of the mind on one out of a

number of competing stimuli or thoughts. It is clear that we are able to

focus our attention selectively, choosing to attend to one thing rather than

another. This is due to the limited capacity of our sensory and mental

processes. If we did not selectively attend to the stimuli coming into our

senses, we would be overloaded. We can choose which stimuli to attend to,

and this choice is governed to an extent by our arousal, our level of

interest or need.
b. Short-term memory:

 Short-term memory or working memory acts as a ‘scratch-pad’ for

temporary recall of information. It is used to store information which is

only required fleetingly. For example, calculate the multiplication 35 × 6 in

your head. The chances are that you will have done this calculation in

stages, perhaps 5 × 6 and then 30 × 6 and added the results; or you may

have used the fact that 6 = 2 × 3 and calculated 2 × 35 = 70 followed by 3
× 70.

 To perform calculations such as this we need to store the intermediate

stages for use later. For this task use short-term memory.Short-term

memory can be accessed rapidly, in the order of 70 ms. However, it also

decays rapidly, meaning that information can only be held there

temporarily, in the order of 200 ms.Short-term memory also has a limited

capacity.
 There are two basic methods for measuring memory capacity. The first

involves determining the length of a sequence which can be remembered in

order. The second allows items to be freely recalled in any order. Using the

first measure, the average person can remember 7 ± 2 digits. A

generalization of the 7 ± 2 rule is that we can remember 7 ± 2 chunks of

information.
 Therefore chunking information can increase the short-term memory

capacity. The limited capacity of short-term memory produces a

subconscious desire to create chunks, and so optimize the use of the

memory. The successful formation of a chunk is known as closure.
 In experiments where subjects were able to recall words freely, evidence

shows that recall of the last words presented is better than recall of those

in the middle, this is known as the recency effect. However, if the subject

is asked to perform another task between presentation and recall (for

example, counting backwards) the recency effect is eliminated. The recall

of the other words is unaffected. This suggests that short-term memory

recall is damaged by interference of other information. (refer Fig.1.10)

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fig 1.10 : A more detailed model of short-term memory

c. Long-term memory:

 Short-term memory is our working memory or ‘scratch-pad’, long-term

memory is our main resource. Here we store factual information,

experiential knowledge, procedural rules of behavior – in fact, everything

that we ‘know’.
 It differs from short-term memory in a number of significant ways. First, it

has a huge, if not unlimited, capacity. Secondly, it has a relatively slow

access time of approximately a tenth of a second. Thirdly, forgetting occurs

more slowly in long-term memory, if at all. These distinctions provide

further evidence of a memory structure with several parts.
 Long-term memory is intended for the long-term storage of information.

Information is placed there from working memory through rehearsal.

Unlike working memory there is little decay: long-term recall after minutes

is the same as that after hours or days.
Long-term memory structure:

 There are two types of long-term memory: episodic memory and semantic

memory. Episodic memory represents our memory of events and

experiences in a serial form. It is from this memory that we can

reconstruct the actual events that took place at a given point in our lives.
 Semantic memory, on the other hand, is a structured record of facts,

concepts and skills that we have acquired. The information in semantic

memory is derived from that in our episodic memory, such that we can

learn new facts or concepts from our experiences.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fig 1.11 : Long-term memory may store information in a semantic network

 Semantic memory is structured in some way to allow access to information,

representation of relationships between pieces of information, and inference.

One model for the way in which semantic memory is structured is as a network.

Items are associated to each other in classes, and may inherit attributes from

parent classes. This model is known as a semantic network. As an example, our

knowledge about dogs may be stored in a network such as that shown in figure

1.12.

 Specific breed attributes may be stored with each given breed, yet general dog

information is stored at a higher level. This allows us to generalize about

specific cases. For instance, we may not have been told that the sheepdog

Shadow has four legs and a tail, but we can infer this information from our

general knowledge about sheepdogs and dogs in general. Note also that there

are connections within the network which link into other domains of knowledge,

for example cartoon characters.

 A number of other memory structures have been proposed to explain how we

represent and store different types of knowledge. Each of these represents a

different aspect of knowledge and, as such, the models can be viewed as

complementary rather than mutually exclusive.

Figure1.12: A frame based representation of knowledge

 Semantic networks represent the associations and relationships between single

items in memory. However, they do not allow us to model the representation of

more complex objects or events, which are perhaps composed of a number of

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

items or activities. Structured representations such as frames and scripts

organize information into data structures. Slots in these structures allow

attribute values to be added. Frame slots may contain default, fixed or variable

information.

 A frame is instantiated when the slots are filled with appropriate values. Frames

and scripts can be linked together in networks to represent hierarchical

structured knowledge. Returning to the ‘dog’ domain, a frame-based

representation of the knowledge may look something as said above.

 The fixed slots are those for which the attribute value is set, default slots

represent the usual attribute value, although this may be overridden in

particular instantiations and variable slots can be filled with particular values

in a given instance. Slots can also contain procedural knowledge.

 Frames extend semantic nets to include structured, hierarchical information.

They represent knowledge items in a way which makes explicit the relative

importance of each piece of information. Scripts attempt to model the

representation of stereotypical knowledge about situations. Consider the

following sentence: John took his dog to the surgery.

 After

seeing the vet, he left. From our knowledge of the activities of dog owners

and vets, we may fill in a substantial amount of detail. The animal was ill.

The vet examined and treated the animal. John paid for the treatment

before leaving. We are less likely to assume the alternative reading of the

sentence, that John took an instant dislike to the vet on sight and did not

stay long enough to talk to him!

 A script represents this default or stereotypical information, allowing us to

interpret partial descriptions or cues fully. A script comprises a number of

elements, which, like slots, can be filled with appropriate information:

 Entry conditions: Conditions that must be satisfied for the script to be

activated.

 Result: Conditions that will be true after the script is terminated.

 Props: Objects involved in the events described in the script.

 Roles: Actions performed by particular participants.

 Scenes: The sequences of events that occur.

 Tracks: A variation on the general pattern representing an alternative

scenario.
Long-term memory processes:

 There are three main activities related to long-term memory: storage or

remembering of information, forgetting and information retrieval.

Information from short-term memory is stored in long-term memory by

rehearsal. The repeated exposure to a stimulus or the rehearsal of a piece

of information transfers it into long-term memory.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Sentences are easier still to memorize. To retell the story replacing

unfamiliar words and concepts with words which were meaningful was

easier.

 Stories were effectively translated into the subject’s own culture. This is

related to the semantic structuring of long-term memory: if information is

meaningful and familiar, it can be related to existing structures and more

easily incorporated into memory.

 So if structure, familiarity and concreteness help us in learning

information, what causes us to lose this information, to forget? There are

two main theories of forget- ting: decay and interference. The first theory

suggests that the information held in long-term memory may eventually be

forgotten.

 From an experiments with nonsense syllables that information in memory

decayed logarithmically, that is that it was lost rapidly to begin with, and

then more slowly. Jost’s law, which follows from this, states that if two

memory traces are equally strong at a given time the older one will be more

durable.

 The second theory is that information is lost from memory through

interference. If we acquire new information it causes the loss of old

information. This is termed retroactive interference.

 A common example of this is the fact that if you change telephone

numbers, learning your new number makes it more difficult to remember

your old number. This is because the new association masks the old.

However, sometimes the old memory trace breaks through and interferes

with new information.

 This is called proactive inhibition. An example of this is when you find

yourself driving to your old house rather than your new one. Forgetting is

also affected by emotional factors.

 In experiments, subjects given emotive words and non-emotive words

found the former harder to remember in the short term but easier in the

long term. Indeed, this observation tallies with our experience of selective

memory. We tend to remember positive information rather than negative

(hence nostalgia for the ‘good old days’), and highly emotive events rather

than mundane.

 REASONING AND PROBLEM SOLVING

 Humans, on the other hand, are able to use information to reason and

solve problems, and indeed do these activities when the information is

partial or unavailable. Human thought is conscious and self-aware: while

we may not always be able to identify the processes we use, we can

identify the products of these processes, our thoughts. Thinking can

require different amounts of knowledge.
 Reasoning: Reasoning is the process by which we use the knowledge we

have to draw conclusions or infer something new about the domain of

interest. There are a number of different types of reasoning: deductive,

inductive and abductive. We use each of these types of reasoning in everyday

life, but they differ in significant ways.

Deductive reasoning: Deductive reasoning derives the logically necessary

conclusion from the given premises.

Inductive reasoning: Induction is generalizing from cases we have seen to

infer information about cases we have not seen.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Abductive reasoning: The third type of reasoning is abduction. Abduction

reasons from a fact to the action or state that caused it. This is the method we

use to derive explanations for the events we observe.
 Problem solving:

 If reasoning is a means of inferring new information from what is already

known, problem solving is the process of finding a solution to an

unfamiliar task, using the knowledge we have. Human problem solving is

characterized by the ability to adapt the information we have to deal with

new situations. However, often solutions seem to be original and creative.

 There are a number of different views of how people solve problems. The

earliest, dating back to the first half of the twentieth century, is the Gestalt

view that problem solving involves both reuse of knowledge and insight.

This has been largely superseded but the questions it was trying to

address remain and its influence can be seen in later research.

 A second major theory, proposed in the 1970s by Newell and Simon, was

the problem space theory, which takes the view that the mind is a limited

information processor. Later variations on this drew on the earlier theory

and attempted to reinterpret Gestalt theory in terms of information

processing theories. We will look briefly at each of these views.
Gestalt theory:

 Gestalt psychologists were answering the claim, made by behaviorists, that

problem solving is a matter of reproducing known responses or trial and

error. This explanation was considered by the Gestalt school to be

insufficient to account for human problem-solving behavior. Instead, they

claimed, problem solving is both productive and reproductive.

 Reproductive problem solving draws on previous experience as the

behaviorists claimed, but productive problem solving involves insight and

restructuring of the problem. Indeed, reproductive problem solving could

be a hindrance to finding a solution, since a person may ‘fixate’ on the

known aspects of the problem and so be unable to see novel

interpretations that might lead to a solution.

 Gestalt psychologists backed up their claims with experimental

evidence.Problem space theory Newell and Simon proposed that problem

solving centers on the problem space. The problem space comprises

problem states, and problem solving involves generating these states using

legal state transition operators. The problem has an initial state and a goal

state and people use the operators to move from the former to the latter.

 Such problem spaces may be huge, and so heuristics are employed to

select appropriate operators to reach the goal. One such heuristic is

means–ends analysis. In means–ends analysis the initial state is compared

with the goal state and an operator chosen to reduce the difference

between the two.

 For example, imagine you are reorganizing your office and you want to

move your desk from the north wall of the room to the window. Your initial

state is that the desk is at the north wall. The goal state is that the desk is

by the window. The main difference between these two is the location of

your desk.

 You have a number of operators which you can apply to moving things:

you can carry them or push them or drag them, etc. However, you know

that to carry something it must be light and that your desk is heavy. You

therefore have a new subgoal: to make the desk light. Your operators for

this may involve removing drawers, and so on.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Analogy in problem solving:

 A third element of problem solving is the use of analogy. Here we are

interested in how people solve novel problems. One suggestion is that this

is done by mapping knowledge relating to a similar known domain to the

new problem – called analogical mapping. Similarities between the known

domain and the new one are noted and operators from the known domain

are transferred to the new one. This process has been investigated using

analogous stories.
 Skill acquisition:

 All of the problem solving that we have considered so far has concentrated

on handling unfamiliar problems. However, for much of the time, the

problems that we face are not completely new. Instead, we gradually

acquire skill in a particular domain area.
 Errors and mental models:

 Human capability for interpreting and manipulating information is quite

impressive. However, we do make mistakes. Some are trivial, resulting in

no more than temporary inconvenience or annoyance. Others may be more

serious, requiring substantial effort to correct. Occasionally an error may

have catastrophic effects, as we see when ‘human error’ results in a plane

crash or nuclear plant leak.

 There are several different types of error. If a pattern of behavior has

become automatic and we change some aspect of it, the more familiar

pattern may break through and cause an error. Other errors result from

an incorrect understanding, or model, of a situation or system.

 People build their own theories to understand the causal behavior of

systems. These have been termed mental models. They have a number of

characteristics. Mental models are often partial: the person does not have

a full understanding of the working of the whole system. They are unstable

and are subject to change.

 THE COMPUTER

 There is the computer ‘box’ itself, a keyboard, a mouse and a color screen.

Some of this variation is driven by different hardware configurations:

desktop use, laptop computers, PDAs (personal digital assistants).
 Partly the diversity of devices reflects the fact that there are many different

types of data that may have to be entered into and obtained from a system,

and there are also many different types of user, each with their own

unique requirements. A computer system comprises various elements,

each of which affects the user of the system.
 Input devices for interactive use, allowing text entry, drawing and selection

from the screen:
a. text entry: traditional keyboard, phone text entry, speech and

handwriting

b. pointing: principally the mouse, but also touchpad, stylus, and

others

c. 3D interaction devices

 Output display devices for interactive use:
a. different types of screen mostly using some form of bitmap display

b. large displays and situated displays for shared and public use

c. digital paper may be usable in the near future

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Virtual reality systems and 3D visualization have special interaction and

display devices. Various devices in the physical world:
 physical controls and dedicated displays
 sound, smell and haptic feedback
 sensors for nearly everything including movement, temperature, bio-

signs
 Paper output and input: the paperless office and the less-paper office:

 different types of printers and their characteristics, character styles

and fonts

 scanners and optical character recognition

 Memory:
 short-term memory: RAM

 long-term memory: magnetic and optical disks

 capacity limitations related to document and video storage

 access methods as they limit or help the user

 Processing:
 the effects when systems run too slow or too fast, the myth of the

infinitely fast machine

 limitations on processing speed

 networks and their impact on system performance.

 DEVICES

Input devices for interactive use, allowing text entry, drawing and selection from

the screen.
 TEXT ENTRY DEVICES: The alphanumeric keyboard:

 The keyboard is still one of the most common input devices in use today. It

is used for entering textual data and commands. The QWERTY keyboard:

The layout of the digits and letters on a QWERTY keyboard is fixed, but

non-alphanumeric keys vary between keyboards. The standard layout is

also subject to variation in the placement of brackets, backslashes and

such like.

Fig.1.13 QWERTY Keyboard

 Ease of learning – alphabetic keyboard: One of the most obvious layouts to

be produced is the alphabetic keyboard, in which the letters are arranged

alphabetically across the keyboard. It might be expected that such a layout

would make it quicker for untrained typists to use.
 Ergonomics of use – DVORAK keyboard and split designs: The DVORAK

keyboard uses a similar layout of keys to the QWERTY system, but assigns

the letters to different keys. Based upon an analysis of typing, the

keyboard is designed to help people reach faster typing speeds. It is biased

towards right-handed people, in that 56% of keystrokes are made with the

right hand. The layout of the keys also attempts to ensure that the

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

majority of keystrokes alternate between hands, thereby increasing the

potential speed.

Chord keyboards:

 Chord keyboards are significantly different from normal alphanumeric

keyboards. Only a few keys, four or five, are used and letters are produced

bypressing one or more of the keys at once.
 For example, in the Microwriter, the pattern of multiple keypresses is

chosen to reflect the actual letter shape.Such keyboards have a number of

advantages. They are extremely compact: simply reducing the size of a

conventional keyboard makes the keys too small and close together, with a

correspondingly large increase in the difficulty of using it.

Fig.1.14 : A very early chord keyboard (left) and its lettercodes (right)

Phone pad and T9 entry:

 With mobile phones being used for SMS text messaging and WAP, the

phone keypad has become an important form of text input. Unfortunately

a phone only has digits 0–9, not a full alphanumeric keyboard. To

overcome this for text input the numeric keys are usually pressed several

times shows a typical mapping of digits to letters.
 The main number-to-letter mapping is standard, but punctuation and

accented letters differ between phones. Also there needs to be a way for the

phone to distinguish, say, the ‘dd’ from ‘e’. On some phones you need to

pause for a short period between successive letters using the same key, for

others you press an additional key.
 Most phones have at least two modes for the numeric buttons: one where

the keys mean the digits and one where they mean letters. Some have

additional modes to make entering accented characters easier. Also a

special mode or setting is needed for capital letters although many phones

use rules to reduce this.
Handwriting recognition:

 Handwriting is a common and familiar activity, and is therefore attractive

as a method of text entry. If we were able to write as we would when we

use paper, but with the computer taking this form of input and converting

it to text, we can see that it is an intuitive and simple way of interacting

with the computer.
Speech recognition:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Speech recognition is a promising area of text entry, but it has been

promising for a number of years and is still only used in very limited

situations. There is a natural enthusiasm for being able to talk to the

machine and have it respond to commands, since this form of interaction

is one with which we are very familiar.
 Successful recognition rates of over 97% have been reported, but since this

represents one letter in error in approximately every 30, or one spelling

mistake every six or so words, this is stoll unacceptible (sic)! Note also that

this performance is usually quoted only for a restricted vocabulary of

command words.
 Trying to extend such systems to the level of understanding natural

language, with its inherent vagueness, imprecision and pauses, opens up

many more problems that have not been satisfactorily solved even for

keyboard-entered natural language.

 Positioning, Pointing And Drawing

The mouse:

 The mouse has become a major component of the majority of desktop

computer systems sold today, and is the little box with the tail connecting

it to the machine in our basic computer system.
 It is a small, palm-sized box housing a weighted ball – as the box is moved

over the tabletop, the ball is rolled by the table and so rotates inside the

housing. This rotation is detected by small rollers that are in contact with

the ball, and these adjust the values of potentiometers.
 If you remove the ball occasionally to clear dust you may be able to see

these rollers. The changing values of these potentiometers can be directly

related to changes in position of the ball. The potentiometers are aligned in

different directions so that they can detect both horizontal and vertical

motion.
 The relative motion information is passed to the computer via a wire

attached to the box, or in some cases using wireless or infrared, and

moves a pointer on the screen, called the cursor. The whole arrangement

tends to look rodent-like, with the box acting as the body and the wire as

the tail; hence the term ‘mouse’.
Touchpad:

 Touchpads are touch-sensitive tablets usually around 2–3 inches (50–75

mm) square. They were first used extensively in Apple Powerbook portable

computers but are now used in many other notebook computers and can

be obtained separately to replace the mouse on the desktop. They are

operated by stroking a finger over their surface, rather like using a

simulated trackball.

Trackball and thumbwheel:

 The trackball is really just an upside-down mouse! A weighted ball faces

upwards and is rotated inside a static housing, the motion being detected

in the same way as for a mechanical mouse, and the relative motion of the

ball moves the cursor.
 Because of this, the trackball requires no additional space in which to

operate, and is therefore a very compact device. It is an indirect device,

and requires separate buttons for selection. It is fairly accurate, but is

hard to draw with, as long movements are difficult.
Joystick and keyboard nipple:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 The joystick is an indirect input device, taking up very little space.

Consisting of a small palm-sized box with a stick or shaped grip sticking

up from it, the joystick is a simple device with which movements of the

stick cause a corresponding movement of the screen cursor. There are two

types of joystick: the absolute and the isometric.
Touch-sensitive screens (touchscreens):

 Touchscreens are another method of allowing the user to point and select

objects on the screen, but they are much more direct than the mouse, as

they detect the presence of the user’s finger, or a stylus, on the screen

itself.
 They work in one of a number of different ways: by the finger (or stylus)

interrupting a matrix of light beams, or by capacitance changes on a grid

overlaying the screen, or by ultrasonic reflections. Because the user

indicates exactly which item is required by pointing to it, no mapping is

required and therefore this is a direct device.

Stylus and light pen:

 For more accurate positioning (and to avoid greasy screens), systems with

touch- sensitive surfaces often emply a stylus. Instead of pointing at the

screen directly a small pen-like plastic stick is used to point and draw on

the screen. This is particularly popular in PDAs, but they are also being

used in some laptop computers.
Digitizing tablet:

 The digitizing tablet is a more specialized device typically used for freehand

drawing, but may also be used as a mouse substitute. Some highly

accurate tablets, usually using a puck (a mouse-like device), are used in

special applications such as digitizing information for maps.
 The tablet provides positional information by measuring the position of

some device on a special pad, or tablet, and can work in a number of

ways. The resistive tablet detects point contact between two separated

conducting sheets.
 It has advantages in that it can be operated without a specialized stylus –

a pen or the user’s finger is sufficient. The magnetic tablet detects current

pulses in a magnetic field using a small loop coil housed in a special pen.

There are also capacitative and electrostatic tablets that work in a similar

way.
 The sonic tablet is similar to the above but requires no special surface. An

ultrasonic pulse is emitted by a special pen which is detected by two or

more microphones which then triangulate the pen position. This device

can be adapted to provide 3D input, if required.
Eyegaze:

 Eyegaze systems allow you to control the computer by simply looking at it!

Some systems require you to wear special glasses or a small head-

mounted box, others are built into the screen or sit as a small box below

the screen.
 A low-power laser is shone into the eye and is reflected off the retina. The

reflection changes as the angle of the eye alters, and by tracking the

reflected beam the eyegaze system can determine the direction in which

the eye is looking.
 The system needs to be calibrated, typically by staring at a series of dots

on the screen, but thereafter can be used to move the screen cursor or for

other more specialized uses.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Eyegaze is a very fast and accurate device, but the more accurate versions

can be expensive. It is fine for selection but not for drawing since the eye

does not move in smooth lines. Also in real applications it can be difficult

to distinguish deliberately gazing at something and accidentally glancing

at it.
Cursor keys and discrete positioning:

 All of the devices we have discussed are capable of giving near continuous

2D positioning, with varying degrees of accuracy. For many applications

we are only interested in positioning within a sequential list such as a

menu or amongst 2D cells as in a spreadsheet.
 Even for moving within text discrete up/down left/right keys can

sometimes be preferable to using a mouse. Cursor keys are available on

most keyboards. Four keys on the keyboard are used to control the cursor,

one each for up, down, left and right.

Fig.1.15 : Various cursor key layouts

 Display Devices:

 The vast majority of interactive computer systems would be unthinkable

without some sort of display screen, but many such systems do exist,

though usually in specialized applications only.
 Bitmap displays – resolution and color: Virtually all computer displays are

based on some sort of bitmap. That is the display is made of vast numbers

of colored dots or pixels in a rectangular grid. These pixels may be limited

to black and white (for example, the small display on many TV remote

controls), in grayscale, or full color.
 The color or, for monochrome screens, the intensity at each pixel is held by

the computer’s video card. One bit per pixel can store on/off information,

and hence only black and white (the term ‘bitmap’ dates from such

displays).
 More bits per pixel give rise to more color or intensity possibilities. As well

as the number of colors that can be displayed at each pixel, the other

measure that is important is the resolution of the screen. Actually the

word ‘resolution’ is used in a confused (and confusing!) way for screens.

There are two numbers to consider:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 The total number of pixels: in standard computer displays this is always in

a 4:3 ratio, perhaps 1024 pixels across by 768 down, or 1600 × 1200; for

PDAs this will be more in the order of a few hundred pixels in each

direction. The density of pixels: this is measured in pixels per inch. Unlike

printers (see Section 2.7 below) this density varies little between 72 and 96

pixels per inch. To add to the confusion, a monitor, liquid crystal display

(LCD) screen or other display device will quote its maximum resolution,

but the computer may actually give it less than this.
Cathode ray tube:

 The cathode ray tube is the television-like computer screen still most

common as we write this, but rapidly being displaced by flat LCD screens.

It works in a similar way to a standard television screen. A stream of

electrons is emitted from an electron gun, which is then focussed and

directed by magnetic fields.
 As the beam hits the phosphor-coated screen, the phosphor is excited by

the electrons and glows The electron beam is scanned from left to right,

and then flicked back to rescan the next line, from top to bottom. This is

repeated, at about 30 Hz (that is, 30 times a second), per frame, although

higher scan rates are sometimes used to reduce the flicker on the screen.
 Another way of reducing flicker is to use interlacing, in which the odd lines

on the screen are all scanned first, followed by the even lines. Using a high-

persistence phosphor, which glows for a longer time when excited, also

reduces flicker, but causes image smearing especially if there is significant

animation.
Liquid crystal display:

 If you have used a personal organizer or notebook computer, you will have

seen the light, flat plastic screens. These displays utilize liquid crystal

technology and are smaller, lighter and consume far less power than

traditional CRTs.
 These are also commonly referred to as flat-panel displays. They have no

radiation problems associated with them, and are matrix addressable,

which means that individual pixels can be accessed without the need for

scanning.

Fig.1.16 : CRT screen

Special displays:

 There are a number of other display technologies used in niche markets.

The one you are most likely to see is the gas plasma display, which is used

in large screens. The random scan display, also known as the directed

beam refresh, or vector display, works differently from the bitmap display,

also known as raster scan.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Instead of scanning the whole screen sequentially and horizontally, the

random scan draws the lines to be displayed directly. By updating the

screen at at least 30 Hz to reduce flicker, the direct drawing of lines at any

angle means that jaggies are not created, and higher resolutions are

possible, up to 4096 × 4096 pixels.
 Color on such displays is achieved using beam penetration technology,

and is generally of a poorer quality.The direct view storage tube is used

extensively as the display for an analog storage oscilloscope, which is

probably the only place that these displays are used in any great numbers.
 They are similar in operation to the random scan CRT but the image is

maintained by flood guns which have the advantage of producing a stable

display with no flicker. The screen image can be incrementally updated but

not selectively erased; removing items has to be done by redrawing the new

image on a completely erased screen. The screens have a high resolution,

typically about 4096 × 3120 pixels, but suffer from low contrast, low

brightness and a difficulty in displaying color.
Large displays and situated displays:

 Displays are no longer just things you have on your desktop or laptop.

There are several types of large screen display. Some use gas plasma

technology to create large flat bitmap displays. These behave just like a

normal screen except they are big and usually have the HDTV (high

definition television) wide screen format which has an aspect ratio of 16:9

instead of the 4:3 on traditional TV and monitors.
 Where very large screen areas are required, several smaller screens, either

LCD or CRT, can be placed together in a video wall. These can display

separate images, or a single TV or computer image can be split up by

software or hardware so that each screen displays a portion of the whole

and the result is an enormous image. This is the technique often used in

large concerts to display the artists or video images during the

performance.
 Possibly the large display you are most likely to have encountered is some

sort of projector. There are two variants of these. In very large lecture

theatres, especially older ones, you see projectors with large red, green and

blue lenses.
 These each scan light across the screen to build a full color image. In

smaller lecture theatres and in small meetings you are likely to see LCD

projectors. Usually the size of a large book, these are like ordinary slide

projectors except that where the slide would be there is a small LCD

screen instead. The light from the projector passes through the tiny screen

and is then focussed by the lens onto the screen.
Digital paper:

 A new form of ‘display’ that is still in its infancy is the various forms of

digital paper. These are thin flexible materials that can be written to

electronically, just like a computer screen, but which keep their contents

even when removed from any electrical supply.

 Devices for Virtual Reality And 3d Interaction:

These require you to navigate and interact in a three-dimensional space.
Positioning in 3D space:

 Virtual reality systems present a 3D virtual world. Users need to navigate

through these spaces and manipulate the virtual objects they find there.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Navigation is not simply a matter of moving to a particular location, but

also of choosing a particular orientation.

 In addition, when you grab an object in real space, you don’t simply move

it around, but also twist and turn it, for example when opening a door.

Thus the move from mice to 3D devices usually involves a change from two

degrees of freedom to six degrees of freedom, not just three.
Cockpit and virtual controls:

 Helicopter and aircraft pilots already have to navigate in real space. Many

arcade games and also more serious applications use controls modeled on

an aircraft cockpit to ‘fly’ through virtual space. In many PC games and

desktop virtual reality, the controls are themselves virtual. This may be a

simulated form of the cockpit controls or more prosaic up/down left/right

buttons. The user manipulates these virtual controls using an ordinary

mouse
The 3D mouse:

 There are a variety of devices that act as 3D versions of a mouse. Rather

than just moving the mouse on a tabletop, you can pick it up, move it in

three dimensions, rotate the mouse and tip it forward and backward.
 The 3D mouse has a full six degrees of freedom as its position can be

tracked (three degrees), and also its up/down angle (called pitch), its

left/right orientation (called yaw) and the amount it is twisted about its

own axis (called roll). Various sensors are used to track the mouse position

and orientation: magnetic coils, ultrasound or even mechanical joints

where the mouse is mounted rather like an angle-poise lamp.

Fig.1.17 : Pitch, yaw and roll

Dataglove:

 One of the mainstays of high-end VR systems, the dataglove is a 3D input

device. Consisting of a lycra glove with optical fibers laid along the fingers,

it detects the joint angles of the fingers and thumb. As the fingers are bent,

the fiber optic cable bends too; increasing bend causes more light to leak

from the fiber, and the reduction in intensity is detected by the glove and

related to the degree of bend in the joint.
 Attached to the top of the glove are two sensors that use ultrasound to

determine 3D positional information as well as the angle of roll, that is the

degree of wrist rotation. Such rich multi-dimensional input is currently a

solution in search of a problem, in that most of the applications in use do

not require such a comprehensive form of data input, whilst those that do

cannot afford it.
 However, the availability of cheaper versions of the dataglove will

encourage the development of more complex systems that are able to

utilize the full power of the dataglove as an input device. There are a

number of potential uses for this technology to assist disabled people, but

cost remains the limiting factor at present.
Virtual reality helmets:

 The helmets or goggles worn in some VR systems have two purposes: (i)

they display the 3D world to each eye and (ii) they allow the user’s head

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

position to be tracked. The head tracking is used primarily to feed into the

output side. As the user’s head moves around the user ought to see

different parts of the scene.
Whole-body tracking:

 Some VR systems aim to be immersive, that is to make the users feel as if

they are really in the virtual world. In the real world it is possible (although

not usually wise) to walk without looking in the direction you are going.
3D displays:

 Just as the 3D images used in VR have led to new forms of input device,

they also require more sophisticated outputs. Desktop VR is delivered

using a standard computer screen and a 3D impression is produced by

using effects such as shadows, occlusion (where one object covers another)

and perspective.
Seeing in 3D:

 Our eyes use many cues to perceive depth in the real world. It is in fact

quite remarkable as each eye sees only a flattened form of the world, like a

photograph. One important effect is stereoscopic vision (or simply stereo

vision).
 Because each eye is looking at an object from a slightly different angle

each sees a different image and our brain is able to use this to assess the

relative distance of different objects. In desktop VR this stereoscopic effect

is absent. However, various devices exist to deliver true stereoscopic

images.
VR motion sickness:

 We all get annoyed when computers take a long time to change the screen,

pop up a window, or play a digital movie. However, with VR the effects of

poor display performance can be more serious. In real life when we move

our head the image our eyes see changes accordingly.
 VR systems produce the same effect by using sensors in the goggles or

helmet and then using the position of the head to determine the right

image to show. If the system is slow in producing these images a lag

develops between the user moving his head and the scene changing. If this

delay is more than a hundred milliseconds or so the feeling becomes

disorienting.
Simulators and VR caves:

 Because of the problems of delivering a full 3D environment via head-

mounted displays, some virtual reality systems work by putting the user

within an environment where the virtual world is displayed upon it.
 The most obvious examples of this are large flight simulators – you go

inside a mock-up of an aircraft cockpit and the scenes you would see

through the windows are projected onto the virtual windows. In motorbike

or skiing simulators in video arcades large screens are positioned to fill the

main part of your visual field. You can still look over your shoulder and

see your friends, but while you are engaged in the game it surrounds you.
 Physical Controls, Sensors And Special Devices

Special displays:

 Apart from the CRT screen there are a number of visual outputs utilized in

complex systems, especially in embedded systems. These can take the

form of analog representations of numerical values, such as dials, gauges

or lights to signify a certain system state. Flashing light-emitting diodes

(LEDs) are used on the back of some computers to signify the processor

state, whilst gauges and dials are found in process control systems.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Sound output:

 Another mode of output that we should consider is that of auditory

signals. Often designed to be used in conjunction with screen displays,

auditory outputs are poorly understood: we do not yet know how to utilize

sound in a sensible way to achieve maximum effect and information

transference. We have discussed speech previously, but other sounds such

as beeps, bongs, clanks, whistles and whirrs are all used to varying effect.

As well as conveying system
Touch, feel and smell:

 Our other senses are used less in normal computer applications, but you

may have played computer games where the joystick or artificial steering

wheel vibrated, perhaps when a car was about to go off the track. In some

VR applications, such as the use in medical domains to ‘practice’ surgical

procedures, the feel of an instrument moving through different tissue types

is very important.
 The devices used to emulate these procedures have force feedback, giving

different amounts of resistance depending on the state of the virtual

operation. These various forms of force, resistance and texture that

influence our physical senses are called haptic devices.
 Haptic devices are not limited to virtual environments, but are used in

specialist interfaces in the real world too.
Physical controls:

 A desktop computer system has to serve many functions and so has

generic keys and controls that can be used for a variety of purposes. In

contrast, these dedicated control panels have been designed for a

particular device and for a single use.
 Environment and bio-sensing: In a public washroom there are often no

controls for the wash basins, you simply put your hands underneath and

(hope that) the water flows. Similarly when you open the door of a car, the

courtesy light turns on.
 The washbasin is controlled by a small infrared sensor that is triggered

when your hands are in the basin (although it is sometimes hard to find

the ‘sweet spot’ where this happens!). The courtesy lights are triggered by a

small switch in the car door.

 MEMORY

 Like human memory, we can think of the computer ’s memory as operating

at different levels, with those that have the faster access typically having

less capacity. By analogy with the human memory, we can group these

into short-term and long-term memories (STM and LTM).
 RAM and short-term memory (STM): At the lowest level of computer

memory are the registers on the computer chip, but these have little

impact on the user except in so far as they affect the general speed of the

computer. Most currently active information is held in silicon-chip random

access memory (RAM).
 Different forms of RAM differ as to their precise access times, power

consumption and characteristics. Typical access times are of the order of

10 nanoseconds, that is a hundred-millionth of a second, and information

can be accessed at a rate of around 100 Mbytes (million bytes) per second.
 Most RAM is volatile, that is its contents are lost when the power is turned

off. However, many computers have small amount of non-volatile RAM,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

which retains its contents, perhaps with the aid of a small battery. This

may be used to store setup information in a large computer, but in a

pocket organizer will be the whole memory.
a. Disks and long-term memory (LTM):

 For most computer users the LTM consists of disks, possibly with small

tapes for backup. The existence of backups, and appropriate software to

generate and retrieve them, is an important area for user security. There

are two main kinds of technology used in disks: magnetic disks and optical

disks.
 The most common storage media, floppy disks and hard (or fixed) disks,

are coated with magnetic material, like that found on an audio tape, on

which the information is stored. Typical capacities of floppy disks lie

between 300 kbytes and 1.4 Mbytes, but as they are removable, you can

have as many as you have room for on your desk.
 Hard disks may store from under 40 Mbytes to several gigabytes (Gbytes),

that is several thousand million bytes. With disks there are two access

times to consider, the time taken to find the right track on the disk, and

the time to read the track.
 Optical disks use laser light to read and (sometimes) write the information

on the disk. There are various high capacity specialist optical devices, but

the most common is the CD-ROM, using the same technology as audio

compact discs.
 CD-ROMs have a capacity of around 650 megabytes, but cannot be written

to at all. They are useful for published material such as online reference

books, multimedia and software distribution. Recordable CDs are a form of

WORM device (write-once read-many) and are more flexible in that

information can be written, but (as the name suggests) only once at any

location – more like a piece of paper than a blackboard. They are obviously

very useful for backups and for producing very secure audit information.

 PROCESSING AND NETWORKS

 Computers that run interactive programs will process in the order of 100

million instructions per second. It sounds a lot and yet, like memory, it

can soon be used up. Indeed, the first program written by one of the

authors (some while ago) ‘hung’ and all attempts to debug it failed.
 Effects of finite processor speed: As we can see, speed of processing can

seriously affect the user interface. These effects must be taken into

account when designing an interactive system. There are two sorts of

faults due to processing speed: those when it is too slow, and those when

it is too fast.
 The first type of fault is functional fault in which the program did the

wrong thing. A second fault due to slow processing is where, in a sense,

the program does the right thing, but the feedback is too slow, leading to

strange effects at the interface. In order to avoid faults of the first kind, the

system buffers the user input; that is, it remembers keypresses and mouse

buttons and movement. Unfortunately, this leads to problems of its own.
 One example of this sort of problem is cursor tracking, which happens in

character-based text editors. A similar problem, icon wars, occurs on

window systems. The user clicks the mouse on a menu or icon, and

nothing happens; for some reason the machine is busy or slow. So the

user clicks again, tries something else – then, suddenly, all the buffered

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

mouse clicks are interpreted and the screen becomes a blur of flashing

windows and menus.

Limitations on interactive performance

There are several factors that can limit the speed of an interactive system:

Computation bound:

 This is rare for an interactive program, but possible, for example when

using find/replace in a large document. The system should be designed so

that long delays are not in the middle of interaction and so that the user

gets some idea of how the job is progressing. For a very long process try to

give an indication of duration before it starts; and during processing an

indication of the stage that the process has reached is helpful.
Storage channel bound:

 The speed of memory access can interfere with interactive performance.

We discussed one technique, laziness, for reducing this effect. In addition,

if there is plenty of raw computation power and the system is held up

solely by memory, it is possible to trade off memory against processing

speed.
 Thus faster memory access leads to increased processing time. If data is

written more often than it is read, one can choose a technique that is

expensive to compress but fairly simple to decompress. For many

interactive systems the ability to browse quickly is very important, but

users will accept delays when saving updated information.
Graphics bound:

 For many modern interfaces, this is the most common bottleneck. It is

easy to underestimate the time taken to perform what appear to be simple

interface operations.
 Sometimes clever coding can reduce the time taken by common graphics

operations, and there is tremendous variability in performance between

programs running on the same hardware. Most computers include a

special-purpose graphics card to handle many of the most common

graphics operations.
 This is optimized for graphics operations and allows the main processor to

do other work such as manipulating documents and other user data.
Network capacity:

 Most computers are linked by networks. At the simplest this can mean

using shared files on a remote machine. When accessing such files it can

be the speed of the network rather than that of the memory which limits

performance.

 INTERACTION

 There are a number of ways in which the user can communicate with the

system. At one extreme is batch input, in which the user provides all the

information to the computer at once and leaves the machine to perform

the task.
 This approach does involve an interaction between the user and computer

but does not support many tasks well. At the other extreme are highly

interactive input devices and paradigms, such as direct manipulation and

the applications of virtual reality.
 Here the user is constantly providing instruction and receiving feedback.

These are the types of interactive system we are considering.
 MODELS

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Both are complex, as we have seen, and are very different from each other

in the way that they communicate and view the domain and the task. The

interface must therefore effectively translate between them to allow the

interaction to be successful.
 This translation can fail at a number of points and for a number of

reasons. The use of models of interaction can help us to understand

exactly what is going on in the interaction and identify the likely root of

difficulties. They also provide us with a framework to compare different

interaction styles and to consider interaction problems.
The terms of interaction:

 The purpose of an interactive system is to aid a user in accomplishing

goals from some application domain. A domain defines an area of expertise

and knowledge in some real-world activity. Tasks are operations to

manipulate the concepts of a domain. A goal is the desired output from a

performed task.
 An intention is a specific action required to meet the goal. Task analysis

involves the identification of the problem space for the user of an

interactive system in terms of the domain, goals, intentions and tasks. The

concepts used in the design of the system and the description of the user

are separate, and so we can refer to them as distinct components, called

the System and the User, respectively.
 The System and User are each described by means of a language that can

express concepts relevant in the domain of the application.The System ’s

language we will refer to as the core language and the User’s language we

will refer to as the task language.
 The core language describes computational attributes of the domain

relevant to the System state, whereas the task language describes

psychological attributes of the domain relevant to the User state. The

system is assumed to be some computerized application, in the context of

this book, but the models apply equally to non-computer applications. It is

also a common assumption that by distinguishing between user and

system we are restricted to single-user applications.
The execution–evaluation cycle:

 Norman’s model of interaction is perhaps the most influential in Human–

Computer Interaction, possibly because of its closeness to our intuitive

understanding of the interaction between human user and computer. The

user formulates a plan of action, which is then executed at the computer

interface.
 When the plan, or part of the plan, has been executed, the user observes

the computer interface to evaluate the result of the executed plan, and to

determine further actions. The interactive cycle can be divided into two

major phases: execution and evaluation. These can then be subdivided

into further stages, seven in all. The stages in Norman’s model of

interaction are as follows:
a. Establishing the goal.

b. Forming the intention.

c. Specifying the action sequence.

d. Executing the action.

e. Perceiving the system state.
f. Interpreting the system state.

 Evaluating the system state with respect to the goals and intentions. Each

stage is, of course, an activity of the user. First the user forms a goal. This

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

is the user’s notion of what needs to be done and is framed in terms of the

domain, in the task language.

 It is liable to be imprecise and therefore needs to be translated into the

more specific intention, and the actual actions that will reach the goal,

before it can be executed by the user. The user perceives the new state of

the system, after execution of the action sequence, and interprets it in

terms of his expectations. If the system state reflects the user’s goal then

the computer has done what he wanted and the interaction has been

successful; otherwise the user must formulate a new goal and repeat the

cycle.
 The interaction framework attempts a more realistic description of

interaction by including the system explicitly, and breaks it into four main

components, as shown in figure below. The nodes represent the four major

components in an interactive system – the System, the User, the Input and

the Output.
 Each component has its own language. In addition to the User’s task

language and the System’s core language, which we have already

introduced, there are languages for both the Input and Output

components. Input and Output together form the Interface. As the

interface sits between the User and the System, there are four steps in the

interactive cycle, each corresponding to a translation from one component

to another, as shown by the labelled arcs in figure below.
 The User begins the interactive cycle with the formulation of a goal and a

task to achieve that goal. The only way the user can manipulate the

machine is through the Input, and so the task must be articulated within

the input language. The input language is translated into the core

language as operations to be performed by the System.
 The System then transforms itself as described by the operations; the

execution phase of the cycle is complete and the evaluation phase now

begins. The System is in a new state, which must now be communicated to

the User.
 The current values of system attributes are rendered as concepts or

features of the Output. It is then up to the User to observe the Output and

assess the results of the interaction relative to the original goal, ending the

evaluation phase and, hence, the interactive cycle. There are four main

translations involved in the interaction: articulation, performance,

presentation and observation

.
Fig1.18:a.General Interaction Framework b.Translations between components

 The general interaction framework Translations between componentsis

shown in figure 1.18. The User’s formulation of the desired task to achieve

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

some goal needs to be articulated in the input language. The tasks are

responses of the User and they need to be translated to stimuli for the

Input.

 As pointed out above, this articulation is judged in terms of the coverage

from tasks to input and the relative ease with which the translation can be

accomplished. The task is phrased in terms of certain psychological

attributes that highlight the important features of the domain for the User.

If these psychological attributes map clearly onto the input language, then

articulation of the task will be made much simpler.
 At the next stage, the responses of the Input are translated to stimuli for

the System. Of interest in assessing this translation is whether the

translated input language can reach as many states of the System as is

possible using the System stimuli directly. The ease with which this

translation from Input to System takes place is of less importance because

the effort is not expended by the user.
 However, there can be a real effort expended by the designer and

programmer. In this case, the ease of the translation is viewed in terms of

the cost of implementation. Once a state transition has occurred within the

System, the execution phase of the interaction is complete and the

evaluation phase begins.
 The new state of the System must be communicated to the User, and this

begins by translating the System responses to the transition into stimuli

for the Output component. This presentation translation must preserve the

relevant system attributes from the domain in the limited expressiveness of

the output devices.
 The ability to capture the domain concepts of the System within the

Output is a question of expressiveness for this translation. The response

from the Output is translated to stimuli for the User which trigger

assessment. The observation translation will address the ease and

coverage of this final translation.
 For example, it is difficult to tell the time accurately on an unmarked

analog clock, especially if it is not oriented properly. It is difficult in a

command line interface to determine the result of copying and moving files

in a hierarchical file system. Developing a website using a markup

language like HTML would be virtually impossible without being able to

preview the output through a browser.

 FRAMEWORKS

 The ACM SIGCHI Curriculum Development Group presents a framework

similar to that presented here, and uses it to place different areas that

relate to HCI. The Figure these aspects are shown as they relate to the

interaction framework. In particular, the field of ergonomics addresses

issues on the user side of the interface, covering both input and output, as

well as the user’s immediate context as in figure 1.19.
 Dialog design and interface styles can be placed particularly along the

input branch of the framework, addressing both articulation and

performance. However, dialog is most usually associated with the

computer and so is biased to that side of the framework.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure1.19: A framework for human-computer interaction

 Presentation and screen design relates to the output branch of the

framework. The entire framework can be placed within a social and

organizational context that also affects the interaction. Each of these areas

has important implications for the design of interactive systems and the

performance of the user.
 A framework for human–computer interaction. Adapted from ACM SIGCHI

Curriculum Development Group

 ERGONOMICS

 Ergonomics (or human factors) is traditionally the study of the physical

characteristics of the interaction: how the controls are designed, the

physical environment in which the interaction takes place, and the layout

and physical qualities of the screen. A primary focus is on user

performance and how the interface enhances or detracts from this.
Arrangement of controls and displays:

 Considered perceptual and cognitive issues that affect the way we present

information on a screen and provide control mechanisms to the user. In

addition to these cognitive aspects of design, physical aspects are also

important. Sets of controls and parts of the display should be grouped

logically to allow rapid access by the user.
 This may not seem so important when we are considering a single user of a

spreadsheet on a PC, but it becomes vital when we turn to safety-critical

applications such as plant control, aviation and air traffic control. In each

of these contexts, users are under pressure and are faced with a huge

range of displays and controls. Indeed, returning to the less critical PC

application, inappropriate placement of controls and displays can lead to

inefficiency and frustration.
 The exact organization that this will suggest will depend on the domain

and the application, but possible organizations include the following:

functional controls and displays are organized so that those that are

functionally related are placed together; sequential controls and displays

are organized to reflect the order of their use in a typical interaction (this

may be especially appropriate in domains where a particular task

sequence is enforced, such as aviation); frequency controls and displays

are organized according to how frequently they are used, with the most

commonly used controls being the most easily accessible.
The physical environment of the interaction:

 As well as addressing physical issues in the layout and arrangement of the

machine interface, ergonomics is concerned with the design of the work

environment itself.
 The first consideration here is the size of the users. Obviously this is going

to vary considerably. However, in any system the smallest user should be

able to reach all the controls (this may include a user in a wheelchair), and

the largest user should not be cramped in the environment.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 All users should be comfortably able to see critical displays. For long

periods of use, the user should be seated for comfort and stability. Seating

should provide back support. If required to stand, the user should have

room to move around in order to reach all the controls.
Health issues:

 Leaving aside the obvious safety risks of poorly designed safety-critical

systems (aircraft crashing, nuclear plant leaks and worse), there are a

number of factors that may affect the use of more general computers.

Again these are factors in the physical environment that directly affect the

quality of the interaction and the user’s performance:
Physical position:

 As we noted in the previous section, users should be able to reach all

controls comfortably and see all displays. Users should not be expected to

stand for long periods and, if sitting, should be provided with back

support. If a particular position for a part of the body is to be adopted for

long periods (for example, in typing) support should be provided to allow

rest.
Temperature:

 Although most users can adapt to slight changes in temperature without

adverse effect, extremes of hot or cold will affect performance and, in

excessive cases, health. Experimental studies show that performance

deteriorates at high or low temperatures, with users being unable to

concentrate efficiently.
Lighting:

 The lighting level will again depend on the work environment. However,

adequate lighting should be provided to allow users to see the computer

screen without discomfort or eyestrain. The light source should also be

positioned to avoid glare affecting the display.
Noise:

 Excessive noise can be harmful to health, causing the user pain, and in

acute cases, loss of hearing. Noise levels should be maintained at a

comfortable level in the work environment. This does not necessarily mean

no noise at all. Noise can be a stimulus to users and can provide needed

confirmation of system activity.
Time:

 The time users spend using the system should also be controlled. It has

been suggested that excessive use of CRT displays can be harmful to

users, particularly pregnant women.
The use of color:

 Ergonomics has a close relationship to human psychology in that it is also

concerned with the perceptual limitations of humans. For example, the use

of color in displays is an ergonomics issue.
 The visual system has some limitations with regard to color, including the

number of colors that are distinguishable and the relatively low blue

acuity. We also saw that a relatively high proportion of the population

suffers from a deficiency in color vision.
 Colors used in the display should be as distinct as possible and the

distinction should not be affected by changes in contrast. The colors used

should also correspond to common conventions and user expectations.

 STYLES

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 The choice of interface style can have a profound effect on the nature.

There are a number of common interface styles including
 command line interface
 menus
 natural language
 question/answer and query dialog
 form-fills and spreadsheets
 WIMP
 point and click
 three-dimensional interfaces.

As the WIMP interface is the most common and complex.

Command line interface:

 Command line interfaces are powerful in that they offer direct access to

system functionality (as opposed to the hierarchical nature of menus), and

can be combined to apply a number of tools to the same data. They are

also flexible: the command often has a number of options or parameters

that will vary its behavior in some way, and it can be applied to many

objects at once, making it useful for repetitive tasks.
 However, this flexibility and power brings with it difficulty in use and

learning. Commands must be remembered, as no cue is provided in the

command line to indicate which command is needed. They are therefore

better for expert users than for novices.
 This problem can be alleviated a little by using consistent and meaningful

commands and abbreviations. The commands used should be terms within

the vocabulary of the user rather than the technician. Unfortunately,

commands are often obscure and vary across systems, causing confusion

to the user and increasing the overhead of learning.Typical example: the

Unix system
Menus:

 In a menu-driven interface, the set of options available to the user is

displayed on the screen, and selected using the mouse, or numeric or

alphabetic keys. Since the options are visible they are less demanding of

the user, relying on recognition rather than recall. However, menu options

still need to be meaningful and logically grouped to aid recognition.
 Often menus are hierarchically ordered and the option required is not

available at the top layer of the hierarchy. The grouping and naming of

menu options then provides the only cue for the user to find the required

option.
 Such systems either can be purely text based, with the menu options being

presented as numbered choices, or may have a graphical component in

which the menu appears within a rectangular box and choices are made,

perhaps by typing the initial letter of the desired selection, or by entering

the associated number, or by moving around the menu with the arrow

keys.Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fig.1.20 : Menu-driven interface

Natural language:

 Natural language understanding, both of speech and written input, is the

subject of much interest and research. Unfortunately, however, the

ambiguity of natural language makes it very difficult for a machine to

understand. Language is ambiguous at a number of levels. It is important

in interfaces which use natural language in this restricted form that the

user is aware of the limitations of the system and does not expect too

much understanding.
 The use of natural language in restricted domains is relatively successful,

but it is debatable whether this can really be called natural language. The

user still has to learn which phrases the computer understands and may

become frustrated if too much is expected. However, it is also not clear

how useful a general natural language interface would be. Language is by

nature vague and imprecise: this gives it its flexibility and allows creativity

in expression. Computers, on the other hand, require precise instructions.
Question/answer and query dialog:

 Question and answer dialog is a simple mechanism for providing input to

an application in a specific domain. The user is asked a series of questions

(mainly with yes/no responses, multiple choice, or codes) and so is led

through the interaction step by step.
 These interfaces are easy to learn and use, but are limited in functionality

and power. As such, they are appropriate for restricted domains

(particularly information systems) and for novice or casual users. Query

languages, on the other hand, are used to construct queries to retrieve

information from a database.
 They use natural-language-style phrases, but in fact require specific

syntax, as well as knowledge of the database structure. Queries usually

require the user to specify an attribute or attributes for which to search

the database, as well as the attributes of interest to be displayed. This is

straight-forward where there is a single attribute, but becomes complex

when multiple attributes are involved.
Form-fills and spreadsheets:

 Form-filling interfaces are used primarily for data entry but can also be

useful in data retrieval applications. The user is presented with a display

resembling a paper form, with slots to fill in. Often the form display is

based upon an actual form with which the user is familiar, which makes

the interface easier to use.
 The user works through the form, filling in appropriate values. The data

are then entered into the application in the correct place. Most form-filling

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

interfaces allow easy movement around the form and allow some fields to

be left blank.

 They also require correction facilities, as users may change their minds or

make a mistake about the value that belongs in each field. The dialog style

is useful primarily for data entry applications and, as it is easy to learn

and use, for novice users. However, assuming a design that allows flexible

entry, form filling is also appropriate for expert users.
 Spreadsheets are a sophisticated variation of form filling. The spreadsheet

comprises a grid of cells, each of which can contain a value or a formula.

The formula can involve the values of other cells (for example, the total of

all cells in this column).
 The user can enter and alter values and formulae in any order and the

system will maintain consistency amongst the values displayed, ensuring

that all formulae are obeyed. The user can therefore manipulate values to

see the effects of changing different parameters.
 Spreadsheets are an attractive medium for interaction: the user is free to

manipulate values at will and the distinction between input and output is

blurred, making the interface more flexible and natural.
WIMP:

 WIMP stands for windows, icons, menus and pointers (sometimes

windows, icons, mice and pull-down menus), and is the default interface

style for the majority of interactive computer systems in use today,

especially in the PC and desktop workstation arena.
 Examples of WIMP interfaces include Microsoft Windows for IBM PC

compatibles, MacOS for Apple Macintosh compatibles and various X

Windows-based systems for UNIX.
Point and click:

 In most multimedia systems and in web browsers, virtually all actions take

only a single click of the mouse button. You may point at a city on a map

and when you click a window opens, showing you tourist information

about the city. This point-and-click interface style is obviously closely

related to the WIMP style.
 It clearly overlaps in the use of buttons, but may also include other WIMP

elements. However, the philosophy is simpler and more closely tied to

ideas of hypertext. In addition, the point-and-click style is not tied to

mouse-based interfaces, and is also extensively used in touchscreen

information systems. In this case, it is often combined with a menu-driven

interface.
Three-dimensional interfaces:

 The simplest technique is where ordinary WIMP elements, buttons, scroll

bars, etc., are given a 3D appearance using shading, giving the appearance

of being sculpted out of stone. By unstated convention, such interfaces

have a light source at their top right.
 Where used judiciously, the raised areas are easily identifiable and can be

used to highlight active areas. Unfortunately, some interfaces make

indiscriminate use of sculptural effects, on every text area, border and

menu, so all sense of differentiation is lost.
 A more complex technique uses interfaces with 3D workspaces. The

objects displayed in such systems are usually flat, but are displayed in

perspective when at an angle to the viewer and shrink when they are ‘further away’.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 ELEMENTS OF WIMP INTERFACE

 WIMP stands for windows, icons, menus and pointers (sometimes

windows, icons, mice and pull-down menus).There are also many

additional interaction objects and techniques commonly used in WIMP

interfaces, some designed for specific purposes and others more general.

Together, these elements of the WIMP interfaces are called widgets, and

they comprise the toolkit for interaction between user and system.
Windows:

 Windows are areas of the screen that behave as if they were independent

terminals in their own right. A window can usually contain text or

graphics, and can be moved or resized. More than one window can be on a

screen at once, allowing separate tasks to be visible at the same time.
 Users can direct their attention to the different windows as they switch

from one thread of work to another. If one window overlaps the other, the

back window is partially obscured, and then refreshed when exposed

again.
 Overlapping windows can cause problems by obscuring vital information,

so windows may also be tiled, when they adjoin but do not overlap each

other. Alternatively, windows may be placed in a cascading fashion, where

each new window is placed slightly to the left and below the previous

window.
 In some systems this layout policy is fixed, in others it can be selected by

the user. Usually, windows have various things associated with them that

increase their usefulness.
 Scrollbars are one such attachment, allowing the user to move the

contents of the window up and down, or from side to side. This makes the

window behave as if it were a real window onto a much larger world, where

new information is brought into view by manipulating the scrollbars.
Icons:

 A small picture is used to represent a closed window, and this

representation is known as an icon. By allowing icons, many windows can

be available on the screen at the same time, ready to be expanded to their

full size by clicking on the icon. Shrinking a window to its icon is known as

iconifying the window.
 When a user temporarily does not want to follow a particular thread of

dialog, he can suspend that dialog by iconifying the window containing the

dialog. The icon saves space on the screen and serves as a reminder to the

user that he can subsequently resume the dialog by opening up the

window.
 Icons can also be used to represent other aspects of the system, such as a

waste-basket for throwing unwanted files into, or various disks, programs

or functions that are accessible to the user. Icons can take many forms:

they can be realistic representations of the objects that they stand for, or

they can be highly stylized. They can even be arbitrary symbols, but these

can be difficult for users to interpret.
Pointers:

 The pointer is an important component of the WIMP interface, since the

interaction style required by WIMP relies very much on pointing and

selecting things such as icons. The mouse provides an input device

capable of such tasks, although joysticks and trackballs are other

alternatives.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 The different shapes of cursor are often used to distinguish modes, for

example the normal pointer cursor may be an arrow, but change to cross-

hairs when drawing a line. Cursors are also used to tell the user about

system activity, for example a watch or hour-glass cursor may be displayed

when the system is busy reading a file. Pointer cursors are like icons,

being small bitmap images, but in addition all cursors have a hot-spot, the

location to which they point.
Menus:

 A menu is an interaction technique that is common across many non-

windowing systems as well. A menu presents a choice of operations or

services that can be performed by the system at a given time. The pointing

device is used to indicate the desired option.
 As the pointer moves to the position of a menu item, the item is usually

highlighted (by inverse video, or some similar strategy) to indicate that it is

the potential candidate for selection.
 Selection usually requires some additional user action, such as pressing a

button on the mouse that controls the pointer cursor on the screen or

pressing some special key on the keyboard.
 Menus are inefficient when they have too many items, and so cascading

menus are utilized, in which item selection opens up another menu

adjacent to the item, allowing refinement of the selection. Several layers of

cascading menus can be used. The main menu can be visible to the user

all the time, as a menu bar and submenus can be pulled down or across

from it upon request.
 Menu bars are often placed at the top of the screen or at the top of each

window. Alternatives include menu bars along one side of the screen, or

even placed amongst the windows in the main ‘desktop’ area. Websites use

a variety of menu bar locations, including top, bottom and either side of

the screen. Alternatively, the main menu can be hidden and upon request

it will pop up onto the screen.
 Pull-down menus are dragged down from the title at the top of the screen,

by moving the mouse pointer into the title bar area and pressing the

button. Fall-down menus are similar, except that the menu automatically

appears when the mouse pointer enters the title bar, without the user

having to press the button.
 Some menus are pin-up menus, in that they can be ‘pinned’ to the screen,

staying in place until explicitly asked to go away. Pop-up menus appear

when a particular region of the screen, maybe designated by an icon, is

selected, but they only stay as long as the mouse button is depressed.
 Another approach to menu selection is to arrange the options in a circular

fashion. The pointer appears in the center of the circle, and so there is the

same distance to travel to any of the selections. This has the advantages

that it is easier to select items, since they can each have a larger target

area, and that the selection time for each item is the same, since the

pointer is equidistant from them all.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fig.1.21 : Elements of the WIMP interface

Buttons:

 Buttons are individual and isolated regions within a display that can be

selected by the user to invoke specific operations. These regions are

referred to as buttons because they are purposely made to resemble the

push buttons you would find on a control panel.
 ‘Pushing’ the button invokes a command, the meaning of which is usually

indicated by a textual label or a small icon. Buttons can also be used to

toggle between two states, displaying status information such as whether

the current font is italicized or not in a word processor, or selecting options

on a web form.
 Such toggle buttons can be grouped together to allow a user to select one

feature from a set of mutually exclusive options, such as the size in points

of the current font. These are called radio buttons, since the collection

functions much like the old-fashioned mechanical control buttons on car

radios.
 If a set of options is not mutually exclusive, such as font characteristics

like bold, italics and underlining, then a set of toggle buttons can be used

to indicate the on/off status of the options. This type of collection of

buttons is sometimes referred to as check boxes.
Toolbars:

 Many systems have a collection of small buttons, each with icons, placed

at the top or side of the window and offering commonly used functions.

The function of this toolbar is similar to a menu bar, but as the icons are

smaller than the equivalent text more functions can be simultaneously

displayed.

 Sometimes the content of the toolbar is fixed, but often users can

customize it, either changing which functions are made available, or

choosing which of several predefined toolbars is displayed.
Palettes:

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 In many application programs, interaction can enter one of several modes.

The defining characteristic of modes is that the interpretation of actions,

such as keystrokes or gestures with the mouse, changes as the mode

changes. Problems occur if the user is not aware of the current mode.
 Palettes are a mechanism for making the set of possible modes and the

active mode visible to the user. A palette is usually a collection of icons

that are reminiscent of the purpose of the various modes. An example in a

drawing package would be a collection of icons to indicate the pixel color or

pattern that is used to fill in objects, much like an artist’s palette for paint.
Dialog boxes:

 Dialog boxes are information windows used by the system to bring the

user’s attention to some important information, possibly an error or a

warning used to prevent a possible error. Alternatively, they are used to

invoke a subdialog between user and system for a very specific task that

will normally be embedded within some larger task.
 When the user or system wants to save the file, a dialog box can be used to

allow the user to name the file and indicate where it is to be located within

the filing system. When the save subdialog is complete, the dialog box will

disappear.
 Just as windows are used to separate the different threads of user–system

dialog, so too are dialog boxes used to factor out auxiliary task threads

from the main task dialog.

 INTERACTIVITY

 Interactivity is the defining feature of an interactive system. This can be

seen in many areas of HCI. For example, the recognition rate for speech

recognition is too low to allow transcription from tape, but in an airline

reservation system, so long as the system can reliably recognize yes and no

it can reflect back its understanding of what you said and seek

confirmation.
 Speech-based input is difficult, speech-based interaction easier. Also, in

the area of information visualization the most exciting developments are all

where users can interact with a visualization in real time, changing

parameters and seeing the effect.
 Interactivity is also crucial in determining the ‘feel’ of a WIMP environment.

All WIMP systems appear to have virtually the same elements: windows,

icons, menus, pointers, dialog boxes, buttons, etc.
 The precise behavior of these elements differs both within a single

environment and between environments. For example, we have already

discussed the different behavior of pull-down and fall-down menus. These

look the same, but fall-down menus are more easily invoked by accident

(and not surprisingly the windowing environments that use them have

largely fallen into disuse!).
 Menus are a major difference between the MacOS and Microsoft

Windows environments: in MacOS you have to keep the mouse depressed

through- out menu selection; in Windows you can click on the menu bar

and a pull-down menu appears and remains there until an item is selected

or it is cancelled.

 Older computer systems, the order of interaction was largely determined

by the machine. You did things when the computer was ready. In WIMP

environments, the user takes the initiative, with many options and often

many applications simultaneously available.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 The exceptions to this are pre-emptive parts of the interface, where the

system for various reasons wrests the initiative away from the user,

perhaps because of a problem or because it needs information in order to

continue.
 The major example of this is modal dialog boxes. It is often the case that

when a dialog box appears the application will not allow you to do

anything else until the dialog box has been completed or cancelled. In

some cases this may simply block the application, but you can perform

tasks in other applications. In other cases you can do nothing at all until

the dialog box has been completed.
 There are occasions when modal dialog boxes are necessary, for example

when a major fault has been detected, or for certain kinds of instructional

software. However, the general philosophy of modern systems suggests

that one should minimize the use of pre-emptive elements, allowing the

user maximum flexibility.
 Interactivity is also critical in dealing with errors. Slips and mistakes is a

way to try to prevent these types of errors. The other way to deal with

errors is to make sure that the user or the system is able to tell when

errors have occurred. If users can detect errors then they can correct

them. So, even if errors occur, the interaction as a whole succeeds. This

ability to detect and correct is important both at the small scale of button

presses and keystrokes and also at the large scale.

 PARADIGMS

 Paradigms is
• Predominant theoretical frameworks or scientific world views

– e.g., Aristotelian, Newtonian, Einsteinian (relativistic)

paradigms in physics

• Understanding HCI history is largely about understanding a

series of paradigm shifts

– Not all listed here are necessarily “paradigm” shifts, but

are at least candidates

– History will judge which are true shifts
Paradigms of interaction

 New computing technologies arrive, creating a new perception of the

human computer relationship. We can trace some of these shifts in the

history of interactive technologies.The initial paradigm
 Batch processing

 Time-sharing

 Networking

 Graphical displays

 Microprocessor

 WWW

 Ubiquitous Computing
Time-sharing

• 1940s and 1950s – explosive technological growth
• 1960s – need to channel the power
• J.C.R. Licklider at ARPA
• single computer supporting multiple users

Video Display Units
• more suitable medium than paper
• 1962 – Sutherland's Sketchpad

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• computers for visualizing and manipulating data
• one person's contribution could drastically change the history of

computing
Programming toolkits

• Engelbart at Stanford Research Institute
• 1963 – augmenting man's intellect
• 1968 NLS/Augment system demonstration
• the right programming toolkit provides building blocks to producing

complex interactive systems
Personal computing

• 1970s – Papert's LOGO language for simple graphics programming by

children
• A system is more powerful as it becomes easier to user
• Future of computing in small, powerful machines dedicated to the

individual
• Kay at Xerox PARC – the Dynabook as the ultimate personal computer

Window systems and the WIMP interface
• humans can pursue more than one task at a time
• windows used for dialogue partitioning, to “change the topic”
• 1981 – Xerox Star first commercial windowing system
• windows, icons, menus and pointers now familiar interaction mechanisms

Metaphor
• relating computing to other real-world activity is effective teaching

technique
– LOGO's turtle dragging its tail

– file management on an office desktop

– word processing as typing

– financial analysis on spreadsheets

– virtual reality – user inside the metaphor

• Problems
– some tasks do not fit into a given metaphor

– cultural bias

Direct manipulation
• 1982 – Shneiderman describes appeal of graphically-based interaction

– visibility of objects

– incremental action and rapid feedback

– reversibility encourages exploration

– syntactic correctness of all actions

– replace language with action

– 1984 – Apple Macintosh

• the model-world metaphor
• What You See Is What You Get (WYSIWYG)

Language versus Action
• actions do not always speak louder than words!
• DM – interface replaces underlying system
• language paradigm
• interface as mediator
• interface acts as intelligent agent
• programming by example is both action and language

Hypertext
• 1945 – Vannevar Bush and the memex
• key to success in managing explosion of information

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• mid 1960s – Nelson describes hypertext as non-linear browsing structure
• hypermedia and multimedia
• Nelson's Xanadu project still a dream today

Multimodality
• a mode is a human communication channel
• emphasis on simultaneous use of multiple channels for input and output

Computer Supported Cooperative Work (CSCW)
• CSCW removes bias of single user / single computer system
• Can no longer neglect the social aspects
• Electronic mail is most prominent success

The World Wide Web
• Hypertext, as originally realized, was a closed system
• Simple, universal protocols (e.g. HTTP) and mark-up languages (e.g. HTML)

made publishing and accessing easy
• Critical mass of users lead to a complete transformation of our information

economy.
Agent-based Interfaces

• Original interfaces
– Commands given to computer

– Language-based

• Direct Manipulation/WIMP
– Commands performed on “world” representation

– Action based

• Agents - return to language by instilling proactivity and “intelligence” in

command processor
– Avatars, natural language processing

Ubiquitous Computing “The most profound technologies are those that disappear.”

Mark Weiser, 1991

Late 1980’s: computer was very apparent

How to make it disappear?
– Shrink and embed/distribute it in the physical world

– Design interactions that don’t demand our intention

Sensor-based and Context-aware Interaction

• Humans are good at recognizing the “context” of a situation and reacting

appropriately
• Automatically sensing physical phenomena (e.g., light, temp, location,

identity) becoming easier

Case Studies

1. Automatic Syringe:

The eventual users should be involved in the design process. They have vital

knowledge and will soon find flaws. A mechanical syringe was once being

developed and a prototype was demonstrated to hospital staff. Happily they

quickly noticed the potentially fatal flaw in its interface.

The doses were entered via a numeric keypad: an accidental keypress and

the dose could be out by a factor of 10! The production version had

individual increment/decrement buttons for each digit.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

People are complicated, so you won’t get it right first time. Programming an

interface can be a very difficult and time-consuming Process. So, the result

becomes precious and the builder will want to defend it and minimize

changes. Making early prototypes less precious and easier to throw away is

crucial.

2. Handling the goods

E-commerce has become very successful in some areas of sales, such as

travel services, books and CDs, and food. However, in some retail areas, such

as clothes shopping, e-commerce has been less successful. Why?

When buying train and airline tickets and, to some extent, books and food,

the experience of shopping is less important than the convenience. So, as

long as we know what we want, we are happy to shop online. With clothes,

the experience of shopping is far more important. We need to be able to

handle the goods, feel the texture of the material, check the weight to

test quality. Even if we know that something will fit us we still want to be

able to handle it before buying.

Research into haptic interaction is looking at ways of solving this problem.

By using special force feedback and tactile hardware, users are able to feel

surfaces and shape. For example, a demonstration environment called “TouchCity” allows people to walk around a virtual shopping mall, pick up

products and feel their texture and weight. A key problem with the

commercial use of such an application, however, is that the haptic experience

requires expensive hardware not yet available to the average e-shopper.

3. Cashing in

Early automatic teller machines (ATMs) gave the customer money before

returning their bank card. On receiving the money the customer would

reach closure and hence often forget to take the card. when we complete some

part of a task , our minds have a tendency to flush short-term memory in

order to get on with the next job.

Modern ATMs design changed and it returns the card first! .

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

4. 7 ± 2 revisited

When we looked at short-term memory, we noted the general rule that

people can hold 7 ± 2 items or chunks of information in short-term memory.

It is a principle that people tend to remember but it can be misapplied. For

example, it is often suggested that this means that lists, menus and other

groups of items should be designed to be no more than 7 items long. But

use of menus and lists of course has little to do with short-term memory –

they are available in the environment as cues and so do not need to be

remembered.

On the other hand the 7 ± 2 rule would apply in command line interfaces.

Imagine a scenario where a UNIX user looks up a command in the manual.

Perhaps the command has a number of parameters of options, to be

applied in a particular order, and it is going to be applied to several files that

have long path names. The user then has to hold the command, its

parameters and the file path names in short term memory while he types

them in. Here we could say that the task may cause problems if the number

of items or chunks in the command line string is more than 7.

5. Memorable or secure?

As online activities become more widespread, people are having to

remember more and more access information, such as passwords and

security checks. The average active internet user may have separate

passwords and user names for several email accounts, mailing lists, e-

shopping sites, e-banking, online auctions and more! Remembering these

passwords is not easy. From a security perspective it is important that

passwords are random. Words and names are very easy to crack, hence the

recommendation that passwords are frequently changed and constructed

from random strings of letters and numbers. But in reality these are the

hardest things for people to commit to memory. Hence many people will use

the same password for all their online activities and will choose a word or

a name that is easy for them to remember, in spite of the obviously increased

security risks. Security here is in conflict with memorability!

A solution to this is to construct a nonsense password out of letters or

numbers that will have meaning to you but will not make up a word in a

dictionary (e.g. initials of names, numbers from significant dates or

postcodes, and so on). Then what is remembered is the meaningful rule for

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

constructing the password, and not a meaningless string of alphanumeric

characters.

6. Improve your memory

Many people can perform excellence in memory, where we have exercises
like recalling the sequence of cards in a pack , or recounting π to 1000

decimal places.

There are exercises to improve memory abilities , one example discussed

below,

Look at the list below of numbers and associated words:
1 bun 6 sticks

2 shoe 7 heaven

3 tree 8 gate

4 door 9 wine

5 hive 10 hen

Notice that the words sound similar to the numbers. Now think about the

words one at a time and visualize them, in as much detail as possible. For

example, for ‘1’, think of a large, sticky iced bun, the base spiralling round

and round, with raisins in it, covered in sweet, white, gooey icing. Now do the

rest, using as much visualization as you can muster: imagine how things

would look, smell, taste, sound, and so on.

This is your reference list, and you need to know it off by heart.

Having learnt it, look at a pile of at least a dozen odd items collected

together by a colleague. The task is to look at the collection of objects for only

30 seconds, and then list as many as possible without making a mistake or

viewing the collection again. Most people can manage between five and eight

items, if they do not know any memory-enhancing techniques.

7. Chess: of human and artificial intelligence

A few years ago, Deep Blue, a chess-playing computer, beat Gary

Kasparov, the world’s top Grand Master, in a full tournament. This was the long-

awaited breakthrough for the artificial intelligence (AI) community, who

have traditionally seen chess as the ultimate test of their art.

However, despite the fact that computer chess programs can play at Grand

Master level against human players, this does not mean they play in the same

way. For each move played, Deep Blue investigated many millions of

alternative moves and counter-moves. In contrast, a human chess player will

only consider a few dozen. But, if the human player is good, these will usually

be the right few dozen.

The ability to spot patterns allows a human to address a problem with far

less effort than a brute force approach. In chess, the number of moves is

such that finally brute force, applied fast enough, has overcome human

pattern-matching skill. Many models of the mental processes have been

heavily influenced by computation. It is worth remembering that although

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

there are similarities, computer ‘intelligence’ is very different from that of

humans.

8. Feeling the road

In the BMW 7 Series you will find a single haptic feedback control for many

of the functions that would normally have dedicated controls. It uses

technology developed by Immersion Corporation who are also behind the force

feedback found in many medical and entertainment haptic devices. The iDrive

control slides backwards and forwards and rotates to give access to various

menus and lists of options. The haptic feedback allows the user to feel ‘clicks’ appropriate to the number of items in the various menu lists

9. Smart-Its – making using sensors easy

Building systems with physical sensors is no easy task. You need a soldering

iron, plenty of experience in electronics, and even more patience. Although

some issues are unique to each sensor or project, many of the basic building

blocks are similar – connecting simple microprocessors to memory and

networks, connecting various standard sensors such as temperature, tilt, etc.

The Smart-Its project has made this job easier by creating a collection of

components and an architecture for adding new sensors. There are a number

of basic Smart-It boards – the photo on the left shows a microprocessor with

wireless connectivity. Onto these boards are plugged a variety of modules – in

the center is a sensor board including temperature and light, and on the right

is a power controller.

10. Video recorder

A simple example of programming a VCR from a remote control shows that
all four translations in the interaction cycle can affect the overall interaction.

Articulatory problem Ineffective interaction is indicated by the user not

being sure the VCR is set to record properly. This could be because the user

has pressed the keys on the remote control unit in the wrong order.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

performance translation the VCR is able to record on any channel but

the remote control lacks the ability to select channels, indicating a coverage

problem

presentation problem It may be the case that the VCR display panel does

not indicate that the program has been set,

observational error maybe the user does not interpret the feedback

properly.

Any one or more of these deficiencies would give rise to ineffective interaction.

11. Industrial interfaces

Industrial interfaces raise some additional design issues rarely encountered

in the office.

Glass interfaces vs. dials and knobs

The traditional machine interface consists of dials and knobs directly wired

or piped to the equipment. Increasingly, some or all of the controls are

replaced with a glass interface, a computer screen through which the

equipment is monitored and controlled. Many of the issues are similar for the

two kinds of interface, but glass interfaces do have some special advantages

and problems. For a complex system, a glass interface can be both cheaper

and more flexible, and it is easy to show the same information in multiple

forms as shown below

For example, a data value might be given both in a precise numeric field

and also in a quick to assimilate graphical form.

Indirect manipulation

The phrase ‘direct manipulation’ dominates office system design as in fig
3.5.

In a direct manipulation system, the user interacts with an artificial world

inside the computer (for example, the electronic desktop). In contrast, an

industrial interface is merely an intermediary between the operator and the

real world. One implication of this indirectness is that the interface must

provide feedback at two levels
Aru

na
i E

ng
in

ee
rin

g
Col

le
ge

As in Figure 3.6 , At one level, the user must receive immediate feedback,

generated by the interface, that keystrokes and other actions have been

received. In addition, the user’s actions will have some effect on the

equipment controlled by the interface and adequate monitoring must be

provided for this.

The indirectness also causes problems with simple monitoring tasks.

Delays due to periodic sampling, slow communication and digital processing

often mean that the data displayed are somewhat out of date. If the operator

is not aware of these delays, diagnoses of system state may be wrong. These

problems are compounded if the interface produces summary information

displays. If the data comprising such a display are of different timeliness the

result may be misleading.

12. Mixing styles

The UNIX windowing environments are interesting as the contents of many

of the windows are often themselves simply command line or character-based

programs . In fact, this mixing of interface styles in the same system is quite

common, especially where older legacy systems are used at the same time as

more modern applications.

It can be a problem if users attempt to use commands and methods

suitable for one environment in another.

On the Apple Macintosh, HyperCard uses a point-and-click style. However,

HyperCard stack buttons look very like Macintosh folders. If you double click

on them, as you would to open a folder, your two mouse clicks are treated as

separate actions. The first click opens the stack , but the second is then

interpreted in the context of the newly opened stack, behaving in an

apparently arbitrary fashion! This is an example of the importance of

consistency in the interface.

13. Bank managers don’t type . . .

The safe in most banks is operated by at least two keys, held by different

employees of the bank. This makes it difficult for a bank robber to obtain

both keys, and also protects the bank against light-fingered managers! ATMs

contain a lot of cash and so need to be protected by similar

measures. In one bank, which shall remain nameless, the ATM had an

electronic locking device. The machine could not be opened to replenish or

remove cash until a long key sequence had been entered. In order to preserve

security, the bank gave half the sequence to one manager and half to another,

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

so both managers had to be present in order to open the ATM. However, these

were traditional bank managers who were not used to typing – that was a job

for a secretary! So they each gave their part of the key sequence to a secretary

to type in when they wanted to gain entry to the ATM. In fact, they both gave

their respective parts of the key sequence to the same secretary. Happily the

secretary was honest.

but the moral is you cannot ignore social expectations and

relationships when designing any sort of computer system, however

simple it may be.

14. Half the picture?

When systems are not designed to match the way people actually work,

then users end up having to do ‘work arounds’. Integrated student records

systems are becoming popular in universities in the UK. They bring the

benefits of integrating examination systems with enrolment and finance

systems so all data can be maintained together and cross-checked. All very

useful and time saving – in theory.

However, one commonly used system only holds a single overall mark per

module for each student, whereas many modules on UK courses have

multiple elements of assessment. Knowing a student’s mark on each part of

the assessment is often useful to academics making decisions in examination

boards as it provides a more detailed picture of performance.

In many cases staff are therefore supplementing the official records system

with their own unofficial spreadsheets to provide this information – making

additional work for staff and increased opportunity for error.

15. Worked exercise (Unit –II)

Discuss the ways in which a full-page word processor is or is not a direct

manipulation interface for editing a document using Shneiderman’s criteria.

What features of a modern word processor break the metaphor of composition

with pen (or typewriter) and paper?

Answer We will answer the first point by evaluating the word processor
relative to the criteria for direct manipulation given by Shneiderman.

Visibility of the objects of interest

The most important objects of interest in a word processor are the

words themselves. Indeed, the visibility of the text on a continual basis was

one of the major usability advances in moving from line-oriented to display-

oriented editors.

Depending on the user’s application, there may be other objects of

interest in word processing that may or may not be visible. For example, are

the margins for the text on screen similar to the ones which would eventually

be printed? Is the spacing within a line and the line breaks similar? Are the

different fonts and formatting characteristics of the text visible (without

altering the spacing)? Expressed in this way, we can see the visibility criterion

for direct manipulation as very similar to the criteria for a WYSIWYG

interface.

Incremental action at the interface with rapid feedback on all actions

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

We expect from a word processor that characters appear in the text as we type

them in at the keyboard, with little delay. If we are inserting text on a page, we

might also expect that the format of the page adjust immediately to

accommodate the new changes.

Various word processors do this reformatting immediately, whereas

with others changes in page breaks may take some time to be reflected. One

of the other important actions which requires incremental and rapid feedback

is movement of the window using the scroll button. If there is a significant

delay between the input command to move the window down and the actual

movement of the window on screen, it is quite possible that the user will ‘overshoot’ the target when using the scrollbar button.

Reversibility of all actions, so that users are encouraged to explore without

severe penalties

Single-step undo commands in most word processors allow the user to

recover from the last action performed. One problem with this is that the user

must recognize the error before doing any other action. More sophisticated

undo facilities allow the user to retrace back more than one command at a

time. The kind of exploration this reversibility provides in a word processor is

best evidenced with the ease of experimentation that is now available for

formatting changes in a document (font types and sizes and

margin changes).

One problem with the ease of exploration is that emphasis may move

to the look of a document rather than what the text actually says (style over

content).

Syntactic correctness of all actions, so that every user action is

a legal operation

WYSIWYG word processors usually provide menus and buttons which the

user uses to articulate many commands. These interaction mechanisms serve

to constrain the input language to allow only legal input from the user.

Document markup systems, such as HTML and LaTeX, force the user to

insert textual commands (which may be erroneously entered by the user) to

achieve desired formatting effects.

Replacement of complex command languages with actions to manipulate

directly the visible objects

The case for word processors is similar to that described above for syntactic

correctness.

In addition, operations on portions of text are achieved many times by

allowing the user to highlight the text directly with a mouse (or arrow keys).

Subsequent action on that text, such as moving it or copying it to somewhere

else, can then be achieved more directly by allowing the user to ‘drag’ the

selected text via the mouse to its new location.

To answer the second question concerning the drawback of the pen (or

typewriter) metaphor for word processing, compares the functionality of the

space key in typewriting versus word processing. For a typewriter, the space

key is passive; it merely moves the insertion point one space to the right. In a

word processor, the space key is active, as it inserts a character (the space

character) into the document. The functionality of the typewriter space key is

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

produced by the movement keys for the word processor (typically an arrow

key pointing right to move forward within one line). In fact, much of

the functionality that we have come to expect of a word processor is radically

different from that expected of a typewriter, so much so that the typewriter as

a metaphor for word processing is not all that instructive. In practice, modern

typewriters have begun to borrow from word processors when defining their

functionality

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

understand your materials.

ARUNAI ENGINEERING COLLEGE DEPARTMENT OF

CSE

IV YEAR - VII SEMESTER

CS8079 – HUMAN COMPUTER INTERACTION (R2017)

UNIT 2 - DESIGN & SOFTWARE PROCESS

Interactive Design basics – process – scenarios – navigation – screen design –

Iteration and prototyping. HCI in software process – software life cycle – usability

engineering – Prototyping in practice – design rationale. Design rules – principles,

standards, guidelines, rules. Evaluation Techniques – Universal Design.

 INTERACTIVE DESIGN BASICS

A simple definition of design is: achieving goals within constraints

 goals - purpose
– who is it for, why do they want it

• constraints

– materials, platforms used

• trade-offs

Choosing which goals or constraints can be relaxed so that others can be met.

For example, we might find that an eye-mounted video display, a bit like those

used in virtual reality, would give the most stable image while walking along.

However, this would not allow you to show friends, and might be dangerous if you

were watching a gripping part of the movie as you crossed the road.

The golden rule of design

 The designs we produce may be different, but often the raw materials are

the same. This leads us to the golden rule of design:

 For Human–Computer Interaction the obvious materials are the human

and the computer. That is we must:
o understand computers – limitations, capacities, tools, platforms

o understand people – psychological, social aspects, human error.

To err is human

 People make mistakes. This is not ‘human error’, an excuse to hide behind

in accident reports, it is human nature. We are not infallible consistent

creatures, but often make slips, errors and omissions.
 If you design using a physical material, you need to understand how and

where failures would occur and strengthen the construction, build in safety

features or redundancy. Similarly, if you treat the human with as much

consideration as a piece of steel or concrete, it is obvious that you need to

1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

understand the way human failures occur and build the rest of the

interface accordingly

The central message – the user

This is the core of interaction design: put the user first, keep the user in the

center and remember the user at the end.

 THE PROCESS OF DESIGN

 A system has been designed and built, and only when it proves unusable

do they think to ask how to do it right! In other companies usability is seen

as equivalent to testing – checking whether people can use it and fixing

problems, rather than making sure they can from the beginning. Simplified

view of four main phases plus an iteration loop, focused on the design of

interaction.
a. Requirements: what is wanted The first stage is establishing what

exactly is needed. As a precursor to this it is usually necessary to find

out what is currently happening. There are a number of techniques used

for this in HCI: interviewing people, videotaping them, looking at the

documents and objects that they work with, observing them directly

b. Analysis: The results of observation and interview need to be ordered in

some way to bring out key issues and communicate with later stages of

design.

c. Design: there is a central stage when you move from what you want, to

how to do it. There are numerous rules, guidelines and design principles

that can be used to help.

d. Iteration and prototyping: Humans are complex and we cannot expect

to get designs right first time. We therefore need to evaluate a design to

see how well it is working and where there can be improvements

e. Implementation and deployment: Finally, when we are happy with our

design, we need to create it and deploy it. This will involve writing code,

perhaps making hardware, writing documentation and manuals –

everything that goes into a real system that can be given to others

Fig 2.1: Interface Design Process

 USER FOCUS

As we’ve already said, the start of any interaction design exercise must be

the intended user or users. This is often stated as:

2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Know your user

 The start of any interaction design exercise must be the intended user or

users. This is often stated as: know your users. So, how do you get to know

your users?

 Who are they?: The first thing to find out is who your users are.

Are they young or old, experienced computer users or novices?

 Probably not like you!: When designing a system it is easy to

design it as if you were the main user: you assume your own interests

and abilities. So often you hear a designer say ‘but it’s obvious what

to do’. It may be obvious for her! This is not helped by the fact that

many software houses are primarily filled with male developers

 Talk to them: It is hard to get yourself inside someone else’s head,

so the best thing is usually to ask them. This can take many forms:

structured interviews about their job or life, open-ended discussions,

or bringing the potential users fully into the design process. The last

of these is called participatory design

 Watch them: A professional in any field is very practiced and can

do things in the domain. An academic in the same field may not be

Persona

able to do things, but she knows about the things in the domain.

These are different kinds of knowledge and skill.

• One method that has been quite successful in helping design teams

produce user focussed designs is the persona.

• the aspect of someone's character that is presented to or perceived by

others

• description of an ‘example’ user

– not necessarily a real person

• use as substitute user

example persona

Betty is 37 years old, She has been Warehouse Manager for five years and

worked for Simpkins Brothers Engineering for twelve years. She didn’t go to

university, but has studied in her evenings for a business diploma. She has two

children aged 15 and 7 and does not like to work late. She did part of an

introductory in-house computer course some years ago, but it was interrupted

when she was promoted and could no longer afford to take the time. Her vision is

perfect, but her right-hand movement is slightly restricted following an industrial

accident 3 years ago. She is enthusiastic about her work and is happy to

delegate responsibility and take suggestions from her staff. However, she does

feel threatened by the introduction of yet another new computer system (the third

in her time at SBE).

Cultural probes

Cultural probes are small packs of items designed to provoke and record

comments in various ways. They are given to people to take away and to open

and use in their own environment. For example, one probe pack for the domestic

environment includes a glass with a paper sleeve

3

know your user

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• direct observation sometimes hard

• in the home

• psychiatric patients, …

• probe packs are introduced with items to prompt responses

• e.g. glass to listen at wall, camera, postcard

• given to people to open in their own environment

they record what is meaningful to them

• used to …

– inform interviews, prompt ideas, enculture designers

 SCENARIOS

 Scenarios are stories for design: rich stories of interaction. They are

perhaps the simplest design representation, but one of the most flexible

and powerful. This gives answers for the following questions
o what will users want to do?

o step-by-step walkthrough

 what can they see (sketches, screen shots)

 what do they do (keyboard, mouse etc.)

 what are they thinking?

o use and reuse throughout design

scenario – movie player

Brian would like to see the new film “Moments of Significance” and wants to

invite Alison, but he knows she doesn’t like “arty” films. He decides to take a look

at it to see if she would like it and so connects to one of the movie sharing

networks. He uses his work machine as it has a higher bandwidth connection,

but feels a bit guilty. He knows he will be getting an illegal copy of the film, but

decides it is OK as he is intending to go to the cinema to watch it. After it

downloads to his machine he takes out his new personal movie player. He

presses the ‘menu’ button and on the small LCD screen he scrolls using the

arrow keys to ‘bluetooth connect’ and presses the select button. On his computer

the movie download program now has an icon showing that it has recognised a

compatible device and he drags the icon of the film over the icon for the player.

4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

On the player the LCD screen says “downloading now”, a percent done indicator

and small whirling icon. … … …

Scenarios can be used to:

i) Communicate with others – other designers, clients or users. It is easy to

misunderstand each other whilst discussing abstract ideas. Concrete

examples of use are far easier to share.

ii) Validate other models A detailed scenario can be ‘played’ against various

more formal representations such as task models or dialog

and navigation models.

iii) Express dynamics Individual screen shots and pictures give you a sense

of what a system would look like, but not how it behaves. This linearity has

both positive and negative points:

iv) Time is linear Our lives are linear as we live in time and so we find it

easier to understand simple linear narratives. We are natural storytellers and

story listeners.

v) But no alternatives Real interactions have choices, some made by people,

some by systems. A simple scenario does not show these alternative paths. In

particular, it is easy to miss the unintended things a person may do.

 NAVIGATION

 The object of design is not just a computer system or device, but the socio-

technical intervention as a whole. However, as design progresses we come

to a point where we do need to consider these most tangible outputs of

design.
 Imagine yourself using a word processor. You will be doing this in some

particular social and physical setting, for a purpose. But now we are

focusing on the computer system itself. You interact at several levels:

a. Widgets The appropriate choice of widgets and wording in menus and

buttons will help you know how to use them for a particular selection or

action.

b. Screens or windows You need to find things on the screen, understand the

logical grouping of buttons.

c. Navigation within the application You need to be able to understand what

will happen when a button is pressed, to understand where you are in the

interaction.

d. Environment The word processor has to read documents from disk,

perhaps some are on remote networks. You swap between applications,

perhaps cut and paste.Here we will consider two main kinds of issue:

5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 local structure– looking from one screen or page out

 global structure– structure of site, movement between screens.
 Local Structure

 Much of interaction involves goal-seeking behavior. Users have some idea of

what they are after and a partial model of the system. In an ideal world if

users had perfect knowledge of what they wanted and how the system

worked they could simply take the shortest path to what they want,

pressing all the right buttons and links.

 The important thing is not so much that they take the most efficient route,

but that at each point in the interaction they can make some assessment of

whether they are getting closer to their (often partially formed) goal.

 To do this goal seeking, each state of the system or each screen needs to

give the user enough knowledge of what to do to get closer to their goal. To

get you started, here are four things to look for when looking at a single

web page, screen or state of a device.

 knowing where you are

 knowing what you can do

 knowing where you are going – or what will happen

 knowing where you’ve been – or what you’ve done.

Fig.2.2 Local Structure

Four golden rules

• knowing where you are

• knowing what you can do

• knowing where you are going

– or what will happen

• knowing where you’ve been

– or what you’ve done

Where you are

navigation system that shows a user's location in a site or web app.

6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

beware the big button trap

Public information systems often have touch screens and so have large buttons.

Watch someone using one of these and see how often they go to the wrong screen

and have to use ‘back’ or ‘home’ to try again. If you look more closely you will find

that each button has only one or two words on it giving the title of the next

screen, and possibly some sort of icon

Modes

• lock to prevent accidental use …

– remove lock - ‘c’ + ‘yes’ to confirm

– frequent practiced action

• if lock forgotten

– in pocket ‘yes’ gets pressed

– goes to phone book

– in phone book … ‘c’ – delete entry ‘yes’ – confirm … oops !

 Global Structure – Hierarchical Organization

 This is the way the various screens, pages or device states link to one

another. One way to organize a system is in some form of hierarchy. This is

typically organized along functional boundaries (that is, different kinds of

things), but may be organized by roles, user type, or some more esoteric

breakdown such as modules in an educational system.

 The hierarchy links screens, pages or states in logical groupings. For

example, Figure gives a high-level breakdown of some sort of messaging

system. This sort of hierarchy can be used purely to help during design,

but can also be used to structure the actual system.

 Any sort of information structuring is difficult, but there is evidence that

people find hierarchies simpler than most. One of the difficulties with

organizing information or system functionality is that different people have

different internal structures for their knowledge, and may use different

vocabulary.

7

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fig 2.3: Application Functional Hierarchy

 Global structure – dialog

 A pure information system or static website it may be sufficient to have a

fully hierarchical structure, perhaps with next/previous links between

items in the same group.

 A system that involves doing things, constantly drilling down from one part

of the hierarchy to another is very frustrating. Usually there are ways of

getting more quickly from place to place.

 These cross-links in hierarchies, when you get down to detailed

interactions, such as editing or deleting a record, there is obviously a flow

of screens and commands that is not about hierarchy. In HCI the word ‘dialog’ is used to refer to this pattern of interactions between the user and

a system.Consider the following fragment from a marriage service:

Minister:Do you name take this woman . . .

Man:I do

Minister:Do you name take this man . . .

Woman:I do

Minister:I now pronounce you man and wife

 Notice this describes the general flow of the service, but has blanks for the

names of the bride and groom. So it gives the pattern of the interaction

between the parties, but is instantiated differently for each service. Human–

computer dialog is just the same; there are overall patterns of movement

between main states of a device or windows in a PC application, but the

details differ each time it is run.

 Recall that scenarios gave just one path through the system. To describe a

full system we need to take into account different paths through a system

and loops where the system returns to the same screen. A simple way is to

use a network diagram showing the principal states or screens. The linked

together with arrows. This can:

 show what leads to what

 show what happens when

 include branches and loops

 be more task oriented than a hierarchy.

8

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fig 2.4: Network of screens/states

 It shows a network diagram illustrating the main screens for adding or

deleting a user from the messaging system in Figure . The arrows show the

general flow between the states. We can see that from the main screen we

can get to either the ‘remove user’ screen or the ‘add user’ screen.

 This is presumably by selecting buttons or links, but the way these are

shown we leave to detailed screen design. We can also see that from the ‘add user’ screen the system always returns to the main screen, but after

the ‘remove user’ screen there is a further confirmation screen.

 Wider still

 Donne said ‘No man is an Iland, intire of it selfe’. This is also true of the

things we design. Each sits amongst other devices and applications and

this in turn has to be reflected within our design. This has several

implications:

a. Style issues We should normally conform to platform standards, such as

positions for menus on a PC application, to ensure consistency between

applications. For example, on our proposed personal movie player we should

make use of standard fast-forward, play and pause icons.

b. Functional issues On a PC application we need to be able to interact with

files, read standard formats and be able to handle cut and paste.

c. Navigation issues We may need to support linkages between applications, for

example allowing the embedding of data from one application in another, or, in a

mail system, being able to double click an attachment icon and have the right

application launched for the attachment.

 SCREEN DESIGN AND LAYOUT

 A single screen image often has to present information clearly and also act

as the locus for interacting with the system. This is a complex area,

involving some of the psychological understanding as well as aspects of

graphical design. The basic principles at the screen level reflect those in

other areas of interaction design:
 Ask: What is the user doing?
 Think What information is required? What comparisons may the

user need to make? In what order are things likely to be needed?

 Design Form follows function: let the required interactions drive the

layout.

 Tools for layout

 We have a number of visual tools available to help us suggest to the user

appropriate ways to read and interact with a screen or device.

9

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Available tools

o Grouping of items

o Order of items

o Decoration - fonts, boxes etc.

o Alignment of items

o White space between items

a. Grouping and structure

 If things logically belong together, then we should normally physically

group them together. This may involve multiple levels of structure. For

example, in Figure we can see a potential design for an ordering screen.

 Notice how the details for billing and delivery are grouped together

spatially; also note how they are separated from the list of items actually

ordered by a line as well as spatially.

Fig 2.5: Grouping Related Items in an order screen

This reflects the following logical structure:

Order:

Administrative information

Billing details

Delivery details

Order information

Order line 1

Order line 2

...
b. Order of groups and items

 If we look at above Figure again we can see that the screen seems to

naturally suggest reading or filling in the billing details first, followed by the

delivery details, followed by the individual order items. Is this the right

order?

 In general we need to think: what is the natural order for the user? This

should normally match the order on screen. For data entry forms or dial

c. Decoration

 We can see how the design uses boxes and a separating line to make the

grouping clear. Other decorative features like font style, and text or

background colors can be used to emphasize groupings. See how the

10

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

buttons differ in using the foreground and back-ground colors (green and

gold) so that groups are associated with one another.

 use boxes to group logical items

 use fonts for emphasis, headings

d. Alignment

Fig 2.6: Looking up surnames

Alignment - numbers

Difficult to identify the biggest number because of un aligned numbers.

 Alignment of lists is also very important. For users who read text from left

to right, lists of text items should normally be aligned to the left. Numbers,

however, should normally be aligned to the right (for integers) or at the

decimal point. This is because the shape of the column then gives an

11

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

indication of magnitude – a sort of mini histogram. Items like names are

particularly difficult. Multiple column lists require more care.

 Text columns have to be wide enough for the largest item, which means you

can get large gaps between columns shows an example of this (i), and you

can see how hard this makes it for your eye to scan across the rows. There

are several visual ways to deal with this including: (ii)‘leaders’ – lines of dots

linking the columns; and (iii) using soft tone grays or colors behind rows or

columns. This is also a time when it may be worth breaking other

alignment rules, perhaps right aligning some text items as in (iv). This last

alternative might be a good solution if you were frequently scanning the

numbers and only occasionally scanning the names of items, but not if you

needed frequently to look up names

Fig 2.7: Managing Multiple Columns

e. White space

 The space between the letters is called the counter. In painting this is also

important and artists may focus as much on the space between the

foreground elements such as figures and buildings as on the elements

themselves. Often the shape of the counter is the most important part of

the composition of a painting and in calligraphy and typography the

balance of a word is determined by giving an even weight to the counters.

 If one ignores the ‘content’ of a screen and instead concentrates on the

counter – the space between the elements – one can get an overall feel for

the layout. If elements that are supposed to be related look separate when

you focus on the counter, then something is wrong. Screwing up your eyes

so that the screen becomes slightly blurred is another good technique for

taking your attention away from the content and looking instead at the

broad structure.

 Space can be used in several ways. Some of these are shown in Figure The

colored areas represent continuous areas of text or graphics. (i) We can see

space used to separate blocks as you often see in gaps between paragraphs

or space between sections in a report. Space can also be used to create

more complex structures.

12

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fig 2.8: Using white space in layout

(ii) There are clearly four main areas: ABC, D, E and F. Within one of these

are three further areas, A, B and C, which themselves are grouped as A on

its own, followed by B and C together.

(iii) We can see space used to highlight. This is a technique used frequently

in magazines to highlight a quote or graphic.

Example : physical controls in Microwave control panel

13

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 User Action And Control

a. Entering information

 Some of the most complicated and difficult screen layouts are found in forms-

based interfaces and dialog boxes. In each case the screen consists not only

of information presented to the user, but also of places for the user to enter

information or select options. Actually, many of the same layout issues for

data presentation also apply to fields for data entry.

 Alignment is still important. It is especially common to see the text entry

boxes aligned in a jagged fashion because the field names are of different

lengths. This is an occasion where right-justified text for the field labels

may be best or, alternatively, in a graphical interface a smaller font can be

used for field labels and the labels placed just above and to the left of the

field they refer to.

b. Knowing what to do

 Some elements of a screen are passive, simply giving you information;

others are active, expecting you to fill them in, or do something to them. It

is often not even clear which elements are active, let alone what the effect is

likely to be when you interact with them. This is one of the reasons for

platform and company style guides.

14

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 If everyone designs buttons to look the same and menus to look the same,

then users will be able to recognize them when they see them.

c. Affordances

 These are especially difficult problems in multimedia applications where

one may deliberately adopt a non-standard and avant-garde style. The

psychological idea of affordance says that things may suggest by their

shape and other attributes what you can do to them: a handle affords

pulling or lifting; a button affords pushing. These affordances can be used

when designing novel interaction elements. One can either mimic real-

world objects directly, or try to emulate the critical aspects of those objects.

 Appropriate appearance

a. Presenting information

 The way of presenting information on screen depends on the kind of

information: text, numbers, maps, tables; on the technology available to

present it: character display, line drawing, graphics, virtual reality; and,

most important of all, on the purpose for which it is being used.

 For more complex numerical data, we may be considering scatter graphs,

histograms or 3D surfaces; for hierarchical structures, we may consider

outlines or organization diagrams. But, no matter how complex the data,

the principle of matching presentation to purpose remains.

 We have an advantage when presenting information in an interactive

system in that it is easy to allow the user to choose among several

representations, thus making it possible to achieve different goals.

Alphabetic file listing.

b. Aesthetics and utility

 The conflict between aesthetics and utility can also be seen in many ‘well

designed’ posters and multimedia systems. In particular, the backdrop

behind text must have low contrast in order to leave the text readable; this

is often not the case and graphic designers may include excessively

complex and strong backgrounds because they look good.

c. Making a mess of it: color and 3D

 One of the worst features in many interfaces is their appalling use of color.

This is partly because many monitors only support a limited range of

primary colors and partly because, as with the overuse of different fonts in

word processors, the designer got carried away.

15

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Aside from issues of good taste, an overuse of color can be distracting that

a significant proportion of the population is color blind, may mean that

parts of the text are literally invisible to some users. In general, color

should be used sparingly and not relied upon to give information, but

rather to reinforce other attributes.

 The increasing use of 3D effects in interfaces has posed a whole new set of

problems for text and numerical information. Whilst excellent for

presenting physical information and certain sorts of graphs, text presented

in perspective can be very difficult to read and the all too common 3D pie

chart is all but useless.

d. Localization / internationalization

 If you are working in a different country, you might see a document being

word processed where the text of the document and the file names are in

the local language, but all the menus and instructions are still in English.

The process of making software suitable for different languages and

cultures is called localization or internationalization.

 It is clear that words have to change and many interface construction

toolkits make this easy by using resources. When the program uses names

of menu items, error messages and other text, it does not use the text

directly, but instead uses a resource identifier, usually simply a number.

 ITERATION AND PROTOTYPING

 This often starts early on with paper designs and storyboards being

demonstrated to colleagues and potential users. Any of these prototypes,

whether paper-based or running software, can then be evaluated to see

whether they are acceptable and where there is room for improvement. This

sort of evaluation, intended to improve designs, is called formative

evaluation.
 This is in contrast to summative evaluation, which is performed at the end

to verify whether the product is good enough. The other main approach is

to involve real users either in a controlled experimental setting, or ‘in the

wild’ – a real-use environment.
 The result of evaluating the system will usually be a list of faults or

problems and this is followed by a redesign exercise, which is then

prototyped, evaluated.
 The Figure shows this process. The end point is when there are no more

problems that can economically be fixed. So iteration and prototyping are

the universally accepted ‘best practice’ approach for interaction design.

However, there are some major pitfalls of prototyping, rarely acknowledged

in the literature. Prototyping is an example of what is known as a hill-

climbing approach.

Fig 2.9: Role of Prototyping

16

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 From this we can see that there are two things you need in order for

prototyping methods to work:
1. To understand what is wrong and how to improve.

2. A good start point.

 The first is obvious; you cannot iterate the design unless you know what

must be done to improve it. The second, however, is needed to avoid local

maxima. If you wanted to climb as high as you could, you would probably

book a plane to the Himalayas, not Cambridgeshire..
 A really good designer might guess a good initial design based on

experience and judgment. However, the complexity of interaction design

problems means that this insight is hard. Another approach, very common

in graphical design, is to have several initial design ideas and drop them

one by one as they are developed further.
 pitfalls of prototyping

 1. need a good start point

 2. need to understand what is wrong

 HCI IN SOFTWARE PROCESS

 The design goal is to provide reliable techniques for the repeated design of

successful and usable interactive systems. It is therefore necessary that we

go beyond the exercise of identifying paradigms and examine the process of

interactive system design.
 Within computer science there is already a large sub discipline that

addresses the management and technical issues of the development of

software systems – called software engineering. One of the cornerstones of

software engineering is the software life cycle, which describes the activities

that take place from the initial concept formation for a software system up

until its eventual phasing out and replacement.
 The important point that we would like to draw out is that issues from HCI

affecting the usability of interactive systems are relevant within all the

activities of the software life cycle. Therefore, software engineering for

interactive system design is not simply a matter of adding one more activity

that slots in nicely with the existing activities in the life cycle. Rather, it

involves techniques that span the entire life cycle.

17

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 SOFTWARE LIFE CYCLE

 A fundamental feature of software engineering, therefore, is that it provides

the structure for applying techniques to develop software systems. The

software life cycle is an attempt to identify the activities that occur in

software development. These activities must then be ordered in time in any

development project and appropriate techniques must be adopted to carry

them through.
 In the development of a software product, we consider two main parties: the

customer who requires the use of the product and the designer who must

provide the product. Typically, the customer and the designer are groups of

people and some people can be both customer and designer. It is often

important to distinguish between the customer who is the client of the

designing company and the customer who is the eventual user of the

system.
 These two roles of customer can be played by different people. The group of

people who negotiate the features of the intended system with the designer

may never be actual users of the system. This is often particularly true of

web applications.

 Activities in the life cycle

 The graphical representation is reminiscent of a waterfall, in which each

activity naturally leads into the next. The analogy of the waterfall is not

completely faithful to the real relationship between these activities, but it

provides a good starting point.

Requirements specification

 It involves eliciting information from the customer about the work

environment, or domain, in which the final product will function. Aspects of

the work domain include not only the particular functions that the software

product must perform but also details about the environment in which it

must operate, such as the people whom it will potentially affect and the

new product’s relationship to any other products which it is updating or

replacing. It begins at the start of product development.

 Though the requirements are from the customer’s perspective, if they are to

be met by the software product they must be formulated in a language

suitable for implementation.

 Requirements are usually initially expressed in the native language of the

customer. The executable languages for software are less natural and are

more closely related to a mathematical language in which each term in the

language has a precise interpretation, or semantics.

Architectural design

 The next activities concentrate on how the system provides the services

expected from it. The first activity is a high-level decomposition of the

system into components that can either be brought in from existing

software products or be developed from scratch independently.

 An architectural design performs this decomposition. It is not only

concerned with the functional decomposition of the system, determining

which components provide which services. It must also describe the

interdependencies between separate components and the sharing of

resources that will arise between components.

18

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 There are many structured techniques that are used to assist a designer in

deriving an architectural description from information in the requirements

specification (such as CORE, MASCOT and HOOD).

Fig 2.10: Feedback from maintenance activity to other design activity

Detailed design

 The detailed design is a refinement of the component description provided

by the architectural design. The behavior implied by the higher-level

description must be preserved in the more detailed description.Typically,

there will be more than one possible refinement of the architectural

component that will satisfy the behavioral constraints.

 Choosing the best refinement is often a matter of trying to satisfy as many

of the non-functional requirements of the system as possible. Thus the

language used for the detailed design must allow some analysis of the

design in order to assess its properties.

Coding and unit testing

 After coding,the component can be tested to verify that it performs

correctly, according to some test criteria.

Integration and testing

 Enough components have been implemented and individually tested, they

must be integrated as described in the architectural design. Further testing

is done to ensure correct behavior and acceptable use of any shared

resources. It is also possible at this time to perform some acceptance

testing with the customers to ensure that the system meets their

requirements.

Maintenance

 Category of maintenance, until such time as a new version of the product

demands a total redesign or the product is phased out entirely.

Maintenance involves the correction of errors in the system which are

discovered after release and the revision of the system services to satisfy

requirements that were not realized during previous development.

 Validation and verification

 Throughout the life cycle, the design must be checked to ensure that it

both satisfies the high-level requirements agreed with the customer and is

19

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

also complete and internally consistent. These checks are referred to as

validation and verification. Verification of a design will most often occur

within a single life-cycle activity or between two adjacent activities.

 The detailed description will introduce more information in refining the

general specification. The detailed design may also have to change the

representations for the information and will almost certainly break up a

single high-level operation into several low-level operations that can

eventually be implemented.

 The changes to information and operations, the designer must show that

the refined description is a legal one within its language (internal

consistency) and that it describes all of the specified behavior of the high-

level description (completeness) in a provably correct way (relative

consistency).

 Validation of a design demonstrates that within the various activities the

customer’s requirements are satisfied. Validation is a much more subjective

exercise than verification, mainly because the disparity between the

language of the requirements and the language of the design forbids any

objective form of proof.

 Languages with a mathematical foundation allow reasoning and proof in

the objective sense. An argument based entirely within some mathematical

language can be accepted or refuted based upon universally accepted

measures. A proof can be entirely justified by the rules of the mathematical

language, in which case it is considered a formal proof.

 More common is a rigorous proof, which is represented within some

mathematical language but which relies on the understanding of the reader

to accept its correctness without appeal to the full details of the argument,

which could be provided but usually are not. The difference between

formality and rigour is in the amount of detail the prover leaves out while

still maintaining acceptance of the proof.

 Proofs that are for verification of a design can frequently occur within one

language or between two languages which both have a precise

mathematical semantics.

 Validation proofs this precludes the possibility of objective proof, rigorous

or formal. Instead, there will always be a leap from the informal situations

of the real world to any formal and structured development process. We

refer to this inevitable disparity as the formality gap.

Fig 2.11: The formality gap between the real world and structured design

20

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Interactive systems and the software life cycle

Fig 2.12: Representing Iteration in the Waterfall Model

 The traditional software life cycle suits a principled approach to design;

that is, if we know what it is we want to produce from the beginning, then

we can structure our approach to design in order to attain the goal.

 The more serious claim we are making here is that all of the requirements

for an interactive system cannot be determined from the start, and there

are many convincing arguments to support this position. The result is that

systems must be built and the interaction with users observed and

evaluated in order to determine how to make them more usable.

 USABILITY ENGINEERING

 One approach to user-centered design has been the introduction of explicit

usability engineering goals into the design process, as suggested by

Whiteside and colleagues at IBM and Digital Equipment Corporation [377]

and by Nielsen at Bellcore [260,261]. Engineering depends on

interpretation against a shared background of meaning, agreed goals and

an understanding of how satisfactory completion will be judged.
 The emphasis for usability engineering is in knowing exactly what criteria

will be used to judge a product for its usability. The ultimate test of a

product’s usability is based on measurements of users’ experience with it.

Therefore, since a user’s direct experience with an interactive system is at

the physical interface, focus on the actual user interface is understandable.
 The danger with this limited focus is that much of the work that is

accomplished in interaction involves more than just the surface features of

the systems used to perform that work. important features of usability

engineering is the inclusion of a usability specification, forming part of the

requirements Specification, that concentrates on features of the user–

system interaction which contribute to the usability of the product. Various

attributes of the system are suggested as gauges for testing the usability.

 The ultimate test of usability based on measurement of user experience.

Usability specification consists of
– usability attribute/principle

– measuring concept

21

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

– measuring method

– now level/ worst case/ planned level/ best case

 For each attribute, six items are defined to form the usability specification

of that attribute. Table provides an example of a usability specification for

the design of a control panel for a video cassette recorder (VCR), based on

the technique presented by Whiteside, Bennett and Holtzblatt [377].

Table 2.1: Sample Usability Specification for undo with a VCR

 The below tables and adapted from Whiteside, Bennett and Holtzblatt

[377], provide a list of measurement criteria which can be used to

determine the measuring method for a usability attribute and the possible

ways to set the worst/best case and planned/ now level targets.

Measurements such as those promoted by usability engineering are also

called usability metrics.

22

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Table 2.2: Criteria by which measuring method can be determined

Table2.3: Possible ways to set measurement levels in a usability

specification

 Problems with usability engineering

 The major feature of usability engineering is the assertion of explicit

usability metrics early on in the design process which can be used to judge

a system once it is delivered. There is a very solid argument which points

out that it is only through empirical approaches such as the use of

usability metrics that we can reliably build more usable systems.

 The problem with usability metrics is that they rely on measurements of

very specific user actions in very specific situations. When the designer

knows what the actions and situation will be, then she can set goals for

measured observations. However, at early stages of design, designers do not

have this information

.

 ISO usability standard 9241

It adopts traditional usability categories:

• effectiveness

– can you achieve what you want to?

• efficiency

– can you do it without wasting effort?

• satisfaction
– do you enjoy the process?

Some metrics from ISO 9241

23

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 PROTOTYPING IN PRACTICE

 On the technical side, iterative design is described by the use of prototypes,

artifacts that simulate or animate some but not all features of the intended

system. There are three main approaches to prototyping:

• throw-away

• incremental

• Evolutionary

a. Throw-away :The prototype is built and tested. The design knowledge

gained from this exercise is used to build the final product, but the actual

prototype is discarded. It depicts the procedure in using throw-away

prototypes to arrive at a final requirements specification in order for the

rest of the design process to proceed.

Fig 2.13: Throw-away prototyping with requirement specification

a. Incremental: The final product is built as separate components, one at a

time. There is one overall design for the final system, but it is partitioned

into independent and smaller components. The final product is then

released as a series of products, each subsequent release including one

more component. This is depicted in Figure.

Fig 2.14: Incremental prototyping within the life cycle

24

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

b. Evolutionary: Here the prototype is not discarded and serves as the basis

for the next iteration of design. In this case, the actual system is seen as

evolving from a very limited initial version to its final release, as depicted in

Figure.

 Evolutionary prototyping also fits in well with the modifications which must

be made to the system that arise during the operation and maintenance

activity in the life cycle.
 Prototypes differ according to the amount of functionality and performance

they provide relative to the final product. An animation of requirements can

involve no real functionality, or limited functionality to simulate only a

small aspect of the interactive behavior for evaluative purposes.
 At the other extreme, full functionality can be provided at the expense of

other performance characteristics, such as speed or error tolerance.

Regardless of the level of functionality, the importance of a prototype lies in

its projected realism.

 The prototype of an interactive system is used to test requirements by

evaluating their impact with real users. An honest appraisal of the

requirements of the final system can only be trusted if the evaluation

conditions are similar to those anticipated for the actual operation. On the

management side, there are several potential problems.
a. Time Building prototypes takes time and, if it is a throw-away prototype, it

can be seen as precious time taken away from the real design task. So the

value of prototyping is only appreciated if it is fast, hence the use of the term

rapid prototyping.

b. Planning The project managers do not have the experience necessary for

adequately planning and costing a design process which involves prototyping.

c. Non-functional features The most important features of a system will be

non-functional ones, such as safety and reliability, and these are precisely the

kinds of features which are sacrificed in developing a prototype.

d. Contracts The design process is often governed by contractual agreements

between customer and designer which are affected by many of these

managerial and technical issues. Prototypes and other implementations

cannot form the basis for a legal contract, and so an iterative design process

will still require documentation which serves as the binding agreement.

Fig 2.15: Evolutionary Prototyping throughout the life cycle

25

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Techniques for prototyping

a. Storyboards: Storyboards do not require much in terms of computing power to

construct; in fact, they can be mocked up without the aid of any computing

resource. The origins of storyboards are in the film industry, where a series of

panels roughly depicts snapshots from an intended film sequence in order to get

the idea across about the eventual scene

b. Limited functionality simulations: The functionality must be built into the

prototype to demonstrate the work that the application will accomplish.

Storyboards and animation techniques are not sufficient for this purpose, as they

cannot portray adequately the interactive aspects of the system.

c. High-level programming support: HyperTalk was an example of a special

purpose high-level programming language which makes it easy for the designer to

program certain features of an interactive system at the expense of other system

features like speed of response or space efficiency. These high-level programming

languages allow the programmer to abstract away from the hardware specifics

and think in terms that are closer to the way the input and output devices are

perceived as interaction devices.

 Warning about iterative design

 The ideal model of iterative design, in which a rapid prototype is

designed ,evaluated and modified until the best possible design is

achieved in the given project time, is appealing with two problems.

i) First, it is often the case that design decisions made at the very beginning

of the prototyping process are wrong and, in practice, design inertia can be

so great as never to overcome an initial bad decision

ii) Second problem is slightly more subtle, and serious. If, in the process of

evaluation, a potential usability problem is diagnosed, it is important to

understand the reason for the problem and not just detect the symptom

 DESIGN RATIONALE

 Designing any computer system, many decisions are made as the product

goes from a set of vague customer requirements to a deliverable entity.

Often it is difficult to recreate the reasons, or rationale, behind various

design decisions.
 Design rationale is the information that explains why a computer system is

the way it is, including its structural or architectural description and its

functional or behavioral description .area of HCI, design rationale has been

particularly important, again for several reasons:
 There is usually no single best design alternative. More often, the designer

is faced with a set of trade-offs between different alternatives.

 Even if an optimal solution did exist for a given design decision, the space

of alternatives is so vast that it is unlikely a designer would discover it. In

this case, it is important that the designer indicates all alternatives that

have been investigated.

 The usability of an interactive system is very dependent on the context of

its use. The flashiest graphical interface is of no use if the end-user does

not have access to a high-quality graphics display or a pointing device.

Capturing the context in which a design decision is made will help later

when new products are designed.

 There are some issues that distinguish the various techniques in terms of

their usability within design itself. We can use these issues to sketch an
26

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

informal rationale for design rationale. One issue is the degree to which the

technique impinges on the design process.

 Another issue is the cost of using the technique, both in terms of creating

the design rationale and in terms of accessing it once created. A related

issue is the amount of computational power the design rationale provides

and the level to which this is supported by automated tools
 Process-oriented design rationale

 Much of the work on design rationale is based on Rittel’s issue-based

information system, or IBIS, a style for representing design and planning

dialog developed in the 1970s [308]. In IBIS (pronounced ‘ibbiss’), a

hierarchical structure to a design rationale is created.

 A root issue is identified which represents the main problem or question

that the argument is addressing. Various positions are put forth as

potential resolutions for the root issue, and these are depicted as

descendants in the IBIS hierarchy directly connected to the root issue.

Each position is then supported or refuted by arguments, which modify the

relationship between issue and position.

 The hierarchy grows as secondary issues are raised which modify the root

issue in some way. Each of these secondary issues is in turn expanded by

positions and arguments, further sub-issues, and so on

 A graphical version of IBIS has been defined by Conklin and Yakemovic

[77],called gIBIS (pronounced ‘gibbiss’), which makes the structure of the

design rationale more apparent visually in the form of a directed graph

which can be directly edited by the creator of the design rationale

Fig 2.16: Structure of a gIBIS rationale

 The above Figure gives a representation of the gIBIS vocabulary. Issues,

positions and arguments are nodes in the graph and the connections

between them are labeled to clarify the relationship between adjacent

nodes. So, for example, an issue can suggest further sub-issues, or a

position can respond to an issue or an argument can support a position.

The gIBIS structure can be supported by a hypertext tool to allow a

designer to create and browse various parts of the design rationale.

27

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Design space analysis

 MacLean and colleagues have proposed a more deliberative approach to

design rationale which emphasizes a post hoc structuring of the space of

design alternatives that have been considered in a design project. Their

approach, embodied in the Questions, Options and Criteria (QOC) notation,

is characterized as design space analysis.

Fig 2.17: QOC notation

 The design space is initially structured by a set of questions representing

the major issues of the design. Since design space analysis is structure

oriented, it is not so important that the questions recorded are the actual

questions asked during design meetings. Rather, these questions represent

an agreed characterization of the issues raised based on reflection and

understanding of the actual design activities.

 Questions in a design space analysis are therefore similar to issues in IBIS

except in the way they are captured. Options provide alternative solutions

to the question. They are assessed according to some criteria in order to

determine the most favorable option. The key to an effective design space

analysis using the QOC notation is deciding the right questions to use to

structure the space and the correct criteria to judge the options.

 The initial questions raised must be sufficiently general that they cover a

large enough portion of the possible design space, but specific enough that

a range of options can be clearly identified. It can be difficult to decide the

right set of criteria with which to assess the options. Another structure-

oriented technique, called Decision Representation Language (DRL),

developed by Lee and Lai, structures the design space in a similar fashion

to QOC, though its language is somewhat larger and it has a formal

semantics.

 The questions, options and criteria in DRL are given the names: decision

problem, alternatives and goals. QOC assessments are represented in DRL

by a more complex language for relating goals to alternatives. The sparse

language in QOC used to assess an option relative to a criterion (positive or

negative assessment only) is probably insufficient, but there is a trade-off

involved in adopting a more complex vocabulary which may prove too

difficult to use in practice. The advantage of the formal semantics of DRL is

that the design rationale can be used as a computational mechanism to

help manage the large volume of information.

28

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Psychological design rationale

 The psychological design rationale has been introduced by Carroll and

Rosson, and before we describe the application of the technique. When

designing a new interactive system, the designers take into account the

tasks that users currently perform and any new ones that they may want to

perform.

 This task identification serves as part of the requirements for the new

system, and can be done through empirical observation of how people

perform their work currently and presented through informal language or a

more formal task analysis language.

 Carroll refers to this real-life phenomenon as the task–artifact cycle. He

provides a good example of this cycle through the evolution of the electronic

spreadsheet. When the first electronic spreadsheet, VisiCalc, was marketed

in the late 1970s, it was presented simply as an automated means of

supporting tabular calculation, a task commonly used in the accounting

world.

 The purpose of psychological design rationale is to support this natural

task artifact cycle of design activity. The main emphasis is not to capture

the designer’s intention in building the artifact. Rather, psychological

design rationale aims to make explicit the consequences of a design for the

user, given an understanding of what tasks he intends to perform.

 The first step in the psychological design rationale is to identify the tasks

that the proposed system will address and to characterize those tasks by

questions that the user tries to answer in accomplishing them.

 DESIGN RULES

 Design– the goal driven problem solving process
 Design rules- We require design rules, which are rules a designer can

follow in order to increase the usability of the eventual software product.

We can classify these rules along two dimensions, based on the rule’s

authority and generality.

 authority mean an indication of whether or not the rule must be followed

in design or whether it is only suggested.

 Generality mean whether the rule can be applied to many design

situations or whether it is focused on a more limited application situation.

 We will consider a number of different types of design rules.
a) Principles are abstract design rules, with high generality and low

authority.

b) Standards are specific design rules, high in authority and limited in

application.

c) Guidelines tend to be lower in authority and more general in

application.

 Design rules for interactive systems can be supported by psychological,

cognitive, ergonomic, sociological, economic or computational theory, which

may or may not have roots in empirical evidence.
 Designers do not always have the relevant background in psychology,

cognitive science, ergonomics, sociology, and business or computer science

necessary to understand the consequences of those theories in the instance

29

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

of the design they are creating. Can make another rough distinction

between principles, standards and guidelines.

 Principles are derived from knowledge of the psychological, computational

and sociological aspects of the problem domains and are largely

independent of the technology they depend to a much greater extent on a

deeper understanding of the human element in the interaction. They can

therefore be applied widely but are not so useful for specific design advice.
 Guidelines are less abstract and often more technology oriented, but as

they are also general, it is important for a designer to know what theoretical

evidence there is to support them. A designer will have less of a need to

know the underlying theory for applying a standard.
 Design rules are mechanisms for restricting the space of design options,

preventing a designer from pursuing design options that would be likely to

lead to an unusable system. Thus, design rules would be most effective if

they could be adopted in the earliest stages of the life cycle, such as in

requirements specification and architectural design, when the space of

possible designs is still very large

 PRINCIPLES

 The most abstract design rules are general principles, which can be applied

to the design of an interactive system in order to promote its usability.

Derivation of principles for interaction has usually arisen out of a need to

explain why a paradigm is successful and when it might not be.
 Principles can provide the repeatability which paradigms in themselves

cannot provide. In this section we present a collection of usability

principles.The principles we present are first divided into three main

categories:
1. Learnability – the ease with which new users can begin effective

interaction and achieve maximal performance.

2. Flexibility – the multiplicity of ways in which the user and system

exchange information.

3. Robustness – the level of support provided to the user in determining

successful achievement and assessment of goals.

 Learnability

 Concerns the features of the interactive system that allow novice users to

understand how to use it initially and then how to attain a maximal level of

performance

30

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Table 2.4: Summary of principles affecting learnability

a. Predictability: Predictability of an interactive system is distinguished from

deterministic behavior of the computer system alone. Most computer systems are

ultimately deterministic machines, so that given the state at any one point in time

and the operation which is to be performed at that time, there is only one possible

state that can result..

b. Synthesizability: It is the ability of the user to assess the effect of past

operations on the current state. When an operation changes some aspect of the

internal state, it is important that the change is seen by the user. The principle of

honesty relates to the ability of the user interface to provide an observable and

informative account of such change.

c. Familiarity: The familiarity of an interactive system measures the correlation

between the user’s existing knowledge and the knowledge required for effective

interaction. Familiarity has to do with a user’s first impression

of the system.

d. Generalizability: The generalizability of an interactive system supports this

activity, leading to a more complete predictive model of the system for the user.

We can apply generalization to situations in which the user wants
to apply knowledge that helps achieve one particular goal to another situation

where the goal is in some way similar. Generalizability can be seen as a form of

consistency. Generalization can occur within a single application or across a

variety of applications.

e. Consistency: Consistency relates to the likeness in behavior arising from

similar situations or similar task objectives. Consistency is probably the most

widely mentioned principle Another consequence of consistency having to be

defined with respect to some other feature of the interaction is that many other

principles can be ‘reduced’ to qualified instances of consistency.

 Flexibility

 Flexibility refers to the multiplicity of ways in which the end-user and the

system exchange information.

31

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Table 2.5: Summary of principles affecting flexibility

a. Dialog initiative: The system can initiate all dialogs, in which case the user

simply responds to requests for information. We call this type of dialog system pre-

emptive.the user may be entirely free to initiate any action towards the system, in

which case the dialog is user pre-emptive. The system may control the dialog to the

extent that it prohibits the user from initiating any other desired communication

concerning the current task or some other task the user would like to perform.

b. Multi-threading: A thread of a dialog is a coherent subset of that dialog. In the

user–system dialog, we can consider a thread to be that part of the dialog that

relates to a given user task. Multi-threading of the user–system dialog allows for

interaction to support more than one task at a time.

c. Task migratability: Concerns the transfer of control for execution of tasks

between system and user. It should be possible for the user or system to pass the

control of a task over to the other or promote the task from a completely

internalized one to a shared and cooperative venture. Hence, a task that is

internal to one can become internal to the other or shared between the two

partners.

d. Substitutivity: It requires that equivalent values can be substituted for each

other. For example, in considering the form of an input expression to determine

the margin for a letter, you may want to enter the value in either inches or

centimeters.

e. Customizability: Customizability is the modifiability of the user interface by

the user or the system. From the system side, we are not concerned with

modifications that would be attended to by a programmer actually changing the

system and its interface during system maintenance.

 Robustness

 The robustness of that interaction covers features that support the

successful achievement and assessment of the goals. Here, we describe

principles that support robustness.

32

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Table 2.6: Summary of principles affecting Robustness

a. Observability: It allows the user to evaluate the internal state of the system by

means of its perceivable representation at the interface. The evaluation allows the

user to compare the current observed state with his intention within the task–

action plan, possibly leading to a plan revision. It can be discussed through five

other principles: browsability, defaults, reachability, persistence and operation

visibility.

Browsability allows the user to explore the current internal state of the system

via the limited view provided at the interface.

Defaults It also reduces the number of physical actions necessary to input a

value. Thus, providing default values is a kind of error prevention mechanism.

There are two kinds of default values: static and dynamic. Static defaults do not

evolve with the session

Reachability refers to the possibility of navigation through the observable system

states. There are various levels of reachability that can be given precise

mathematical definitions , but the main notion is whether the user can navigate

from any given state to any other state.

Persistence deals with the duration of the effect of a communication act and the

ability of the user to make use of that effect. The effect of vocal communication

does not persist except in the memory of the receiver. Visual communication, on

the other hand, can remain as an object which the user can subsequently

manipulate long after the act of presentation.

b. Recoverability: It is the ability to reach a desired goal after recognition of

some error in a previous interaction. There are two directions in which recovery

can occur, forward or backward.

 Forward error recovery involves the acceptance of the current state and

negotiation from that state towards the desired state. Forward error

recovery may be the only possibility for recovery if the effects of interaction

are not revocable.

 Backward error recovery is an attempt to undo the effects of previous

interaction in order to return to a prior state before proceeding. In a text

editor, a mistyped keystroke might wipe out a large section of text which

you would want to retrieve by an equally simple undo button

33

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

c. Responsiveness: It measures the rate of communication between the system

and the user. Response time is generally defined as the duration of time needed

by the system to express state changes to the user. Significant as absolute

response time is response time stability. Response time stability covers the

invariance of the duration for identical or similar computational resources.

d. Task conformance: Task completeness addresses the coverage issue and task

adequacy addresses the user’s understanding of the tasks. Task

completeness refers to the level to which the system services can be mapped onto

all of the user tasks.

 Standards

• set by national or international bodies to ensure compliance by a large

community of designers standards require sound underlying theory and

slowly changing technology

• hardware standards more common than software high authority and low

level of detail

• ISO 9241 defines usability as effectiveness, efficiency and satisfaction with

which users accomplish tasks (refer pg no 23)

 GUIDELINES

 It concern in examining the wealth of available guidelines is in determining

their applicability to the various stages of design. The guidelines can also

be automated to some extent, providing a direct means for translating

detailed design specifications into actual implementation. There are a vast

amount of published guidelines for interactive system design (they are

frequently referred to as guidelines for user interface design). The basic

categories of the Smith and Mosier guidelines are:

1. Data Entry

2. Data Display

3. Sequence Control

4. User Guidance

5. Data Transmission

6. Data Protection

 A major concern for all of the general guidelines is the subject of dialog

styles,which in the context of these guidelines pertains to the means by

which the user communicates input to the system, including how the

system presents the communication device.

 Smith and Mosier identify eight different dialog styles and Mayhew

identifies seven. The only real difference is the absence of query languages

in Mayhew’s list, but we can consider a query language as a special case of

a command language.

 In moving from abstract guidelines to more specific and automated ones, it

is necessary to introduce assumptions about the computer platform on

which the interactive system is designed. So, for example, in Apple’s

Human Interface Guidelines: the Apple Desktop Interface, there is a clear

distinction between the abstract guidelines (or principles), independent of

the specific Macintosh hardware and software, and the concrete guidelines,

which assume them.

34

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 RULES

 There are many sets of heuristics, but the most well used are

o Nielsen’s ten heuristics,

o Shneiderman’s eight golden rules

o Norman’s seven principles

 Shneiderman’s Eight Golden Rules of Interface Design

 Shneiderman’s eight golden rules provide a convenient and succinct

summary of the key principles of interface design. They are intended to be

used during design but can also be applied, like Nielsen’s heuristics, to the

evaluation of systems. Notice how they relate to the abstract principles

discussed earlier.

1. Strive for consistency in action sequences, layout, terminology, command use

and so on.

2. Enable frequent users to use shortcuts, such as abbreviations, special key

sequences and macros, to perform regular, familiar actions more quickly.

3. Offer informative feedback for every user action, at a level appropriate to the

magnitude of the action.

4. Design dialogs to yield closure so that the user knows when they have

completed a task.

5. Offer error prevention and simple error handling so that, ideally, users are

prevented from making mistakes and, if they do, they are offered clear and

informative instructions to enable them to recover.

6. Permit easy reversal of actions in order to relieve anxiety and encourage

exploration, since the user knows that he can always return to the previous state.

7. Support internal locus of control so that the user is in control of the system,

which responds to his actions.

8. Reduce short-term memory load by keeping displays simple, consolidating

multiple page displays and providing time for learning action sequences.

 These rules provide a useful shorthand for the more detailed sets of

principles described earlier. Like those principles, they are not applicable to

every eventuality and need to be interpreted for each new situation.

However, they are broadly useful and their application will only help most

design projects.

 Norman’s Seven Principles for Transforming Difficult Tasks into Simple

Ones

 We discussed Norman’s execution–evaluation cycle, in which he elaborates

the seven stages of action. We using the following seven principles:

1. Use both knowledge in the world and knowledge in the head. People work

better when the knowledge they need to do a task is available externally – either

explicitly or through the constraints imposed by the environment. But experts

also need to be able to internalize regular tasks to increase their efficiency. So

systems should provide the necessary knowledge within the environment and

their operation should be transparent to support the user in building an

appropriate mental model of what is going on.

2. Simplify the structure of tasks. Tasks need to be simple in order to avoid

complex problem solving and excessive memory load. There are a number of ways

to simplify the structure of tasks. One is to provide mental aids to help the user

keep track of stages in a more complex task. Another is to use technology to

provide the user with more information about the task and better feedback. A

35

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

third approach is to automate the task or part of it, as long as this does not

detract from the user’s experience. The final approach to simplification is to

change the nature of the task so that it becomes something more simple. In all of

this, it is important not to take control away from the user.

3. Make things visible: bridge the gulfs of execution and evaluation. The interface

should make clear what the system can do and how this is achieved, and should

enable the user to see clearly the effect of their actions on the system.

4. Get the mappings right. User intentions should map clearly onto system

controls. User actions should map clearly onto system events. So it should be

clear what does what and by how much. Controls, sliders and dials should reflect

the task so a small movement has a small effect and a large movement a large

effect.

5. Exploit the power of constraints, both natural and artificial. Constraints are

things in the world that make it impossible to do anything but the correct action

in the correct way. A simple example is a jigsaw puzzle, where the pieces only fit

together in one way. Here the physical constraints of the design guide the user to

complete the task.

6. Design for error. To err is human, so anticipate the errors the user could make

and design recovery into the system.

7. When all else fails, standardize. If there are no natural mappings then

arbitrary mappings should be standardized so that users only have to learn them

once. It is this standardization principle that enables drivers to get into a new car

and drive it with very little difficulty – key controls are standardized. Occasionally

one might switch on the indicator lights instead of the windscreen wipers, but the

critical controls (accelerator, brake, clutch, steering) are always the same.

 Nielsen’s ten heuristics are:

1. Visibility of system status Always keep users informed about what is going

on, through appropriate feedback within reasonable time. For example, if a

system operation will take some time, give an indication of how long and how

much is complete.

2. Match between system and the real world The system should speak the

user’s language, with words, phrases and concepts familiar to the user, rather

than system-oriented terms. Follow real-world conventions, making information

appear in natural and logical order.

3. User control and freedom Users often choose system functions by mistake

and need a clearly marked ‘emergency exit’ to leave the unwanted state without

having to go through an extended dialog. Support undo and redo.

4. Consistency and standards Users should not have to wonder whether words,

situations or actions mean the same thing in different contexts. Follow platform

conventions and accepted standards.

5. Error prevention Make it difficult to make errors. Even better than good error

messages is a careful design that prevents a problem from occurring in the first

place.

6. Recognition rather than recall Make objects, actions and options visible. The

user should not have to remember information from one part of the dialog to

another. Instructions for use of the system should be visible or easily retrievable

whenever appropriate.

7. Flexibility and efficiency of use Allow users to tailor frequent actions.

36

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Accelerators – unseen by the novice user – may often speed up the interaction for

the expert user to such an extent that the system can cater to both inexperienced

and experienced users.

8. Aesthetic and minimalist design Dialogs should not contain information that

is irrelevant or rarely needed. Every extra unit of information in a dialog competes

with the relevant units of information and diminishes their relative visibility.

9. Help users recognize, diagnose and recover from errors Error messages

should be expressed in plain language (no codes), precisely indicate the problem,

and constructively suggest a solution.

10. Help and documentation Few systems can be used with no instructions so it

may be necessary to provide help and documentation. Any such information

should be easy to search, focussed on the user’s task, list concrete steps to be

carried out, and not be too large.

HCI design patterns

An approach to reusing knowledge about successful design solutions

• Originated in architecture: Alexander

• A pattern is an invariant solution to a recurrent problem within a specific

context.

• Examples

– Light on Two Sides of Every Room (architecture)

– Go back to a safe place (HCI)

• Patterns do not exist in isolation but are linked to other patterns in

languages which enable complete designs to be generated

• Characteristics of patterns
– capture design practice not theory

– capture the essential common properties of good examples of design
– represent design knowledge at varying levels: social, organisational,

conceptual, detailed

– are intuitive and readable and can therefore be used for

communication between all stakeholders

– a pattern language should be generative and assist in the

development of complete designs.

 EVALUATION TECHNIQUES – UNIVERSAL DESIGN

Evaluation

– tests usability and functionality of system
– occurs in laboratory, field and/or in collaboration with users

– evaluates both design and implementation

– should be considered at all stages in the design life cycle

 Evaluation should not be thought of as a single phase in the design process

(still less as an activity tacked on the end of the process if time permits).

Ideally, evaluation should occur throughout the design life cycle, with the

results of the evaluation feeding back into modifications to the design.

 It is not usually possible to perform extensive experimental testing

continuously throughout the design, but analytic and informal techniques

can and should be used close link between evaluation and the principles

and prototyping techniques.

37

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Such techniques help to ensure that the design is assessed continually.

This has the advantage that problems can be ironed out before

considerable effort and resources have been expended on the

implementation itself: it is much easier to change a design in the early

stages of development than in the later stages.

 Evaluation has three main goals:

a) To assess the extent and accessibility of the system’s functionality

b) To assess users’ experience of the interaction

c) To identify any specific problems with the system.

Evaluation Techniques

1. Evaluating Designs through Expert Analysis

2. Evaluating Designs through user participation

3. Evaluating Implementations

– Empirical or experimental methods
– Observational methods

– Query techniques

– Methods that use physiological monitoring

 Evaluation Through Expert Analysis

We will consider four approaches to expert analysis:

 Cognitive Walkthrough
 Heuristic Evaluation
 Model based Evaluation
 Review-based evaluation

a. Cognitive walkthrough
Cognitive -Psychological processes involved in acquisition and understanding of

knowledge, formation of beliefs and attitudes, and decision making and problem

solving.

Cognitive Walkthrough-usability evaluation method in which one or more

evaluators work through a series of tasks and ask a set of questions from the

perspective of the user. The focus of the cognitive walkthrough is on

understanding the system's learnability for new or infrequent users

 Cognitive walkthrough was originally proposed and later revised by Polson

and colleagues as an attempt to introduce psychological theory into the

informal and subjective walkthrough technique. The origin of the cognitive

walkthrough approach to evaluation is the code walkthrough familiar in

software engineering.
 Walkthroughs require a detailed review of a sequence of actions. In the

code walkthrough, the sequence represents a segment of the program code

that is stepped through by the reviewers to check certain characteristics.

To do a walkthrough (the term walkthrough from now on refers to the

cognitive walkthrough, and not to any other kind of walkthrough), you need

four things:
1. A specification or prototype of the system. It doesn’t have to be complete, but it

should be fairly detailed. Details such as the location and wording for a menu can

make a big difference.

2. A description of the task the user is to perform on the system. This should be a

representative task that most users will want to do.

38

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3. A complete, written list of the actions needed to complete the task with the

proposed system.

4. An indication of who the users are and what kind of experience and knowledge

the evaluators can assume about them.

b. Heuristic evaluation

Heuristic -enabling a person to discover or learn something for themselves

Heuristic Evaluation-helps to identify usability problems in the user interface

(UI) design. It specifically involves evaluators examining the interface and judging

its compliance with recognized usability principles

• Example heuristics

– system behaviour is predictable

– system behaviour is consistent

– feedback is provided

 Heuristic evaluation, developed by Jakob Nielsen and Rolf Molich, is a

method for structuring the critique of a system using a set of relatively

simple and general heuristics. Heuristic evaluation can be performed on a

design specification so it is useful for evaluating early design. But it can

also be used on prototypes, storyboards and fully functioning systems. It is

therefore a flexible, relatively cheap approach. Hence it is often considered

a discount usability technique. Nielsen’s ten heuristics are: (pg no 36)
 The evaluator assesses the severity of each usability problem, based on

four factors:
 How common is the problem

 How easy is it for the user to overcome

 Will it be a one-off problem or a persistent one

 How seriously will the problem be perceived

These can be combined into an overall severity rating on a scale of 0–4:

0 = I don’t agree that this is a usability problem at all
1 = Cosmetic problem only: need not be fixed unless extra time is available on

project

2 = Minor usability problem: fixing this should be given low priority
3 = Major usability problem: important to fix, so should be given high priority

4 = Usability catastrophe: imperative to fix this before product can be released

Model Based Evaluation

• This evaluation is done with the use of models

• The GOMS (goals, operators, methods and selection) model predicts user

performance with a particular interface and can be used to filter particular

design options

• Dialog models can also be used to evaluate dialog sequences for problems,

such as unreachable states, complexity.

• Models such as state transition networks are useful for evaluating dialog

designs prior to implementation

Review-based evaluation

• Results from the literature used to support or refute parts of design.
• Care needed to ensure results are transferable to new design.

39

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• Expert review: expertise in the area is required to ensure that correct

assumptions are made

 Evaluating through user Participation

Two distinct evaluation styles

 Laboratory studies
 Field Studies

Laboratory studies
In this approach, users are taken out of their normal work environment to take

part in controlled tests, often in a specialist usability laboratory

Advantages:

 specialist equipment available

 uninterrupted environment

Disadvantages:

 lack of context

 difficult to observe several users cooperating

Appropriate

 if system location is dangerous or impractical for constrained single

user systems to allow controlled manipulation of use

Field Studies
This approach takes the designer or evaluator out into the user’s work

environment in order to observe the system in action

Advantages:

 natural environment

 context retained (though observation may alter it)

 longitudinal studies possible

Disadvantages:

 distractions

 noise

Appropriate

 where context is crucial for longitudinal studies

2.18.3.Evaluating Implementations

It has 4 types.

a) Empirical or experimental methods

b) Observational methods

c) Query techniques

d) Methods that use physiological monitoring

a) Empirical or experimental methods

• Controlled evaluation of specific aspects of interactive behaviour

• Evaluator chooses hypothesis to be tested

• Number of experimental conditions are considered which differ only in the

value of some controlled variable.

• Changes in behavioural measure are attributed to different conditions

Experimental factors

• Participants

40

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

– participants should be chosen to match the expected user population

as closely as possible

– Sample Size chosen

• Variables

– things to modify and measure

– Independent variable (IV)

– characteristic changed to produce different conditions

– e.g. interface style, number of menu items

– Dependent variable (DV)

– characteristics measured in the experiment

– e.g. time taken, number of errors

• Hypothesis

– Prediction of the outcome of an experiment

– To show that this prediction is correct

• Experimental design

– First phase is to choose the hypothesis: to decide exactly what it is

you are trying to demonstrate.

– Next step is to decide on the experimental method.

– Two main methods:

• between-subjects-each participant is assigned to a different

condition. At least two conditions: the experimental condition

and the control

• within-subjects - each user performs under each different

condition

41

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

b) Observational methods

It has the following methods

• Think Aloud & Cooperative evaluation
• Protocol analysis
• Automated analysis
• Post-task walkthroughs

Think Aloud

• User observed performing task
• User asked to describe what he is doing and why, what he thinks is

happening etc.
• Advantages

– simplicity - requires little expertise

– can provide useful insight

– can show how system is actually use

• Disadvantages
– subjective

– selective
– act of describing may alter task performance

Cooperative evaluation

• variation on think aloud
• user collaborates in evaluation
• both user and evaluator can ask each other questions throughout
• Additional advantages

– less constrained and easier to use

– user is encouraged to criticize system

– clarification possible

Protocol analysis

• Paper and pencil – cheap, limited to writing speed
• Audio – good for think aloud, difficult to match with other protocols
• Video – accurate and realistic, needs special equipment
• Computer logging – automatic and modest, large amounts of data difficult

to analyze
• User notebooks – coarse and subjective, useful insights, good for

longitudinal studies
• Mixed use in practice.
• audio/video transcription difficult and requires skill.
• Some automatic support tools available

Automated analysis – EVA(Experimental Video Annotator)

• Workplace project - multimedia workstation

with a direct link to a video recorder
• Post task walkthrough

– user reacts on action after the event

– used to fill in intention

• Advantages
– analyst has time to focus on relevant incidents

– avoid excessive interruption of task
• Disadvantages

42

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

– lack of freshness

– may be post-hoc interpretation of events

Post-task walkthroughs

• The transcript, whether written or recorded, is replayed to the participant

who is invited to comment, or is directly questioned by the analyst.
• In some circumstances the participant cannot be expected to talk during

the actual observation.
• Necessary in cases where think aloud is not possible

c) Query techniques (Interviews , Questionnaires)

Interviews

• Analyst questions user on one-to -one basis

usually based on prepared questions
• Informal, subjective and relatively cheap

• Advantages

– can be varied to suit context

– issues can be explored more fully

– can elicit user views and identify unanticipated problems

• Disadvantages
– very subjective

– time consuming

Questionnaires

• Set of fixed questions given to users
• Advantages

– quick and reaches large user group

– can be analyzed more rigorously

• Disadvantages
– less flexible

– less probing

• Need careful design

– what information is required?

43

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

– how are answers to be analyzed?

• Styles of question

– general

– open-ended

– scalar

– multi-choice

– ranked

44

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

d) Methods that use physiological monitoring

It has 2 methods
Eye tracking

Physiological measurement

Eye tracking

• Head or desk mounted equipment tracks the position of the eye
• Eye movement reflects the amount of cognitive processing a display

requires
• Measurements include

– Fixations: eye maintains stable position. Number and duration

indicate level of difficulty with display

– Scan paths: moving straight to a target with a short fixation at the

target is optimal

Eye-tracking equipment.

45

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

physiological measurements

• Emotional response linked to physical changes
• These may help determine a user’s reaction to an interface
• Measurements include:

– heart activity, including blood pressure, volume and pulse.

– activity of sweat glands: Galvanic Skin Response (GSR)

– electrical activity in muscle: electromyogram (EMG)

– electrical activity in brain: electroencephalogram (EEG)

• some difficulty in interpreting these physiological responses - more

research needed

Data Lab Psychophysiology equipment showing some of the sensors

CHOOSING AN EVALUATION METHOD - Factors distinguishing evaluation techniques

• the stage in the cycle at which the evaluation is carried out
• the style of evaluation
• the level of subjectivity or objectivity of the technique
• the type of measures provided
• the information provided
• the immediacy of the response
• the level of interference implied
• the resources required.

 Universal Design Principles:

 Universal design as ‘the process of designing products so that they can be

used by as many people as possible in as many situations as possible’.
These principles give us a framework in which to develop universal designs.

 Principle one is equitable use: the design is useful to people with a range of

abilities and appealing to all. No user is excluded or stigmatized.

46

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Principle two is flexibility in use: the design allows for a range of ability and

preference, through choice of methods of use and adaptivity to the user’s

pace, precision and custom.

 Principle three is that the system be simple and intuitive to use, regardless

of the knowledge, experience, language or level of concentration of the user.

 Principle four is perceptible information: the design should provide effective

communication of information regardless of the environmental conditions

or the user’s abilities. Redundancy of presentation is important:

information should be represented in different forms or modes (e.g. graphic,

verbal, text, touch).

 Essential information should be emphasized and differentiated

clearly from the peripheral content. Presentation should support the

range of devices and techniques used to access information by people

with different sensory abilities.

 Principle five is tolerance for error: minimizing the impact and damage

caused by mistakes or unintended behavior. Potentially dangerous

situations should be removed or made hard to reach. Potential hazards

should be shielded by warnings.Systems should fail safe from the user ’s

perspective and users should be supported in tasks that require

concentration.

 Principle six is low physical effort: systems should be designed to be

comfortable to use, minimizing physical effort and fatigue. The physical

design of the system should allow the user to maintain a natural posture

with reasonable operating effort. Repetitive or sustained actions should be

avoided.

 Principle seven requires size and space for approach and use: the

placement of the system should be such that it can be reached and used by

any user regardless of body size, posture or mobility. Important elements

should be on the line of sight for both seated and standing users. All

physical components should be comfortably reachable by seated or

standing users.

 MULTI-MODAL INTERACTION (EXTRA)

The principle of universal design relies on multi-modal interaction.

Multi-Sensory Systems

• More than one sensory channel in interaction

– e.g. sounds, text, hypertext, animation, video, gestures, vision

• Used in a range of applications:
– particularly good for users with special needs, and virtual reality

• It increases the bandwidth of the interaction between the human and the

computer

• It makes human–computer interaction more like the interaction between

humans and their everyday environment

Usable Senses

The 5 senses (sight, sound, touch, taste and smell) are used by us every day

– each is important on its own
– together, they provide a fuller interaction with the natural world

Computers rarely offer such a rich interaction

Can we use all the available senses?
– ideally, yes

47

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

– practically – no

We can use • sight • sound • touch (sometimes)

We cannot (yet) use • taste • smell

Multi-modal vs. Multi-media

• Multi-modal systems

– use more than one sense (or mode) of interaction
e.g. visual and aural senses: a text processor may speak the words as well

as echoing them to the screen

• Multi-media systems

– use a number of different media to communicate information

e.g. a computer-based teaching system:may use video, animation, text and

still images: different media all using the visual mode of interaction; may also use

sounds, both speech and non-speech.

Speech

Human beings have a great and natural mastery of speech

– makes it difficult to appreciate the complexities but

– it’s an easy medium for communication

Structure of Speech

– Phonemes

– English contains 40 phonemes- 24 consonants and 16 vowel sounds

– basic atomic units

– sound slightly different depending on the context they are in

– Allophones

– all the sounds in the language

– between 120 and 130 of them

– Morphemes

– either parts of words or whole words

– smallest unit of language that has meaning.

The Phonetic Typewriter

• Developed for Finnish (a phonetic language, written as it is said)

• Trained on one speaker, will generalise to others.

• A neural network is trained to cluster together similar sounds, which are

then labelled with the corresponding character.

• When recognising speech, the sounds uttered are allocated to the closest

corresponding output, and the character for that output is printed.

– requires large dictionary of minor variations to correct general

mechanism

– noticeably poorer performance on speakers it has not been trained on

Speech Synthesis
The process of generating spoken language by machine

on the basis of written input . Useful for users who are blind or

partially sighted

Successful in certain constrained applications

when the user:

– is particularly motivated to overcome problems
– has few alternatives

Examples:

• screen readers

48

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

– read the textual display to the user

utilised by visually impaired people

• warning signals

– spoken information sometimes presented to pilots whose visual and

haptic skills are already fully occupied

Non-Speech Sounds
• Often used to provide transitory information, such as indications of

network or system changes, or of errors

• Used to provide status information on background processes

• Commonly used for warnings and alarms

• Evidence to show they are useful

– fewer typing mistakes with key clicks

– video games harder without sound

• Language/culture independent, unlike speech

Touch

• Use of touch in the interface is known as haptic interaction

– Cutaneous perception

• tactile sensation(the sensation produced by pressure receptors

in the skin); vibrations on the skin

– kinesthetics

• movement and position; force feedback
• Information on shape, texture, resistance, temperature, comparative spatial

factors

• example technologies

– electronic braille displays

– force feedback devices Eg.PHANTOM
• resistance, texture

Handwriting recognition

• Handwriting is another communication mechanism which we are used to in

day-to-day life

• Interpret handwritten input and handwriting appears to offer both textual

and graphical input

• Technology

– Handwriting consists of complex strokes and spaces

– Captured by digitising tablet

• strokes transformed to sequence of dots

– large tablets available

• suitable for digitising maps and technical drawings
– smaller devices, some incorporating thin

screens to display the information

• PDAs such as Palm Pilot

• tablet PCs

• Problems

• personal differences in letter formation

• co-articulation effects

• Breakthroughs:

• stroke not just bitmap

• special ‘alphabet’ – Graffeti on PalmOS

• Current state:

• usable – even without training
• but many prefer keyboards!

49

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Gesture

• Able to control the computer with certain movements of the hand

• Applications

– gestural input - e.g. “put that there”

– sign language

• Technology

– data glove

– position sensing devices

• Benefits

– natural form of interaction - pointing

– enhance communication between signing and non-signing users

• Problems

– user dependent, variable and issues of coarticulation

Users with disabilities

• visual impairment

– screen readers, SonicFinder

• hearing impairment

– text communication, gesture, captions

• physical impairment

– speech I/O, gesture, predictive systems (e.g. Reactive keyboard)

• speech impairment

– speech synthesis, text communication

• age groups
– older people e.g. disability aids, memory aids, communication tools to

prevent social isolation

– children e.g. appropriate input/output devices, involvement in design

process

• cultural differences

– influence of nationality, generation, gender, race, sexuality, class,

religion, political persuasion etc. on interpretation of interface

features

– e.g. interpretation and acceptability of language, cultural symbols,

gesture and colour

50

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

ARUNAI ENGINEERING COLLEGE

DEPARTMENT OF CSE

IV YEAR - VII SEMESTER

CS8079 – HUMAN COMPUTER INTERACTION (R2017)

UNIT III MODELS AND THEORIES

HCI Models: Cognitive models: Socio-Organizational issues and stakeholder

requirements –Communication and collaboration models-Hypertext, Multimedia

and WWW.

 COGNITIVE MODELS

 One way to classify the models is in respect to how well they describe features

of the competence and performance of the user. Competence models tend to be

ones that can predict legal behavior sequences but generally do this without

reference to whether they could actually be executed by users.
 Performance models not only describe what the necessary behavior sequences

are but usually describe both what the user needs to know and how this is

employed in actual task execution. The presentation of the cognitive models in

this chapter follows this classification scheme, divided into the following

categories:
a) hierarchical representation of the user’s task and goal structure

b) linguistic and grammatical models

c) physical and device-level models.

 The first category deals directly with the issue of formulation of goals and

tasks. The second deals with the grammar of the articulation translation and

how it is understood by the user. The third category again deals with

articulation, but at the human motor level instead of at a higher level of human

understanding.

 Goal and Task Hierarchies

 Many models make use of a model of mental processing in which the user

achieves goals by solving sub goals in a divide-and-conquer fashion. We will

consider two models, GOMS and CCT, where this is a central feature. Imagine

we want to produce a report on sales of introductory HCI textbooks.

 To achieve this goal we divide it into several subgoals, say gathering the data

together, producing the tables and histograms, and writing the descriptive

material.

 Concentrating on the data gathering, we decide to split this into further

subgoals: find the names of all introductory HCI textbooks and then search

the book sales database for these books. Similarly, each of the other subgoals

is divided up into further subgoals, until some level of detail is found at which

we decide to stop. We thus end up with a hierarchy of goals and subgoals.

The example can be laid out to expose this structure:

produce report

gather data

. find book names

. . do keywords search of names database

<<further subgoals>>

1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www/

. . sift through names and abstracts by hand

<<further subgoals>>

. search sales database

<<further subgoals>>

layout tables and histograms

<<further subgoals>>

write description

<<further subgoals>>

 Different design issues demand different levels of analysis. This most abstract

task is referred to as the unit task. The unit task does not require any problem-

solving skills on the part of the user, though it frequently demands quite

sophisticated problem-solving skills on the part of the designer to determine

them.

1. GOMS

 The GOMS model of Card, Moran and Newell is an acronym for Goals,

Operators, Methods and Selection [56]. A GOMS description consists of these

four elements:

a. Goals: These are the user’s goals, describing what the user wants to achieve.

Further, in GOMS the goals are taken to represent a ‘memory point’ for the

user, from which he can evaluate what should be done and to which he may

return should any errors occur.

b. Operators: These are the lowest level of analysis. They are the basic actions

that the user must perform in order to use the system. They may affect the

system (for example, press the ‘X’ key) or only the user’s mental state (for

example, read the dialog box).

c. Methods : There are typically several ways in which a goal can be split into

sub goals. For instance, in a certain window manager a currently selected

window can be closed to an icon either by selecting the ‘CLOSE’ option from a

pop-up menu, or by hitting the ‘L7’ function key. In GOMS these two goal

decompositions are referred to as methods, so we have the CLOSE-METHOD

and the L7-METHOD:

GOAL: ICONIZE-WINDOW

. [select GOAL: USE-CLOSE-METHOD

. . MOVE-MOUSE-TO-WINDOW-HEADER

. . POP-UP-MENU

. . CLICK-OVER-CLOSE-OPTION

GOAL: USE-L7-METHOD

. . PRESS-L7-KEY]

The dots are used to indicate the hierarchical level of goals.

d. Selection From the above snippet we see the use of the word select where the

choice of methods arises. GOMS does not leave this as a random choice, but

attempts to predict which methods will be used. This typically depends both

on the particular user and on the state of the system and details about the

goals.

 For instance, a user, Sam, never uses the L7-METHOD, except for one game, ‘blocks’, where the mouse needs to be used in the game until the very moment

the key is pressed. GOMS captures this in a selection rule for Sam:

User Sam:

 Rule 1: Use the CLOSE-METHOD unless another rule applies.

 Rule 2: If the application is ‘blocks’ use the L7-METHOD.

2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

2. Cognitive complexity theory

 CCT has two parallel descriptions: one of the user’s goals and the other of the

computer system (called the device in CCT). The description of the user’s goals

is based on a GOMS-like goal hierarchy, but is expressed primarily using

production rules. CCT uses generalized transition networks, a form of state

transition network. The production rules are a sequence of rules:

if condition then action

where condition is a statement about the contents of working memory. If the

condition is true then the production rule is said to fire.

 An action may consist of one or more elementary actions, which may be either

changes to the working memory, or external actions such as keystrokes. The

production rule ‘program’ is written in a LISP-like language.

 Rules in CCT need not represent error-free performance. They can be used to

explain error phenomena, though they cannot predict them. For instance, the

rules above for inserting a space are ‘buggy’ – they do not check the editor’s

mode.

 The CCT rules are closely related to GOMS-like goal hierarchies; the rules may

be generated from such a hierarchy, or alternatively, we may analyze the

production rules to obtain the goal tree:

GOAL: insert space

. GOAL: move cursor – if not at right position

. PRESS-KEY-I

. PRESS-SPACE

. PRESS-ESCAPE

 Linguistic Models

 BNF grammars are frequently used to specify dialogs. The models here,

although similar in form to dialog design notations, have been proposed with

the intention of understanding the user’s behavior and analyzing the cognitive

difficulty of the interface.

a. BNF

 Representative of the linguistic approach is Reisner’s use of Backus–Naur

Form (BNF) rules to describe the dialog grammar . This views the dialog at a

purely syntactic level, ignoring the semantics of the language. BNF has been

used widely to specify the syntax of computer programming languages, and

many system dialogs can be described easily using BNF rules.

 For example, imagine a graphics system that has a line-drawing function. To

select the function the user must select the ‘line’ menu option. The line-

drawing function allows the user to draw a polyline, that is a sequence of line

arcs between points. The user selects the points by clicking the mouse button

in the drawing area. The user double clicks to indicate the last point of the

polyline.

draw-line ::= select-line + choose-points+ last-point

select-line ::= position-mouse + CLICK-MOUSE

choose-points ::= choose-one| choose-one + choose-points

choose-one ::= position-mouse + CLICK-MOUSE

last-point ::= position-mouse + DOUBLE-CLICK-MOUSE

position-mouse ::= empty | MOVE-MOUSE + position-mouse

 The names in the description are of two types: non-terminals, shown in lower

case, and terminals, shown in upper case. Terminals represent the lowest level

of user behavior, such as pressing a key, clicking a mouse button or moving

the mouse.

3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Non-terminals are higher-level abstractions. The non-terminals are defined in

terms of other non-terminals and terminals by a definition of the form name

::= expression

 The ‘::=’ symbol is read as ‘is defined as’. Only non-terminals may appear on

the left of a definition. The right-hand side is built up using two operators ‘+’
(sequence) and ‘|’ (choice).

 For example, the first rule says that the non-terminal draw-line is defined to

be select-line followed by choose-points followed by last point.All of these are

non-terminals, that is they do not tell us what the basic user actions are.

 The second rule says that select-line is defined to be position mouse (intended

to be over the ‘line’ menu entry) followed by CLICK-MOUSE. This is our first

terminal and represents the actual clicking of a mouse. To see what position-

mouse is, we look at the last rule.

 This tells us that there are two possibilities for position-mouse (separated by

the ‘|’ symbol). One option is that position-mouse is empty – a special symbol

representing no action. That is, one option is not to move the mouse at all.

 The other option is to do a MOVE-MOUSE action followed by position-mouse.

This rule is recursive, and this second position-mouse may itself either be

empty or be a MOVE-MOUSE action followed by position-mouse, and so on.

That is, position-mouse may be any number of MOVE-MOUSE actions

whatsoever.

 Choose-points is defined recursively, but this time it does not have the option

of being empty. It may be one or more of the non-terminal choose one which is

itself defined to be (like select-line) position-mouse followed by CLICK-MOUSE.

 The BNF description of an interface can be analyzed in various ways. One

measure is to count the number of rules. The more rules an interface requires

to use it, the more complicated it is. This measure is rather sensitive to the

exact way the interface is described. For example, we could have replaced the

rules for choose points and choose-one with the single definition

choose-points ::= position-mouse + CLICK-MOUSE| position-mouse + CLICK-

MOUSE + choose-points

More robust measure also counts the number of ‘+’ and ‘|’ operators. This

would, in effect, penalize the more complex single rule. Another problem arises

with the rule for select-line. This is identical to the choose-one rule.

b. Task–action grammar

 Task–action grammar (TAG) attempts to deal with some of these problems by

including elements such as parameterized grammar rules to emphasize

consistency and encoding the user’s world knowledge (for example, up is the

opposite of down).

 To illustrate consistency, we consider the three UNIX commands: cp (for

copying files), mv (for moving files) and ln (for linking files). Each of these has

two possible forms. They either have two arguments, a source and destination

filename, or have any number of source filenames followed by a destination

directory:

copy ::= ‘cp’ + filename + filename

| ‘cp’ + filenames + directory

move ::= ‘mv’ + filename + filename

| ‘mv’ + filenames + directory

link ::= ‘ln’ + filename + filename

| ‘ln’ + filenames + directory

4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Measures based upon BNF could not distinguish between these consistent

commands and an inconsistent alternative – say if ln took its directory

argument first. Task–action grammar was designed to reveal just this sort of

consistency. Its description of the UNIX commands would be

file-op[Op] := command[Op] + filename + filename

| command[Op] + filenames + directory

command[Op=copy] := ‘cp’
command[Op=move] := ‘mv’
command[Op=link] := ‘ln’

 PHYSICAL AND DEVICE MODELS

a. Keystroke-level model

 KLM (Keystroke-Level Model [55]) uses this understanding as a basis for

detailed predictions about user performance. It is aimed at unit tasks within

interaction – the execution of simple command sequences, typically taking no

more than 20 seconds. Examples of this would be using a search and replace

feature, or changing the font of a word.

 It does not extend to complex actions such as producing a diagram. The

assumption is that these more complex tasks would be split into subtasks (as

in GOMS) before the user attempts to map them into physical actions. The

task is split into two phases:

 acquisition of the task, when the user builds a mental representation of

the task;

 execution of the task using the system’s facilities.

 KLM only gives predictions for the latter stage of activity. During the

acquisition phase, the user will have decided how to accomplish the task using

the primitives of the system, and thus, during the execution phase, there is no

high-level mental activity the user is effectively expert.

 KLM is related to the GOMS model, and can be thought of as a very low level

GOMS model where the method is given. The model decomposes the execution

phase into five different physical motor operators, a mental operator and a

system response operator:

a. K Keystroking, actually striking keys, including shifts and other modifier

keys.

b. B Pressing a mouse button.

c. P Pointing, moving the mouse (or similar device) at a target.

d. H Homing, switching the hand between mouse and keyboard.

e. D Drawing lines using the mouse.

f. M Mentally preparing for a physical action.

g. R System response which may be ignored if the user does not have to

wait for it, as in copy typing.

 The execution of a task will involve interleaved occurrences of the various

operators. For instance, imagine we are using a mouse-based editor. If we

notice a single character error we will point at the error, delete the character

and retype it, and then return to our previous typing point. This is

decomposed as follows:

1. Move hand to mouse H[mouse]

2. Position mouse after bad character PB[LEFT]

3. Return to keyboard H[keyboard]

4. Delete character MK[DELETE]

5. Type correction K[char]

6. Reposition insertion point H[mouse]MPB[LEFT]

5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Notice that some operators have descriptions added to them,representing

which device the hand homes to (for example, [mouse]) and what keys are hit

(for example, LEFT – the left mouse button). The model predicts the total time

taken during the execution phase by adding the component times for each of
the above activities.

Table3.1: Times for various operators in the keystroke level model

b. Three-state model

 We saw that a range of pointing devices exists in addition to the mouse. Often

these devices are considered logically equivalent, if the same inputs are

available to the application. That is, so long as you can select a point on the

screen, they are all the same. These different devices – mouse, trackball, light

pen – feel very different.
 Buxton has developed a simple model of input devices the three-state model,

which captures some of these crucial distinctions. He begins by looking at a

mouse. If you move it with no buttons pushed, it normally moves the mouse

cursor about. This tracking behavior is termed state 1. Depressing a button

over an icon and then moving the mouse will often result in an object being

dragged about. This he calls state 2.

Fig3.1: Mouse Transitions : states 1 and 2

 Instead we consider a light pen with a button, it behaves just like a mouse

when it is touching the screen. When its button is not depressed, it is in state

1, and when its button is down, state 2. However, the light pen has a third

state, when the light pen is not touching the screen. In this state the system

cannot track the light pen’s position. This is called state 0.
 A touchscreen is like the light pen with no button. While the user is not

touching the screen, the system cannot track the finger that is, state 0 again.

When the user touches the screen, the system can begin to track state 1. So a

touchscreen is a state 0–1 device whereas a mouse is a state 1–2 device. As

6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

b

there is no difference between a state 0–2 and a state 0–1 device, there are

only the three possibilities we have seen.

 The only additional complexity is if the device has several buttons, in which

case we would have one state for each button: 2left, 2middle, 2right.
 At first, the model appears to characterize the states of the device by the

inputs available to the system. So, from this perspective, state 0 is clearly

different from states 1 and 2. However, if we look at the state 1–2 transaction,

we see that it is symmetric with respect to the two states.

Fig.3.2: Light pen transitions: three states

 In principle, there is no reason why a program should not decide to do simple

mouse tracking whilst in state 2 and drag things about in state 1 State 2

requires a button to be pressed, whereas state 1 is one of relative relaxation

(whilst still requiring hand–eye coordination for mouse movement). There is a

similar difference in tension between state 0 and state 1.
 It is well known that Fitts’ law has different timing constants for different

devices. Recall that Fitts’ law says that the time taken to move to a target of
size S at a distance D is: a log2(D/S 1)

 The constants a and b depend on the particular pointing device used and the

skill of the user with that device.

Fig3.3: Fitt’s law coefficients

 Cognitive Architectures

a. Problem space model

 The problem space model In the field of artificial intelligence (AI), a system

exhibiting rational behavior is referred to as a knowledge-level system. A

knowledge-level system contains an agent behaving in an environment. The

agent has knowledge about itself and its environment, including its own goals.

It can perform certain actions and sense information about its changing

environment.

 As the agent behaves in its environment, it changes the environment and its

own knowledge. We can view the overall behavior of the knowledge-level

system as a sequence of environment and agent states as they progress in

time.

 The architecture of the machine only allows the definition of the search or

problem space and the actions that can occur to traverse that space.

Termination is also assumed to happen once the desired state is reached.

7

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Notice that the machine does not have the ability to formulate the problem

space and its solution, mainly because it has no idea of the goal. It is the job of

the programmer to understand the goal and so define the machine to achieve

it.

 We can adapt the state-based computational model of a machine in order to

realize the architecture of a knowledge-level system. The new computational

model is the problem space model, based on the problem-solving work of

Newell and Simon at Carnegie–Mellon University. A problem space consists of

a set of states and a set of operations that can be performed on the states.

 Once the initial state is set, the task within the problem space is to find a

sequence of operations that form a path within the state space from the initial

state to one of the desired states, whereupon successful termination occurs.

b. Interacting cognitive subsystems

 Barnard has proposed a very different cognitive architecture, called interacting

cognitive subsystems . ICS provides a model of perception, cognition and

action, but unlike other cognitive architectures, it is not intended to produce a

description of the user in terms of sequences of actions that he performs.

 ICS provides a more holistic view of the user as an information-processing

machine. The emphasis is on determining how easy particular procedures of

action sequences become as they are made more automatic within the user.

 ICS attempts to incorporate two separate psychological traditions within one

cognitive architecture. On the one hand is the architectural and general-

purpose information-processing approach of short-term memory research.

 The other hand is the computational and representational approach

characteristic of psycholinguistic research and AI problem-solving literature.

 The architecture of ICS is built up by the coordinated activity of nine smaller

subsystems: five peripheral subsystems are in contact with the physical world

and four are central, dealing with mental processes. Each subsystem has the

same generic structure.

 A subsystem is described in terms of its typed inputs and outputs along with

a memory store for holding typed information. It has transformation functions

for processing the input and producing the output and permanently stored

information.

 Each of the nine subsystems is specialized for handling some aspect of

external or internal processing. For example, one peripheral subsystem is the

visual system for describing what is seen in the world.

 SOCIO-ORGANIZATIONAL ISSUES AND STAKE HOLDER REQUIREMENTS

 Organizational Issues

 We shall look at some of the organizational issues that affect the acceptance

and relevance of information and communication systems. These factors often

sit ‘outside’ the system as such, and may involve individuals who never use it.

1. Cooperation or conflict?

2. Changing power structures

3. The invisible worker

4. Who benefits?

5. Free rider problem

6. Critical mass

7. Automating processes – workflow and BPR

8. Evaluating the benefits

8

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Capturing Requirements

 We begin by capturing and analyzing requirements, but we need to do this

within the work context, taking account of the complex mix of concerns felt by

different stakeholders and the structures and processes operating in the

workgroups.
 need to take account of

o stakeholders

o work groups and practices

o organisational context

 We consider several approaches:
o socio-technical modeling

o soft systems methodology

o participatory design

o ethnographic methods and contextual inquiry.

 Who are the stakeholders? can be defined as anyone who is affected by the

success or failure of the system. It can be useful to distinguish different

categories of stakeholder, and the following categorization from the CUSTOM

approach is helpful for this:
1. Primary stakeholders are people who actually use the system – the end-users.

2. Secondary stakeholders are people who do not directly use the system, but

receive output from it or provide input to it (for example, someone who receives

a report produced by the system).

3. Tertiary stakeholders are people who do not fall into either of the first two

categories but who are directly affected by the success or failure of the system

(for example, a director whose profits increase or decrease depending on the

success of the system).

4. Facilitating stakeholders are people who are involved with the design,

development and maintenance of the system.

Example: Classifying stakeholders – an airline booking system

An international airline is considering introducing a new booking system for

use by associated travel agents to sell flights directly to the public.

Primary stakeholders: travel agency staff, airline booking staff

Secondary stakeholders: customers, airline management

Tertiary stakeholders: competitors, civil aviation authorities, customers’
travelling companions, airline shareholders

Facilitating stakeholders: design team, IT department staff

 All of the approaches we are considering here are concerned with

understanding stakeholders within their organizational context.

1. Socio-technical models

 Technological determinism, the view that social change is primarily dictated by

technology, with human and social factors being secondary concerns, was

prevalent. The socio-technical systems view came about
 to counter this technology-centric position, by stressing that work systems

were composed of both human and machine elements and that it was the

interrelationship between these that should be central.

9

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Socio-technical models for interactive systems are therefore concerned with

technical,social, organizational and human aspects of design. They recognize the

fact that technology is not developed in isolation but as part of a wider

organizational environment. It is important to consider social and technical issues

side by side so that human issues are not overruled by technical considerations.
 The key focus of the socio-technical approach is to describe and document the

impact of the introduction of a specific technology into an organization. Methods

vary but most attempt to capture certain common elements:
 The problem being addressed: there is a need to understand why the

technology is being proposed and what problem it is intended to solve.

 The stakeholders affected, including primary, secondary, tertiary and

facilitating, together with their objectives, goals and tasks.

 The workgroups within the organization, both formal and informal.

 The changes or transformations that will be supported.

 The proposed technology and how it will work within the organization.

 External constraints and influences and performance measures.

 Information is gathered using methods such as interviews, observation, focus

groups and document analysis. The methods guide this information-gathering

process and help the analyst to make sense of what is discovered.
 By attempting to understand these issues, socio-technical approaches aim to

provide a detailed view of the role technology will play and the requirements of

successful deployment. We will compare two approaches to illustrate how this may

work in practice.

2. CUSTOM methodology

 CUSTOM is a socio-technical methodology designed to be practical to use in

small organizations . It is based on the User Skills and Task Match (USTM)

approach, developed to allow design teams to understand and fully document

user requirements .
 CUSTOM focuses on establishing stakeholder requirements :all stakeholders

are considered, not just the end-users. It is applied at the initial stage of

design when a product opportunity has been identified, so the emphasis is on

capturing requirements.
 It is a forms-based methodology, providing a set of questions to apply at each

of its stages. There are six key stages to carry out in a CUSTOM analysis:
a. Describe the organizational context, including its primary goals, physical

characteristics, political and economic background.

b. Identify and describe stakeholders. All stakeholders are named, categorized (as

primary, secondary, tertiary or facilitating) and described with regard to

personal issues, their role in the organization and their job.

c. Identify and describe work-groups. A work-group is any group of people who

work together on a task, whether formally constituted or not. Again, work-

groups are described in terms of their role within the organization and their

characteristics.

d. Identify and describe task–object pairs. These are the tasks that must be

performed, coupled with the objects that are used to perform them or to which

they are applied.

e. Identify stakeholder needs. Stages 2–4 are described in terms of both the

current system and the proposed system. Stakeholder needs are identified by

considering the differences between the two. For example, if a stakeholder is

identified as currently lacking a particular skill that is required in the

proposed system then a need for training is identified.

10

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

f. Consolidate and check stakeholder requirements. Here the stakeholder needs

list is checked against the criteria determined at earlier stages.

 Stages 2 to 4 are described in terms of the current situation (before the new

technology is introduced) and the proposed situation (after deployment).

Stakeholders are asked to express their views not only of their current role and

position but of their expectations in the light of the changes that will be made.
 The stakeholder concerns and goals are elaborated. In addition, the impact of

the technology on working practices is considered (Stage 3) and the

transformations that will be supported by the system specified (Stage 4). The

changes from the current position to the proposed position represent the

issues that need to be addressed to ensure successful deployment, and these

are made explicit during Stages 5 and 6.
 CUSTOM provides a useful framework for considering stakeholder

requirements and the use of forms and questions (a ‘manual’ for its use is

available makes it relatively straightforward, if somewhat time consuming , to

apply. For less complex situations, a shortened version of CUSTOM

stakeholder analysis is available .This also provides a checklist for

investigations for stages 2– 4.

3. Open System Task Analysis (OSTA)

 OSTA [116] is an alternative socio-technical approach, which attempts to

describe what happens when a technical system is introduced into an

organizational work environment.
 Like CUSTOM, OSTA specifies both social and technical aspects of the system.

However, whereas in CUSTOM these aspects are framed in terms of

stakeholder perspectives, in OSTA they are captured through a focus on tasks.

OSTA has eight main stages:
1. The primary task which the technology must support is identified in terms of

users’ goals.

2. Task inputs to the system are identified. These may have different sources and

forms that may constrain the design.

11

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

3. The external environment into which the system will be introduced is

described, including physical, economic and political aspects.

4. The transformation processes within the system are described in terms of

actions performed on or with objects.

5. The social system is analyzed, considering existing work-groups and

relationships within and external to the organization.

6. The technical system is described in terms of its configuration and integration

with other systems.

7. Performance satisfaction criteria are established, indicating the social and

technical requirements of the system.

8. The new technical system is specified.

OSTA uses notations familiar to designers, such as data flow diagrams and

textual descriptions.

 Soft systems methodology

 The socio-technical models we have looked at focus on identifying

requirements from both human and technical perspectives, but they assume a

technological solution is being proposed. Soft systems methodology (SSM)

arises from the same tradition but takes a view of the organization as a system

of which technology and people are components.
 There is no assumption of a particular solution: the emphasis is rather on

understanding the situation fully. SSM was developed by Checkland to help

designers reach an understanding of the context of technological developments

and the influences and concerns that exist within the system under

consideration.
 SSM has seven stages. A distinction is made between the ‘real-world’ stages (1–

2, 5–7) and the systems stages (3–4). The first stage of SSM is the recognition

of the problem and initiation of analysis. This is followed by a detailed

description of the problem situation: developing a rich picture. This will

include all the stakeholders, the tasks they carry out and the groups they work

in, the organizational structure and its processes and the issues raised by

each stakeholder.
 Any knowledge elicitation techniques can be used to gather the information to

build the rich picture, including observation (and video
and audio recording), structured and unstructured interviews and

questionnaires, and workshops incorporating such activities as role play,

simulations and critical incident analysis.

 Less structured approaches are used initially to avoid artificially constraining

the description. The rich picture can be in any style – there
are no right or wrong answers – but it should be clear and informative to the

designer.

12

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fig3.4: Seven stages of soft systems methodology

 At the next stage in SSM we move from the real world to the systems world

and attempt to generate root definitions for the system, which define the

essence of what the system is about. There may be several root definitions of a

system, representing different stakeholder perspectives, for example. Root

definitions are described in terms of specific elements, summarized using the

acronym, CATWOE:
1. Clients – those who receive output or benefit from the system.

2. Actors – those who perform activities within the system.

3. Transformations – the changes that are effected by the system. This is a

critical part of the root definition as it leads to the activities that need to be

included in the next stage. These ‘transform’ the inputs of the system into the

required outputs.

4. Weltanschauung – (from the German) meaning world view. This is how the

system is perceived in a particular root definition.

5. Owner – those to whom the system belongs, to whom it is answerable and who

can authorize changes to it.

6. Environment – the world in which the system operates and by which it is

influenced.

13

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Participatory design

 Participatory design is a philosophy that encompasses the whole design cycle.

It is design in the workplace, where the user is involved not only as an

experimental subject or as someone to be consulted when necessary but as a

member of the design team.
 Users are therefore active collaborators in the design process, rather than

passive participants whose involvement is entirely governed by the designer.
 The argument is that users are experts in the work context and a design can

only be effective within that context if these experts are allowed to contribute

actively to the design process.
 It therefore aims to refine system requirements iteratively through a design

process in which the user is actively involved.
 Participatory design has three specific characteristics. It aims to improve the

work environment and task by the introduction of the design. This makes

design and evaluation context or work oriented rather than system oriented.

Secondly, it is characterized by collaboration: the user is included in the

design team and can contribute to every stage of the design.
 Finally, the approach is iterative: the design is subject to evaluation and

revision at each stage. The participatory design process utilizes a range of

methods to help convey information between the user and designer. They

include
a. Brainstorming This involves all participants in the design pooling ideas. This

is informal and relatively unstructured although the process tends to involve ‘onthefly’ structuring of the ideas as they materialize. All information is

recorded without judgment. The session provides a range of ideas from which

to work. These can be filtered using other techniques.

b. Storyboarding This has been discussed in more detail in Chapter 6.

Storyboards can be used as a means of describing the user’s day-to-day

activities as well as the potential designs and the impact they will have.

c. Workshops These can be used to fill in the missing knowledge of both user

and designer and provide a more focussed view of the design. They may involve

mutual enquiry in which both parties attempt to understand the context of the

design from each other’s point of view.

d. Pencil and paper exercises These allow designs to be talked through and

evaluated with very little commitment in terms of resources. Users can ‘walk

through’ typical tasks using paper mock-ups of the system design. This is

intended to show up discrepancies between the user’s requirements and the

actual design as proposed.

14

In participatory design:

workers enter into design context

In ethnography (as used for design):
designer enters into work context

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Example:

Effective Technical and Human Implementation of Computer-based systems

(ETHICS)

 ETHICS [243] is a method developed by Enid Mumford within the socio-

technical tradition, but it is distinct in its view of the role of stakeholders in

the process. In the ETHICS methodology, stakeholders are included as

participants in the decision making process.
 ETHICS considers the process of system development as one of managing

change: conflicts will occur and must be negotiated to ensure acceptance and

satisfaction with the system. If any party is excluded from the decision-making

process then their knowledge and contribution is not utilized and they are

more likely to be dissatisfied. However, participation is not always complete.

Mumford recognizes three levels of participation:
 Consultative – the weakest form of participation where participants are

asked for their opinions but are not decision makers.

 Representative – a representative of the participant group is involved in the

decision making process.

 Consensus – all stakeholders are included in the decision-making process.

 The usual practice is that design groups are set up to include representatives

from each stakeholder group and these groups make the design decisions,

overseen by a steering committee of management and employee representatives.

15

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The design groups then address the following issues and activities:

1. Make the case for change. Change for its own sake is inappropriate. If a case

cannot be made for changing the current situation then the process ends and the

system remains as it is.

2. Identify system boundaries. This focuses on the context of the current system

and its interactions with other systems, in terms of business, existing technology,

and internal and external organizational elements. How will the change impact upon

each of these?

3. Describe the existing system, including a full analysis of inputs and outputs and

the various other activities supported, such as operations, control and coordination.

4. Define key objectives, identifying the purpose and function of each area of the

organization.

5. Define key tasks: what tasks need to be performed to meet these objectives?

6. Define key information needs, including those identified by analysis of the

existing system and those highlighted by definition of key tasks.

7. Diagnose efficiency needs, those elements in the system that cause it to

underperform or perform incorrectly. If these are internal they can be redesigned out

of the new system; if they are external then the new system must be designed to cope

with them.

8. Diagnose job satisfaction needs, with a view to increasing job satisfaction where

it is low.

9. Analyze likely future changes, whether in technology, external constraints (such

as legal requirements), economic climate or stakeholder attitudes. This is necessary

to ensure that the system is flexible enough to cope with change.

10. Specify and prioritize objectives based on efficiency, job satisfaction and

future needs. All stakeholders should be able to contribute here as it is a critical

stage and conflicting priorities need to be negotiated. Objectives are grouped as either

primary (must be met) or secondary (desirable to meet).

 The final stages of the ETHICS approach focus on the actual design and

evaluation of the system. Necessary organizational changes are designed alongside

the technical system. These are then specified in detail, implemented and

evaluated.

 The ETHICS approach attempts to reach a solution that meets both user and

task requirements by having specialist teams negotiate objectives and rank

potential solutions.

 Ethnographic methods

 Real action is situated action; it occurs in interaction with the materials and

people of the workplace. In extremis, it is claimed that an action can only be

understood in the place, in the social situation, and at the time at which it

occurred.
 Such a level of contextualization is obviously useless for design, and its

advocates will in practice generalize from their observations, even if they

ostensibly eschew such generalization.
 Many branches of sociology and anthropology have long recognized that one

cannot study people divorced from their social and cultural context.

ethnography has become very influential, particularly in the study of group

systems.
 Ethnography is based on very detailed recording of the interactions between

people and between people and their environment. It has a special focus on

social relationships and how they affect the nature of work.

16

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 The ethnographer does not enter actively into the situation, and does not see

things from a particular person’s viewpoint. However, an aim is to be

encultured, to understand the situation from within its own cultural

framework. Culture here means that of the particular workgroup or

organization, rather than that of society as a whole. Ethnographers try to take

an unbiased and open-ended view of the situation

 Contextual inquiry

Approach developed by Holtzblatt

 in ethnographic tradition but acknowledges and challenges investigator

focus

 model of investigator being apprenticed to user to learn about work

 investigation takes place in workplace - detailed interviews, observation,

analysis of communications, physical workplace, artefacts

 number of models created:

o sequence, physical, flow, cultural, artefact

o models consolidated across users

 output indicates task sequences, artefacts and communication channels

needed and physical and cultural constraints

 COMMUNICATION AND COLLABORATION MODELS

 single-user or multi-user
 We need to understand normal human–human communication:
 face-to-face communication involves eyes, face and body
 conversation can be analyzed to establish its detailed structure.

Look at several levels – minutiae to large scale context:

– face-to-face communication

– conversation

– text based communication

– group working

 FACE-TO-FACE COMMUNICATION

 Face-to-face contact is the most primitive form of communication primitive,

that is, in terms of technology. The first thing to note is that face-to-face

communication involves not just speech and hearing, but also the subtle use

of body language and eyegaze. It has a range of these phenomena, and how

they influence our use of computer-mediated communications.
a. Transfer effects and personal space

 When we come to use computer-mediated forms of communication, we carry

forward all our expectations and social norms from face-to-face

communication. People are very adaptable and can learn new norms to go with

17

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Alison: Do you fancy that film . . . er . . . ‘
The Green’ um . . .

it starts at eight.
Brian: Great!

new media. the rules of face-to-face conversation are not conscious, so, when

they are broken, we do not always recognize the true problem.

 Personal space also differs across cultures: North Americans get closer than

Britons, and southern Europeans and Arabs closer still. This can cause

considerable problems during cross-cultural meetings

b. Eye contact and gaze

 Our eyes tell us whether our colleague is listening or not; they can convey

interest, confusion or boredom. Sporadic direct eye contact (both looking at

one another’s eyes) is important in establishing a sense of engagement and

social presence. People who look away when you look at them may seem shifty

and appear to be hiding something.
 The relative frequency of eye contact and who ‘gives way’ from direct eye

contact is closely linked to authority and power. Naturally, all these clues are

lost if we have no visual contact. problems with direct eye contact, many

signals can be easily read through a video channel. This involves not just the

eyes, but the whole facial expression, and this is apparent even on poor-

quality video or very small (pocket- TV-sized) monitors

c. Gestures and body language

 We use our hands to indicate items of interest. This may be conscious and

deliberate as we point to the item, or may be a slight wave of the hand or

alignment of the body to allow our colleagues to read our movements. This can

be a serious problem since our conversation is full of expressions such as ‘let’s

move this one there’, where the ‘this’ and ‘there’ are indicated by gestures (or

eyegaze). This is called deictic reference.

d. Back channels, confirmation and interruption

 It is easy to think of conversation as a sequence of utterances: A says

something, then B says something, then back to A. This process is called turn-

taking and is one of the fundamental structures of conversation. However,

each utterance is itself the result of intricate negotiation and interaction.

Consider the following transcript:

 Alison has asked Brian whether he wants to go to the cinema (or possibly to

watch the television at home). She is a bit vague about the film, but Brian

obviously does not mind! As Alison says ‘that filmer . . .’, she looks at Brian.

From the quizzical look on his face he obviously does not know which film she

is talking about. She begins to expand ‘The Green um . . .’,and light dawns;

she can see it in his eyes and he probably makes a small affirmative sound ‘uh

huh’.
 The nods, grimaces, shrugs of the shoulder and small noises are called

backchannels. They feed information back from the listener to the speaker at a

level below the turn-taking of the conversation.

 Back channels -media effects

18

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Restricting media restricts back channels

video – loss of body language

audio – loss of facial expression

half duplex – lose most voice back-channel

responses

text based – nothing left!

e. Turn-taking

 As well as giving confirmation to the speaker that you understand, and

indications when you do not, back channels can be used to interrupt politely.

Starting to speak in the middle of someone’s utterance can be rude, but one

can say something like ‘well uh’ accompanied by a slight raising of the hands

and a general tensing of the body and screwing of the eyes.
 This tells the speaker that you would like to interrupt, allowing a graceful

transition. In this case, the listener requested the floor.Turn-taking is the

process by which the roles of speaker and listener are exchanged. Back

channels are often a crucial part of this process

 Conversation

 It focuses on two-person conversations, but this can range from informal

social chat over the telephone to formal courtroom cross-examination. As

well as the discipline of conversational analysis, there are other sociological

and psychological understandings of conversation.
 There are three uses for theories of conversation in CSCW.

1. First, they can be used to analyze transcripts, for example from an

electronic conference. This can help us to understand how well the

participants are coping with electronic communication.

2. Secondly, they can be used as a guide for design decisions – an

understanding of normal human–human conversation can help avoid

blunders in the design of electronic media.

3. Thirdly, and most controversially, they can be used to drive design

structuring the system around the theory. We will concentrate mainly on

the first goal, although this will have implications throughout for design

Basic conversational structure

 Imagine we have a transcript of a conversation production of such a transcript

is not a simple task. For example, a slightly different version of Alison and

Brian’s conversation may look like this:

 This transcript is quite heavily annotated with the lengths of pauses and even

Alison’s action of looking at her watch. the most basic conversational structure

is turntaking.On the whole we have an alternating pattern: Alison says

something, then Brian, then Alison again.
19

Alison: Do you fancy that film?

Brian: The uh (500 ms) with the black cat – ‘
The Green whatsit’?

Alison: Yeah, go at uh . . . (looks at watch – 1.2 s) . . . 20 to?

Brian: Sure.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Brian: Do you want some gateau?

Alison: Is it very fattening?

Brian: Yes, very.

Alison: And lots of chocolate?

Brian: Masses.
Alison: I’ll have a big slice then.

 The speech within each turn is called an utterance. There can be exceptions to

this turn-taking structure even within two-party conversation. Often we can

group the utterances of the conversation into pairs: a question and an answer,

a statement and an agreement. The answer or response will normally follow

directly after the question or statement and so these are called adjacency pairs
. The requirement of adjacency can be broken if the pair is interposed with

other pairs for clarification, etc.:

 This conversation can be denoted: B-x, A-y, B-y, A-z, B-z, A-x. Adjacency pair ‘x’ (‘Do you want some gateau?’–‘I’ll have a big slice then’) is split by two other

pairs ‘y’ and ‘z’. One would normally expect the interposed pairs to be relevant

to the outer pair, seeking clarification or determining information needed for

the response
Context

 Take a single utterance from a conversation, and it will usually be highly

ambiguous if not meaningless: ‘the uh with the black cat – “The Green

whatsit”’. Each utterance and each fragment of conversation is heavily

dependent on context, which must be used to disambiguate the utterance. We

can identify two types of context within conversation:
internal context – dependence on earlier utterances.

external context – dependence on the environment.

Example

Common Ground

20

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Topics, focus and forms of utterance

 Given that conversation is so dependent on context, it is important that the

participants have a shared focus. We have addressed this in terms of the

external focus the objects that are visible to the participants – but it is also

true of the internal focus of the conversation.

Tracing topics is one way to analyse conversation.

– Alison begins – topic is roses

– Brian shifts topic to greenfly

– Alison misses shift in focus … breakdown in communication

 Alison began the conversation with the topic of roses. Brian shifts to the

related, but distinct, topic of greenfly. However, for some reason Alison has

missed this shift in focus, so when she makes her second utterance, her focus

and Brian’s differ, leading to the breakdown in communication. The last two

utterances are a recovery which re-establishes a shared dialog focus.
 Another way of classifying utterances is by their relation to the task in hand.

At one extreme the utterance may have no direct relevance at all, either a

digression or purely social. Looking at the task-related conversation,
 The utterances can be classified into three kinds:
1. substantive directly relevant to the development of the topic;

2. annotative points of clarification, elaborations, etc.;

3. procedural talking about the process of collaboration itself.

 Procedural utterances may be related to the structure of collaboration itself, or

may be about the technology supporting the collaboration. The latter is usually

in response to a breakdown where the technology has intruded into the

communication.

Breakdown and repair

 At a lower level, we may see breakdown due to incorrectly read gestures or

eyegaze, and through missed or inappropriate back channel responses.

Despite the frequency of breakdowns in normal speech, our communication is

not usually significantly affected because we are so efficient at repair.
 Redundancy, frequency of turn-taking and back channels, all contribute to the

detection of breakdown and its rapid repair. Electronic communications often

reduce redundancy (a single channel), reduce the frequency of turn-taking and

reduce back channels. The problem is thus not so much breakdowns in

communication, but a reduced ability to recover from them.
Constructing a shared understanding

 The major difference between a book and conversation is that the latter is

interactive. The shared knowledge used in a book is static, whereas that used

during a conversation is dynamic, as the participants increase their

understanding of one another and as they shift their focus from topic to topic.
 When participants come to a conversation, they may come from different

backgrounds and bring different knowledge. Even close colleagues will have

21

Alison: Oh, look at your roses . . .

Brian: Mmm, but I’ve had trouble with greenfly.

Alison: They’re the symbol of the English summer.

Brian: Greenfly?

Alison: No roses silly!

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

different recent experiences, and as we have seen in previous examples, have

different foci.

 The participants do not try to unify their knowledge and background indeed,

they could not fully do so without living one another’s lives. Instead, they seek

to obtain a common ground, a shared understanding sufficient for the task in

hand.
 Establishing this common ground will involve negotiating the meanings of

words and constructing shared interpretations of the world. Clark and

Schaefer refer to this process as grounding. The aim of grounding is to

construct a meaning in the conversation which is sufficient for the task. Two

guiding principles for our utterances are that they should be relevant and

helpful.
Speech act theory

 A particular form of conversational analysis, speech act theory, has been both

influential and controversial in CSCW. Not only is it an analytic technique, but

it has been used as the guiding force behind the design of a commercial

system, Coordinator.
 Speech act theory has origins going back over 25 years, but was popularized

by Winograd and Flores in the design of Coordinator The basic premise of

speech act theory is that utterances can be characterized by what they do. If

you say ‘I’m hungry’, this has a certain propositional meaning that you are

feeling hungry.
 Speech act theory concerns itself with the way utterances interact with the

actions of the participants. Individual speech acts can contribute to a

conversation. The basic structure of conversations can then be seen as

instances of generic conversations. One example of such a generic structure is

a conversation for action (CfA).
 It represents the stages two participants go through in initiating an external

action that one of them should perform. There are two variants, the one shown

representing a conversation where the first speaker (A) is requesting that the

other participant (B) does something. The other, similar, variant is where the

first speaker begins with an offer. where the first speaker begins with an offer.
 The numbered circles in Figure are ‘states’ of the conversation, and the labeled

arcs represent the speech acts, which move the conversation from state to

state. Note that the speech acts are named slightly differently in different

sources (by the same author even!), but the structure of a CfA is the same. The

simplest route through the diagram is through states 1–5.
 The network has some nodes marked with a double circle. These are the

completion nodes, and at these points neither party expects any more acts by

the other as part of this conversation. So the fragment above which left Alison

and Brian in state 3 must continue. Of these completion nodes only state 5

represents conclusions where the request has been satisfied.

22

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fig.3.5: Conversation for action

Circles represent ‘states’ in the conversation

Arcs represent utterances (speech acts)

Stages between Conversations • Request , • Promise , • Assert ,• Decline , • Reject , • Withdraw , • Counter , •

Accept , • Renege , • Declare

There are other generic conversation forms as well as CfA. These include:

1. conversation for clarification usually embedded within a CfA to clarify the

required action (different from countering a request);

2. conversation for possibilities looking toward future actions;

3. conversation for orientation building up a shared understanding.

CfA in action

 TEXT-BASED COMMUNICATION

 For asynchronous groupware (and even some synchronous systems), the major

form of direct communication is text based. There are exceptions to this, for

instance voice messaging systems and answer phones, and other media may

be used in addition to text such as graphics, voice annotation or even video

clips. But despite these, text is still the dominant medium.
 Types of electronic text:

23

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

o discrete directed messages, no structure (email)

o linear messages added (in temporal order)

o non-linear hypertext linkages

o spatial two dimensional arrangement

 Text-based communication is familiar to most people, in that they will have

written and received letters. However, the style of letter writing and that of

face-to-face communication are very different. The text-based communication

in groupware systems is acting as a speech substitute, and, thus, there are

some problems adapting between the two media. There are four types of

textual communication in current groupware:
a) discrete – directed message as in email. There is no explicit connection

between different messages, except in so far as the text of the message refers

to a previous one.

b) linear – participants’ messages are added in (usually temporal) order to the

end of a single transcript.

c) non-linear – when messages are linked to one another in a hypertext fashion.

d) spatial – where messages are arranged on a two-dimensional surface.

Back channels and affective state

 Much of the coordination of face-to-face conversation depends on back

channels and interpretation of the listener’s expressions. Text-based

communication loses these back channels completely.
 Consider the effect of this on even a two-party conversation.The speaker would

pause to seek back channel confirmation or to offer the floor, the text ‘speaker’
must either continue regardless, or finish the message, effectively passing the

turn.
 One consequence of the lack of interruptions and more measured pace

of interaction is that the utterances are more grammatical than speech. In

addition to this loss of back channels, the speaker’s tone of voice and body

language are of course absent. These normally convey the affective state of the

speaker (happy, sad, angry, humorous) and the illocutionary force of the

message (an important and urgent demand or a deferential request).

 Email users have developed explicit tokens of their affective state by the use of
flaming’ and ‘smilies’, using punctuation and acronyms; for example:

:-) – smiling face, happy

:-(– sad face, upset or angry

;-) – winking face, humorous

LOL – laughing out loud.

24

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Grounding constraints

 This grounding process is linked strongly with the types of channels through

which the conversants communicate. Clark and Brennan describe the properties

of these channels in terms of grounding constraints. These include
cotemporality – an utterance is heard as soon as it is said (or typed);

simultaneity – the participants can send and receive at the same time;

sequence – the utterances are ordered.

 These are all constraints which are weaker in text-based compared with face-

to-face interaction. text-based system, different participants can compose

simultaneously, but they lack cotemporality. Even if the messages appear as they

are produced, they will not be read in real time. In addition, the messages may

only be delivered when complete and even then may be delayed by slow

communications networks.
 Linear transcripts obviously have some idea of sequence, but this is confused

by the overlap and interleaving caused by the lack of cotemporality and

imultaneity. Consider this typical interchange during the use of the York

Conferencer system:

1. Bethan: How many should be in the group?

2. Rowena: Maybe this could be one of the four strongest reasons?

3. Rowena: Please clarify what you mean.

4. Bethan: I agree.

5. Rowena: Hang on.

6. Rowena: Bethan what did you mean?

 In a spoken conversation, Rowena and Bethan would have quickly corrected

themselves if they began to speak at once, and the linearity would have

reflected a common experience. The trouble is that the participants in the text-

based conference each experienced the messages in a different order:
Rowena: 2 1 3 4 5 6

Bethan: 1 2 4 3 5 6

25

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Turn-taking

 The fundamental structures of conversation was turn-taking.The last transcript

was an example of a breakdown in turn-taking.Breakdowns are quite rare in

two-party electronic conversations and are quickly corrected.
 In a pair of participants, turn-taking is simple; first one person says

something, then the other. The only problem is deciding exactly when the

exchange should happen. With three or more participants, turn-taking is more

complex. They must decide who should have the next turn. This is resolved by

face-to-face groups in a number of ways.
 First, the conversation may, for a period, be focused on two of the parties, in

which case normal two-party turn-taking holds.

 Secondly, the speaker may specifically address another participant as the

utterance is finished, either implicitly by body position, or explicitly: ‘what do

you think Alison?’
 Finally, the next speaker may be left open, but the cotemporality of the audio

channel allows the other participants to negotiate the turn.

 Basically, whoever speaks first, or most strongly, gets in. These mechanisms

are aided by back channels, as one of the listeners may make it clear that she

wants to speak. In this case, either the speaker will explicitly pass the turn

(the second option above), or at least the other listeners are expecting her to

speak.
 The movement between effective two-party conversation (the first option) and

open discussion will be mediated by back channel messages from the other

participants.
 In an unstructured text-based conversation the third option is not available,

nor, of course, are the back channels. Paired conversation is quite common

and the second option, explicitly naming the next speaker, is possible.
Context and deixis

 Utterances are highly ambiguous and are only meaningful with respect to

external context, the state o the world, and internal context, the state of the

conversation. Both of these are problems in text-based communication.
 The very fact that the participants are not co-present makes it more difficult to

use external context to disambiguate utterances. This is why many groupware

systems strive so hard to make the participants’ views the same; that is, to

maintain WYSIWIS (‘what you see is what I see’).
 The means of direct communication, remote participants have difficulty in

using deictic reference. They cannot simply say ‘that one’, but must usually

describe the referrant: ‘the big circle in the corner’. If their displays are not

WYSIWIS then they must also ensure that their colleague’s display includes

the object referred to and that the description is unambiguous.
 Asynchronous participants have even more problems with deixis as there is no

opportunity for their colleagues there are also problems with deictic reference

to internal context

26

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

1. Alison: Brian’s got some lovely roses.

2. Brian: I’m afraid they’re covered in greenfly.

3. Clarise: I’ve seen them, they’re beautiful.

Fig3.6: Hypertext Conversation Structure

 In speech, the context is intimately connected to linear sequence and

adjacency. As we have seen, even in linear text transcripts, overlap breaks the

strict sequentiality of the conversation, and thus causes problems with

indexicals and with context in general.

 Hypertext-based systems avoid the implied sequentiality of a linear transcript.

In the example, both Brian and Clarise replied to Alison’s message at the same

time. In a hypertext these would form parallel conversations. This is shown in

above Figure , where in addition Clarise has sent a second message offering

advice on Brian’s greenfly. The use of ‘they’ in Clarise’s message is now

perfectly clear.
Pace and granularity

 The term pace is being used in a precise sense above. Imagine a message being

composed and sent, the recipient reading (or hearing) the message and then

composing and sending a reply. The pace of the conversation is the rate of

such a sequence of connected messages and replies.
 Clearly, as the pace of a conversation reduces, there is a tendency for the

granularity to increase. To get the same information across, you must send

more per message. Even most monologs are interactive in the sense that the

speaker is constantly looking for cues of comprehension in the listener.

27

Pace of conversation – the rate of turn taking

face-to-face – every few seconds

telephone – half a minute

email – hours or days

as the pace of a conversation reduces, there is a tendency for the granularity
to increase

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Fig3.7: Conversation Game

 Reducing the pace of a conversation reduces its interactivity. at the small scale

of clarifying individual utterances, interactivity is important in determining the

direction of a conversation. Imagine that the conversation is a little like a

game, where the participants can make moves. In Figure , we can see some of

the moves Alison and Brian can make whilst talking in the garden (Clarise has

gone home).
 At each turn of the conversation, Alison or Brian can choose to say one thing

which continues the discussion. That is, they gradually work out a path from

the top of the tree downwards. A particularly promising conversation path is

shown with bold lines. In a hypertext-based system one can expand several

branches of a conversation tree, but in speech or in a linear text transcript the

conversation follows one branch.
 Whatever medium is used, you cannot normally progress down the tree faster

than the pace of the conversation. To overcome these limitations, people adopt

several coping strategies. The simplest strategy is just to avoid conversation.

This can be done by delegating parts of a task to the different participants.

Each participant can then perform much of the task without communication.

They must still communicate for large-scale strategic decisions, but have

significantly reduced the normal communications.
 This approach reduces communication by reducing collaboration. More

interesting in a cooperative work setting are two coping strategies which

increase the chunk size of messages in order to reduce the number of

interactions required to complete a task. These strategies are frequently seen

in both text-based conferences and in letter writing.
 The first of these coping strategies is multiplexing. Basically, the conversants

hold several conversations in parallel, each message referring to several topics.

In terms of the conversation tree, this corresponds to going down several

branches at once.
Linear text vs. hypertext

 Considerations of potential overlap suggest that hypertext-based

communications may be better suited as a text-based communication

medium. Similarly, the problems of pace may be partially solved in a

hypertext.
 Multiplexed messages can be represented as updates to several parts of the

hypertext, thus reducing the likelihood of breakdown and lost topics. In

28

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

addition, if the messages themselves can be mini-hypertexts, then eager

messages listing several possible courses of action can be explicitly

represented by the message.

 On the other hand, hypertext has its disadvantages. Even static hypertexts,

which have been carefully crafted by their authors, can be difficult to navigate.
 A hypertext that is created ‘on the fly’ is unlikely to be comprehensible to any

but those involved in its creation. Conklin and Begeman, themselves

associated with the hypertextbased argumentation tool gIBIS, conclude that ‘traditional linear text provides a continuous, unwinding thread of context as

ideas
 GROUP WORKING

 We have been principally looking at the properties of direct communication

and largely two-party conversations. Group behavior is more complex still as

we have to take into account the dynamic social relationships during group

working.
 We will begin by looking at several factors which affect group working, and

then discuss the problems of studying group working.
Group dynamics

 Whereas organizational relationships such as supervisor/supervisee are

relatively stable, the roles and relationships within a group may change

dramatically within the lifetime of a task and even within a single work session

that systems, such as co-authoring systems, which use a formal concept of

role, must allow these roles to change together with the socially defined roles.
 Even the naming of roles can cause problems. A person may be an author of a

book or paper, but never write the words in it, acting instead as a source of

ideas and comments. A particular case of this is the biographical story where

the individual concerned and a professional writer co-author the book, but

only the professional author writes.
 A co-authoring system such as Quilt would call the non-writing author a ‘commentator’ or a ‘reviewer’, but not an ‘author’. Not only do the social

relationships within the group change, but the group membership and

structure can change in time.
 A member leaving or a new member joining can cause dramatic changes in the

behavior of the group. Groupware systems, for example argumentation tools,

can help in that they record the history of the group. Groupware designers

should in general be aware that new members can and will enter the group

and should design their software accordingly. The group may also divide into

subgroups for detailed discussion and then reform. Tools must be able to

support this.
Physical layout

 The physical layout of a room has a profound effect upon the working

relationship of those in it. This is particularly obvious for meeting rooms, but

should be considered in any group-working environment.
 If we wish to encourage conversation, as we do in a meeting room,the

participants must be encouraged to look toward one another.
 Meeting rooms have a natural focus toward the screen at the front of the room,

but inward-facing terminals can counteract this focus and thus encourage eye

contact. the users still had some difficulty in adapting to the power positions in

the electronic meeting room.
 At first sight, the electronic meeting room is not unlike a normal conference

room. If the shared screen is a whiteboard or an overhead projector, then the

most powerful position is toward the front of the room . Managers would

29

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

normally take this seat as they can then easily move to the whiteboard or

overhead projector to point out some item and draw the group’s attention.

Distributed cognition

 Human cognition, but the emphasis was, as in all traditional psychology, upon

the activity within the person’s head. A school of thinking has recently

developed which regards thinking as happening not just within the head,but in

the external relationships with things in the world and with other people. This

viewpoint is called distributed cognition. this viewpoint is not as radical as it

first appears.
 Traditional views talk about the movement of information between working

memory and long-term memory: it is not so difficult then to regard bits of

paper, books and computer systems as extensions to these internal memory

systems.

 HYPERTEXT, MULTIMEDIA AND WWW

 Understanding Hypertext

 Hypertext attempts to get around these limitations of text by structuring it into

a mesh rather than a line. This allows a number of different pages to be

accessed from the current one, and, if the hypertext is well designed, the user

should find it easier to follow his own particular idea through the mesh rather

than being forced down one route.

 Typically, hypertext systems incorporate diagrams, photographs and other

media as well as text. Such systems are often known as multimedia or

hypermedia systems, although the three terms are often used interchangeably.

 A hypertext system comprises a number of pages and a set of links that are

used to connect pages together. The links can join any page to any other page,

and there can be more than one link per page. Thus a hypertext document

does not simply start a linear progression and follow it to an end, but goes in

lots of different directions, some of which terminate, while others link back

into different parts of the document.

 There are many different ways of traversing the network, and so there are

many different ways of reading a hypertext document – the intention is that

the user is able to read it in the way that suits him best. Links can exist at the

30

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

end of pages, with the user choosing which one to follow, or can be embedded

within the document itself.

Fig3.8: Typical structures of linear text and hypertext

Rich content

As well as static material – text and static diagrams and photographs – hypertext

systems may also include more dynamic material such as animation, video and

audio clips, and even full computer applications.

Animation

 Animation is the term given to the addition of motion to images, making them

move, alter and change in time. A simple example of animation in an interface

is in the form of a clock. Digital clocks can flick by the seconds, whilst others

imitate Salvador Dali and bend and warp one numeral into the next. Analog

clocks have moving hour and minute hands, with an optional second hand

sweeping round the clock face

Video and audio

 A media dominated world, there are strong arguments for using video or audio

material as part of hypertext systems whether for education, entertainment or

reference. Both audio and video material are expensive and time consuming to

produce, but increasingly even home-PC systems include video and audio

editing as standard.

Delivery technology

On the computer

 Many hypermedia systems are supplied on CD-ROM. This has the advantage

of reasonably large capacity (650–700 Mbytes), but access is slower than with

installed systems. For highly dynamic material, such as educational media, a

special player is installed; alternatively, material such as software

documentation may use a standard format such as web pages.

On the web

 World wide web is the best-known multimedia hypertext system of all. The

world wide web offers a rich environment for the presentation of information.

 Documents can be constructed that are very different from paper versions;

basic text can be augmented through the use of hypertext links to other

documents, while graphics can easily be incorporated as pictures,

photographs, icons, page dividing bars, or backgrounds. Pages can also have

hypertext links embedded into different regions, which take the user to a

different page or graphic if they are clicked on; these are known as active

image maps.

31

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

On the move

 Mobile phones, PDAs (personal digital assistants), and notebook computers

have all increased the demand to have hypermedia available on the move.

Furthermore across many countries governments have sold franchises for

high-bandwidth mobile services. After spending billions on these franchises

the telecommunications giants really want people to use new mobile services!

 Notebook computers can use just the same mechanisms as desktop

computers, using CD-ROM or DVD for standalone material, or connecting to

the web through wireless access points or through modems linked to mobile

phone networks. The fact that the computer is mobile means that location can

be used as a key into context-aware hypermedia showing different content

depending on location.

 The ‘stick e note’ system developed by the University of Kent uses a sticky note

metaphor with notes stuck to particular locations. Only when you visit the

location does the note become visible. This is a bit like an image map on a web

page, but rather than clicking a mouse over an image to link to information,

here you need to physically move to a location! Another example is the GUIDE

system, which uses various means to detect location (closest network access

point or GPS) and then delivers appropriate tourist information.

Application areas

The type of domains in which hypermedia systems have proved successful, looking

briefly at some example systems.

Rapid prototyping

 Although now lacking the wealth of features expected of a hypermedia system,

HyperCard on Macintosh computers has been very influential as a basis for

experimental hypertext systems. HyperCard uses the metaphor of a card

index, around which the user can navigate. Each card can hold text, diagrams,

photographs, bitmaps and so on, and hot-spots on the cards allow movement

between cards.

 Cards may also contain forward and backward buttons and a home icon, to

allow the user to move sequentially and start from scratch respectively.

HyperCard can be used for a range of applications including information

management and teaching.

 HyperCard’s simple scripting language and easy to produce graphical

interfaces meant it was also used extensively as a rapid prototyping tool for

generating interactive systems. In fact, HyperCard stacks for both single-user

and networked applications are available from the book website.

Help and documentation

 Hypermedia systems are ideally suited to online manuals and other help

system applications. They allow user-oriented access to the information, and

support browsing. In addition the information can be organized hierarchically,

with successive selections providing more detailed information. This supports

the varying needs that users have, such as quick reference, usage information,

full details and so on. Many commercial help systems use hypermedia-style

help.

Education and e-learning

 Hypertext and hypermedia are used extensively in educational settings, as

they allow varied subjects to be related to each other in numerous ways so

that the learner can investigate the links between different areas. In contrast

to computer-aided learning (CAL) packages, hypermedia allows a student-

controlled learning process. This is a hypermedia system built and used at

32

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Brown University to support teaching in subjects as varied as English

literature and biology.

 The system includes text, diagrams, photos and so on. Both learners and

teachers can add information and links, giving students access to each other ’s

opinions as well as those of their tutors. A map provides an overall view of the

information for direct access and navigation, with links providing browsing

facilities in the normal way. Intermedia has been successfully used for university-

level teaching, and can be seen as a forerunner of the educational resources now

facilitated by the web.

Collaboration and community

 Although strictly not hypertext, the web has become a central platform for

collaborative applications and community. These use the hypertext structure

of the web to structure and access shared resources and message areas.

 Establishing a sense of community can be very important on websites as it is

one way to ensure loyalty and get visitors to return. This may involve explicit

community features such as chat areas, or may simply be a matter of using a

design, language and image that suggests a site which is open and listening to ‘readers’.
Finding Things

Lost in hyperspace

 Although the non-linear structure of hypertext is very powerful, it can also be

confusing. It is easy to lose track of where you are, a problem that has been

called ‘lost in hyperspace’. There are two elements to this feeling of ‘lostness’.
 The first is cognitive and related to content. In a linear text, when a topic is

being described, the writer knows what the reader has already seen. In a

hypertext, the reader can browse the text in any order.

 Each page or node has to be written virtually independently, but, of course, in

reality it cannot be written entirely without any assumption of prior

knowledge. As the reader encounters fragmentary information, it cannot be

properly integrated, leading to confusion about the topic.

 The second is related to navigation and structure. Although the hypertext may

have a hierarchical or other structure, the user may navigate by hyperlinks

that move across this main structure. It is easy to lose track of where you are

and where you have been.

Designing structure

 In some areas there may be preexisting understood structures to mirror; for

example, the faculty and departmental structure of a university, or the main

disciplines (circulatory, neurological, etc.) within medicine.

Making navigation easier

 No matter how well designed the site structure is, there will still be problems:

because the user does not understand the structure; or because the user has

individual needs that the designer has not foreseen; or because even a good

structure is not perfect. Another type of hypertext takes the form of ‘levels of

access’ to a document. Different levels of access privilege ‘see’ different

amounts of information.

 A document structured in this way may provide one level of access that gives

only a brief overview of the topic. The next level of access presents a fuller

description of the system, while the next level may also include information

regarding the precise meaning of technical terms used in the system. The final

level of access may add historical information and such like

33

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

History, bookmarks and external links

 Hypertext viewers and web browsers usually have some sort of history

mechanism to allow you to see where you have been, and a more stack-based

system using the ‘back’ button that allows you to backtrack through

previously visited pages. The back button may be used where a user has

followed a hyperlink and then decided it was to the wrong place, or

alternatively, when browsing back and forth from a central page that contains

lots of links.

 The latter is called hub and spoke browsing. Although the back button is used

extensively, it is used relatively little to go back more then one step. For error

correction this makes sense, but for general revisiting one might think that

moving back several steps would be common.

Indices, directories and search

 An index is not a complete list of all words in a document. If this were the case

then the index for this book would be as big as the rest of the book! The words

in an index are chosen because they are significant key phrases or words with

a domain meaning, and not every occurrence of a word is indexed, only those

deemed in some way important.

 The main difference between an electronic index and a paper one is that with

the paper index you have to physically look up the page after finding the word

in the index, whereas in an electronic index the links are ‘live’ so you can

simply click to the content.

 Web Technology And Issues

Basics

 The web consists of a set of protocols built on top of the internet that, in

theory, allow multimedia documents to be created and read from any

connected computer in the world. The web supports hypertext, graphics,

sound and movies, and, to structure and describe the information, uses a

language called HTML (hypertext markup language) or in some cases, XML

(extensible markup language). HTML is a markup language that allows

hypertext links, images, sounds and movies to be embedded into text, and it

provides some facilities for describing how these components are laid out.

 HTML documents are interpreted by a viewer, known as a browser; there are

many browsers, and each can interpret HTML in subtly different ways, or

support different levels of functionality, which means that a web page viewed

through one browser can look very different from the same page viewed

through another. web owes its success to many factors, including the

robustness and (relative) ease of use offered by popular browsers from the very

first graphical browser Mosaic, and continued in commercial browsers such as

Netscape Navigator, Microsoft Internet Explorer and Opera. These offer a

graphical interface to the document, controlled by the mouse. Hypertext links

are shown by highlighting the text that acts as the link in an alternative color,

and are activated by clicking on the link. A further color is used to indicate a

link that has already been visited. Hypertext links can also be embedded into

regions within an image.

Web servers and web clients

 Whereas a conventional PC program runs and is displayed on one computer,

the web is distributed. Different parts of it run on different computers, often in

different countries of the world. They are linked, of course, by the internet, an

enormous global computer network.

34

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 The pages are stored on web servers that may be on a company’s own

premises or in special data centers. Because they are networked, the

webmaster for a site can upload pages to the server from wherever she is.

Network issues

 The fact that the web is networked raises a series of issues that can impact on

usability. Network capacity is called bandwidth. This is a measure of the

amount of information that can pass down the channel in a given time.

 For example, a typical modem speed is 56 kbs – that is 56 kilobits per second.

This equates to about 6000 characters per second. This sounds fine until you

realize that images may take many tens or hundreds of characters (bytes) to

encode . . . this is why many have renamed the web the ‘world wide wait’!

bandwidth is not the only important measure.

 There is also the time it takes for a message to get across the network from

your machine to the web server and back. This delay is called latency.

 Latency is caused by several factors – the finite speed of electrical or optical

signals (no faster than the speed of light), and delays at routers along the way

that take messages from one computer network and pass them on. This

latency may not always be the same, varying with the exact route through the

network traveled by a message, the current load on the different routers,etc.

Variability in the latency is called jitter.

Fig.3.9: Bandwidth, Latency and Jitter

 Static Web Content

The message and the medium

 Excellent page design can make useless material look attractive, but it still

remains useless material. Poor design can mean that excellent material is

never seen by potential readers, as they have become bored, or intolerant of

the medium, or confused, or for a host of other reasons have aborted their

attempts to download and view the information.

 Pages do have to look immediately interesting and attractive if people are to

spend time, effort and, because of the communication costs, money, in viewing

them; the user-centered nature of the medium makes this imperative.

 This is in marked contrast to television or cinema or other dynamic media,

which are not under any direct user control, where information is presented to

a passive audience. With web documents, people have actually to want to see

the information, and make an effort to retrieve it, which clearly must have an

influence on design.

Text

 Because web pages are displayed on many different machines, there are only a

small set of fonts that can be guaranteed to be available: a standard font and a

typewriter font (e.g. courier) with bold and italic versions in different sizes. It is

possible to specify preferred fonts and many of these such as Arial, Verdana or

35

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Comic Sans are available on most web platforms. The various structured

styles such as headings allow the web designer to create material that will lay

out passably on all platforms. But these offer a fairly coarse level of control.

The size and boldness of the heading should be chosen carefully; for example,

huge dark fonts on a page can look loud and brash. There is an increasing

desire to have fine control.

 Cascading style sheets (CSS) allow you to specify fonts, line spacing, size, etc.,

in a similar way to styles in a word processor or DTP package. The use of color

is of great importance for web pages, but it is often abused.

 First, it should be remembered that a significant proportion of the potential

viewers of the page will have problems with color, either because they are

using older machines with a limited color palette, or because they have some

form of color blindness. Color, when used, should not be the only cue

available.

Graphics

Obtaining graphics

 There are a number of sites on the web that contain archives of graphical

images, icons, backgrounds and so on. There are also paint and image

manipulation packages available on almost all computer systems, and

scanners and digital cameras, where available, enable the input of

photographs and diagrams.

Using graphics

 While graphics and icons tend to play a significant role in web page design,

their use should be carefully thought out. Graphical images take longer to load

than text, and this may become a problem. Text uses 8 bits to represent a

character: some rough calculations show that approximately 2000 characters

represent about a screenful of information, and so 16,000 bits (2 K) are

required.

Icons

 Icons often appear on web pages, and while there are many available to choose

from, they should be used with care. On web pages, icons are typically used in

one of two ways. They are either visual cues, associating some small picture

with different parts of the text (for example, some pages have icon-sized

characters that appear next to instructions).

 Alternatively, they are used in much the same way as in a standard. WIMP

interface to represent aspects of the functionality of the underlying pages. In

this latter case, they must represent their associated functionality in either a

concrete or an abstract form. This means that the design of the individual icon

has to be carefully thought out, as a lot of information may have to be

represented in a small area of screen estate.

Movies and sound

 Movies and sound are both available to users of the web, and hence to page

designers. One problem associated with them is actually obtaining appropriate

sound and video clips, as they usually require some sort of multimedia

capability on behalf of the host machine in order to be able to digitize sound

and capture and digitize video.

 Video suffers from the same problems as graphics, magnified by an order of

magnitude or two; it can take extremely large amounts of time for a video

segment to download.

 Video is also not well integrated into the web, requiring the creation of a

process to run it that is separate from the page from whence it came. Not all

receiving machines have the capability to play video, or sound, and so it is
36

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

unwise for a designer to rely on these dynamic media to convey information

without replicating it elsewhere.

 The use of sound and video moves page design further away from the

typesetter and toward the sound engineer and cinematographer; the

integration of these cinematic media with the enhanced textual capabilities

offered by the web is a new domain, in which the techniques that work and

those that fail have not yet been fully explored, let alone understood.

 The need to download movies and sound puts sharp limits on the length of

clip that can be shown. Streaming media over the internet, such as RealVideo,

RealAudio and CuSeeMe, allow potentially unlimited sources.

Fig.3.10: Animated GIF or movie needs to download completely

 Dynamic Web Content The

active web

 The web was simply a collection of (largely text) pages linked together. The

material was static or slowly changing and much of it authored and

updated by hand. Some pages were generated on the fly, in particular the

gateways into ftp servers and to gophers, which were so important in adding ‘free’ content to the web.

What happens where

 When considering dynamic material on the web we need to take the external,

user’s viewpoint and ask what is changing: media, presentation or actual data;

by whom: by the computer automatically, by the author, by the end-user or by

another user; and how often, the pace of change: seconds, days or months?

From a technical standpoint, we also need to know where ‘computation’ is

happening: in the user’s web-browsing client, in the server, in some other

machine or in the human system surrounding it? The ‘what happens where’
question is the heart of architectural design.

 It has a major impact on the pace of interaction, both feedback, how fast users

see the effects of their own actions, and feedthrough, how fast they see the

effects of others’ actions. The user view One set of issues is based on what the

end-user sees, the end-user here being the web viewer. What changes? This

may be a media stream (video, audio or animation) which is changing simply

because it is the fundamental nature of the medium.

Technology and security

 The fundamental question here is where ‘computation’ is happening. If pages

are changing, there must be some form of ‘computation’ of those changes.

Where does it happen? Client One answer is in the user ’s web-browsing client

enabled by Java applets, various plug-ins such as Flash, scripting using

JavaScript or VBScript with dynamic HTML layers, CSS and DOM (Domain

Object Model).

 Server A second possibility is at the web server using CGI scripts (written in

Perl, C, UNIX shell, Java or whatever you like!), Java Servlets, Active Server

Pages or one of the other server-specific scripting languages such as PHP.

37

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 In addition, client-side Java applets are only allowed to connect to networked

resources on the same machine as they came from. This means that databases

accessed from clientside JDBC (Java database connectivity) must run on the

web server (see below). Another machine Although the pages are delivered from

the web server, they may be constructed elsewhere. For hand-produced pages,

this will usually be on the page author’s desktop PC. For generated pages, this

may be a PC or a central database server. People Of course, as noted earlier,

the process of production and update may even involve people!

Fixed content – local interaction and changing views

 Probably the most hyped aspect of the web in recent years has been Java. In

fact, Java can be used to write server-end software and platform independent

standalone programs (not to mention the embedded systems for which it was

originally designed!),but the aspect that most people think of is Java applets.

 Applets are just one of the techniques that can be added to give client-end

interaction (and about the least well integrated into the rest of the page). The

most common alternatives are JavaScript, Flash and if you are prepared to

limit yourself to Windows platforms, ActiveX plug-ins. These techniques share

the characteristic that they are downloaded to the user’s own machine and

thereafter all interaction happens on the PC, not across the network

Fig.3.11: Java applet or Javascript running locally

Search

 Some user-driven interaction can be accommodated at the client end, but not

all. Consider search engines. It would be foolish to download several

megabytes of information so that a Java applet can search it online! Instead,

all common websearch pages work by submitting forms to the server where

CGI programs perform the searches and return results.

 An additional reason for this approach is that most browsers support forms,

but some still do not support Java or scripting in a consistent manner. The

web search engine for this book works in this way. The user’s keywords are

submitted to the server using an HTML form, they are compared against pre-

prepared indexes at the server and all matching paragraphs in the book are

returned

Fig.3.11: HCI Book Search

38

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Dynamic content

 The mechanisms we have been discussing manage the feedthrough when the

database is updated by some non-web means. Perhaps the most ‘active’ web

pages are those where the content of the pages reacts to and is updateable by

the web user. If pages are generated from database content using either the

Java-applet/JDBC method or the CGI method, the same mechanisms can as

easily be used to update as to access the database.

 The feedback of changes to the user is thus effectively instantaneous – you

check for seat availability on the theatre web page, select a seat, enter your

credit card details and not only is the seat booked, but you can see it change

from free to booked on the web page.

 This sort of web application opens up many additional problems. You may

need to add some form of login or authentication. If credit card numbers are

supplied you need to ensure that the web server is secure.

39

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

ARUNAI ENGINEERING COLLEGE

DEPARTMENT OF CSE

IV YEAR - VII SEMESTER

CS8079 – HUMAN COMPUTER INTERACTION (R2017)

UNIT IV MOBILE HCI

Mobile Ecosystem: Platforms, Application frameworks- Types of Mobile

Applications: Widgets, Applications, Games- Mobile Information Architecture,

Mobile 2.0, Mobile Design: Elements of Mobile Design, Tools. - Case Studies

 BRIEF HISTORY OF MOBILE

The Brick Era

• It was Portable!

• More expensive than payphones

• Enormous battery

• Stakeholders: Stockbrokers, sales people, …

• After a while, more cellular radio towers and… it got (a little bit) smaller

The Candy Bar Era

• 2G network : GSM, CDMA, TDMA, iDEN

• More cellular towers
less power needed

much smaller

• Better voice quality

• Added SMS

• Everyone wanted to have a mobile phone – economic prosperity in EU, USA, and JP

The Feature Phone Era

• 2.5G network: GPRS

• Camera

• MMS

• Data-capable devices

• Internet on mobile (very poor)

– high prices

– poor marketing

– inconsistent rendering

The Smartphone Era

• 3G, HSDPA, WI-FI

• Like a feature phone, but simulating a PC

• Its own OS (es. Symbian)

• Larger screens, stylus

• The Mobile Platform becomes key

• (push) email as primary driver

1

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The Touch Era

(NOT a phone - NOT a computer)

3G, 4G

• Accelerometers

• GPS/Location-based

• User-centered design

MOBILE ECOSYSTEM

Mobile is an entirely unique ecosystem and, like the Internet, it is made up of

many different parts that must all work seamlessly together. However, with

mobile technology, the parts are different, and because you can use mobile

devices to access the Internet, that means that not only do you need to

understand the facets of the Internet, but you also need to understand the mobile

ecosystem. Think of the mobile ecosystem as a system of layers, as shown in

Figure 4.1. Each layer is reliant on the others to create a seamless, end-to-end

experience. Although not every piece of the puzzle is included in every mobile

product and service, for the majority of the time, they seem to add complexity to
our work, regardless of whether we expressly put them there.

Services

Applications

Application

frameworks

Operating Systems

Platforms

Devices

Aggregators

Networks

Operators

Figure 4.1. The layers of the mobile ecosystem

Although the mobile ecosystem consists of many different components, probably

the most recognizable and important one is the mobile phone. All phones sold

today fall into one of three categories: feature phones, smart phones, or touch

phones.

2

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Feature Phones: The vast majority of cell phone users in the US have

feature phones. These are the basic flip phones that come free or at a low-

cost with carrier contracts and pre-paid plans. Features phones get their

name from the various features that come with the devices. These phones

generally have camera, a handful of applications, and rudimentary web

browsers. Prior to feature phones, cell phones only made calls and sent and

received text messages.
 Smart phones: They makeup a much smaller portion of the US market

than feature phones, but smartphones are also very popular devices,

especially among attorneys. The most recognizable smartphone is the

Blackberry. In addition to all the capabilities of feature phones,

smartphones typically run more applications and an operating system,

have a larger screen size, and utilize a QWERTY keyboard input (standard

keyboard format).
 Touch phones: Since the introduction of the iPhone in 2007, the fastest

growing category of phones in the US market have been touch phones.

Touchphones can be thought of as the next generation of smartphones -

they have larger screens, more robust web browsers, and more powerful

applications. Touchphone users are also the mobile web’s power users. A

recent UK study showed that 93% of iPhone owners use their device to

access news and information on the mobile web.
 Other mobile devices - iPads & tablets are also entering the mobile space

and should be watched as their market share increases, especially

considering that higher end models have built-in wifi capabilities.
 Operators

 Operators are also referred as Mobile Network Operators (MNOs); mobile

service providers, wireless carriers, or simply carriers; mobile phone

operators; or cellular companies

 Essentially make the entire mobile ecosystem work (Gate keepers)

 Operator’s role in the ecosystem is to create and maintain a specific set of

wireless services over a reliable cellular network

 to create and maintain wireless services over a reliable cellular network

 Operators operate wireless networks

 .

3

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 NETWORKS
Mobile networks communicate through electromagnetic radio waves

with a cell site base station, the antennas of which are usually mounted on

a tower,

4

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 DEVICES
handsets or terminals in industry , But also other devices such as tablets, ebook readers…

Mobile Devices around the world Breakdown of devices

5

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Other mobile devices - iPads & tablets are also entering the mobile space and

should be watched as their market share increases, especially considering that

higher end models have built-in wifi capabilities.

 PLATFORMS

A mobile platform’s primary duty is to provide access to the devices. To run

software and services on each of these devices, you need a platform, or a core

programming language in which all of your software is written. Like all software

platforms, these are split into three categories:

1. Open Source: free to use and modify

- Android
2. Proprietary: by device makers

- iPhone, BlackBerry, Palm

3. Licensed: sold to device makers

- JavaME, BREW, Windows Mobile

1) Licensed:

Licensed platforms are sold to device makers for nonexclusive distribution on

devices. The goal is to create a common platform of development Application

Programming Interfaces (APIs) that work similarly across multiple devices with

the least possible effort required to adapt for device differences, although this is

hardly reality. Following are the licensed platforms:

Java Micro Edition (Java ME): Formerly known as J2ME, Java ME is by far the

most predominant software platform of any kind in the mobile ecosystem. It is a

licensed subset of the Java platform and provides a collection of Java APIs for the

development of software for resource constrained devices such as phones.

Binary Runtime Environment for Wireless (BREW): BREW is a licensed

platform created by Qualcomm for mobile devices, mostly for the U.S. market. It

is an interface-independent platform that runs a variety of application

frameworks, such as C/C++, Java, and Flash Lite.

Windows Mobile: Windows Mobile is a licensable and compact version of the

Windows operating system, combined with a suite of basic applications for mobile

devices that is based on the Microsoft Win32 API.

LiMo: LiMo is a Linux-based mobile platform created by the LiMo Foundation.

Although Linux is open source, LiMo is a licensed mobile platform used for

mobile devices. LiMo includes SDKs for creating Java, native, or mobile web

applications using the WebKit browser framework.

2) Proprietary
Proprietary platforms are designed and developed by device makers for use on

their devices. They are not available for use by competing device makers. These

include:

Palm: Palm uses three different proprietary platforms. Their first and most

recognizable is the Palm OS platform based on the C/C++ programming

language; this was initially developed for their Palm Pilot line, but is now used in

low-end smartphones such as the Centro line. As Palm moved into higher-end

smartphones, they started using the Windows Mobile-based platform for devices

like the Treo line. The most recent platform is called webOS, is based on the

WebKit browser framework, and is used in the Prē line.

6

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

BlackBerry: Research in Motion maintains their own proprietary Java-based

platform, used exclusively by their BlackBerry devices.

Iphone: Apple uses a proprietary version of Mac OS X as a platform for their

iPhone and iPod touch line of devices, which is based on Unix.

3) Open Source

Open source platforms are mobile platforms that are freely available for users to

down load, alter, and edit. Open source mobile platforms are newer and slightly

controversial, but they are increasingly gaining traction with device makers and

developers. Android is one of these platforms. It is developed by the Open

Handset Alliance, which is spear-headed by Google. The Alliance seeks to develop

an open source mobile platform based on the Java programming language.

Operating Systems
It used to be that if a mobile device ran an operating system, it was most likely

considered a smartphone. But as technology gets smaller, a broader set of devices

supports operating systems. Operating systems often have core services or

toolkits that enable applications to talk to each other and share data or services.

Mobile devices without operating systems typically run “walled” applications that

do not talk to anything else. Although not all phones have operating systems, the

following are some of the most common:

Symbian: Symbian OS is a open source operating system designed for mobile

devices, with associated libraries, user interface frameworks, and reference

implementations of common tools.

Windows Mobile: Windows Mobile is the mobile operating system that runs on

top of the Windows Mobile platform.

Palm OS: Palm OS is the operating system used in Palm’s lower-end Centro line

of mobile phones.

Linux: The open source Linux is being increasingly used as an operating system

to power smartphones, including Motorola’s RAZR2.

Mac OS X: A specialized version of Mac OS X is the operating system used in

Apple’s iPhone and iPod touch.

Android: Android runs its own open source operating system, which can be

customized by operators and device manufacturers.

You might notice that many of these operating systems share the same names as

the platforms on which they run. Mobile operating systems are often bundled

with the platform they are designed to run on.

 OPERATING SYSTEM
OS have core services or toolkits that enable apps to talk to each other and share

data or services.OSs are common in Smart Phones, but rare in Feature phones.

Smart Phones by OS

7

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• Mobile devices without operating systems typically run “walled” applications

that do not talk to anything else.

• Although not all phones have operating systems, the following are some of the

most common:

• Symbian : Symbian OS is a open source operating system designed for mobile

devices, with associated libraries, user interface frameworks, and reference

implementations of common tools.

• Windows Mobile : Mobile operating system that runs on top of the Windows

Mobile platform.

• Palm OS : OS used in Palm’s lower-end Centro line of mobile phones.

• Linux : The open source Linux is being increasingly used as an operating

system to power smartphones, including Motorola’s RAZR2.

• Mac OS X:A specialized version of Mac OS X is the operating system used in

Apple’s iPhone and iPod touch.

• Android : runs its own open source operating system, which can be customized

by operators and device manufacturers.

 APPLICATION FRAMEWORKS

Often, the first layer the developer can access is the application framework or API

released by one of the companies mentioned already. The first layer that you have

any control over is the choice of application framework. Application frameworks

often run on top of operating systems, sharing core services such as

communications, messaging, graphics, location, security, authentication, and

many others.

Java: Applications written in the Java ME framework can often be deployed

across the majority of Java-based devices, but given the diversity of device screen

size and processor power, cross-device deployment can be a challenge. Most Java

applications are purchased and distributed through the operator, but they can

also be downloaded and installed via cable or over the air.

S60: The S60 platform, formerly known as Series 60, is the application platform

for devices that run the Symbian OS. S60 is often associated with Nokia devices—

Nokia owns the platform—but it also runs on several non-Nokia devices. S60 is

an open source frame-work. S60 applications can be created in Java, the

Symbian C++ framework, or even Flash Lite.

BREW: Applications written in the BREW application framework can be deployed

across the majority of BREW-based devices, with slightly less cross-device

adaption than other frameworks.

However BREW applications must go through a costly and timely certification

process and can be distributed only through an operator.

Flash Lite: Adobe Flash Lite is an application framework that uses the Flash Lite

and ActionScript frameworks to create vector-based applications. Flash Lite

applications can be run within the Flash Lite Player, which is available in a

handful of devices around the world. Flash Lite is a promising and powerful

8

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

platform, but there has been some difficulty getting it on devices. A distribution

service for applications written in Flash Lite is long overdue.

Windows Mobile: Applications written using the Win32 API can be deployed

across the majority of Windows Mobile-based devices. Like Java, Windows Mobile

applications can be downloaded and installed over the air or loaded via a cable -

connected computer.

Cocoa Touch: Cocoa Touch is the API used to create native applications for the

iPhone and iPod touch. Cocoa Touch applications must be submitted and

certified by Apple before being included in the App Store. Once in the App Store,

applications can be purchased, downloaded, and installed over the air or via a

cable-connected computer.

Android SDK: The Android SDK allows developers to create native applications

for any device that runs the Android platform. By using the Android SDK,

developers can write applications in C/C++ or use a Java virtual machine

included in the OS that allows the creation of applications with Java, which is

more common in the mobile ecosystem.

Web Runtimes (WRTs): Nokia, Opera, and Yahoo! provide various Web

Runtimes, or WRTs. These are meant to be miniframeworks, based on web

standards, to create mobile widgets. Both Opera’s and Nokia’s WRTs meet the W3C-

recommended specifications for mobile widgets. Although WRTs are very interesting

and provide access to some device functions using mobile web principles, but have

found them to be more complex than just creating a simple mobile web app, as they

force the developer to code within an SDK rather than just code a simple web

app. And based on the number of mobile web apps written for the iPhone versus

the number written for other, more full-featured WRTs. Nonetheless, it is a move in

the right direction.

WebKit: With Palm’s introduction of webOS, a mobile platform based on WebKit,

and given its predominance as a mobile browser included in mobile platforms like

the iPhone, Android, and S60, and that the vast majority of mobile web apps are

written specifically for WebKit. WebKit is a browser technology, so applications

can be created simply by using web technologies such as HTML, CSS, and

JavaScript. WebKit also supports a number of recommended standards not yet

implemented in many desktop browsers. Applications can be run and tested in

any WebKit browser, desktop, or mobile device.

The Web: The Web is the only application framework that works across virtually

all devices and all platforms. Although innovation and usage of the Web as an

application framework in mobile has been lacking for many years, increased

demand to offer products and services outside of operator control, together with a

desire to support more devices in shorter development cycles, has made the Web

one of the most rapidly growing mobile application platforms to date.

 APPLICATIONS

Definition: In the realm of technology, this usually refers to a computer program

that runs on a website (Google Apps), a small computing device (iPad App) or a

cell phone (Android App).

9

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

10

• Apps live between the device and the user

• They must fit with their usage context

• They must know the specific device attributes and capabilities

• FRAGMENTATION PROBLEM

 SERVICES

Services are “everything the user is trying to do”

They are often available at different levels:

• Application

• Application Framework

• OS
Example services may include:

• the Internet

• sending a text message
• being able to get a location

All of these layers must be passed through before you get to the content

7th Mass MEDIA - MOBILE

1) Printing Press

2) Recordings

3) Cinema

4) Radio

5) Television

6) Internet

7) MOBILE

 TYPES OF MOBILE APPLICATIONS

The mobile medium type is the type of application framework or mobile

technology that presents content or information to the user. It is a technical

approach regarding which type of medium to use; this decision is determined by

the impact it will have on the user experience. The technical capabilities and

capacity of the publisher also factor into which approach to take. Earlier the

common mobile platforms was discussed in terms of how they factor in the larger

mobile ecosystem. Now let us look deeper into each of these platforms from a

more tactical perspective, unpacking them, so to speak, to see what is inside.

Figure 4.2 illustrates the spectrum of mobile media; it starts with the basic text-

based experiences and moves on to the more immersive experiences.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 4.2. Multiple mobile application medium types

MOBILE APPLICATION MEDIUM TYPES

I.SMS

2. mobile websites

3. mobile web widgets

4. mobile web applications

5. native applications, and

6. Games.

 SMS:
The most basic mobile application you can create is an SMS application.

Although it might seem odd to consider text messages applications, they are

nonetheless a designed experience. Given the ubiquity of devices that support

SMS, these applications can be useful tools when integrated with other mobile

application types.

Typically, the user sends a single keyword to a five-digit short code in order to

return information or a link to premium content. For example, sending the

keyword “freebie” to a hypothetical short code “12345” might return a text

message with a coupon code that could be redeemed at a retail location, or it

could include a link to a free ringtone. SMS applications can be both “free,”

meaning that there is no additional charge beyond the text message fees an

operator charges, or “premium,” meaning that you are charged an additional fee

in exchange for access to premium content. The most common uses of SMS

applications are mobile content, such ringtones and images, and to interact with

actual goods and services. Some vending machines can dispense beverages when

you send them an SMS; SMS messages can also be used to purchase time at a

parking meter or pay lot. A great example of how SMS adds incredible value

would be Twitter, where users can receive SMS alerts from their friends and post

to their timeline from any mobile device.

11

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Pros : The pros of SMS applications include:

 They work on any mobile device nearly instantaneously.

 They’re useful for sending timely alerts to the user.

 They can be incorporated into any web or mobile application.

 They can be simple to set up and manage.

Cons : The cons of SMS applications include:

 They’re limited to 160 characters.

 They provide a limited text-based experience.

 They can be very expensive.

 Mobile Websites:

Figure 4.3. An example of a mobile website

12

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

As you might expect, a mobile website is a website designed specifically for mobile

devices, not to be confused with viewing a site made for desktop browsers on a

mobile browser. Mobile websites are characterized by their simple “drill-down”

architecture, or the simple presentation of navigation links that take you to a

page a level deeper, as shown in Figure 4.3.

Mobile websites often have a simple design and are typically informational in

nature, offering few—if any—of the interactive elements you might expect from a

desktop site. Mobile websites have made up the majority of what was consider the

mobile web for the past decade, starting with the early WML-based sites (not

much more than a list of links) and moving to today’s websites, with a richer

experience that more closely resembles the visual aesthetic users have come to

expect with web content.

Though mobile websites are fairly easy to create, they fail to display consistently

across multiple mobile browsers—a trait common to all mobile web mediums. The

mobile web has been gradually increasing in usage over the years in most major

markets, but the limited experience offered little incentive to the user. Many

compare the mobile web to a 10-year-old version of the Web: slow, expensive to

use, and not much to look at.

As better mobile browsers started being introduced to device platforms like the

iPhone and Android, the quality of mobile websites began to improve

dramatically, and with it, usage improved. For example, in just one year, the U.S.

market went from being just barely in the top five consumers of the mobile web to

number one, largely due to the impact of the iPhone alone.

Pros : The pros of mobile websites are:

 They are easy to create, maintain, and publish.
 They can use all the same tools and techniques you might already use for

desktop sites.

 Nearly all mobile devices can view mobile websites.

Cons : The cons of mobile websites are:

 They can be difficult to support across multiple devices.

 They offer users a limited experience.
 Most mobile websites are simply desktop content reformatted for mobile

devices.

 They can load pages slowly, due to network latency.

 Mobile Web WIDGETS

Largely in response to the poor experience provided by the mobile web over the

years, there has been a growing movement to establish mobile widget frameworks

and platforms. For years the mobile web user experience was severely

underutilized and failed to gain traction in the market, so several operators,

device makers, and publishers began creating widget platforms (as shown in

figure 4.4) to counter the mobile web’s weaknesses. Initially user saw mobile web

widgets as another attempt by the mobile industry to hype a technology that no

one wants. So in order to define a mobile web widget: A component of a user

interface that operates in a particular way. The ever-trusty Wikipedia defines a

web widget this way: A portable chunk of code that can be installed and executed

within any separate HTML- based web page by an end user without requiring

13

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

additional compilation. Between these two definitions is a better answer: A mobile

web widget is a standalone chunk of HTML-based code that is executed by the

end user in a particular way.

figure 4.4 : An example mobile web widget

Basically, mobile web widgets are small web applications that can’t run by

themselves; they need to be executed on top of something else. One reason for all

the confusion around what is a mobile web widget is that this definition can also

encompass any web application that runs in a browser. Opera Widgets, Nokia

Web RunTime (WRT), Yahoo! Blueprint, and Adobe Flash Lite are all examples of

widget platforms that work on a number of mobile handsets. Using a basic

knowledge of HTML (or vector graphics in the case of Flash), user can create

compelling user experiences that tap into device features and, in many cases, can

run while the device is offline. Widgets, however, are not to be confused with the

utility application context, a user experience designed around short, task-based

operations.

Pros: The pros of mobile web widgets are:
 They are easy to create, using basic HTML, CSS, and JavaScript

knowledge.

 They can be simple to deploy across multiple handsets.
 They offer an improved user experience and a richer design, tapping into

device features and offline use.

Cons : The cons of mobile web widgets are:
 They typically require a compatible widget platform to be installed on the

device.

 They cannot run in any mobile web browser.

 They require learning additional proprietary, non-web-standard techniques.

14

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 Mobile web APPLICATIONS

Mobile web applications are mobile applications that do not need to be installed

or compiled on the target device. Using XHTML, CSS, and JavaScript, they are

able to provide an application-like experience to the end user while running in

any mobile web browser. By “application-like” experience, mean that they do not

use the drill-down or page metaphors in which a click equals a refresh of the

content in view. Web applications allow users to interact with content in real

time, where a click or touch performs an action within the current view.

The history of how mobile web applications came to be so commonplace is

interesting, and is one that can give an understanding of how future mobile

trends can be assessed and understood. Shortly after the explosion of Web 2.0,

web applications like Facebook, Flickr, and Google Reader hit desktop browsers,

and there was discussion of how to bring those same web applications to mobile

devices. The Web 2.0 movement brought user-centered design principles to the

desktop web, and those same principles were sorely needed in the mobile web

space as well.

Figure 4.5 : The Facebook mobile web app

The challenge, as always, was device fragmentation. The mobile browsers were

years behind the desktop browsers, making it nearly impossible for a mobile

device to render a comparable experience. While XHTML support had become

fairly commonplace across devices, the rendering of CSS2 was wildly

inconsistent, and support for Java-Script, necessary or simple DHTML, and Ajax

was completely nonexistent.

To make matters worse, the perceived market demand for mobile web

applications was not seen as a priority with many operators and device makers. It

15

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

was the classic chicken-or-the-egg scenario. What had to come first, market

demand to drive browser innovation or optimized content to drive the market?

With the introduction of the first iPhone, we saw a cataclysmic change across the

board. Using WebKit, the iPhone could render web applications not optimized for

mobile devices as perfectly usable, including DHTML- and Ajax-powered content.

Developers quickly got on board, creating mobile web applications optimized

mostly for the iPhone (as shown in figure 4.5). The combination of a high-profile

device with an incredibly powerful mobile web browser and a quickly increasing

catalog of nicely optimized experiences created the perfect storm the community

had been waiting for.

Usage of the mobile web exploded with not just users of the iPhone, but users of

other handsets, too. Because web applications being created for the iPhone were

based on web standards, they actually worked reasonably well on other devices.

Operators and device makers saw that consumers wanted not just the mobile web

on their handsets, but the regular Web, too. In less than a year, we saw a strong

unilateral move by all operators and devices makers to put better mobile web

browsers in their phones that could leverage this new application medium. We

have not seen such rapid innovation in mobile devices since the inclusion of

cameras.

The downside, of course, like all things mobile-web-related, is that not all devices

support the capability to render mobile web applications consistently. However,

we do see a prevalent trend that the majority of usage of the mobile web is coming

from the devices with better browsers, in some markets by a factor of 7:1. So

although creating a mobile web application might not reach all devices, it will

reach the devices that create the majority of traffic.

Pros : The pros of mobile web applications are:

 They are easy to create, using basic HTML, CSS, and JavaScript

knowledge.

 They are simple to deploy across multiple handsets.

 They offer a better user experience and a rich design, tapping into device

features and offline use.

 Content is accessible on any mobile web browser.

Cons : The cons of mobile web applications are:

 The optimal experience might not be available on all handsets.

 They can be challenging (but not impossible) to support across multiple

devices.

 They don’t always support native application features, like offline mode,

location lookup, file system access, camera, and so on.

NATIVE APPLICATIONS

• called “platform applications,”

• have to be developed and compiled for each mobile platform.

• native or platform applications are built specifically for devices that run the

platform

• most common of all platforms is Java ME (formerly J2ME)

• In addition to Java, other smartphone programming languages include

versions of C, C++, and Objective-C

16

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

• Because platform applications sit on top of the platform layer, they can tap

into the majority of the device features, working online or offline, accessing

the location and the filesystem

• the majority (70 %) of native applications in use today could be created

with a little bit of XHTML, CSS, and JavaScript

Difference

Web apps

– need an active internet connection in order to run,

– will update themselves

Mobile Native apps

– may work offline.

– faster and more efficient, but they do require the user to regularly

download updates.

17

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 GAMES

The final mobile medium is games, the most popular of all media available to

mobile devices. Technically games are really just native applications that use the

similar platform SDKs to create immersive experiences (as shown in figure 4.6).

But this is treated differently from native applications for two reasons: they

cannot be easily duplicated with web technologies, and porting them to multiple

mobile platforms is a bit easier than typical platform-based applications.

Figure 4.6 : An example game for the iPhone

Although user can do many things with a powerful mobile web browser, creating

an immersive gaming experience is not one of them—at least not yet. Seeing as

how these types of gaming experiences appear on the desktop using standard

web technologies, but is believed we are still a few years out from seeing them on

mobile devices. Adobe’s Flash and the SVG (scalable vector graphics) standard

are the only way to do it on the Web now, and will likely be how it is done on

mobile devices in the future, the primary obstacle being the performance of the

device in dealing with vector graphics.

The reason games are relatively easy to port (“relatively” being the key word), is

that the bulk of the gaming experience is in the graphics and actually uses very

little of the device APIs. The game mechanics are the only thing that needs to

adapted to the various platforms. Like in console gaming, there are a great

number of mobile game porting shops that can quickly take a game written in one

language and port it to another.

These differences, are what make mobile games stand apart from all other

application genres—their capability to be unique and difficult to duplicate in

another application type, though the game itself is relatively easy to port.

Pros: The pros of game applications are:

 They provide a simple and easy way to create an immersive experience.

 They can be ported to multiple devices relatively easily.

Cons : The cons of game applications are:

 They can be costly to develop as an original game title.
 They cannot easily be ported to the mobile web.

18

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 MOBILE INFORMATION ARCHITECTURE

Although information architecture has become a common discipline in the web

industry, unfortunately, the mobile industry has only a handful of specialized

mobile information architects.

For example, if we look at the front page of http://www.nytimes.com as seen from

a desktop web browser compared to how it may render in a mobile browser (as

shown in figure 4.7), we see a content-heavy site that works well on the desktop,

and is designed to present the maximum amount of information above the “fold”

or where the screen cuts off the content. However, in the mobile browser, the text

is far too small to be useful.

19

It defines not just how your information will be structured, but also how people

will interact with it.

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

http://www.nytimes.com/

Figure 4.7: Comparing the New York Times website in desktop &mobile

browsers

Figure 4.8 : The many mobile experiences of the New York Times

The role of a mobile information architect would be to interpret this content to the

mobile context. Do you use the same structure, or sections? Do you present the

same information above the fold? If so, how should that be prioritized? How does

the user navigate to other areas? Do you use the same visual and interaction

paradigms, or invent new ones? And if you do start to invent new paradigms, will

you lose the visual characteristics of what users expect?

These are only some of the questions asked when starting to create a mobile

information architecture. As you can see in figure above there are several

different ways that the New York Times has been interpreted for the mobile

context. Also it is needed to design our mobile information architecture to

address the mobile context. Given that many devices can detect user current

location, which is one of the most immediate types of context, how does the New

York Times application address the user’s context? For example, as a publication

that serves both New York City and a larger global audience, if user is not in New

York, should user still see the local New York headlines? Or should user see the

headlines based on current location? This is shown in figure 4.8.

Keeping It Simple

When thinking about your mobile information architecture, you want to keep it

as simple as possible.

Support your defined goals: If something doesn’t support the defined goals, lose

it. Go back to the user goals and needs, and identify the tasks that map to them.

Find those needs and fill them.

Ask yourself: what need does my application fill? What are people trying to do

here? Once it is understand that, it is a simple process of reverse-engineering the

path from where they want to be to where they are starting. Cut out everything

else.

Clear, simple labels: Good trigger labels, the words used to describe each link or

action, are crucial in Mobile. Words like “products” or “services” aren’t good

trigger labels. They don’t tell anything about that content or what can expect.

Users have a much higher threshold of pain when clicking about on a desktop

20

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

site or application, hunting and pecking for tasty morsels. Mobile performs short, to-

the-point, get-it-quick, and get-out types of tasks. What is convenient on the desktop

might be a deal breaker on mobile. Keep all labels short and descriptive, and

never try to be clever with the words used to evoke action.

The worst sin is to introduce branding or marketing into information

architecture; this will just serve to confuse and distract users. Executives love to

use the words they use internally to external communications on websites and

applications, but these words have no meaning outside of your company walls.

Don’t try to differentiate product offering by what it is called. Create something

unique by creating a usable and intuitive experience based on focusing on what

users need and using the same language they use to describe those needs.

Based on what web design is, should use simple, direct terms for navigating

around pages rather than overly clever terms. That latter typically result in

confused visitors who struggle to find the content they are looking for. When that

happens, they will go elsewhere to look for the information they want. So, if the

these same mistakes is applied to a constrained device like mobile, then it ends

up adding confusion to the user experience at a higher magnitude than the Web.

Site Map:

The first deliverable we use to define mobile information architecture is the site

map. Site maps are a classic information architecture deliverable. They visually

represent the relationship of content to other content and provide a map for how

the user will travel through the informational space, as shown in Figure 4.9.

Mobile site maps aren’t that dissimilar from site maps we might use on the Web.

But there are a few tips specific to mobile that we want to consider.

Figure 4.9 : An example mobile site map

Limit opportunities for mistakes:

Now think of your own website. How many primary navigation areas do you have?

Seven? Eight? Ten? Fifteen? What risk is there to the users for making a wrong

choice? If they go down the wrong path, they can immediately click back to where

21

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

they started and go down another path, eliminating the wrong choices to find the

right ones. The risks for making the wrong choice are minor. In Figure 4.10, there

is a poorly designed mobile information architecture that too closely mimics its

desktop cousin; it was not designed with the mobile user in mind.

But in mobile, this assumption cannot be maked. In the mobile context, tasks

are short and users have limited time to perform them. And with mobile websites,

it can’t be assumed that the users have access to a reliable broadband

connection that allows them to quickly go back to the previous page. In addition,

the users more often than not have to pay for each page view in data charges. So

not only do they pay cash for viewing the wrong page by mistake, they pay to

again download the page they started from. Therefore, it is to limit users ’ options,

those forks in the road, to five or less. Anything more, and have to introduce far

too much risk that the user will make a mistake and head off in the wrong

direction.

Figure 4.10: An example of a bad mobile information architecture that was

designed with desktop users in mind rather than mobile users

Confirm the path by teasing content:
After the users have selected a path, it isn’t always clear whether they are getting

to where they need to be. Information-heavy sites and applications often employ

nested or drill-down architectures, forcing the user to select category after

category to get to their target. To reduce risking the user’s time and money, have

to make sure that enough information is present for the user to wade through the

information architecture successfully. On the Web, these risks are taken very

lightly, but not with mobile. This is done by teasing content within each category

that is, providing at least one content item per category.

22

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The challenge with ringtone sites is there are a lot of items, grouped by artist,

album, genre, and so on. The user starts with a goal like “I want a new ringtone”

and finds an item that suits his taste within a catalog of tens of thousands of

items.

In order to make sense of a vast inventory of content, we have to group,

subgroup, and sometimes even +subgroup again, creating a drill-down path for

the user to browse. Though on paper this might seem like a decent solution, once

you populate an application with content, the dreaded “Page 1 of 157” appears.

What user would ever sit there with a mobile device and page through 157 pages

of ringtones? What user would page through five pages of content?

Figure 4.11. Teasing content to confirm the user’s expectations of the

content within
In figure4.11, we can see in a constrained screen that teasing the first few items

of the page provides the user with a much more intuitive interface, immediately

indicating what type of content the user can expect. We immediately saw that

users were finding content more quickly, driving up our sales. It was like night

and day. In Figure 4.11, you can see in a constrained screen that teasing the first

few items of the page provides the user with a much more intuitive interface,

immediately indicating what type of content the user can expect.

Clickstreams:

Clickstream is a term used for showing the behavior on websites, displaying the

order in which users travel through a site’s information architecture, usually

based on data gathered from server logs. Clickstreams are usually historical,

used to see the flaws in your information architecture, typically using heat-

mapping or simple percentages to show where your users are going. I’ve always

found them to be a useful tool for rear-chitecting large websites.

However, information architecture in mobile is more like software than it is the

Web, meaning that createing clickstreams in the beginning, not the end. This

maps the ideal path the user will take to perform common tasks. Being able to

23

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

visually lay out the path users will take gives a holistic or bird’s-eye view of your

mobile information architecture, just as a road map does. When all the paths are

seen next to each other and take a step back, start to see shortcuts and how can

get users to their goal faster or easier, as shown in figure 4.12.

Now the business analyst says, “Just create user or process flows,” such as the

esoteric diagram shown in figure 4.13, which is made up of boxes and diamonds

that look more like circuit board diagrams than an information architecture. A

good architect’s job is to create a map of user goals, not map out every technical

contingency or edge case.

Figure 4.12. An example clickstream for an iPhone web application

Too often, process flows go down a slippery slope of adding every project

requirement, bogging down the user experience with unnecessary distractions,

rather than focusing on streamlining the experience. Remember, in mobile, it is to

keep it as simple as possible. We need to have an unwavering focus on defining

an excellent user experience first and foremost. Anything that distracts us from

that goal is just a distraction.

24

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 4.13. An example process flow diagram

Wireframes:

The next information architecture tool at disposal is wireframes. Wireframes are a

way to lay out information on the page, also referred to as information design.

Site maps show how the content is organized in our informational space;

wireframes show howthe user will directly interact with it. Wireframes are like the

peanut butter to the site map jelly in our information architecture sandwich. It’s

the stuff that sticks. Wireframes like the one in figure 4.14 a. serve to make our

information space tangible and useful.

Figure 4.14.

Figure 4.14. a. An example of an iPhone web application wireframe, intended to

be low fidelity to prevent confusion of visual design concepts with information

25

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

design concepts b. Using annotations to indicate the desired interactions of the

site or application

But the purpose of wireframes is not just to provide a visual for our site map;

they also serve to separate layout from visual design, defining how the user will

interact with the experience. How do we lay out our navigation? What visual or

interaction metaphors will we use to evoke action? These questions and many

more are answered with wireframes.

Although wireframes is found to be one of the most valuable information

deliverables to communicate the vision for how a site or app will work, the

challenge is that a diagram on a piece of paper doesn’t go a long way toward

describing how the interactions will work. Most common are “in-place”

interactions, or areas where the user can interact with an element without leaving

the page. This can be done with Ajax or a little show/hide JavaScript. These

interactions can include copious amounts of annotation, describing each content

area in as much length as you can fit in the margins of the page, as shown in

figure 4.14 b. In mobile, using wireframes as the key deliverable, that turns good

ideas into excellent mobile products.

Prototyping:
Prototypes might sound like a scary step in the process. Some view them as

redundant or too time-consuming, preferring to jump in and start coding things.

But as with wireframes, that each product built out some sort of prototype has

saved both time and money. The following sections discuss some ways to do some

simple and fast mobile prototyping.

Paper prototypes: The most basic level we have is paper prototyping: taking our

printed-out wireframes or even drawings of our interface, like the one shown in

Figure 4.15, and putting them in front of people. Create a basic script of tasks

(hopefully based on either context or user input) and ask users to perform them,

pointing to what they would do. You act as the device, changing the screens for

them. The size matters and you’ll learn as much from how the user manages

working with small media as you will what information is actually on it.

26

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Context prototype:

The next step is creating a context prototype as in figure 4.16. Take a higher-end

device that enables you to load full-screen images on it. Take your wireframes or

sketches and load them onto the device, sized to fill the device screen. Leave the

office. Go for a walk down to your nearest café. Or get on a bus or a train. As you

are traveling about, pull out your device and start looking your interface in the

various contexts you find yourself currently in. Pay particular attention to what

you are thinking and your physical behaviour while you are using your interface

and then write it down. If you are brave and don’t have strict nondisclosure

issues, ask the people around you to use it, too. I wouldn’t bother with timing

interactions or sessions, but try to keep an eye on a clock to determine how long

the average session is.

Figure 4.15 Figure 4.16 Figure 4.17

HTML prototypes:

The third step is creating a lightweight, semi functional static prototype using

XHTML, CSS, and JavaScript, if available. This is a prototype that you can

actually load onto a device and produce the nearest experience to the final

product, but with static dummy content and data as in figure 4.17. It takes a

little extra time, but it is worth the effort. With a static XHTML prototype, you use

all the device metaphors of navigation, you see how much content will really be

displayed on screen (it is always less than you expect), and you have to deal with

slow load times and network latency. In short, you will feel the same pains your

user will go through. Whatever route you wish to take, building a mobile

prototype takes you one very big leap forward to creating a better mobile

experience.

Different Information Architecture for Different Devices:
Depending on which devices you need to support, mobile wireframes can range

from the very basic to the complex. On the higher-end devices with larger

screens, we might be inclined to add more interactions, buttons, and other clutter

to the screen, but this would be a mistake. Just because the user might have a

more advanced phone, that doesn’t mean that it is a license to pack his screen

with as much information.

The motivations, goals, and how users will interact with a mobile experience are

the same at the low end as they are on a high-end device. For the latter, there are

better tools to express the content. The greatest challenge in creating valuable

experiences is knowing when to lose what is not needed. There is no choice on

lower-end devices—it must be simple. When designing for both, it is best to try

and to keep your information architecture as close to each other as possible

without sacrificing the user experience. They say that simple design is the

27

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

hardest design, and this principle certainly is true when designing information

architecture for mobile devices.

 MOBILE 2.0
The mobile community started to discuss the idea of “Mobile 2.0,” borrowing from

many of the same principles behind Web 2.0. Each of these principles serves to

transform the Web into a more agile and user-centered medium for delivering

information to the masses. Mobile development, under the bottlenecks of device

fragmentation and operator control, is sorely in need of a little reinvention as

well.

Following is a recap of the original seven principles of Web 2.0:

The Web as a platform: For the mobile context, this means “write once, deploy

everywhere,” moving away from the costly native applications deployed over

multiple frameworks and networks.

Harnessing collective intelligence: This isn’t something the mobile community has
done much of, but projects like WURFL is exactly what mobile needs more of.

Data is the next Intel inside: It can include the data we seek,the data we create,

and the data about or around our physical locations.

End of the software release cycle: Long development and testing cycles heavily

weigh on mobile projects, decreasing all hopes of profitability. Shorter agile cycles

are needed to make mobile development work as a business. Releasing for one

device, iterating, improving, and then releasing for another is a great way to

ensure profitability in mobile.

Lightweight programming models: Because mobile technology is practically built

on enterprise Java, the notion of using lightweight models is often viewed with

some skepticism. But decreasing the programming overhead required means

more innovation occurs faster.

Software above the level of a single device: This effectively means that software

isn’t just about computers anymore. We need to approach new software as

though the user will demand it work in multiple contexts, from mobile phones to

portable gaming consoles and e-book readers.

Rich user experiences: A great and rich user experience helps people spend less

time with the software and more time living their lives. Mobile design is about

enabling users to live their lives better.

Although the mobile industry has been through many more evolutions than just

two, the concepts behind Web 2.0 are some of the most important ideas in not

just mobile technology, but the Web as a whole.

Mobile 2.0: The Convergence of the Web and Mobile:
Mobile is already a medium, but the consensus is that by leveraging the power of

the Web, integrating web services into the mobile medium is the future of mobile

development. When the iPhone exploded onto the scene, it increased the usage of

the mobile web by its users to levels never seen before. The spur of new mobile

web apps created just for the iPhone doubled the number of mobile websites

available in under a year. Mobile 2.0 tells us that mobile will be the primary

context in which we leverage the Web in the future.

Mobile Web Applications Are the Future

Creating mobile web applications instead of mobile software applications has

remained an area of significant motivation and interest. The mobile community is

looking at the Web 2.0 revolution for inspiration, being able to create products

and get them to market quickly and at little cost. They see the success of small

28

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

iterative development cycles and want to apply this to mobile development,

something that is not that feasible in the traditional mobile ecosystem.

Developers have been keen for years to shift away from the costly mobile

applications that are difficult to publish through the mobile service provider,

require massive testing cycles and costly porting to multiple devices, and can

easily miss the mark with users after loads of money have been dumped into

them. The iPhone App Store and the other mobile device marketplaces have made

it far easier to publish and sell, but developers still have to face difficult approval

processes, dealing with operator and device maker terms and porting challenges.

Mobile software has two fundamental problems that mobile web applications

solve.

 The first is forcing users through a single marketplace. We know from years

of this model that an app sold through a marketplace can earn huge profits

if promoted correctly. Being promoted correctly is the key phrase. What

gets promoted and why is a nebulous process with no guarantees.

 The second problem is the ability to update your application. It is certainly

possible on modern marketplaces like the App Store, but we are still years

from that being the norm. Mobile web apps enable you to make sure that

you never ship a broken app, or if your app breaks in the future due to a

new device, to be able to fix it the same day the device hits the street. This

flexibility isn’t possible in the downloaded app market.

JavaScript Is the Next Frontier:

If you are going to provide mobile web applications, you have to have a mobile

web browser that supports Ajax, or, as it is technically known, XMLHttpRequest.

Ajax is great, but just being able to do a little show/hide or change a style after

you click or touch it goes a long way toward improving the user experience.

Modern mobile browsers have made much progress over the last few years, but

there is still plenty of work to be done. For example, accessing the device

capabilities like the phone book or filesystem with JavaScript doesn ’t work in a

consistent way. These problems still need to be solved in order to truly reap the

benefits of the Web.

Rich interactions kill battery life: JavaScript and Ajax have been ignored

because using an Ajax-based web application on your phone can drain your

battery at a rate of four to five times your normal power consumption. There are

number of reasons for why this happens from mobile hardware guys much

smarter than myself, but to summarize, the two most prevalent are: • JavaScript consumes more processor power and therefore more battery life. • Ajax apps fetch more data from the network, meaning more use of the radio and
more battery life.

Apple and the open source WebKit browser have made huge strides by releasing a

JavaScript engine that is incredibly efficient on mobile devices, though the other

big mobile browser technologies aren’t far behind. This problem is going away

quickly as the mobile browsers get better, batteries improve efficiency, and

devices get more powerful.

The Mobile User Experience Is Awful:

Device API’s usually force to use their models of user experience, meaning that

have to work in the constraints of the API. This is good for creating consistent

experiences for that platform, but these experiences don’t translate to others. For

example, would you take an iPhone app design and put it on an Android device?

The user experience for these devices is similar but still remains different.

Modern mobile web browsers, as they come closer to their desktop counterparts,

29

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

remove this distinction, giving us the same canvas on mobile devices that we have

for the desktop. It means we can have a consistent user experience across

multiple mediums.

Mobile Widgets Are the Next Big Thing:
At many Mobile 2.0 events, there are a lot of buzz about mobile widgets, though

no one can tell how mobile widgets would define a mobile widget, or how they are

different from mobile web apps. The consensus seems to be that the solution for

the challenges with the mobile web is to create a series of “small webs” targeted at

a specific user or task. The concept of small network-enabled applications is very

promising, but the mobile industry tends to take promising ideas like this, inflate

expectations to unsustainable levels, then abandon them at the first sign of

trouble or sacrifice them for the next big thing, whichever happens first.

Carrier Is the New “C” Word:

It is clear that one of the key drivers of Mobile 2.0 and the focus on the mobile

web is to find a way to build a business that doesn’t rely on carrier control.

Mobile Needs to Check Its Ego:
On the mobile side, there are some incredibly intelligent people who have been

innovating amazing products under insane constraints for years. On the web

side, there are creative amateurs who have helped build a community and

ecosystem out of passion and an openness to share information.

The web guys want to get into the game and move the medium forward, partly out

of desire open up a new market for themselves, but mostly out of passion for all

things interactive. But, to the mobile community, they are seen as a threat to

expertise. On the other hand, to the web community, the mobile guys come off as

overly protective, territorial, selfish, and often snobbish or egotistical, effectively

saying, “Go away.” They have to deal with really hard problems that would make

a web professional give up to go serve coffee.

Unless the mobile community comes together with the web community by

sharing information, experience, and guidance, one day they will find that their

experience has become obsolete. In return, the web guys will share their

enthusiasm, willingness to learn, and passion that many in mobile development

have forgot. It’s that one principle of Web 2.0 that the mobile community has left

out: harnessing collective intelligence. The Web and the mobile community are

reaching a point where the two worlds can no longer afford not to be working

together, sharing what they know and harnessing the collective intelligence of

both media.

We Are Creators, Not Consumers:
The final principle of Mobile 2.0 is recognizing that we are in a new age of

consumerism. Yesterday’s consumer does not look anything like today’s

consumer. The people of today’s market don’t view themselves as consumers, but

rather as creators. But before we get into that, let’s back up for a minute. The

web is about content. Sure, there are programming languages, APIs, and other

technical underpinnings, but what do you do when you open a web browser? You

read.

Our primary task online is to read, to gain information. During the early days of

the Web, it took tools and know-how in order to publish to the Web. But early in

the Web 2.0 evolution, we saw a rise in tools that allowed us to publish to the

Web easily, giving individuals a voice online, with a massive audience.

This democratization of the Web took many forms that some call “social media,”

like blogging, social networks, media sharing, microblogging, and lifestreams.

30

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Although social media may have many facets, they all share the same goal: to

empower normal, everyday people to become creators and publishers of content.

It started with the written word, then music, then photos, and more recently

video was added. Entire markets have been created to provide today’s consumer

with gadgets, software, and web services to record and publish content so that we

can share it with our friends and loved ones. At the center of this revolution in

publishing is the mobile device. As networked portable devices become more

powerful, allowing us to capture, record, and share content in the moment, we

are able to add a new kind of context to content—the likes of which

we haven’t seen since satellite television. Now you can share any moment with

any group of people in real time. Think about how powerful a concept that is! It

could change entire cultures. Tony Fish, coauthor of Mobile Web 2.0 (futuretext),

says: When everyone has the tools to create content, in addition to zero-cost

publishing, we do not consume content, we create it. In the early days of the

Web, I marveled at how a networked population might change our society forever.

Now I realize that the change occurs wherever the device is, the context it is

within. The early “Web 1.0” days clearly changed how business is done, because

businesses are the primary consumer of desktop computers. It probably is no

coincidence that Web 2.0 occurred around the same time that laptop computers

became affordable for the average person, making the Web a more personal

medium. With Mobile 2.0, the personal relevance of the content matches how

personal the device is and how personally it applies to our everyday situations or

our context. I see now that this is the time and medium that delivers on that

initial promise of the Web: to change society forever.

 MOBILE DESIGN

Interpreting Design:

Mobile design isn’t that different. Precise designs might look better, but they can

be brutal to implement. More flexible designs might not be much to look at, but

they work for the most users, or the lowest common denominator. But more than

that, our back-grounds and our training can actually get in the way of creating

the best design for the medium. We like to apply the same rules to whatever the

problem in front of us might be. In mobile design, you interpret what you know

about good design and translate it to this new medium that is both

technologically precise and at times incredibly unforgiving, and you provide the

design with the flexibility to present information the way you envision on a

number of different devices.

The Mobile Design Tent-Pole:
To have a successful mobile design, we have to adapt to today’s changing

audiences and niches. Find that emotional connection, that fundamental need

that serves many audiences, many cultures, and many niches and design

experiences. Too often, designers simply echo the visual trends of the day,

mimicking the inspiration of others. But with mobile design, once you find that

essential thing, that chewy nougat we call “context” that lives at the center of

your product, then you will find ample inspiration of your own to start creating

designs that translate not only across multiple devices, but across multiple

media.

Sure, there are countless examples of poorly designed mobile products that are

considered a success. You only need to look as far as the nearest mobile app

store to find them. This is because of the sight unseen nature of mobile

31

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

commerce. Traditionally, you couldn’t demo—or in some cases even see—

screenshots of a game or mobile application before you bought it. You simply had

to purchase it and find out if it was any good.

Apple’s App Store quickly changed that. We can clearly see that the best-selling

games and applications for the iPhone are the ones with the best designs (Figure

4.18).Users look at multiple screenshots, read the user reviews, and judge the

product based on the quality of its icon and of the screenshots before they buy.

The Apple App Store is proving everyday that mobile design doesn’t have to start

with tent-pole lowest-common-denominator products—it can instead start with

providing the best possible experience and tailoring that experience to the market

that wants it most.

Figure 4.18. The app icon design greatly influences the user’s expectation of

quality

Designing for the Best Possible Experience:

When the first iPhone came out, there was a lot of trouble from web and mobile

peers for publicly saying, “The iPhone is the only mobile device that matters right

now.” They would argue, “What about ABC or XYZ platforms?”. The response was

that those are important, but the iPhone provides the best possible experience

and that is where consumers will go. Since those days, the iPhone shatter just

about every record in mobile devices, becoming one of the best-selling phones

ever and one of the most used mobile browsers in the world—two-thirds of mobile

browsing in the U.S. comes from an iPhone or an iPod touch, not to mention that

more than a billion mobile applications have been sold for these devices in under

a year.

Although it may defy the business instincts to focus the product on just one

device, in mobile development, the risks and costs of creating that tent-pole

product are just too high. This is so easily seen through bad or just plain

uninspired mobile design. Asking creative people to create uninspiring work is a

fast track to mediocrity.

Here is a design solution: design for the best possible experience. Actually, don’t

just design for it: focus on creating the best possible experience with unwavering

32

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

passion and commitment. Iterate, tweak, and fine-tune until you get it right.

Anything less is simply unacceptable. Do not get hindered by the constraints of

the technology. Phrases like “lowest common denominator” cannot be part of the

designer’s vocabulary. Your design—no, your work of art—should serve as the

shining example of what the experience should be, not what it can be. Trying to

create a mobile design in the context of the device constraints isn’t where you

start; it is where you should end.

The greatest mistakes we in the mobile community make is being unwilling to or

feeling incapable of thinking forward. The tendency to frame solutions in the past

(past devices, past standards) applies only to those low-quality, something-for-

everyone-but-getting-nothing tent-pole products. Great designs are not unlike

great leaps forward in innovation. They come from shedding the baggage

regarding how things are done and focus on giving people what they want or what

they need.

4.5.1 ELEMENTS OF MOBILE DESIGN

Good mobile design requires three abilities: the first is a natural gift for being able

to see visually how something should look that produces a desired emotion with

the target audience. The second is the ability to manifest that vision into

something for others to see, use, or participate in. The third is knowing how to

utilize the medium to achieve your design goals.

Context:
As the designer, it is the job to make sure that the user can figure out how to

address context using your app. Make sure to answer the following questions: • Who are the users? What do you know about them? What type of behavior can

you assume or predict about the users? • What is happening? What are the circumstances in which the users will best

absorb the content you intend to present? • When will they interact? Are they at home and have large amounts of time? Are

they at work where they have short periods of time? Will they have idle periods of

time while waiting for a train, for example? • Where are the users? Are they in a public space or a private space? Are they

inside or outside? Is it day or is it night? • Why will they use your app? What value will they gain from your content or

services in their present situation? • How are they using their mobile device? Is it held in their hand or in their

pocket? How are they holding it? Open or closed? Portrait or landscape?
The answers to these questions will greatly affect the course of your design. Treat

these questions as a checklist to your design from start to finish. They can

provide not only great inspiration for design challenges, but justification for your

design decisions later.

Message:
Another design element is your message, or what you are trying to say about your

site or application visually. One might also call it the “branding,” although I see

branding and messaging as two different things. The message is the overall

mental impression create explicitly through visual design. If we take a step back,

and look at a design from a distance, what is our impression? Or conversely, look

at a design for 30 seconds, and then put it down. What words would we use to

describe the experience?

33

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Branding shouldn’t be confused with messaging. Branding is the impression your

company name and logo gives—essentially, your reputation. Branding serves to

reinforce the message with authority, not deliver it. In mobile, the opportunities

for branding are limited, but the need for messaging is great. With such limited

real estate, the users don’t care about the brand, but they will care about the

messaging, asking themselves questions like, “What can this do for me?” or “Why

is this important to me?”

The approach to the design will define that message and create expectations. A

sparse, minimalist design with lots of whitespace will tell the user to expect a

focus on content. A “heavy” design with use of dark colors and lots of graphics

will tell the user to expect something more immersive. For example, hold the book

away from you and look at each of the designs in Figure 4.19; try not to focus too

heavily on the content. What do each of these designs “say” to you?

Which of the following designs provide a message? What do they say to you?

Figure 4.19. What is the message for each of these designs?

What is the message for each of these designs?
Yahoo!: Yahoo! sort of delivers a message. This app provides a clean interface,

putting a focus on search and location, using color to separate it from the news

content. But I’m not exactly sure what it is saying. Words you might use to

describe the message are crisp, clean, and sharp.

ESPN: The ESPN site clearly is missing a message. It is heavily text-based, trying

to put a lot of content above the fold, but doesn’t exactly deliver a message of any

kind. If you took out the ESPN logo, you likely would have indifferent

expectations of this site; it could be about anything, as the design doesn’t help set

expectations for the user in any way. Words you might use to describe the

message: bold, cluttered, and content-heavy.

Disney: Disney creates a message with its design. It gives you a lot to look at—

probably too much—but it clearly tries to say that the company is about

characters for a younger audience. Words you might use to describe the message:

bold, busy, and disorienting.

Wikipedia: The Wikipedia design clearly establishes a message. With a prominent

search and text-heavy layout featuring an article, you know what you are getting

with this design. Words you might use to describe the message: clean, minimal,

and text-heavy.

34

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Amazon: Amazon sort of creates a message. Although there are some wasted

opportunities above the fold with the odd ad placement, you can see that it is

mostly about products (which is improved even more if you scroll down). Words

you might use to describe the message: minimal but messy, product-heavy, and

disorienting.

Look and Feel:

The concept of “look and feel” is an odd one, being subjective and hard to define.

Typically, look and feel is used to describe appearance, as in “I want a clean look

and feel” or “I want a usable look and feel.” The problem is: as a mobile designer,

what does it mean? And how is that different than messaging?

Look and feel in a literal sense, as something real and tactile that the users can “look” at, then “feel”—something they can touch or interact with. Look and feel is

used to evoke action—how the user will use an interface. Messaging is holistic, as

the expectation the users will have about how you will address their context. It is

easy to confuse the two, because “feel” can be interpreted to mean our emotional

reaction to design and the role of messaging.

Figure 4.20: Pattern Tap shows a number of user interface patterns

that help to establish look and feel

On large mobile projects or in companies with multiple designers, a style guide or

pattern library is crucial, maintaining consistency in the look and feel and

reducing the need for each design decision to be justified. For example, in Figure

4.20 you can see the site Pattern Tap, which is a visual collection of many user

interface patterns meant for websites and web applications, but there is no

reason why it can’t serve as inspiration for your mobile projects as well. Although

a lot of elements go into making Apple’s App Store successful, the most important

design element is how it looks and feels. Apple includes a robust user interface

tool that enables developers to use prebuilt components, supported with detailed

Human Interface Guidelines (or HIG) of how to use them, similar to a pattern

library. This means that a developer can just sit down and create an iPhone

application that looks like it came from Apple in a matter of minutes. During the

App Store submission process, Apple then ensures that the developer uses these

35

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

tools correctly according to the HIG. The look and feel can either be consistent

with the stock user interface elements that Apple provides; they can be

customized, often retaining the “spirit” of Apple’s original design; or an entirely

new look and feel can be defined—this approach is often used for immersive

experiences. The stock user experience that Apple provides is a great example of

how look and feel works to supporting messaging.

For the end user, the design sends a clear message: by using the same visual

interface metaphors that Apple uses throughout the iPhone, I can expect the

action, or how this control will behave, but I can also expect the same level of

quality. This invokes the message of trust and quality in the application and in

the platform as a whole. Apple isn’t the first to use this shared look and feel

model in mobile—in fact, it is incredibly common with most smartphone platforms—
but they are surely making it incredibly successful, with a massive catalog of apps

and the sales to support it.

The mobile designers must be creative and remember the context. Like in the

early days of the Web, people tend to be skeptical about mobile experiences. The

modal context of the user—in this case, what device he is using—should be

considered during the design, as it will help to establish the user’s expectations of

the experience.

Layout:

Layout is an important design element, because it is how the user will visually

process the page, but the structural and visual components of layout often get

merged together, creating confusion and making your design more difficult to

produce. The first time layout should rear its head is during information

architecture. In fact, about 90 percent of layout decisions were during the

information architecture period. We have to ask ourself questions like: where

should the navigation go on the page or screen? What kind of navigation type

should I use? Should I use tabs or a list? What about a sidebar for larger

screens? All of these should be answered when defining the information

architecture and before you begin to design. Why define the layout before the

mobile design? Design is just too subjective of an issue. If you are creating a

design for anyone but yourself, chances are good that there will be multiple loosely-

based-on-experience opinions that will be offered and debated. There is no right

answer—only opinions and gut instincts. Plus, in corporate environments you

have internal politics you have to consider, where the design opinions of the CEO

or Chief Marketing Officer (CMO) might influence a design direction more than,

say, the Creative Director or Design Director.

By defining design elements like layout prior to actually applying the look and

feel, we can separate the discussion. As a self-taught designer, we started out in

this business making designs for my own projects. I could just put pen to paper

and tweak it to my heart’s content. If I wanted to radically change the layout, I

could. When I started my mobile design career with my first mobile company

more than a decade ago, I realized that this approach didn’t work. The majority of

comments that reviewers would make were about the layout. They focused on the

headers, the navigation, the footer, or how content blocks are laid out, and so on.

But their feedback got muddied with the “look and feel, the colors, and other

design elements.” Reviewers do make remarks like “I like the navigation list, but

can you make it look more raised?” Most designers don’t hear that; they hear “The navigation isn’t right, do it again.” But, with this kind of feedback, there are

36

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

two important pieces of information about different types of design. First, there is

confirmation that the navigation and layout are correct. Second, there is a

question about the “look and feel.” Because designers hear “Do it again,” they

typically redo the layout, even though it was actually fine.

Creating mobile designs in an environment with multiple reviewers is all about

getting the right feedback at the right time. Your job is to create a manifestation

of a shared vision. Layout is one of the elements you can present early on and

discuss in-dependently. People confuse the quality and fidelity of your

deliverables as design. By keeping it basic, you don’t risk having reviewers

confuse professionalism with design.

The irony is that as I become more adept at defining layouts, I make them of

increasingly lower fidelity. For example, when I show my mobile design layouts as

wireframes during the information architecture phase, I intentionally present

them on blueprint paper, using handwriting fonts for my annotations (Figure

4.21). It also helps to say that this is not a design, it is a layout, so please give me

feedback on the layout.

Figure 4.21. Using a low-fidelity wireframe to define the layout design

element before visual design begins

Different layouts for different devices: The second part of layout design is how

to visually represent content. In mobile design, the primary content element you

deal with the is navigation. Whether you are designing a site or app, you need to

provide users with methods of performing tasks, navigating to other pages, or

reading and interacting with content. This can vary, depending on the devices

you support. There are two distinct types of navigation layouts for mobile devices:

touch and scroll. With touch, you literally point to where you want to go;

therefore, navigation can be anywhere on the screen. But we tend to see most of

the primary actions or navigation areas living at the bottom of the screen and

secondary actions living at the top of the screen, with the area in between serving

as the content area, like what is shown in Figure 4.22.

This is the opposite of the scroll navigation type, where the device’s D-pad is used

to go left, right, up, or down. When designing for this type of device, the primary

and often the secondary actions should live at the top of the screen. This is so the

user doesn’t have to press down dozens of times to get to the important stuff. In

37

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 4.23, you can actually see by the bold outline that the first item selected

on the screen is the link around the logo.

When dealing with scroll navigation, you also have to make the choice of whether

to display navigation horizontally or vertically. Visually, horizontally makes a bit

more sense, but when you consider that it forces the user to awkwardly move left

and right, it can quickly become a bit cumbersome for the user to deal with.

There is no right or wrong way to do it, but my advice is just to try and keep it as

simple as possible. Fixed versus fluid Another layout consideration is how your

design will scale as the device orientation changes, for example if the device is

rotated from portrait mode to landscape and vice versa. This is typically described

as either being fixed (a set number of pixels wide), or fluid (having the ability to

scale to the full width of the screen regardless of the device orientation).

Orientation switching has become commonplace in mobile devices, and your

design should always provide the user with a means to scale the interface to take

full advantage of screen real estate.

Color

The fifth design element, color, is hard to talk about in a black-and-white book.

Maybe it is fitting, because it wasn’t that long ago that mobile screens were

available only in black and white (well, technically, it was black on a green

screen). These days, we have nearly the entire spectrum of colors to choose from

for mobile designs. The most common obstacle you encounter when dealing with

color is mobile screens, which come in a number of different color or bit depths,

meaning the number of bits (binary digits) used to represent the color of a single

pixel in a bitmapped image. When complex designs are displayed on different

mobile devices, the limited color depth on one device can cause banding, or

unwanted posterization in the image. Different devices have different color

depths.

38

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Color characteristics

The psychology of color: People respond to different colors differently. It is fairly

well known that different colors produce different emotions in people, but

surprisingly few talk about it outside of art school. Thinking about the emotions

that colors evoke in people is an important aspect of mobile design, which is such

a personal medium that tends to be used in personal ways. Using the right colors

can be useful for delivering the right message and setting expectations.

Color palettes: Defining color palettes can be useful for maintaining a consistent

use of color in your mobile design. Color palettes typically consist of a predefined

number of colors to use throughout the design. Selecting what colors to use

varies from designer to designer, each having different techniques and strategies

39

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

for deciding on the colors. I’ve found that I use three basic ways to define a color

palette:

i) Sequential: In this case, there are primary, secondary, and tertiary colors.

Often the primary color is reserved as the “brand” color or the color that most

closely resembles the brand’s meaning. The secondary and tertiary colors are

often complementary colors that I select using a color wheel.

ii) Adaptive: An adaptive palette is one in which you leverage the most common

colors present in a supporting graphic or image. When creating a design that is

meant to look native on the device, I use an adaptive palette to make sure that

my colors are consistent with the target mobile platform.

iii) Inspired: This is a design that is created from the great pieces of design you

might see online, or offline, in which a picture of the design might inspire you.

This could be anything from an old poster in an alley, a business card, or some

packaging. When I sit down with a new design, I thumb through some of

materials to create an inspired palette. Like with the adaptive palette, you

actually extract the colors from the source image, though you should never ever

use the source material in a design.

Typography
The sixth element of mobile design is typography, which in the past would bring

to mind the famous statement by Henry Ford:

Any customer can have a car painted any color that he wants so long as it is

black. Traditionally in mobile design, you had only one typeface that you could

use (Figure 8-12), and that was the device font. The only control over the

presentation was the size.

As devices improved, so did their fonts. Higher-resolution screens allowed for a

more robust catalog of fonts than just the device font. First, let ’s understand how

mobile screens work.

Subpixels and pixel density: There seem to be two basic approaches to how type

is rendered on mobile screens: using subpixel-based screens or having a greater

pixel density or pixels per inch (PPI). A subpixel is the division of each pixel into a

red, green, and blue (or RGB) unit at a microscopic level, enabling a greater level

of antialiasing for each font character or glyph. The addition of these RGB

subpixels enables the eye to see greater variations of gray, creating sharper

antialiasing and crisp text.

In Figure 4.24, you can see three examples of text rendering. The first line shows

a simple black and white example, the second shows text with grayscale

antialiasing, and the third line shows how text on a subpixel display would

render.

40

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Figure 4.24. Different ways text can render on mobile screens

The Microsoft Windows Mobile platform uses the subpixel technique with its

Clear-Type technology.

The second approach is to use a great pixel density, or pixels per inch. We often

refer to screens by either their actual physical dimensions (“I have a 15.4-inch

laptop screen”) or their pixel dimensions, or resolution (“The resolution of my

laptop is 1440×900 pixels”). The pixel density is determined by dividing the width

of the display area in pixels by the width of the display area in inches. So the

pixel density for my 15.4-inch laptop would be 110 PPI. In comparison, a 1080p

HD television has a PPI of 52. As this applies to mobile devices, the higher the

density of pixels, the sharper the screen appears to the naked eye. This guideline

especially applies to type, meaning that as text is antialiased on a screen with a

high density of tiny pixels, the glyph appears sharper to the eye. Some mobile

41

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

screens have both a high PPI and subpixel technology, though these are

unnecessary together.

Fortunately, today’s mobile devices have a few more options than a single

typeface, but the options are still fairly limited. Coming from web design, where

we have a dozen or so type options, the limited choices available in mobile design

won’t come as a big surprise. Essentially, you have a few variations of serif, sans-

serif, and monospace fonts, and depending on the platform, maybe a few custom

fonts.

In researching this book, I scoured the Web and tapped my mobile community

resources to find a list of the typefaces that are included in each of the major

device platforms, but I could only come up with a few—nothing close to a

complete list. This goes to show how far behind mobile typography is, that

designers don’t even have a basic list to work from.

Therefore, when creating mobile designs for either web or native experiences, my

advice is to stick with either the default device font, or web-safe fonts—your basic

serif variants like Times New Roman and Georgia or sans-serif typefaces like

Helvetica, Arial, or Verdana.

Font replacement: The ability to use typefaces that are not already loaded on

the device varies from model to model and your chosen platform. Some device

APIs will allow you to load a typeface into your native application. Some mobile

web browsers support various forms of font replacement; the two most common

are sIFR and Cufon. sIFR uses Flash to replace HTML text with a Flash

representation of the text, but the device of course has to support Flash. Cufon

uses JavaScript and the canvas element draws the glyphs in the browser, but the

device of course needs to support both JavaScript and the canvas element.

In addition, the @font-face CSS rule allows for a typeface file to be referenced and

loaded into the browser, but a license for web use is usually not granted by type

foundries.

Readability: The most important role of typography in mobile design is to provide

the user with excellent readability, or the ability to clearly follow lines of text with

the eye and not lose one’s place or become disoriented. This can be done by

following these six simple rules:

42

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Use a high-contrast typeface: Remember that mobile devices are usually used

outside. Having a high-contrast typeface with regard to the background will

increase visibility and readability.

Use the right typeface: The type of typeface you use tells the user what to

expect. For example, a sans-serif font is common in navigation or compact areas,

whereas serif typefaces come in handy for lengthy or dense content areas.

Provide decent leading (rhymes with “heading”) or line spacing Mobile screens are

often held 10–12" away from the eye, which can make tracking each line difficult.

Increase the leading to avoid having the users lose their place. Leave space on the

right and left of each line; don’t crowd the screen. Most mobile frameworks give

you full access to the screen, meaning that you normally need to provide some

spacing between the right and left side of the screen’s edge and your text—not

much, typically about three to four character widths.

Generously utilize headings: Break the content up in the screen, using text-

based headings to indicate to the user what is to come. Using different typefaces,

color, and emphasis in headings can also help create a readable page.

Use short paragraphs: Like on the Web, keep paragraphs short, using no more

than two to three sentences per paragraph.

Graphics:
The final design element is graphics, or the images that are used to establish or

aid a visual experience. Graphics can be used to supplement the look and feel, or

as content displayed inline with the text. The use of graphical icons in the iPhone

experience helps to establish a visual language for the user to interact with to

quickly categorize entries. On the S60 application, the wallet photo in the upper-

right corner helps communicate the message of the application to the user.

Iconography: The most common form of graphics used in mobile design is icons.

Iconography is useful to communicate ideas and actions to users in a constrained

visual space. The challenge is making sure that the meaning of the icon is clear to

the user. We can have some helpful icons that clearly communicate an idea and

some perplexing icons that leave you scratching your head.

Glyphish provides free iPhone icons

43

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Photos and images: Photos and images are used to add meaning to content,

often by showing a visual display of a concept, or to add meaning to a design.

Using photos and images isn’t as common in mobile design as you might think.

Because images have a defined height and width, they need to be scaled to the

appropriate device size, either by the server, using a content adaptation model, or

using the resizing properties of the device. In the latter approach, this can have a

cost in performance. Loading larger images takes longer and therefore costs the

user more. Using graphics to add meaning to a design can be a useful visual, but

you can encounter issues regarding how that image will display in a flexible UI-

for example, when the device orientation is changed. In Figure 4.25, you can see

how the pig graphic is designed to be positioned to the right regardless of the

device orientation.

Figure 4.25. Using graphics in multiple device orientations

 MOBILE DESIGN TOOLS

Mobile design requires understanding the design elements and specific tools. The

closest thing to a common design tool is Adobe Photoshop, though each

framework has a different method of implementing the design into the

application. Some frameworks provide a complete interface toolkit, allowing

designers or developers to simply piece together the interface, while others leave it

to the designer to define from scratch.

In Table below, you can see each of the design tools and what interface toolkits

are available for it.

Mobile

framework

Design tool Interface toolkits

Java ME Photoshop, NetBeans JavaFX, Capuchin

BREW Photoshop, Flash BREW UI Toolkit, uiOne,

Flash

Flash Lite Flash Flash Lite

iPhone Photoshop, Interface Builder iPhone SDK

Android Photoshop, XML-based

themes

Android SDK

Palm

webOS

Photoshop, HTML, CSS, and

JavaScript

Mojo SDK

Mobile web Photoshop, HTML, CSS, and W3C Mobile Web Best

44

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 JavaScript Practices

Mobile

widgets

Photoshop, HTML, CSS, and

JavaScript

Opera Widget SDK, Nokia

Web Runtime

Mobile web

apps

Photoshop, HTML, CSS, and

JavaScript

iUI, jQTouch, W3C Mobile

Web App Best Practices

1. DESIGNING FOR THE RIGHT DEVICE

"What device suits this design best?

What market niche would appreciate it most?
What devices are the most popular within that niche?"

This knowledge will helps to develop porting and/or adaptation strategy, the

most expensive and riskiest part of the mobile application.

2. DESIGNING FOR DIFFERENT SCREEN SIZES

Mobile devices come in all shapes and sizes. Choice is great for consumers, but

bad for design. It can be incredibly difficult to create that best possible -

experience for a surplus of different screen sizes.

For example, your typical feature phone might only be 140 pixels wide, whereas

your higher-end smartphone might be three to four times wider Landscape or

portrait? Fixed width or fluid? Do you use one column or two?. The vast majority

45

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

of mobile device screens share the same vertical or portrait orientation, even

though they vary greatly in dimension, as shown in Figure 18.20

With vertical. designs, the goal is to think of your design as a cascade of content

from top to bottom (Figure 18.21), similar to a newspaper.

 The greatest challenge to creating a design that works well on multiple

screen sizes is filling the width.
 For content-heavy sites and applications, the width of mobile devices is

almost the perfect readability, presenting not too many words per line of

text.
 The problem is when you have to present a number of tasks or actions.

CASE STUDY 1:

For a pioneering distributor of petroleum products and related services develop

an official app which, leveraging on location services, helps find the nearby filling

station to the user. User can click a station on the map and navigate to it.

In addition, the mobile app must give information about the products, services

and facilities available at their filling stations. The upcoming events & ongoing

promotions should also be available on the app to view and participate.

Customers should be able to provide their feedback to help improve the products

and services.

Discuss about the challenge and design to develop a mobile App.

46

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

Challenge

 The client app, upon registration, stores users’ driver’s license.
 To notify a user when his driver’s license is about to expire.
 The challenge augmented is that the license expiry date tends to differ for

user to user.
 The app upon registration needs to store vehicle and mileage data.
 However, with so much data on the fly, it is evident to think about storing

the data.
 Filtering results to a region, location and sub-filtering them to

services/features/facilities.
Design

 The colour palette was chosen such that it includes various shades of grey

with light colours here and there.
 To make sure the users receive a notification when their driver’s license is

about to expire, Android Local Push Notifications—Alarm Manager to set

the expiry notification was employed.
 To store the vehicle and mileage data, created the local SQLite DB and to

manage complex filter, SOL query with app code was used.

 Nearby stations
 An app user can not only find a filling station near him, he can also

navigate to its location and take a look at the services, products and

facilities available at the station.

 Mileage Calculator
 The app calculates mileage of a vehicle based on the number of miles it

travelled. It calculates number of miles it travelled and how much fuel it

was refilled with an The app filling station.

 License Expiry Notifications
 The app notifies a user when the license is about to expire.

 Rating and Feedback
 Customers’ feedback matters more than anything be it a grocery store or a

filling station. The app has many station and each time an app user visits

one, the app prompts him to rate the experience.

Results

 The app reduced time and fuel people waste while searching for a fuel

station. The app users became safer and more considerate drivers. Driver’s

License expiry notification assured they renew their licenses on time.

CASE STUDY 2:

The client wants a mobile application to acts as a platform for its users to enroll

themselves and their friends in the training center. The Training centerhas a total

of six branches that provides a variety of courses and training to their students.

47

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

The application is bilingual and is available in English and Hindi. This

application has many things to offer to its users. It gives a comprehensive

information about all the courses whether they are ongoing or upcoming. Any

user can avail these courses by making the payment through the app itself.

Discuss about the challenges and solution for developing the Mobile APP.

Challenges

The client is a reputed training institute. It’s well-known for the variety of

courses and quality of teaching. However, they were facing problems in

reaching out to more students. They wanted to develop a mobile application

that can work like a platform to enroll in their institute and also to guide their

students.

Solution :

 To overcome the challenges of the client an app has to be developed to fulfil
all the clients’ requirements.

 With this application, all their users can see the number of different

courses, its eligibility, timings, instructor, and many more.
 The app also provides all the guidance to the students related to the

institute.
 Explore courses with various filters
 The institute has many courses and that’s why this feature comes in handy

as it allows its users to search for a course by using different filters such as

category, age, location, gender, start date, and many more.
 Bilingual
 The client’s institute is a reputed one and they wanted to attract students

of all demographics. That’s why we need to develop an app in both English

and Hindi language.
 Online enrollment& payment
 This feature allows the user to enroll for various courses of their choices.

Along with that they can also make payments online via the mobile app.
 Gallery
 Users can always have a look at the gallery that features pictures from all

six branches of the training institute.
 Notify me
 This feature is a crucial one as it lets its user to set a reminder to any of

the upcoming course. Whenever, the date of that course approaches near,

the app reminds the user to enroll for it.
 News
 This feature shows all the news related to academics. It also shows the

details about examination taken for various vacancies.

Result

 This app will turn out to be a huge success for clients. It will play a pivotal

role in attracting many new students into the institute.

48

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

CASE STUDY 3:

With medical technologies taking huge leaps every year, most of our health-

related woes are taken care of. Doctors are successfully treating some conditions

which were once incurable. However, with the advancement, the number of tasks

involving the medical procedure has also increased to an overwhelming level.

An app that helps to manage all those procedures and tasks in an easy and

systematic manner need to be developed. This application brings together all the

components of health report which includes the medical history, symptoms,

medication, appointments, immunizations, allergies, and fitness records.

Discuss about the challenges and solution for developing the APP

Challenges

 First need to fetch the thehealthkit& Fitbit data on the application.
 Integration of both will be a challenge as it would increase the complexity of

the app.
 Moreover, to fetch data in real-time from the healthkit& Fitbit to the

application will be a tough job.
 Other challenge is about the medicine reminders. Client would need this

feature in which the user would get notifications for his/her medical dose.
 Apart from that, need to provide encryption and decryption of data which

would ensure foolproof privacy and security of user’s data.
 Need to provide multiple languages in the app.

Solution:

 To solve the first challenge can useHealthkit’s& Fitbits’ API to fetch all the
data to the app.

 For the second challenge which was of medicine reminders, can

synchronize with the calendars. Can add reminders according to the

frequency of the dosage.
 For encryption and decryption, can use AES encryption algorithm that

works parallelly across every platform such as iOS, Android, and PHP.
 To make this app available in all the languages can create a master in

which all the language translations for all the modules can be stored.
 Record symptoms
 In this feature the user can record all his/her symptoms with details such

as date of first appearance, severity, and other miscellaneous information.
 Immunizations
 The user can record history of all the vaccines, any other immunizations

taken in a single app which will give the user and the doctor a clear idea

about your immunization history.
 Chronic conditions
 This feature allows the user to record all the necessary details of his/her

chronic disease which would help the doctor to take further action rapidly.
 Allergies

49

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

 In this section the user can fill all the details of the allergies if he/she has

any. This will prevent cases in which doctor prescribes medication to which

the patient is allergic, causing harm.
 Fitness data
 This is a crucial feature in which all the data from fitbit or healthkit is

fetched to the app. Now the user can monitor his/her fitness stats and

manage medication simultaneously.
 Medicine dosage
 The user can enter all the details such as their name, amount of dosage to

be taken, and the frequency of a dosage of all the medicines that the user

have been prescribed with.
 Medical appointments synced with calendar
 This is a critical feature as the user can sync all the appointments with the

calendar. User will receive a reminder whenever the user have a medical

appointment fixed that day.
 Voice commands
 This feature is useful for elderly users who may face problems in typing.

They can simply give voice commands to access functions and to write

notes.
 Share PDFs, video, and audio files with the doctor
 This feature gives the user a golden opportunity to present the medical

history with a great amount of details to the doctor. In this feature the user

can include PDFs, videos, and audio files forthe doctor.
 Create multiple dependent accounts
 The user don’t need to create separate accounts for each member of his

family. By this feature , the user can create and manage multiples account

of his family members on the same application

Result:

 The application will get a tremendous amount of appreciation from all;

especially, from those who had to manage a large number of medical tasks

for themselves or their family members

50

Aru
na

i E
ng

in
ee

rin
g

Col
le

ge

	WHO IS INVOLVED IN HCI?
	THEORY AND HCI
	The Human
	Input– Output Channels
	Vision
	The human eye
	Visual perception
	Perceiving brightness:
	Perceiving color :
	The capabilities and limitations of visual processing:
	Figure 1.3:Ambiguous shape? Figure 1.4:BABC Figure 1.4:12 13 14
	Figure 1.7:The Ponzo illusion – are these the same size? Reading :
	Hearing
	The human ear
	Processing Sound
	Touch
	Movement

	UNIT 2 - DESIGN & SOFTWARE PROCESS
	INTERACTIVE DESIGN BASICS
	The golden rule of design
	To err is human

	THE PROCESS OF DESIGN
	USER FOCUS
	Know your user
	Persona
	example persona
	Cultural probes

	SCENARIOS
	scenario – movie player

	NAVIGATION
	Local Structure
	Fig.2.2 Local Structure
	Where you are
	beware the big button trap
	Modes
	Global Structure – Hierarchical Organization
	Fig 2.3: Application Functional Hierarchy
	Fig 2.4: Network of screens/states
	Wider still

	SCREEN DESIGN AND LAYOUT
	Tools for layout
	Fig 2.5: Grouping Related Items in an order screen
	b. Order of groups and items
	c. Decoration
	d. Alignment
	Fig 2.7: Managing Multiple Columns
	Fig 2.8: Using white space in layout
	Example : physical controls in Microwave control panel
	User Action And Control
	b. Knowing what to do
	c. Affordances
	Appropriate appearance
	b. Aesthetics and utility
	c. Making a mess of it: color and 3D
	d. Localization / internationalization

	ITERATION AND PROTOTYPING
	Fig 2.9: Role of Prototyping

	HCI IN SOFTWARE PROCESS
	SOFTWARE LIFE CYCLE
	Activities in the life cycle
	Requirements specification
	Architectural design
	Fig 2.10: Feedback from maintenance activity to other design activity Detailed design
	Coding and unit testing
	Integration and testing
	Maintenance
	Validation and verification
	Fig 2.11: The formality gap between the real world and structured design
	Interactive systems and the software life cycle

	USABILITY ENGINEERING
	Table 2.1: Sample Usability Specification for undo with a VCR
	ISO usability standard 9241
	Some metrics from ISO 9241

	PROTOTYPING IN PRACTICE
	Fig 2.13: Throw-away prototyping with requirement specification
	Fig 2.14: Incremental prototyping within the life cycle
	Fig 2.15: Evolutionary Prototyping throughout the life cycle
	Techniques for prototyping
	Warning about iterative design

	DESIGN RATIONALE
	Process-oriented design rationale
	Fig 2.16: Structure of a gIBIS rationale
	Design space analysis
	Fig 2.17: QOC notation
	Psychological design rationale

	DESIGN RULES
	PRINCIPLES
	Learnability
	Flexibility
	Table 2.5: Summary of principles affecting flexibility
	Robustness
	Table 2.6: Summary of principles affecting Robustness
	Standards

	GUIDELINES
	RULES
	Shneiderman’s Eight Golden Rules of Interface Design
	Norman’s Seven Principles for Transforming Difficult Tasks into Simple Ones
	Nielsen’s ten heuristics are:
	HCI design patterns
	EVALUATION TECHNIQUES – UNIVERSAL DESIGN Evaluation
	b. Heuristic evaluation
	Model Based Evaluation
	Review-based evaluation
	Evaluating through user Participation
	Laboratory studies
	Field Studies
	2.18.3.Evaluating Implementations
	a) Empirical or experimental methods
	Experimental factors
	– Independent variable (IV)
	– Dependent variable (DV)
	b) Observational methods
	Think Aloud
	Cooperative evaluation
	Protocol analysis
	Post-task walkthroughs
	Questionnaires
	d) Methods that use physiological monitoring
	physiological measurements
	Universal Design Principles:
	Usable Senses
	Multi-modal vs. Multi-media
	Speech
	Structure of Speech
	The Phonetic Typewriter
	Speech Synthesis
	Non-Speech Sounds
	Touch
	Handwriting recognition
	Gesture
	Users with disabilities
	BRIEF HISTORY OF MOBILE The Brick Era
	The Candy Bar Era
	The Feature Phone Era
	The Smartphone Era
	The Touch Era (NOT a phone - NOT a computer)

	MOBILE ECOSYSTEM
	Operators

	NETWORKS
	DEVICES
	PLATFORMS
	1) Licensed:
	2) Proprietary
	3) Open Source
	Operating Systems

	OPERATING SYSTEM
	APPLICATION FRAMEWORKS
	APPLICATIONS
	SERVICES
	TYPES OF MOBILE APPLICATIONS
	I.SMS
	SMS:
	Mobile Websites:
	Mobile Web WIDGETS
	figure 4.4 : An example mobile web widget
	Mobile web APPLICATIONS
	Figure 4.5 : The Facebook mobile web app

	NATIVE APPLICATIONS
	Difference

	GAMES
	Figure 4.6 : An example game for the iPhone

	MOBILE INFORMATION ARCHITECTURE
	Figure 4.7: Comparing the New York Times website in desktop &mobile browsers
	Keeping It Simple
	Site Map:
	Figure 4.9 : An example mobile site map Limit opportunities for mistakes:
	Figure 4.10: An example of a bad mobile information architecture that was designed with desktop users in mind rather than mobile users
	Figure 4.11. Teasing content to confirm the user’s expectations of the
	Clickstreams:
	Figure 4.12. An example clickstream for an iPhone web application
	Figure 4.13. An example process flow diagram
	Figure 4.14.
	Prototyping:
	Context prototype:
	HTML prototypes:
	Different Information Architecture for Different Devices:

	MOBILE 2.0
	Mobile 2.0: The Convergence of the Web and Mobile:
	Mobile Web Applications Are the Future
	JavaScript Is the Next Frontier:
	The Mobile User Experience Is Awful:
	Mobile Widgets Are the Next Big Thing:
	Carrier Is the New “C” Word:
	Mobile Needs to Check Its Ego:
	We Are Creators, Not Consumers:
	MOBILE DESIGN Interpreting Design:
	The Mobile Design Tent-Pole:

	4.5.1 ELEMENTS OF MOBILE DESIGN
	Context:
	Message:
	Figure 4.19. What is the message for each of these designs?
	Look and Feel:
	Figure 4.20: Pattern Tap shows a number of user interface patterns that help to establish look and feel
	Layout:
	Figure 4.21. Using a low-fidelity wireframe to define the layout design element before visual design begins
	Color
	Typography
	Figure 4.24. Different ways text can render on mobile screens
	Graphics:

	MOBILE DESIGN TOOLS
	CASE STUDY 1:
	Challenge
	Results

	CASE STUDY 2:
	Challenges
	Solution :

