

Approved by AICTE, Affiliated to Anna University, 'A' Grade Accredited by NAAC, NBA Accredited, ISO 9001: 2015 Certified)

CURRICULUM AND SYLLABUS B.TECH-ARTIFICIAL INTELLIGENCE AND DATA SCIENCE (Regulations 2024)

HoD BOS Chairman

ARUNAI ENGINEERING COLLEGE, TIRUVANNAMALAI

(An Autonomous Institution)

REGULATION 2024

CHOICE BASED CREDIT SYSTEM

B. Tech -ARTIFICIAL INTELLEGENCE AND DATA SCIENCE

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates can

PEO1: Utilize their proficiencies in the fundamental knowledge of basic sciences, mathematics, Artificial Intelligence, data science and statistics to build systems that require management and analysis of large volumes of data.

PEO2: Advance their technical skills to pursue pioneering research in the field of AI and Data Science and create disruptive and sustainable solutions for the welfare of ecosystems.

PEO3: Think logically, pursue lifelong learning and collaborate with an ethical attitude in a multidisciplinary team.

PEO4: Design and model AI based solutions to critical problem domains in the realworld. **PEO5:** Exhibit innovative thoughts and creative ideas for effective contribution towards economy building.

PROGRAM OUTCOMES (POS)

PO1: Engineering Knowledge: Apply knowledge of mathematics, natural science, computing, engineering fundamentals and an engineering specialization as specified in WK1 to WK4 respectively to develop to the solution of complex engineering problems.

PO2: Problem Analysis: Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions with consideration for sustainable development. (WK1 to WK4)

PO3: Design/Development of Solutions: Design creative solutions for complex engineering problems and design/develop systems/components/processes to meet identified needs with consideration for the public health and safety, whole-life cost, net zero carbon, culture, society and environment as required. (WK5)

PO4: Conduct Investigations of Complex Problems: Conduct investigations of complex engineering problems using research-based knowledge including design of experiments, modelling, analysis & interpretation of data to provide valid conclusions. (WK8).

PO5: Engineering Tool Usage: Create, select and apply appropriate techniques, resources and modern engineering & IT tools, including prediction and modelling recognizing their limitations to solve complex engineering problems. (WK2 and WK6)

PO6: The Engineer and The World: Analyze and evaluate societal and environmental aspects while solving complex engineering problems for its impact on sustainability with reference to economy, health, safety, legal framework, culture and environment. (WK1, WK5, and WK7).

Hob BOS Chairman

PO7: Ethics: Apply ethical principles and commit to professional ethics, human values, diversity and inclusion; adhere to national & international laws. (WK9)

PO8: Individual and Collaborative Team work: Function effectively as an individual, and as a member or leader in diverse/multi-disciplinary teams.

PO9: Communication: Communicate effectively and inclusively within the engineering community and society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations considering cultural, language, and learning differences

PO10: Project Management and Finance: Apply knowledge and understanding of engineering management principles and economic decision-making and apply these to one's own work, as a member and leader in a team, and to manage projects and in multidisciplinary environments.

PO11: Life-Long Learning: Recognize the need for, and have the preparation and ability for i) independent and life-long learning ii) adaptability to new and emerging technologies and iii) critical thinking in the broadest context of technological change. (WK8)

WASHINGTON ACCORD KNOWLEDGE AND ATTITUDE PROFILE (WKS)

WK1: A systematic, theory-based understanding of the natural sciences applicable to the discipline and awareness of relevant social sciences.

WK2: Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.

WK3: A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.

WK4: Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.

WK5: Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.

WK6: Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.

WK7: Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.

WK8: Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.

HoD/B Chairman

WK9: Ethics, inclusive behaviour and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

PROGRAM SPECIFIC OUTCOMES (PSOs)

Graduates should be able to:

PSO1:Evolve AI based efficient domain specific processes for effective decision making in several domains such as business and governance domains.

PSO2: Arrive at actionable Foresight, Insight, hindsight from data for solving business and engineering problems

PSO3: Create, select and apply the theoretical knowledge of AI and Data Analytics along with practical industrial tools and techniques to manage and solve wicked societal problems

HoD/BOS Chairman

ng of the natural sciences applle to the discipline and awareness of relevant social sciences.

WK2: Conceptually-based mathematics, numerical analysis, data analysis, statistics and formal aspects of computer and information science to support detailed analysis and modelling applicable to the discipline.

WK3: A systematic, theory-based formulation of engineering fundamentals required in the engineering discipline.

WK4: Engineering specialist knowledge that provides theoretical frameworks and bodies of knowledge for the accepted practice areas in the engineering discipline; much is at the forefront of the discipline.

WK5: Knowledge, including efficient resource use, environmental impacts, whole-life cost, re-use of resources, net zero carbon, and similar concepts, that supports engineering design and operations in a practice area.

WK6: Knowledge of engineering practice (technology) in the practice areas in the engineering discipline.

WK7: Knowledge of the role of engineering in society and identified issues in engineering practice in the discipline, such as the professional responsibility of an engineer to public safety and sustainable development.

WK8: Engagement with selected knowledge in the current research literature of the discipline, awareness of the power of critical thinking and creative approaches to evaluate emerging issues.

WK9:Ethics, inclusive behavior and conduct. Knowledge of professional ethics, responsibilities, and norms of engineering practice. Awareness of the need for diversity by reason of ethnicity, gender, age, physical ability etc. with mutual understanding and respect, and of inclusive attitudes.

HoD/BOS Chairman

ARUNAI ENGINEERING COLLEGE

(AUTONOMOUS) TIRUVANNAMALAI REGULATIONS 2024

CHOICE BASED CREDIT SYSTEM

B.TECH. ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

CURRICULUM AND SYLLABI FOR I TO VIII SEMESTERS SEMESTER I

G 17.0	COURSE		CATEG	L.A.	IODS : WEEK		TOTAL CONTACT	CREDITS
S.NO	CODE	COURSE TITLE	ORY	L	Т	P	PERIODS	CREDITS
1	IP24101	Induction Programme		-	-	-		0
THEO	RY							
2	HS24101	Professional English-I	HSMC	3	0	0	3	3
3	MA24101	Matrices and Calculus	BSC	3	1	0	4	4
4	PH24101	Engineering Physics	BSC	3	0	0	3	3
5	CY24101	Engineering Chemistry	BSC	3	0	0	3	3
6	GE24101	Problem Solving and Python Programming	ESC	3	0	0	3	3
7	GE24102	Heritage of Tamils	HSMC	1	0	0	1	1
PRAC	CTICALS							
8	GE24111	Problem Solving and Python Programming Laboratory	ESC	0	0	4	4	2
9	BS24111	Physics and Chemistry Laboratory	BSC	0	0	4	4	2
10	GE24112	English Laboratory ^(\$)	EEC	0	0	2	2	1
			TOTAL	16	1	10	27	22

\$ Skill Based Course

HoD BOS Chairman

SEMESTER II

S.NO	COURSE	COURSE TITLE	CATEG	PEI	RIODS P WEEK	ER	TOTAL CONTACT	CREDITS
S.NO	CODE	COURSE IIILE	ORY	L	Т	P	PERIODS	CREDITS
THE	ORY							
1	HS24201	Professional English – II	HSMC	2	0	0	2	2
2	MA24201	Statistics and Numerical Methods	BSC	3	1	0	4	4
3	PH24203	Physics for Information Science	BSC	3	0	0	3	3
4	BE24201	Basic Electrical and Electronics Engineering	ESC	3	0	0	3	3
5	GE24201	Engineering Graphics	ESC	2	0	4	4	4
6	AD24201	Data Structures Design	PCC	3	0	0	3	3
7	GE24202	Tamils and Technology	HSMC	1	0	0	1	11
8		NCC Credit Course Level 1 [#]		2	0	0	2	2#
PRAC	CTICALS							
8	GE24211	Engineering Practices Laboratory	ESC	0	0	4	4	2
9	AD24211	Data Structures Design Laboratory	PCC	0	0	4	4	2
10	GE24212	Communication Laboratory / Foreign Language ^(\$)	EEC	0	0	4	4	2
			TOTAL	17	1	16	34	26

NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

Principal

\$ Skill Based Course

HoD/BOS Chairman

SEMESTER III

G NO	COURSE	COMPANIENT E	CATEG	01	DS PI EEK	ER	TOTAL CONTACT	CREDITS
S.NO	CODE	COURSE TITLE	ORY	L	Т	P	PERIODS	CREDITS
THEC	ORY							
1.	MA24301	Discrete Mathematics	BSC	3	1	0	4	4
2.	CS24305	Digital Principles and Computer Organization	ESC	3	0	0	3	3
3.	CS24303	Computer Networks	PCC	3	0	0	3	3
4.	AD24301	Artificial Intelligence	PCC	3	0	0	3	3
5.	AD24302	Data Visualization	PCC	2	0	2	4	3
6	AD24303	Algorithm Design Techniques	PCC	3	0	0	3	3
PRAC	CTICALS							
7.	CS24313	Networks Laboratory	PCC	0	0	3	3	1.5
8.	AD24311	Artificial Intelligence Laboratory	PCC	0	0	3	3	1.5
	-		TOTAL	17	1	8	26	22

HoD Bos Chairman

SEMESTER IV

CNO	COURSE	COLIDCE TITLE	CATEG		ODS P VEEK	ER	TOTAL CONTACT	CREDITS
S.NO	CODE	COURSE TITLE	ORY	L	T	P	PERIODS	CREDITS
THEC	DRY							
1.	MA24401	Probability and Statistics	BSC	3	1	0	4	4
2	AD24401	Fundamentals of Data Science and Analytics	PCC	3	0	0	3	3
3.	AD24402	Fundamentals of Operating Systems	PCC	3	0	0	3	3
4	AD24403	Database Design and Management	PCC	3	0	0	3	3
5	AM24404	Machine Learning	PCC	2	0	2	4	3
6.	GE24901	Environmental Sciences and Sustainability	BSC	2	0	0	2	2
PRAC	CTICALS							
7.	AD24413	Database Design and Management Laboratory	PCC	0	0	3	3	1.5
8.	CS24413	Data Science Laboratory	PCC	0	0	3	3	1.5
			TOTAL	16	1	8	25	21

HoD BOS Chairman

SEMESTER V

a vo	COURSE	COLUMN THE LE	CATEG	I	ODS P WEEK		TOTAL CONTACT	CREDITS
S.NO	CODE	COURSE TITLE	ORY	L	T	P	PERIODS	CREDITS
THEC	DRY							
1.	AD24501	Deep Learning	PCC	3	0	0	3	3
2.	AD24502	Data Analytics	PCC	3	0	0	3	3
3.	CS24503	Embedded Systems and IoT	ESC	3	0	0	3	3
4.		Open Elective-1	OEC	3	0	0	3	3
5.		Professional Elective-I	PEC	2	0	2	4	3
6		Professional Elective-II	PEC	2	0	2	4	3
PRAC	CTICALS							
7.	AD24511	Deep Learning Laboratory	PCC	0	0	4	4	2
8.	AD24512	Data Analytics Laboratory	PCC	0	0	3	3	1.5
			TOTAL	16	0	11	27	21.5

HoDBOS Chairman

SEMESTER VI

S.NO	COURSE	COURSE TITLE	CATEGORY		ODS I WEEI		TOTAL CONTACT	CREDITS
5.110	CODE	COURSE TITLE		L	T	P	PERIODS	CIGITIS
THEO	RY							
1.	AM24601	Natural Language Processing	PCC	3	0	0	3	3
2.	AD24601	Distributed Computing	PCC	3	0	0	3	3
3.		Open Elective – II	OEC	3	0	0	3	3
4.		Open Elective – III	OEC	3	0	0	3	3
5.		Professional Elective-III	PEC	2	0	2	4	3
6.		Professional Elective-IV	PEC	2	0	2	4	3
7.		Mandatory Course-I	МС	3	0	0	3	Non-credit course
PRAC	CTICALS							
8.	AD24611	Intelligence Systems Laboratory	PCC	0	0	3	3	1.5
9.	AD24612	Mini Project	EEC	0	0	4	4	2
			TOTAL	19	0	11	30	21.5

Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-I)

HoD/BOS Chairman

SEMESTER VII

a vo	COURSE	COMPONE THAT IS	CATEG	PERI	ODS I	PER	TOTAL CONTACT	CREDITS
S.NO	CODE	COURSE TITLE	ORY	L	Т	P	PERIODS	CREDITS
THEC	DRY							
1.	GE24902	Human Values and Ethics	HSMC	2	0	0	2	2
2.	CB24701	Data and Information Security	PCC	3	0	0	3	3
- 3.		Elective - Management	HSMC	3	0	0	3	3
4.		Professional Elective-V	PEC	2	0	2	4	3
5.		Professional Elective-VI	PEC	2	0	2	4	3
6.		Mandatory Course-II	MC	3	0	0	3	Non-Credit Course
PRAC	CTICALS							
7.	CB24711	Data Security Lab	PCC	0	0	3	3	1.5
8.	AD24711	Summer Internship	EEC	0	0	0	0	2
9.	AD24712	Computational Learning Lab	PCC	0	0	3	3	1.5
			TOTAL	15	0	10	25	19

Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under Mandatory Course-I)

SEMESTER VIII

CNO	COURSE	COURSE TITLE	CATEG	1	ODS I VEEK		TOTAL CONTACT	CREDITS
S.NO	CODE	COURSE TITLE	ORY	L	Т	P	PERIODS	CREDITS
PRAC	CTICALS							
1.	AD24811	Project Work	EEC	0	0	20	20	10
			TOTAL	0	0	20	20	10

TOTAL CREDITS: 163

HoD/BO Chairman

S.No	Subject Area		C	redits po	er Semes					Total Credits
		I	п	ш	IV	v	VI	VII	VIII	
1	HSMC	4	3		575.00	prijus-	nurolini b	5	Inch	12
2	BSC	12	7		6					25
3	ESC	5	9	4	etre i	3	7.5	sodurd.		28.5
4	PCC		5	3	15	9.5	6	6		44.5
5	PEC			15	JEZ.	6	6	6		33
6	OEC					3	2			5
7	EEC	1	2					2	10	15
8	Non-Credit /(Mandatory)	0		e in	DBII	1		orimuit uruma k	11148	GL/
	Total	22	26	22	21	21.5	21.5	19	10	163

HoD/Bos chairman

Vertical I AIDS	Vertical II Full Stack Development	Vertical III Cloud Computing and Data Center Technologies	Vertical IV Cyber Security and Data Privacy	Vertical V Creative Media	Vertical VI Emerging Technologies
Knowledge Engineering	App Development	Cloud Computing	Ethical Hacking	Multimedia and Animation	Augumented Reality/Virtual Reality
Soft Computing	Web Technology	Virtualization	Digital and Mobile Forensics	Video Creation and Editing	Robotic Process Automation
Text and Speech Analysis	UI and UX Design	Cloud services Management	Social Network Security	Game Theory	Neural Networks and Deep Learning
Ethics & AI	Software Testing and Automation	Data Warehousing	Modern Cryptography	Digital Marketing	Cyber Security
Image and video analytics	Web Application Security	Storage Technologies	Malware Analysis	Multimedia Data Compression and Storage	Cryptocurrency and Blockchain Technologies
Computer Vision	Devops	Software Defined Networks	Quantum Computing	Game Development	Cognitive Science
Exploratory Data Analysis	Principles of Programming Languages	Security and Privacy in Cloud	Network Security	Visual Effects	3D Printing and Design

S.NO.	COURSE	COURSETITLE	CATE		ERIOI R WE		TOTAL CONTACT	CREDITS
	CODE		GORY	L	Т	P	PERIODS	
1.	CCS2405	Knowledge Engineering	PEC	2	0	2	4	3
2.	CCS2406	Soft Computing	PEC	2	0	2	4	3
3.	CCS2407	Text and Speech Analysis	PEC	2	0	2	4	3
4.	CCS2402	Ethics & AI	PEC	2	0	2	4	3
5.	CCS2436	Image and video analytics	PEC	2	0	2	4	3
6.	CCS2437	Computer Vision	PEC	2	0	2	4	3
7.	CCS2435	Exploratory Data Analysis	PEC	2	0	2	4	3
		PROFESSIONAL ELECTIVE C	OURSES:	VER	RTIC	<u> </u>	II	
8.	CCS2408	App Development	PEC	2	0	2	4	3
9.	CS24404	Web Technology	PEC	2	0	2	4	3
10.	CCS2410	UI and UX Design	PEC	2	0	2	4	3
11.	CCS2411	Software Testing and Automation	PEC	2	0	2	4	3
12.	CCS2404	Web Application Security	PEC	2	0	2	4	3
13.	CCS2412	Devops	PEC	2	0	2	4	3
14.	CCS2413	Principles of Programming Languages	PEC	2	0	2	4	3
		PROFESSIONAL ELECTIVE CO	OURSES:	VER	TICA	L – I	II	
15.	CCS2403	Cloud Computing	PEC	2	0	2	4	3
16.	CCS2414		PEC	2	0	2	4	3
17.	CCS2409	Cloud services Management	PEC	2	0	2	4	3
18.		Data Warehousing	PEC	2	0	2	4	3
19.		Storage Technologies	PEC	2	0	2	4	3
20.		Software Defined Networks	PEC	2	0	2	4	3
21.	CCS2418	Security and Privacy in Cloud	PEC	2	0	2	4	3
		PROFESSIONAL ELECTIVE CO	OURSES:	VER	TICA	L-1	V	
22.	CCS2419	Ethical Hacking	PEC	2	0	2	4	3
23.	CCS2420	Digital and Mobile Forensics	PEC	2	0	2	4	3
24.		Social Network Security	PEC	2	0	2	4	3
25.	CCS2422	Modern Cryptography	PEC	2	0	2	4	3
26.	CCS2440	Malware Analysis	PEC	2	0	2	4	3
27.	+		PEC	2	0	2	4	3
28.	CB24602		PEC	2	0	2	4	3

HoD/BOS Chairman

29.	CCS2425	Multimedia and Animation	PEC	2	0	2	4	3
30.	CCS2426	Video Creation and Editing	PEC	2	0	2	4	3
31.	CCS2439	Game Theory	PEC	2	0	2	4	3
32.	CCS2427	Digital Marketing	PEC	2	0	2	4	3
33.	CCS2428	Multimedia Data Compression and Storage	PEC	2	0	2	4	3
34.	CCS2429	Game Development	PEC	2	0	2	4	3
35.	CCS2430	Visual Effects	PEC	2	0	2	4	3
		PROFESSIONAL ELECTIVE CO	OURSES:	VER	TICA	<u>L – V</u>	Ī	
36.	CCS2424	Augmented Reality/Virtual Reality	PEC	2	0	2	4	3
36. 37.	CCS2424 CCS2431			2 2	0	2 2	4	3
		Augmented Reality/Virtual Reality	PEC	2	0	2	4	3 3
37.	CCS2431	Augmented Reality/Virtual Reality Robotic Process Automation Neural Networks and Deep	PEC PEC	2 2	0	2 2	4	3
37. 38.	CCS2431 CCS2401	Augmented Reality/Virtual Reality Robotic Process Automation Neural Networks and Deep Learning	PEC PEC PEC	2 2 2	0 0 0	2 2 2	4 4 4	3 3
37. 38. 39.	CCS2431 CCS2401 CCS2432	Augmented Reality/Virtual Reality Robotic Process Automation Neural Networks and Deep Learning Cyber Security Cryptocurrency and Blockchain	PEC PEC PEC	2 2 2 2	0 0 0	2 2 2 2	4 4 4	3 3

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

OPEN ELECTIVES-I (EMERGING TECHNOLOGIES)

S. NO.	COURSE CODE	COURSE TITLE		PERIODS PER WEEK			TOTAL CONTACT PERIODS	CREDITS
				L	T	P		
1.	OBA2401	Digital Marketing	OEC	3	0	0	3	3
2.	OEC2405	Drone Technologies	OEC	3	0	0	3	3
3.	OCE2401	Environmental and Social Impact Assessment	OEC	3	0	0	3	3
4.	OEE2405	Introduction to Industrial Instrumentation and Control	OEC	3	0	0	3	3
5.	OHS2403	Graph Theory	OEC	3	0	0	3	3
6.	OAG2403	IoT in Agricultural System	OEC	3	0	0	3	3

HoD/BOS chairman

OPEN ELECTIVES -II (INDUSTRIAL)

S.	COURSE	COURSETITLE	САТЕ		ERIC PEI WEE	3	TOTAL CONTACT	CREDITS
NO.	CODE	COURSETTLE	GORY	L	T	P	PERIODS	CREDITS
1.	OME2401	Applied design thinking	OEC	3	0	0	3	3
2.	OME2402	Introduction to industrial automation systems	OEC	3	0	0	3	3
3.	OME2403	Industrial Management	OEC	3	0	0	3	3
4.	OME2404	Quality Engineering	OEC	3	0	0	3	3
5.	OME2405	Sustainable Manufacturing	OEC	3	0	0	3	3
6.	OME2406	Industrial design and rapid prototyping techniques	OEC	3	0	0	3	3
7.	OEE2401	Industrial IOT and industry 4.0	OEC	3	0	0	3	3
8.	OEC2402	Robotics and industrial Automation	OEC	3	0	0	3	3

OPEN ELECTIVES-III & IV

SL.	COURSE CODE	COURSETITLE	CATE GORY	1	ERIO R W	DDS EEK	TOTAL CONTAC	CREDITS
110.			JOKI	L	T	P	T PERIODS	
1.	OAG2401	Urban agriculture	OEC	3	0	0	3	3
2.	OAG2402	Agriculture Entrepreneurship Development	OEC	3	0	0	3	3
3.	OBT2401	Basics of Biomolecules	OEC	3	0	0	3	3
4.	OBT2402	Basics of Microbial Technology	OEC	3	0	0	3	3
5.	OBT2403	Biotechnology for Waste Management	OEC	3	0	0	3	3
6.	OBT2404	Food Processing Technology	OEC	3	0	0	3	3
7.	OEC2403	VLSI Design	OEC	3	0	0	3	3
8	OEC2404	Remote Sensing Concepts	OEC	3	0	0	3	3
9.	OEC2405	Drone technologies	OEC	3	0	0	3	3
10.	OEE2402	Baiscs of Electric Vehicle Technology	OEC	3	0	0	3	3

HoD/BOS Chairman

	11.	OEE2403	Introduction To Control	OEC	3	0	0	3	3
-	12.	OEE2404	Systems Integrated energy planning for sustainable development	OEC	3	0	0	3	3
	13.	OHS2401	Nano technology	OEC	3	0	0	3	3
	14.	OHS2402	Operations research	OEC	3	0	0	3	3
	15.	OME2407	Additive Manufacturing	OEC	3	0	0	3	3

MANDATORY COURSE - I (SOCIETY)

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PERIODS PER WEEK		TOTAL CONTACT PERIODS	CREDITS
				L	T	P		
1.	MX24101	Introduction to women gender and studies	MC	3	0	0	3	0
2.	MX24102	Elements of literature	MC	3	0	0	3	0
3.	MX24103	Disaster risk reduction and management	MC	3	0	0	3	0
4.	MX24104	History of science and technology in india	MC	3	0	0	3	0
5.	MX24105	State, nation building and politics in india	MC	3	0	0	3	0
6.	MX24106	Political and economic thought for a humane society	MC	3	0	0	3	0
7.	MX24107	Understanding Society & Culture through Literature	МС	3	0	0	3	0
8.	MX24108	Work Ethics & Social Responsibilty	МС	3	0	0	3	0
9.	MX24109	Technology & Society	МС	3	0	0	3	0
10.	MX24110	Social Innovation & Entrepreneurship	МС	3	0	0	3	0
11.	MX24111	Education & Social Change	МС	3	0	0	3	0

HoD/BOS Chairman

MANDATORY COURSE - II (HEALTH AND WELL BEING)

S.NO.	COURSE	COURSE TITLE	CATE GORY		ERIO R W	DDS EEK	TOTAL CONTACT	CREDITS
8.110.	CODE			L	T	P	PERIODS	
1.	MX24201	Industrial Safety	MC	3	0	0	3	0
2.	MX24202	Well Being with Traditional Practices - Yoga, Ayurveda and Siddha	МС	3	0	0	3	0
3.	MX24203	Application of Psychology in Everyday Life	MC	3	0	0	3	0
4.	MX24204	Stress Management and Well Being	MC	3	0	0	3	0
5.	MX24205	Health and Well Being in Education	MC	3	0	0	3	0
6.	MX24206	Physical fitness & Mental Resilience	MC	3	0	0	3	0
7.	MX24207	Food, Nutrition and Health	MC	3	0	0	3	0
8.	MX24208	Life style diseases	MC	3	0	0	3	0

MANAGEMENT ELECTIVES

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PERIODS PER WEEK		PER		PER		PER		PER		PER		PER		PER		PER		PER		PER		PER		PER		PER		PER		PER		PER		TOTAL CONTACT PERIODS	CREDITS
				L	T	P																																		
1.	GE24M01	Principles of Management	HSMC	3	0	0	3	3																																
2.	GE24M02	Total Quality Management	HSMC	3	0	0	3	3																																
3.	GE24M03	Engineering Economics and Financial Accounting	HSMC	3	0	0	3	3																																
4.	GE24M04	HumanResource Management	HSMC	3	0	0	3	3																																
5.	GE24M05	Knowledge Management	HSMC	3	0	0	3	3																																

Hol/BOS Chairman

6.	GE24M06	Industrial Management	HSMC	3	0	0	3	3
7.	GE24M07	Foundations of entrepreneurship	HSMC	3	0	0	3	3

SEMESTER- I

Subject Code	Subject Name	Category	L	T	P	C
IP24101	INDUCTION PROGRAMME		0	0	0	0

This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have a broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed."

"One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character. "

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of

HoD/BOS Chairman

aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing. Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) Proficiency Modules

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering/Technology/Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For

HoD/BOS Chairman

example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme

References:

Guide to Induction program from AICTE

Subject Code	ect Code Subject Name Categor		L	T	P	C
HS24101	PROFESSIONAL ENGLISH- I	HSMC	3	0	0	3
Course Objectiv	es:					
To improve to	he communicative competence of learners					
To learn to u	To learn to use basic grammatic structures in suitable contexts					
To acquire 1 meaning in a	exical competence and use them appropriately text	in a sentence an	d un	derst	and 1	hei
	ers use language effectively in professional cont					
	learners' ability to read and write complex	texts, summarie	es, a	rticle	s, bl	ogs

What is effective communication? (Explain using activities) Why is communication critical for excellence during study, research and work? What are the seven C's of effective communication? What are key language skills? What is effective listening? What does it involve? What is effective speaking? What does it mean to be an excellent reader? What should you be able to do? What is effective writing? How does one develop language and communication skills? What does the course focus on? How are communication and language skills going to be enhanced during this course? What do you as a learner need to do to enhance your English language and communication skills to get the best out of this course?

INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

8

Reading - Reading brochures (technical context), telephone messages / social media messages relevant to technical contexts and emails. Writing - Writing emails / letters introducing oneself. Grammar - Present Tense (simple and progressive); Question types: Wh/ Yes or No/ and Tags. Vocabulary - Synonyms; One word substitution; Abbreviations & Acronyms (as used in technical contexts).

UNIT - II

NARRATION AND SUMMATION

9

Holl bos chairman

Rrincipal

Reading - Reading biographies, travelogues, newspaper reports, Excerpts from literature, and travel & technical blogs. Writing - Guided writing-- Paragraph writing Short Report on an event (field trip etc.) Grammar -Past tense (simple); Subject-Verb Agreement; and Prepositions. Vocabulary - Word forms (prefixes suffixes); Synonyms and Antonyms. Phrasal verbs.

UNIT – III DESCRIPTION OF A PROCESS / PRODUCT

9

Reading – Reading advertisements, gadget reviews; user manuals. Writing - Writing definitions; instructions; and Product /Process description. Grammar - Imperatives; Adjectives; Degrees of comparison; Present & Past Perfect Tenses. Vocabulary - Compound Nouns, Homonyms; and Homophones, discourse markers (connectives & sequence words).

UNIT – IV CLASSIFICATION AND RECOMMENDATIONS

9

Reading – Newspaper articles; Journal reports –and Non Verbal Communcation (tables, pie charts etc.). Writing – Note-making / Note-taking (*Study skills to be taught, not tested); Writing recommendations; Transferring information from nonverbal (chart, graph etc., to verbal mode) Grammar – Articles; Pronouns - Possessive & Relative pronouns. Vocabulary - Collocations; Fixed / Semi fixed expressions.

UNIT - V EXPRESSION

9

Reading – Reading editorials; and Opinion Blogs; Writing – Essay Writing (Descriptive or narrative). Grammar – Future Tenses, Punctuation; Negation (Statements & Questions); and Simple, Compound & Complex Sentences. Vocabulary - Cause & Effect Expressions – Content vs Function words.

Total Contact Hours: 45

Course Outcomes:	At the end of the course learners will be able
CO1:	To use appropriate words in a professional context
CO2:	To gain understanding of basic grammatical structures and use them in right
	context.
CO3:	To read and infer the denotative and connotative meanings of technical texts
CO4:	To write definitions, descriptions, narrations and essays on various topics
CO4.	10 write definitions, descriptions, narrations and essays on various topics

Textbooks:

- 1. English for Engineers & Technologists Orient Blackswan Private Ltd. Department of English, Anna University, (2020 edition)
- 2. English for Science & Technology Cambridge University Press, 2021. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

Reference books/other materials/webresources:

- 1. Technical Communication Principles And Practices By Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2016, New Delhi
- 2. A Course Book On Technical English By Lakshminarayanan, Scitech Publications

HoD/BO Chairman

	(India) Pvt. Ltd.
3.	English For Technical Communication (With CD) By Aysha Viswamohan, Mcgraw Hill
	Education, ISBN: 0070264244.
4.	Effective Communication Skill, Kulbhusan Kumar, RS Salaria, Khanna Publishing
	House. 5. Learning to Communicate – Dr. V. Chellammal, Allied Publishing House, New
	Delhi,2003.
5.	Learning to Communicate - Dr. V. Chellammal, Allied Publishing House, New
	Delhi,2003.

			CO-PSO Mapping											
PO & PSO / CO	PO 1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1;	1	1	1	1	1	3	3	3	1	3	-	-	-	-
CO2:	1	1	1	1	1	3	3	3	1	3	-	-	-	-
CO3:	2	3	2	3	2	3	3	3	2	3	3	-	-	-
CO4:	2	3	2	3	2	3	3	3	2	3	3	-		-
CO5:	2	3	3	3	-	3	3	3	2	3	-	-	-	-
Average:	1.6	2.2	1.8	2.2	1.5	3	3	3	1.6	3	3	-		-

Subject Code	Subject Name	Category	L	T	P	C	
MA24101	MATRICES AND CALCULUS	BSC	3	1	0	4	
Course Objectiv					L		
 To develo applicatio 	op the use of matrix algebra techniques that are needed bons	y engineers for pr	actic	al			
• To familia	arize the students with differential calculus.						
To familia engineerir	arize the student with functions of several variables. This	s is needed in man	y br	ancl	nes o	of	

•	To acquaint the student with mathematical tools needed in evaluating multiple integrals and thei	r
	applications	

To make the students understand various techniques of integration

UNIT – I	MATRICES	9+3
Eigenvalues a	nd Eigenvectors of a real matrix - Characteristic equation - Properties of Eiger	ivalues
	tors - Cayley - Hamilton theorem - Diagonalization of matrices by orth	
transformation	- Reduction of a quadratic form to canonical form by orthogonal transforms	ation -
Nature of quad	lratic forms – Applications: Stretching of an elastic membrane.	
UNIT – II	DIFFERENTIAL CALCULUS	9+3

Holp/BOS Chairman

Rrincipal

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT - III FUNCTIONS OF SEVERAL VARIABLES

9+3

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multipliers.

UNIT – IV INTEGRAL CALCULUS

9+3

Definite and Indefinite integrals - Substitution rule - Techniques of Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications: Hydrostatic force and pressure, moments and centres of mass.

UNIT - V MULTIPLE INTEGRALS

9+3

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals – Applications: Moments and centres of mass, moment of inertia.

Total Contact Hours: 60

Course Outcomes:	At the end of the course the students will be able to:												
CO1:	Jse the matrix algebra methods for solving practical problems.												
CO2:	Apply differential calculus tools in solving various application problems.												
CO3:	Able to use differential calculus ideas on several variable functions.												
CO4:	Apply different methods of integration in solving practical problems.												
CO5:	Apply multiple integral ideas in solving areas, volumes and other practical problems.												

Tex	tbooks:
1.	Kreyszig.E, "Advanced Engineering Mathematics", John Wiley and Sons, 10 th Edition, New Delhi, 2016.
2.	Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi, 44th Edition, 2018.
3.	James Stewart, "Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015.
	[For Units II & IV - Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to 3.6, 3.11,4.1,
	4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

Reference Books/Other Materials/Web Resources:

- 1. Anton. H, Bivens. I and Davis. S, "Calculus", Wiley, 10th Edition, 2016
- 2. Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", Firewall Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7thEdition, 2009.
- 3. Jain . R.K. and Iyengar. S.R.K., "Advanced Engineering Mathematics", Narosa Publications, New Delhi, 5thEdition, 2016.
- 4. Narayanan. S. and Manicavachagom Pillai. T. K., "Calculus" Volume I and II, S. Viswanathan

Hop Ros Chairman

	Publishers Pvt. Ltd., Chennai, 2009.
5.	Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi,
	2016.
6.	Srimantha Pal and Bhunia. S.C, "Engineering Mathematics" Oxford University Press, 2015.
7.	Thomas. G. B., Hass. J, and Weir. M.D, "Thomas Calculus", 14th Edition, Pearson India, 2018.

		CO-PSO Mapping												
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	3	1	1	-	-	-	2	-	2	3	-	-	-
CO2:	3	3	1	1	-	-	-	2	-	2	3	-	-	-
CO3:	3	3	1	1	-	-	-	2	-	2	3	-	-	-
CO4:	3	3	1	1		-	-	2	-	2	3	-	-	-
CO5:	3	3	1	1	-	-	-	2	-	2	3	-	-	-
Average:	3	3	1	1	8		-	2	-	2	3	-	-	-

Subject Code	Subject Name	Category	L	T	P	C
PH24101	BSC	3	0	0	3	
Course Objectives	*					
To make the st	udents effectively to achieve an understanding	of mechanics.				
To enable the s	tudents to gain knowledge of electromagnetic	waves and its appl	icatio	ns.		
To introduce the second control of the	ne basics of oscillations, optics and lasers.					
Equipping the	students to be successfully understand the imp	ortance of quantun	n phy	sics.		
	e students towards the applications of quantum					

UNIT I	MECHANICS	9
Multiparticle	dynamics: Center of mass (CM) - CM of continuous bodies - motion of the C	M –
kinetic energy	of system of particles. Rotation of rigid bodies: Rotational kinematics - rotation	onal
kinetic energy	and moment of inertia - theorems of M. I -moment of inertia of continuous bo	dies
– M.I of a di	atomic molecule - torque - rotational dynamics of rigid bodies - conservatio	n of
angular mome	entum - rotational energy state of a rigid diatomic molecule - gyroscope - torsi	onal
pendulum – de	ouble pendulum –Introduction to nonlinear oscillations.	,
UNIT II	ELECTROMAGNETIC WAVES	9
The Maxwell	's equations - wave equation; Plane electromagnetic waves in vacuum, Condit	ions
on the wave fi	ield - properties of electromagnetic waves: speed, amplitude, phase, orientation	and
waves in mat	ter - polarization - Producing electromagnetic waves - Energy and momentum	n in
EM waves: In	ntensity, waves from localized sources, momentum and radiation pressure - (Cell-
phone recepti	on. Reflection and transmission of electromagnetic waves from a non-conduc	ting
madium wan	num interface for normal incidence.	

OSCILLATIONS, OPTICS AND LASERS

HoD/BOS Chairman

UNIT III

Simple harmonic motion - resonance -analogy between electrical and mechanical oscillating systems - waves on a string - standing waves - traveling waves - Energy transfer of a wave - sound waves - Doppler effect. Reflection and refraction of light waves - total internal reflection - interference -Michelson interferometer -Theory of air wedge and experiment. Theory of laser - characteristics- Spontaneous and stimulated emission - Einstein's coefficients - population inversion - Nd-YAG laser, CO2 laser, semiconductor laser -Basic applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes-Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential —Basics of Kronig-Penney model and origin of energy bands.

Total Contact Hours: 45

Course Outcomes:	After completion of this course students should be able to:
CO1:	Understand the importance of mechanics.
CO2:	Express their knowledge in electromagnetic waves.
CO3:	Demonstrate a strong foundational knowledge in oscillations, optics and
	lasers.
CO4:	Understand the importance of quantum physics.
CO5:	Comprehend and apply quantum mechanical principles towards the
	formation of energy bands.

Textbooks:

- 1. D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2017.
- 2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ. Press, 2013.
- 3. Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017.

Reference books/other materials/webresources:

- 1. R. Wolfson. Essential University Physics. Volume 1 & 2. Pearson Education (Indian Edition), 2009.
- 2. Paul A. Tipler, Physic Volume 1 & 2, CBS, (Indian Edition), 2004.
- 3. K.Thyagarajan and A.Ghatak. Lasers: Fundamentals and Applications, Laxmi Publications, (Indian Edition), 2019.

HoD/BOS Chairman

- 4. D.Halliday, R.Resnick and J. Walker. Principles of Physics, Wiley (Indian Edition), 2015.
- 5. N.Garcia, A.Damask and S.Schwarz. Physics for Computer Science Students. Springer-Verlag, 2012.

		CO-PSO Mapping												
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	3	2	1	1	1	-	-	-	-	-	-	-	-
CO2:	3	3	2	1	2	1	-	-	-	-		-	-	-
CO3:	3	3	2	2	2	1	-	-	-	-	1	-	-	-
CO4:	3	3	1	1	2	i	-	-	-	-	-	-	-	-
CO5:	3	3	1	1	2	1	-	-	-	-	-	-	-	-
Average:	3	3	1.6	1.2	1.8	1	-	-	-	ļ -	1	-	-	-

Subject Code	Subject Name	Category		T	P	C
CY24101	ENGINEERING CHEMISTRY	BSC	3	0	0	3
Course Object	ives:					
To incu	cate sound understanding of water quality parameters and water	treatment tec	hniq	ues.		
To impa	rt knowledge on the basic principles and preparatory methods o	f nanomateria	ls.			
To intro	duce the basic concepts and applications of phase rule and comp	osites.				
	itate the understanding of different types of fuels, their preparatition characteristics.	on, properties	and			
	liarize the students with the operating principles, working procession and storage devices.	sses and appli	catio	ns c	of	

UNIT-I	WATER AND ITS TREATMENT	9
Water: Source	es and impurities, Water quality parameters: Definition and significance of-color,	odour,
turbidity, pH,	hardness, alkalinity, TDS, COD and BOD, fluoride and arsenic. Municipal water trea	tment:
primary treats	ment and disinfection (UV, Ozonation, break-point chlorination). Desalination of br	ackish
water: Rever	se Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittle	ement,
Priming & fo	paming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, s	odium
aluminate and	d calgon conditioning) and External treatment - Ion exchange demineralization and	zeolite
process.		
UNIT-II	NANOCHEMISTRY	9

HoD/BOS Chairman

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

UNIT-III PHASE RULE AND COMPOSITES

9

Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process. Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites - definition and examples.

UNIT – IV FUELS AND COMBUSTION

9

Fuels: Introduction: Classification of fuels; Coal and coke: Analysis of coal (proximate and ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking - octane number, diesel oil - cetane number; Power alcohol and biodiesel. Combustion of fuels: Introduction: Calorific value - higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis - ORSAT Method. CO2 emission and carbon footprint.

UNIT – V ENERGY SOURCESAND STORAGE DEVICES

9

Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion battery; Electric vehicles - working principles; Fuel cells: H2-O2 fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

Total Contact Hours: 45

Course Outcomes:	At the end of the course, the students will be able:
CO1:	To infer the quality of water from quality parameter data and propose suitable
COI;	treatment methodologies to treat water.
	To identify and apply basic concepts of nanoscience and nanotechnology in
CO2:	designing the synthesis of nanomaterials for engineering and technology
	applications.
CO3:	To apply the knowledge of phase rule and composites for material selection
003.	requirements.
CO4:	To recommend suitable fuels for engineering processes and applications.
CO5:	To recognize different forms of energy resources and apply them for suitable
COS:	applications in energy sectors.

HoD BOS Chairman

	tbooks:
1.	P. C. Jain and Monica Jain, "Engineering Chemistry", 17th Edition, Dhanpat Rai Publishing Company (P) Ltd, New Delhi, 2018.
2.	Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008.
3.	S.S. Dara, "A Text book of Engineering Chemistry", S. Chand Publishing, 12th Edition, 2018

Ref	erence Books/Other Materials/Web Resources:
1.	B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James Murday, "Text book of nanoscience and nanotechnology", Universities Press-IIM Series in Metallurgy and Materials Science, 2018
2.	O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2nd Edition, 2017.
3.	Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
4.	ShikhaAgarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, Second Edition, 2019.
5.	O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science Business Media, New York, 2nd Edition, 2013.

	CO-PO Mapping										CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	2	2	1	-	1	-	-	-	_	1	_	44	_
CO2:	2	-	-	1	-	2	-	-	-	-	_		_	_
CO3:	3	1	-	-	-	-	-	60	_	-	-	_	_	
CO4:	3	1	1	-	-	1	-	-	_	_		-		
CO5;	3	1	2	1	_	2	-		_	_	2	_	_	_
Average:	2.8	1.3	1.6	1	-	1.5	-	-	_	-	1.5			

Subject Code	Subject Name	Category	L	T	P	C
GE24101	PROBLEM SOLVING AND PYTHON PROGRAMMING	ESC	0	0	3	
Course Objective	es:				-	
 To unders 	tand the basics of algorithmic problem solving.					
 To learn to 	solve problems using Python conditionals and loops.					
 To define 	Python functions and use function calls to solve proble	ms				
To use Pyr	hon data structures - lists, tuples, dictionaries to repres	ent complex data				
To do inpu	at/output with files in Python.	ent complex data.				

TINTED	T	
UNIT-I	COMPUTATIONAL THINKING AND PROBLEM SOLVING	0
	THE PROPERTY OF THE PROPERTY O	Y

HoD/BOS Chairman

Fundamentals of Computing – Identification of Computational Problems -Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT-II DATA TYPES, EXPRESSIONS, STATEMENTS

9

Python interpreter and interactive mode, debugging; values and types: int, float, boolean, string, and list; variables, expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT-III | CONTROL FLOW, FUNCTIONS, STRINGS

9

Conditionals:Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values, parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT – IV LISTS, TUPLES, DICTIONARIES

9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

UNIT - V FILES, MODULES, PACKAGES

9

Files and exceptions: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter's age validation, Marks range validation (0-100).

Total Contact Hours: 45

Textbooks:

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017.

Reference Books/Other Materials/Web Resources:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", 1st Edition, Pearson Education, 2021.
- 2. G. Venkatesh and MadhavanMukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V. Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", 3rd Edition, MIT Press, 2021.
- **4.** Eric Matthes, "Python Crash Course: A Hands-on, Project-Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.

HoD/BOS Chairman

5. https://www.python.org/
6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, McGraw-Hill, 2018.

	CO-PO Mapping											CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1:	3	3	3	3	2	-	-	-	-	2	2	3	3	-	
CO2:	3	3	3	3	2	-	-	-	-	2	2	3	-	-	
CO3:	3	3	3	3	2	-	-	-	-	2	-	3	-	-	
CO4:	2	2	-	2	2	-	-	-	-	1	-	3	**-	-	
CO5:	1	2	-	-	1	-	-	-	-	1	-	2	-	-	
CO6:	2	2	-	-	2	-	-		-	1	-	2	-	-	
Average:	2	3	3	3	2	-	-	-	_	2	2	3	3	-	

Subject Code	Subject Name	Category	L	T	P	C
GE24102	HERITAGE OF TAMILS	HSMC	1	0	0	1
Course Objectiv	es:					
To apprec	iate Tamil art, culture and literature					
To learn to	ne history and culture of Tamil language					
To relate to	o various art forms and their relevance to developme	nt				
To acknow	wledge the rich heritage and significant achievements	of the Tamilians				
To apprec	iate the contribution of Tamilians to nation building					

3 LANGUAGE AND LITERATURE Language Families in India - Dravidian Languages - Tamil as a Classical Language - Classical Literature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in Sangam Literature -Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land -Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan. HERITAGE - ROCK ART PAINTINGS TO MODERN ART - SCULPTURE Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making -Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils. 3 UNIT-III FOLK AND MARTIAL ARTS Therukoothu, Karagattam, VilluPattu, KaniyanKoothu, Oyillattam, Leather puppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

HoD/BOS Chairman

UNIT – IV THINAI CONCEPT OF TAMILS

3

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT - V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE

3

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India - Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine - Inscriptions & Manuscripts - Print History of Tamil Books.

Total Contact Hours: 15

	Total Contact Hours: 15
Text	- cum- Reference Books:
1.	தமிழகவரலாறு - மக்களும்பண்பாடும் - கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல்
	மற்றும் கல்வியியல் பணிகள் கழகம்).
2.	கணினித்தமிழ் - முனைவர்இள. சுந்தரம் (விகடன்பிரசுரம்).
3.	கீழடி - வழிகாட்டும் நிழல்களில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை
	வெளியீடு).
4.	பொருனந - ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு).
5.	Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6.	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International
	Institute of Tamil Studies.
7.	Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by:
	International Institute of Tamil Studies).
8.	The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International
	Institute of Tamil Studies.)
9.	Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department
	of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10.	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by:
	The Author)
11.	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book
	and Educational Services Corporation, Tamil Nadu)
12.	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) - Reference Book.

0	0	1
	0	0 0

அலகு-	1	மொழி ம	ற்றும் இலக்	கியம்			3
இந்திய	மொழிக்குடும்பங்	கள்– திரொவிடமெ	ரழிகள்– தமிழ <u>்</u>	ஒரு	செம்மொழி	_	தமிழ்
செவ்வில	<mark>ுக்கியங்கள் - ச</mark> ா	ங்க இலக்கியத்தின்	சமயச்சார்பற்ற)தன்மை	_ சங்க இல	்க்கிய	பத்தில்

HoD ROS Chairman

பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் –தமிழ்க்காப்பியங்கள் , தமிழகத்தில் சமண-பௌத்த சமயங்களின் தாக்கம் – பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள்– சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு

அலகு- 2

மரபு பாறை ஓவியங்கள் முதல் நவீன ஒவியங்கள் வரை சிற்பக்கலை

3

நடுகல் முதல் நவீன சிற்பங்கள் வரை– ஐம்பொன்சிலைகள்– பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள் , பொம்மைகள் – தேர்வு செய்யும்கலை– சுடுமண்சிற்பங்கள்– நாட்டுப்புறத்தெய்வங்கள்– குமரிமுனையில்திருவள்ளுவர்சிலை– இசைகருவிகள்– மிருதங்கம் , பறை , வீணை , யாழ் , நாதஸ்வரம்... தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.

நாட்டுப்புறக்கலைகள் மற்றும் வீரவிளையாட்டுகள் அலகு -3

3

தெருக்கூத்து, கரகாட்டம், வில்லுப்பாட்டு, கணியான்கூத்து, ஒயிலாட்டம் , தோல்பாவைக்கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்களின்விளையாட்டுகள்.

தமிழர்களின் திணைக்கோட்பாடுகள் அலகு -4

3

தொல்காப்பியம் மற்றும் சங்கஇலக்கியத்தில் தமிழகத்தின் தாவரங்களும் , விலங்குகளும்– தமிழர்கள் போற்றிய அறக்கோட்பாடு சங்ககாலத்தில் அகம் மற்றும் புறக்கோட்பாடுகள்– சங்ககாலநகரங்களும் துறைமுகங்களும்– தமிழகத்தில் எழுத்தறிவும் கல்வியும்-சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி– கடல் கடந்தநாடுகளில் சோழர்களின் வெற்றி

அலகு -5

இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு

3

தமிழர்களின் பிறப்பகுதிகளில் விடுதலைப்போரில் பங்கு-இந்தியாவின் இந்திய இந்திய மருத்துவத்தில் தமிழ்ப்பண்பாட்**டி**ன் தாக்கம்... சுயமரியாதையை இயக்கம்--புத்தகங்களின் தமிழ் சித்தமருத்துவத்தின் கல்வெட்டுகள் கையழுத்துப்படிகள்– பங்கு--அச்சுவரலாறு

Total Contact Hours: 15

Text- cum- Reference Books:

- தமிழகவரலாறு மக்களும்பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடுபாடநூல்மற்றும்கல்வியியல்பணிகள்கழகம்).
- கணினித்தமிழ் முனைவர்இள. சுந்தரம் (விகடன்பிரசுரம்).
- 3. கீழடி – வழிகாட்டும்நிழல்களில்சங்ககாலநகரநாகரிகம் (தொல்லியல்துறைவெளியீடு).
- 4. பொருனந -- ஆற்றங்கரைநாகரிகம். (தொல்லியல்துறைவெளியீடு).

5.	Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6.	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International
	Institute of Tamil Studies.
7.	Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by:
	International Institute of Tamil Studies).
8.	The Contributions of the Tamils to Indian Culture (Dr.M. Valarmathi) (Published by: International
	Institute of Tamil Studies.)
9.	Keeladi - 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department
	of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10.	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by:
	The Author)
11.	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book
	and Educational Services Corporation, Tamil Nadu)
12.	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) - Reference Book.

Subject Code	Subject Name	Category	0	T 0	P 4	2
GE24111	PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY	ESC				
Course Objectives:						
To understar	nd the problem-solving approaches.					
To learn the	basic programming constructs in Python.					
To practice v	various computing strategies for Python-based solution	s to real-world	orob	lems		
To use Pytho	on data structures such as lists, tuples, and dictionaries					
To perform i	input/output operations with files in Python.					

EXPERIMENTS:

Note: The examples suggested in each experiment are only indicative. The lab instructor is expected to design other problems on similar lines. The Examination shall not be restricted to the sample experiments listed here.

LABORATORY / PRACTICAL ACTIVITIES

- 1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)
- 2. Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).
- 3. Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern)
- 4. Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building -operations of list & tuples)
- 5. Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)

HoD/BOS Chairman

- 6. Implementing programs using Functions. (Factorial, largest number in a list, area of shape)
- 7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)
- 8. Implementing programs using written modules and Python Standard Libraries (pandas, numpy. Matplotlib, scipy)
- 9. Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)
- 10. Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's age validity, student mark range validation)
- 11. Exploring Pygame tool.
- 12. Developing a game activity using Pygame like bouncing ball, car race etc.

Total Contact Hours: 60

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Develop algorithmic solutions to simple computational problems.
CO2:	Develop and execute simple Python programs.
CO3:	Implement Python programs using conditionals and loops to solve real-world
	problems.
	Deploy functions to decompose a Python program.
CO5:	Process compound data using Python data structures.
CO6:	Utilize Python packages in developing software applications.

Textbooks:

- 1. Allen B. Downey, "Think Python: How to Think Like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017.

Reference books/other materials/web resources:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", 1st Edition, Pearson Education, 2021.
- 2. G. Venkatesh and MadhavanMukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V. Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", 3rd Edition, MIT Press, 2021.
- 4. Eric Matthes, "Python Crash Course: A Hands-on, Project-Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.
- 5. Martin C. Brown, "Python: The Complete Reference", 4th Edition, McGraw-Hill, 2018
- 6. https://www.python.org/

HoD/BOS Chairman

				11	CO	-PO Ma _l	pping					CO-	PSO Maj	pping
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	3	3	3	2	-	-	-	-	2	2	3	3	-
CO2:	3	3	3	3	2	-	-	-	-	2	2	3	-	-
CO3:	3	3	3	3	2	-	-	-	-	2	-	3	-	-
CO4:	2	2	-	2	2	-	-	-	-	1	-	3	-	-
CO5:	1	2	-	-	1	-	-	-	-	1	-	2	-	-
CO6:	2	2	-	-	2	-	-	-	-	1	-	2	-	-
Average:	2	3	3	3	2	-	-	-	-	2	2	3	3	-

Subject Code	Subject Name	Category	L	T	P	C
BS24111	PHYSICS AND CHEMISTRY LABORATORY	BSC	0	0	4	2

PHYSICS LABORATORY: (Any Seven Experiments)

Course Objectives:

- To learn the proper use of various kinds of physics laboratory equipment.
- To learn how data can be collected, presented and interpreted in a clear and concise manner.
- To learn problem solving skills related to physics principles and interpretation of experimental data.
- To determine error in experimental measurements and techniques used to minimize such error.
- To make the student an active participant in each part of all lab exercises.

LIS	r of experiments:
1.	Torsional pendulum - Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects.
2.	Simple harmonic oscillations of cantilever.
3.	Non-uniform bending - Determination of Young's modulus
4.	Uniform bending - Determination of Young's modulus
5.	Laser- Determination of the wavelength of the laser using grating
6.	Air wedge - Determination of thickness of a thin sheet/wire
7.	a) Optical fibre -Determination of Numerical Aperture and acceptance angle
	b) Compact disc- Determination of width of the groove using laser.
8.	Acoustic grating- Determination of velocity of ultrasonic waves in liquids.
9.	Ultrasonic interferometer – determination of the velocity of sound and compressibility of liquids
10.	Post office box -Determination of Band gap of a semiconductor.
11.	Photoelectric effect
12.	Michelson Interferometer.

HoD/BOChairman

13.	Melde's string experiment	
14.	Experiment with lattice dynamics kit.	
		Total Contact Hours :30

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand the functioning of various physics laboratory equipment.
CO2:	Use graphical models to analyze laboratory data.
CO3:	Use mathematical models as a medium for quantitative reasoning and describing
	physical reality.
CO4:	Access, process and analyze scientific information.
CO5:	Solve problems individually and collaboratively.

		CO-PO Mapping											CO-PSO Mapping		
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1:	3	2	3	1	1	-	-	-	-	-	-	-	-		
CO2:	3	3	2	1	1	-	-	-	-	-	-	-	-		
CO3:	3	2	3	1	1	-	-	-	-	-	-	-	-	-	
CO4:	3	3	2	1	1	-	-	•	-	-	-	-	-	-	
CO5:	3	2	3	1	1	-	-	-	-	-	-	-	-	-	
Average:	3	2.4	2.6	1	1	-	-	-	-	-	-	-	-	-	

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

Course Objectives:

- To inculcate experimental skills to test basic understanding of water quality parameters such as acidity, alkalinity, hardness, dissolved oxygen (DO), chloride, and copper.
- To induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To demonstrate the analysis of metals and alloys.
- To demonstrate the synthesis of nanoparticles.

Laboratory / Practical Activities:

- 1. Preparation of (Na₂CO₃) as a primary standard and Estimation of acidity of a water sample using the prepared primary standard.
- 2. Determination of types and amount of alkalinity in a water sample.
- 3. Determination of total, temporary, and permanent hardness of water by EDTA method.
- 4. Determination of DO content of a water sample by Winkler's method.
- 5. Determination of chloride content of a water sample by Argentometric method.
- 6. Estimation of copper content in the given solution by Iodometry.
- 7. Estimation of total dissolved solids (TDS) of a water sample by gravimetry.
- 8. Determination of strength of given hydrochloric acid using a pH meter.

HoD/BOS Chairman

- 9. Determination of strength of acids in a mixture using a conductivity meter.
- 10. Conductometric titration of barium chloride against sodium sulphate (precipitation titration).
- 11. Estimation of iron content in a given solution using a potentiometer.
- 12. Estimation of sodium or potassium present in water using a flame photometer.
- 13. Preparation of nanoparticles (TiO₂ / ZnO / CuO) by Sol-Gel method.
- 14. Estimation of nickel in steel.
- 15. Proximate analysis of coal.

Total Contact Hours: 30

Course Outcomes:	Upon completion of the course,the students should be able to:
CO1:	To analyse the quality of water samples with respect to their acidity, alkalinity,
	hardness and DO.
CO2:	To determine the amount of metal ions through volumetric and spectroscopic
	techniques
CO3:	To analyse and determine the composition of alloys.
CO4:	To learn simple method of synthesis of nanoparticles
CO5:	To quantitatively analyse the impurities in solution by electroanalytical techniques

Textbooks:

1. J. Mendham.,R.C. Denney, J.D. Barnes, M. Thomas and B. Sivasankar, Vogfel's Textbook of Qualitative Chemical Anaysis, 2009.

		CO-PO Mapping											CO-PSO Mapping		
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1:	3	-	1	-	_	2	-	-	-	-	2	-	-	-	
CO2:	3	1	2	-	-	1	-	-	-	-	1	-	-	-	
CO3:	3	2	1	1	-			-	-	-	-	-	-	-	
CO4:	2	1	2	-	-	2	-	-	-	-	-	-	-	-	
CO5:	2	1	2	-	1	2	-	-	-	-	1	-	-	-	
Average:	2.6	1.3	1.6	1	1	1.4	_	_	-	-	1.3	-	-	-	

Subject Code	Subject Name	Category	L	T	P	C
GE24112	ENGLISH LABORATORY	EEC	0	0	2	1

Course Objectives:

- To improve the communicative competence of learners
- To help learners use language effectively in academic /work contexts
- To develop various listening strategies to comprehend various types of audio materials like lectures, discussions, videos etc.
- To build on students' English language skills by engaging them in listening, speaking and grammar learning activities that are relevant to authentic contexts.

Hol/Bos Chairman

To use language efficiently in expressing their opinions via various media.

UNIT-I	INTRODUCTION TO FUNDAMENTALS OF	COMMUNICATION	6
Listening for g	general information-specific details- conversation:	Introduction to classmates - Audio /	video
(formal & info	ormal): Telephone conversation; Listening to voice	email & messages; Listening and fi	lling a
form Speakin	og - making telephone calls-Self Introduction; Int	troducing a friend; -politeness strat	egies-
making polite	requests, making polite offers, replying to polite	requests and offers- understanding	basic
instructions(fi	illing out a bank application for example).		
TINIT- II	NARRATION AND SUMMATION		6
Listening - Li	stening to podcasts, anecdotes / stories / event narr	ration; documentaries and interview	s with
celebrities. Sr	peaking - Narrating personal experiences / even	its-Talking about current and tem	porary
situations & p	permanent and regular situations* - describing exp	periences and feelings- engaging in	small
talk- describin	g requirements and abilities.		
IINIT III	DESCRIPTION OF A PROCESS / PRODUCT		6
Listening - L	isten to product and process descriptions; a class	sroom lecture; and advertisements	about
products Sper	aking - Picture description- describing locations in	workplaces- Giving instruction to t	ise the
product- expla	aining uses and purposes- Presenting a product-	describing shapes and sizes and w	eights-
talking about	quantities(large & small)-talking about precautions	2	
IINIT - IV	CLASSIFICATION AND RECOMMENDATI	ONS	6
Listening - Li	istening to TED Talks; Listening to lectures - and e	ducational videos. Speaking — Smal	l Talk;
discussing an	d making plans-talking about tasks-talking abou	ut progress- talking about position	ns and
directions of r	novement-talking about travel preparations-talking	g about transportation	
UNIT – V	EXPRESSION		6
Listening – I	istening to debates/ discussions; different viewpo	oints on an issue; and panel discu	ssions.
Speaking -m	aking predictions- talking about a given topic-gi	iving opinions- understanding a w	ebsite-
describing pro			
		Total Contact Hou	ırs :30

Course Outcomes:	At the end of the course, learners will be able
CO1:	To listen to and comprehend general as well as complex academic information
CO2:	To listen to and understand different points of view in a discussion
CO3:	To speak fluently and accurately in formal and informal communicative contexts
CO4:	To describe products and processes and explain their uses and purposes clearly and accurately
CO5:	To express their opinions effectively in both formal and informal discussions

	CO-PO Mapping											CO-	CO-PSO Mapping		
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1:	3	3	3	3	1	3	3	3	3	3	3	-	-		
CO2:	3	3	3	3	1	3	3	3	3	3	3	-	-	-	

HoD/BO Chairman

C Principal

CO3:	3	3	3	3	1	3	3	3	3	3	3	-	-	-
CO4:	3	3	3	3	1	3	3	3	3	3	3	-	-	-
CO5:	3	3	3	3	1	3	3	3	3	3	3	-	-	
Average:	3	3	3	3	1	3	3	3	3	3	3	-	-	-

SEMESTER- II

Subject Code	Subject Name	Category	L	T	P	C	
HS24201	HS24201 PROFESSIONAL ENGLISH – II H						
Course Objective	S:		1				
 To engage skills 	learners in meaningful language activities to im-	prove their read	ing a	nd w	ritin	g	
To learn va context	rious reading strategies and apply in comprehen	ding documents	in p	rofes	siona	ıl	
To help lea	rners understand the purpose, audience, context	s of different typ	es of	f writ	ing		
To develop	analytical thinking skills for problem solving in	n communicative	e con	texts			
To demons placements	trate an understanding of job applications and ir	terviews for inte	ernsh	ip an	ıd		

UNIT – I	MAKING COMPARISONS	6
_	ding advertisements, user manuals, brochures; Writing - Professional emails, Enpare and Contrast Essay; Grammar - Mixed Tenses, Prepositional phrases	nail
UNIT – II	EXPRESSING CAUSAL RELATIONS IN SPEAKING AND WRITING	6
_	ling longer technical texts— Cause and Effect Essays, and Letters / emails of complaints responses to complaints. Grammar - Active Passive Voice transformations, Infinite	
UNIT – III	PROBLEM SOLVING	6
	e Studies, excerpts from literary texts, news reports etc. Writing – Letter to the Ediblem solution essay / Argumentative Essay. Grammar – Error correction; If condition	
UNIT – IV	REPORTING OF EVENTS AND RESEARCH	6
_	spaper articles; Writing – Recommendations, Transcoding, Accident Report, Survey Reported Speech, Modals Vocabulary – Conjunctions- use of prepositions	ort

HoD/BOS Chairman

UNIT – V	THE ABILITY TO PUT IDEAS OR INFORMATION COGENTI	LY 6
Reading – Con Writing – Job /	npany profiles, Statement of Purpose, (SOP), an excerpt of inte Internship application – Cover letter & Resume; Grammar – Num	rview with professionals; perical adjectives, Relative
Clauses.		
		Total Contact Hours: 30

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	To compare and contrast products and ideas in technical texts.
	To identify and report cause and effects in events, industrial processes through technical texts
C03:	To analyse problems in order to arrive at feasible solutions and communicate them in the written format.
	To present their ideas and opinions in a planned and logical manner
CO5:	To draft effective resumes in the context of job search.

Text	books:
1.	English for Engineers & Technologists (2020 edition) Orient Blackswan P rivate Ltd. Department of
	English, Anna University
2.	English for Science & Technology Cambridge University Press 2021
3.	Authored by Dr. Veena Selvam, Dr.Sujatha Priyadarshini, Dr. Deepa Mary Francis,
	Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

Refe	rence Books/Other Materials/Web Resources:
1.	Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New Delhi.
2.	Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, NewDelhi.
3.	Learning to Communicate – Dr. V. Chellammal. Allied Publishers, New Delhi, 2003
4.	Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
5.	Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi.

	CO-PO Mapping										CO-1	CO-PSO Mapping		
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
C01:	3	3	3	3	3	3	3	2	3	3	3	-	-	-

Average:	3	3	3	3	2.75	3	3	2.2	3	3	3	-	_	١.
CO5:	-	-	-	-	-	-	-	3	3	3	3	**	-	
CO4:	3	3	3	3	2	3	3	2	3	3	3	-	-	
CO3:	3	3	3	3	3	3	3	2	3	3	3	-	-	
CO2:	3	3	3	3	3	3	3	2	3	3	3	-	-	

Subject Code	Subject Name	Category	\mathbf{L}	T	P	C
MA24201	STATISTICS AND NUMERICAL METHODS	BSC	3	1	0	4

Course Objectives:

- This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.
- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT – I TESTING OF HYPOTHESIS

9+3

Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) - Tests for single variance and equality of variances - Chi square test for goodness of fit - Independence of attributes.

UNIT – II DESIGN OF EXPERIMENTS

9+3

One way and two way classifications - Completely randomized design - Randomized block design - Latin square design - 22 factorial design.

UNIT – III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

9+3

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

UNIT – IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION

9+3

Lagrange's and Newton's divided difference interpolations – Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson's 1/3 rules.

UNIT – V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

9+3

HoD BOS Chairman

Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order differential equations - Multi step methods: Milne's and Adams - Bash forth predictor corrector methods for solving first order differential equations. **Total Contact Hours: 60**

course students should be able						
f testing of hypothesis for s	small and	large	samples	in	real	life

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Apply the concept of testing of hypothesis for small and large samples in real life problems.
CO2:	Apply the basic concepts of classifications of design of experiments in the field of agriculture.
CO3:	numerical techniques of differentiation and integration for engineering problems.
	Understand the knowledge of various techniques and methods for solving first and second order ordinary differential equations.
CO5:	Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

	ooks:
1.	Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna
	Publishers, 10th Edition, New Delhi, 2015.
2.	Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for
	Engineers", Pearson Education, Asia, 8th Edition, 2015.

Refer	ence Books/Other Materials/Web Resources:
1.	Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
2.	Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning,
	New Delhi, 8th Edition, 2014.
3.	Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New
	Delhi, 7th Edition, 2007.
4.	Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons,
	New Delhi, 12th Edition, 2020.
5.	Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics
	", Tata McGraw Hill Edition, 4th Edition, 2012.
6.	Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers
	and Scientists", 9th Edition, Pearson Education, Asia, 2010.

	CO-PO Mapping												CO-PSO Mapping		
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1:	3	3	1	1	1	-	-	2	-	2	3	-	-	-	
CO2:	3	3	1	1	1	-	-	2	-	2	3	-	-	-	
CO3:	3	3	1	1	1		-	2	-	2	3	-	-	-	
CO4:	3	3	1	1	1	-	-	2	-	2	3	-	-	-	

CO5:	3	3	1	1	1	-	-	2	-	2	3	-	-	-
Average:	3	3	1	1	1	-	-	2	-	2	3		-	-

Subject Code	Subject Name	Category	L	T	P	C
PH24203	PHYSICS FOR INFORMATION SCIENCE	BSC	3	0	0	3

Course Objectives:

- To make the students understand the importance in studying electrical properties ofmaterials
- To enable the students to gain knowledge in semiconductor physics
- To instill knowledge on magnetic properties of materials.
- To establish a sound grasp of knowledge on different optical properties of materials, optical displays and applications
- To inculcate an idea of significance of nano structures, quantum confinement, ensuingnano device applications and quantum computing.

UNIT – I ELECTRICAL PROPERTIES OF MATERIALS

9

Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression - Wiedemann-Franz law - Success and failures - electrons in metals - Particle in a three dimensional box - degenerate states - Fermi- Dirac statistics - Density of energy states - Electron in periodic potential - Energy bands in solids - tight binding approximation - Electron effective mass - concept of hole

UNIT – II SEMI CONDUCTOR PHYSICS

9

Intrinsic Semiconductors – Energy band diagram – direct and indirect band gap semiconductors Carrier concentration in intrinsic semiconductors – extrinsic semiconductors – Carrier concentration in N-type & P-type semiconductors – Variation of carrier concentration with temperature – variation of Fermi level with temperature and impurity concentration – Carrier transport in Semiconductor: random motion, drift, mobility and diffusion – Hall effect and devices – Ohmic contacts — Schottky diode

UNIT – III MAGNETIC PROPERTIES OF MATERIALS

9

Magnetic dipole moment – atomic magnetic moments- magnetic permeability and susceptibility - Magnetic material classification: diamagnetism — para magnetism — ferromagnetism — antiferro magnetism — ferri magnetism — Ferromagnetism: origin and exchange interaction- saturation magnetization and Curie temperature — Domain Theory-M versus H behaviour — Hard and soft magnetic materials — examples and uses— Magnetic principle in computer data storage — Magnetic hard disc (GMR sensor).

HoD BOS Chairman

UNIT – IV	OPTICAL PROPERTIES OF MATERIALS	9
Classifica	ation of optical materials - carrier generation and recombination processes -	
Absorption	on emission and scattering of light in metals, insulators and semiconductors	
(concepts	only) - photo current in a P-N diode - solar cell - LED - Organic LED -	
Laser die	odes - Optical data storagetechniques.	
UNIT - V	NANODEVICES AND QUANTUM COMPUTING	9
Introduc	tion - quantum confinement - quantum structures: quantum wells, wires and dots -	– ban
gap of n	anomaterials. Tunneling - Single electron phenomena: Coulomb blockade - res	onant

Introduction - quantum confinement - quantum structures: quantum wells, wires and dots — band gap of nanomaterials. Tunneling - Single electron phenomena: Coulomb blockade - resonant-tunneling diode - single electron transistor - quantum cellular automata - Quantum system for information processing - quantum states - classical bits - quantum bits or qubits - CNOT gate - multiple qubits - Bloch sphere - quantum gates - advantage of quantum computing over classical computing

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Gain knowledge on classical and quantum electron theories, and energy band
	structures
CO2:	Acquire knowledge on basics of semiconductor physics and its applications in various devices
CO3:	Get knowledge on magnetic properties of materials and their applications in data storage,
60.4	
	Have the necessary understanding on the functioning of optical materials for optoelectronics
CO5:	Understand the basics of quantum structures and their applications and basics of quantum computing

Text	Books:
	Jasprit Singh, "Semiconductor Devices: Basic Principles", Wiley (Indian Edition), 2007
2.	S.O. Kasap. Principles of Electronic Materials and Devices, McGraw-Hill Education (Indian
	Edition), 2020
3.	Parag K. Lala, Quantum Computing: A Beginner's Introduction, McGraw-Hill Education
	(Indian Edition), 2020

Refe	rence books/other materials/web resources:
1.	Charles Kittel, Introduction to Solid State Physics, Wiley India Edition, 2019.
2.	Y.B.Band and Y.Avishai, Quantum Mechanics with Applications to Nanotechnology and
	Information Science, Academic Press, 2013.
3.	V.V.Mitin, V.A. Kochelap and M.A.Stroscio, Introduction to Nanoelectronics, Cambridge
	Univ.Press, 2008.
4.	G.W. Hanson, Fundamentals of Nanoelectronics, Pearson Education (Indian Edition) 2009.
5.	B.Rogers, J.Adams and S.Pennathur, Nanotechnology: Understanding Small Systems, CRC Press,
	2014.

HoD/BOS Chairman

	CO-PO Mapping												CO-PSO Mapping			
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3		
CO1:	3	1	-	-	-	-	-	-	-	-	-	-	-	-		
CO2:	3	1	2	-	-	-	-	-	-	-	-	-	-	-		
CO3:	3	-	-	1	2	1	-	-	-	-	-	-	-	-		
CO4:	3	-	2	1	3	-	-	-	-	-	-	-	-	-		
CO5:	3	2	2	2	2	1	-	-	-	-	2	-	-	-		
Average:	3	1.3	2	1.3	2.3	1	-	-	-	-	2		-	-		

Subject Code	Subject Name	Category	L	T 0	P 0	C
BE24201	BASIC ELECTRICAL AND ELECTRONICS ENGINEERING	ESC	3			3
Course Objecti	ves:	***				
To introc	luce the basics of electric circuits and analysis					
To impar	t knowledge in the basics of working principles and applicat	ion of electrica	l ma	chin	es	
	luce analog devices and their characteristics					
To educa	te on the fundamental concepts of digital electronics					
To introc	luce the functional elements and working of measuring instru	ıments				

UNIT – I	ELECTRICAL CIRCUITS	9
DC Circuits:	Circuit Components: Conductor, Resistor, Inductor, Capacitor - Ohm's Law - Kirch	nhoff's
Laws -Indep	endent and Dependent Sources - Simple problems- Nodal Analysis, Mesh analysis	s with
Independent s	sources only (Steady state) Introduction to AC Circuits and Parameters: Waveforms, A	verage
value, RMS	Value, Instantaneous power, real power, reactive power and apparent power, power f	actor -
Steady state a	analysis of RLC circuits (Simple problems only)	

UNIT - II | ELECTRICAL MACHINES

9

Construction and Working principle- DC Separately and Self excited Generators, EMF equation, Types and Applications. Working Principle of DC motors, Torque Equation, Types and Applications. Construction, Working principle and Applications of Transformer, Three phase Alternator, Synchronous motor and Three Phase Induction Motor.

UNIT - III | ANALOG ELECTRONICS

9

Resistor, Inductor and Capacitor in Electronic Circuits- Semiconductor Materials: Silicon &Germanium – PN Junction Diodes, Zener Diode –Characteristics Applications – Bipolar Junction Transistor-Biasing, JFET, SCR, MOSFET, IGBT – Types, I-V Characteristics and Applications, Rectifier and Inverters

UNIT-IV DIGITAL ELECTRONICS

9

Review of number systems, binary codes, error detection and correction codes, Combinational logic - representation of logic functions-SOP and POS forms, K-map representations - minimization using K maps (Simple Problems only).

Hold/BQS Chairman

UNIT – V	MEASUREMENTS AND INSTRUMENTATION	9
and Moving Ir	ments of an instrument, Standards and calibration, Operating Principle, type on meters, Measurement of three phase power, Energy Meter, Instrument To	s -Moving Coil ransformers-CT
and PT, DSO-	Block diagram- Data acquisition.	
	Total Conta	act Hours: 45

C O400m1001	After completing this course, the students will be able to
	Compute the electric circuit parameters for simple problems
	Explain the working principle and applications of electrical machines
	Analyze the characteristics of analog electronic devices
	Explain the basic concepts of digital electronics
CO5:	Explain the operating principles of measuring instruments

Text	books:
1	Kothari DP and I.J Nagrath, "Basic Electrical and Electronics Engineering", Second Edition, Mc
1.	Graw Hill Education, 2020
_	S.K.Bhattacharya "Basic Electrical and Electronics Engineering", Pearson Education, Second
2.	Edition, 2017
3.	Sedha R.S., "A textbook book of Applied Electronics", S. Chand & Co., 2008
4.	James A .Svoboda, Richard C. Dorf, "Dorf's Introduction to Electric Circuits", Wiley, 2018.
_	A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Mesurements&
5.	Instrumentation', Dhanpat Rai and Co, 2015.

Ref	erence Books/Other Materials/Web Resources:
1.	Kothari DP and I.J Nagrath, "Basic Electrical Engineering", Fourth Edition, McGraw Hill Education,
	2019.
2.	Thomas L. Floyd, 'Digital Fundamentals', 11th Edition, Pearson Education, 2017
3.	Albert Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7th edition, 2017.
4.	Mahmood Nahvi and Joseph A. Edminister, "Electric Circuits", Schaum' Outline Series, McGraw
	Hill, 2002.
5.	H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010

PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	2	2	1	-		-	1	-	-		2	-	-	1
CO2:	2	2	1	-	-	-	1	-	-	-	2	-	-	1
CO3:	2	1	1	-		-	1	-	-	-	2	-	-	1
CO4:	2	2	1	-	-	-	1	-	-	-	2	-		1
CO5:	2	2	1	-	-	_	1	-	-	-	2	-	-	1
Average:	2	1.8	1	-	-	-	1	-	_	-	2	-	-	1

Subject Code	Subject Name	Category	L	T	P	C
GE24201	ENGINEERING GRAPHICS	HSMC	2	0	4	4
Course Objective	S:	13.1			-	
The main learning	objective of this course is to prepare the students	for:				
Drawing en	ngineering curves.					
Drawing a	freehand sketch of simple objects.					
Drawing or	rthographic projection of solids and section of sol	ds.				
Drawing d	evelopment of solids.					
Drawing is	ometric and perspective projections of simple soli	ds.				

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications — Use of drafting instruments — BIS conventions and specifications — Size, layout and folding of drawing sheets — Lettering and dimensioning.

nvolutes of square and circle — Drawing of tangents and normal to the above curves. UNIT — II PROJECTIONOFPOINTS, LINESANDPLANESURFACE 6+12 Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.	UNIT –I	PLANECURVES	6+12								
INIT - II PROJECTIONOFPOINTS, LINESANDPLANESURFACE Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. UNIT-III PROJECTIONOFSOLIDSANDFREEHANDSKETCHING Orojection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the	Basic Geome	etrical constructions, Curves used in engineering practices: Conics — Con-	struction of								
UNIT – II PROJECTIONOFPOINTS, LINESANDPLANESURFACE Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. UNIT—III PROJECTIONOFSOLIDSANDFREEHANDSKETCHING Orojection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the	ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of										
Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. UNIT-III PROJECTIONOFSOLIDSANDFREEHANDSKETCHING Crojection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the	involutes of square and circle — Drawing of tangents and normal to the above curves.										
Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of Delanes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. JNIT-II PROJECTIONOFSOLIDSANDFREEHANDSKETCHING Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is nuclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the	UNIT – II PROJECTIONOFPOINTS, LINES AND PLANESURFACE 6+12										
Determination of true lengths and true inclinations by rotating line method and traces. Projection of blanes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method. UNIT-II PROJECTIONOFSOLIDSANDFREEHANDSKETCHING 6+12 Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the	Orthographic projection- principles-Principal planes-First angle projection-projection of points.										
concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of simple objects by CAD Software (Not for examination) PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the principle objects — the principle of the principle of the principle of the principle objects. PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the principal planes by rotating object method. October 12 Section 12 Concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Oraclicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the											
PROJECTIONOFSOLIDSANDFREEHANDSKETCHING Orojection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles—Representation of Three Dimensional objects— Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the											
Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the	planes (polyg	onal and circular surfaces) inclined to both the principal planes by rotating obj	ect method.								
reclined to one of the principal planes and parallel to the other by rotating object method. Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF SURFACES Gectioning of above solids in simple vertical position when the cutting plane is inclined to one of the	UNIT-III	PROJECTIONOFSOLIDSANDFREEHANDSKETCHING	6+12								
concepts and Free Hand sketching: Visualization principles—Representation of Three Dimensional objects— Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the	Projection of	simple solids like prisms, pyramids, cylinder, cone and truncated solids when	the axis is								
believed by the bolieved by th											
Practicing three dimensional modeling of simple objects by CAD Software (Not for examination) PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the											
UNIT-IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENTOF SURFACES Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the											
Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the	Practicing the	ee dimensional modeling of simple objects by CAD Software (Not for examination)	ation)								
Sectioning of above solids in simple vertical position when the cutting plane is inclined to one of the	TIMITE IN	PROJECTION OFSECTIONED SOLIDSAND DEVELOPMENTOF									
	1 NTT 1V 1										
	Sectioning of	above solids in simple vertical position when the cutting plane is inclined t	o one of the								

lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT - V ISOMETRIC AND PERSPECTIVE PROJECTIONS

6+12

Principles of isometric projection — isometric scale — isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids - Prisms, pyramids and cylinders by visual

Practicing three dimensional modeling of isometric projection of simple objects by CAD software(Not for examination)

HoD/BOS Chairman

Total Contact Hours :(L=30+P=60) 90

Course Outcomes:	On Successful completion of this course, students should be able to
C01:	Use BIS conventions and specifications for engineering drawing.
CO2:	Construct the conic curves, involutes and cycloid
CO3:	Solve practical problems involving projection of lines
CO4:	Draw the orthographic, isometric and perspective projections of simple solids.
CO5:	Draw the development of simple solids.

	books:
	Bhatt N.D. and Panchal V.M., "Engineering Drawing", CharotarPublishing House, 53 delition, 2019
2.	NatrajanK.V., "ATextBookofEngineering Graphics", DhanalakshmiPublishers, Chennai, 2018.
3.	Parthasarathy, N.S. and Vela Murali, "Engineering Drawing", Oxford University Press, 2015

F	
Re	ference Books/Other Materials/Web Resources:
1.	Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill, 2 nd Edition, 2019.
2.	GopalakrishnaK.R., "EngineeringDrawing" (Vol.I&IIcombined), SubhasPublications, Bangalore, 27 th Edition, 2017.
3.	Luzzader, Warren. J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Designand Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
4.	Parthasarathy N. S. and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
5.	Shah M.B., and Rana B.C., "Engineering Drawing", Pearson Education India, 2nd Edition, 2009.
6.	Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and layout of drawing sheets
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

There will be five questions, each of either or type covering all units of the syllabus.

- 1. All questions will carry equal marks of 20 each making a total of 100.
- 2. The answer paper shall consist of drawing sheets of A3 size only.
- 3. The students will be permitted to use appropriate scale to fit a solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

HoD/BOS Chairman

					CO-	PO Map	ping					CO-l	SO Mapping				
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3			
CO1:	3	1	2	-	2	-	-	-	3	-	2	2	2	-			
CO2:	3	1	2	-	2	-	-	-	3		2	2	2	-			
CO3:	3	1	2	-	2	-	-	-	3	_	2	2	2	-			
CO4:	3	1	2	-	2	-	-	-	3	-	2	2	2	-			
CO5:	3	1	2	-	2	-	-	-	3	-	2	2	2	-			
Average:	3	1	2	-	2	-	-	-	3	-	2	2	2	-			

Subject Code	Subject Name	Category	L	T	P	C
AD24201	DATA STRUCTURES DESIGN	PCC	3	0	0	3
Course Object	tives:					
To und	erstand the concepts of ADTs					
To des	gn linear data structures-lists, stacks and queues					
To und	erstand sorting, searching and hashing algorithms					
To app	y Tree and Graph structures					

UNIT -I	ABSTRACT DATA TYPES	9
Abstract Dat	a Types (ADTs) - ADTs and classes - introduction to OOP - classes in Pyth	on
	namespaces - shallow and deep copying Introduction to analysis of algorithms	
	otations – recursion – analyzing recursive algorithms	
	LINEAR STRUCTURES	9
ListADT-arr	ay-basedimplementations-linkedlistimplementations-singlylinkedlists-circularly	linked lists -
doubly linked	l lists – applications of lists – Stack ADT – Queue ADT – double ended queues	
UNIT – III	SORTING AND SEARCHING	9
Bubblesort-s	electionsort-insertionsort-mergesort-quicksort-linearsearch-binarysearch -ha	shing –hash
functions - c	ollision handling - load factors, rehashing, and efficiency	
UNIT – IV	TREE STRUCTURES	9
Tree ADT - B	inary Tree ADT - tree traversals - binary search trees - AVL trees - heaps - multi- way	search trees.
UNIT - V	GRAPH STRUCTURES	9
Graph ADT – spanning trees	representations of graph – graph traversals – DAG – topological ordering – shortest part.	ths – minimum
	Total Contact Hours:	45

Course Outcomes:	At the end of the course, students should be able to:
CO1:	Explain abstract data types
CO2:	Design ,implement and analyse linear data structures, such as lists, queues, and

Principal

HoD/BOS Chairman

	stacks, according to the needs of different applications
CO3:	Design, implement and analyze linear data structures, such as lists,
	queues and stacks according to the needs of different applications
CO4:	Model problems as graph problems and implement efficient graph algorithms to
	solve them

Textbooks:

- 1. Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser, "Data Structures and Algorithms in Python" (An Indian Adaptation), Wiley, 2021
- 2. Lee, KentD., Hubbard, Steve, "DataStructures and Algorithms with Python" Springer Edition 2015...
- 3. Narasimha Karumanchi, "Data Structures and Algorithmic Thinking with Python" Careermonk, 2015.

Reference Books/Other Materials/Web Resources:

- 1. RanceD. Necaise, "Data Structures and Algorithms Using Python", John Wiley & Sons, 2011.
- 2. ThomasH.Cormen, Charles E.Leiserson, Ronald L.Rivest, and Clifford Stein, "Introduction to Algorithms", Third Edition, PHI Learning, 2010.
- 3. MarkAllen Weiss, "Data Structures and Algorithm Analysis in C++", Fourth Edition, Pearson Education, 2014
- 4. Aho, Hopcroft, and Ullman, "Data Structures and Algorithms", Pearson Education India, 2002

Subject Code	Subject Name	Category	L	T	P	C
GE24202	TAMILS AND TECHNOLOGY	HSMC	1	0	0	1

UNIT - I WEAVING AND CERAMIC TECHNOLOGY 3 Weaving Industry during Sangam Age - Ceramic technology - Black and Red Ware Potteries (BRW) - Graffiti on Potteries. UNIT - II DESIGN AND CONSTRUCTION TECHNOLOGY 3

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- ThirumalaiNayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT - III MANUFACTURING TECHNOLOGY

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold- Coins as source of history - Minting of Coins — Beads making-industries Stone beads -Glass beads - Terracotta beads - Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT – IV | AGRICULTURE AND IRRIGATION TECHNOLOGY

Dam, Tank, ponds, Sluice, Significance of KumizhiThoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries - Pearl - Conche

HoD/BOS Chairman

Principal

3

diving - Ancie	ent Knowledge of Ocean - Knowledge Specific Society.	
UNIT – V	SCIENTIFIC TAMIL & TAMIL COMPUTING	3
Development	of Scientific Tamil - Tamil computing - Digitalization of Tamil Books - Dev	velopment of
Tamil Softwa	re – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionarie	s – Sorkuvai
Project.		
	Total Contact Hours:	15

Text	-cum-Reference Books
1.	Dr. K.K. Pillay, "தமிழகவரலாறு – மக்களும்பண்பாடும்", தமிழ்நாடுபாடநூல்மற்றும்கல்வியியல்பணிகள்கழகம்.
2.	இல. சுந்தரம், "கணினித்தமிழ்", விகடன்பிரசுரம்.
3.	அறுவைத்துறை – தொல்லியல்துறை, "கீழடி – வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம்", தமிழ்நாடு தொல்லியல் துறை & தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம் (தொல்லியல்துறைவெளியீடு).
4.	அறுவைத்துறை – தொல்லியல்துறை, "பொருணை – ஆற்றங்கரை நாகரிகம்", தமிழ்நாடு தொல்லியல் துறை.
5.	Dr. K.K. Pillay, "Social Life of Tamils", TNTB & ESC and RMRL (Joint Publication), [In Print].
6.	Dr. S. Singaravelu, "Social Life of the Tamils – The Classical Period", International Institute of Tamil Studies,
7.	Dr. S.V. Subramanian &Dr. K.D. Thirunavukkarasu, "Historical Heritage of the Tamils", International Institute of Tamil Studies
8.	Dr. M. Valarmathi, "The Contributions of the Tamils to Indian Culture", International Institute of Tamil Studies
9.	Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, "Keeladi – Sangam City Civilization on the banks of river Vaigai", Joint Publication,
10.	Dr. K.K. Pillay, "Studies in the History of India with Special Reference to Tamil Nadu", Self Published by the Author,
11.	Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, "Porunai Civilization", Joint Publication,
12.	R. Balakrishnan, "Journey of Civilization: Indus to Vaigai", RojaMuthiah Research Library (RMRL),

Subject Code	Subject Name	Category	L	T	Р	С
GE24202	தமிழரும்தொழில் நு ட்பமும்	HSMC	1	0	0	1
அலகு- ।	நெசவு மற்றும் பானைத் தொழில்நுட்பம்:					3

சங்க காலத்தில் நெசவுத் தொழில் – பானைத் தொழில்நுட்பம் - கருப்பு சிவப்பு பாண்டங்கள் – பாண்டங்களில் கீறல் குறியீடுகள்.

அலகு -II வடிவமைப்பு <u>மற்றும் கட்டிடத் தொழில்நுட்பம்</u>

3

சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு- சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்லபுரச் சிற்பங்களும், கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கர் காலக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ-சாரோசெனிக் கட்டிடக் கலை.

அலகு -ப்ப உற்பத்திதொழில்நுட்பம்

3

கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் – சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சிலப்பதிகாரத்தில் மணிகளின் வகைகள்

அலகு- 🗤 வேளாண்மைமற்றும்நீர்ப்பாசனதொழில்நுட்பம்

3

அணை, ஏரி, குளங்கள், மதகு – சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் – கால்நடை பராமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த பண்டைய அறிவு – அறிவுசார் சமூகம்.

அலகு -v அறிவியல்தமிழ்மற்றும்கணினித்தமிழ்

3

அறிவியல் தமிழின் வளர்ச்சி –கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்களை மின்பதிப்பு செய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழகம் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம்.

Total Contact Hours: 15

HoD/HOS Chairman

TE	(T-CUM-REFERENCE BOOKS:
1.	தமிழக வரலாறு – மக்களும் பண்பாடும் – கே·கே· பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
2.	கணினித் தமிழ் – முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
3.	கீழடி – வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
4.	பொருநை – ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
5.	Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL – (in print)
6.	Social Life of the Tamils - The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies
7.	Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies)
8.	The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
9.	Keeladi - 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: 36 Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
10.	Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
11.	Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
12.	Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) – Reference Book

Subject Code	Subject Name	Category	L	T	P	C
	NCC Credit Course Level 1* (ARMY WING)	HSMC	2	0	0	2
	NCC Credit Course Level - I					

NCC G	ENERAL	6
NCC 1	Aims, Objectives & Organization of NCC	1
NCC 2	Incentives	2
NCC 3	Duties of NCC Cadet	1
NCC 4	NCC Camps: Types & Conduct	2
NATIO	NAL INTEGRATION AND AWARENESS	4
NI 1	National Integration: Importance & Necessity	1
NI 2	Factors Affecting National Integration	1
NI 3	Unity in Diversity & Role of NCC in Nation Building	1
NI 4	Threats to National Security	1
PERSO	NALITY DEVELOPMENT	7
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving	2
PD 2	Communication Skills	3
PD 3	Group Discussion: Stress & Emotions	2
LEADI	ERSHIP	5
L 1	Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code	3
L 2	Case Studies: Shivaji, Jhasi Ki Rani	2
SOCIA	L SERVICE AND COMMUNITY DEVELOPMENT	8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of Youth	3
SS 4	Protection of Children and Women Safety	1
SS 5	Road / Rail Travel Safety	1
SS 6	New Initiatives	2
SS 7	Cyber and Mobile Security Awareness	1
	Total Contact Hours	:3

Subject Code	Subject Name	Category	T.	T	D	C
	NCC Credit Course Level 1*	Category		-	1	
	(NAVAL WING)	HSMC	HSMC 2 0	0	0 2	
	NCC Credit Course Level - I		-	·	U	-

NCC G	ENERAL	6
NCC 1	Aims, Objectives & Organization of NCC	1
NCC 2	Incentives	2
NCC 3	Duties of NCC Cadet	1
NCC 4	NCC Camps: Types & Conduct	2
NATIO	NAL INTEGRATION AND AWARENESS	4
NI 1	National Integration: Importance & Necessity	1
NI 2	Factors Affecting National Integration	1
NI 3	Unity in Diversity & Role of NCC in Nation Building	1
NI 4	Threats to National Security	1
PERSO	NALITY DEVELOPMENT	7
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving	2
PD 2	Communication Skills	3
PD 3	Group Discussion: Stress & Emotions	2
LEADE	RSHIP	5
L 1	Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code	3
L 2	Case Studies: Shivaji, Jhasi Ki Rani	2
SOCIAL	SERVICE AND COMMUNITY DEVELOPMENT	8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of Youth	3
SS 4	Protection of Children and Women Safety	1
SS 5	Road / Rail Travel Safety	1
SS 6	New Initiatives	2
SS 7	Cyber and Mobile Security Awareness	1
	Total Contact Hours:	

Subject Code	Subject Name	Category	L	T	P	C
	NCC Credit Course Level 1* (AIR FORCE WING) NCC Credit Course Level - I	HSMC	2	0	0	2
NCC GENERAL						6

NCC 2		0
11002	Incentives	2
NCC 3	Duties of NCC Cadet	1
NCC 4	NCC Camps: Types & Conduct	2
NATION	NAL INTEGRATION AND AWARENESS	4
NI 1	National Integration: Importance & Necessity	1
NI 2	Factors Affecting National Integration	1
NI 3	Unity in Diversity & Role of NCC in Nation Building	1
NI 4	Threats to National Security	1
PERSON	NALITY DEVELOPMENT	7
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Problem Solving	2
PD 2	Communication Skills	3
PD 3	Group Discussion: Stress & Emotions	2
LEADE		5
L 1	Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code	3
L 2	Case Studies: Shivaji, Jhasi Ki Rani	2
SOCIAL	SERVICE AND COMMUNITY DEVELOPMENT	8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of Youth	3
SS 4	Protection of Children and Women Safety	1
SS 5	Road / Rail Travel Safety	1
SS 6	New Initiatives	2
SS 7	Cyber and Mobile Security Awareness	1

Subject Code	Subject Name	Category	L	Т	P	C
GE24211	ENGINEERING PRACTICES	ESC	0	0	4	2
	LABORATORY					

Course Objectives:

The main learning objective of this course is to provide hands on training to the students in:

- Drawing pipeline plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planning; making joints in wood materials used in common household wood work
- Wiring various electrical joints in common household electrical wirework.

HoD BOS Chairman

- Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work
- Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB.

GROUP - A (CIVIL & ELECTRICAL)

PART – I CIVIL ENGINEERINGPRACTICES 15

PLUMBING WORK:

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
- b) Preparing plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used in household appliances.

WOOD WORK:

- a) Sawing,
- b) Planing and
- c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

Wood Work Study:

- a) Studying joints in door panels and wooden furniture
- b) Studying common industrial trusses using models.

PART – II ELECTRICAL ENGINEERINGPRACTICES

- a) Introduction to switches, fuses, indicators and lamps Basic switch board wiring with lamp, fan and three pin socket
- b) Staircase wiring
- c) Fluorescent Lamp wiring with introduction to CFL and LED types.
- d) Energy meter wiring and related calculations/ calibration
- e) Study of Iron Box wiring and assembly
- f) Study of Fan Regulator (Resistor type and Electronic type using Diac/Triac/quadrac)
- g) Study of emergency lamp wiring/Water heater

GROUP – B (MECHANICAL AND ELECTRONICS) PART – III MECHANICAL ENGINEERINGPRACTICES 15

HoD/BOS Chairman

Principal

15

WELDING WORK:

- a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
- b) Practicing gas welding.

BASIC MACHINING WORK:

- a) (simple)Turning.
- b) (simple)Drilling.
- c) (simple)Tapping.

ASSEMBLY WORK:

- a) Assembling a centrifugal pump.
- b) Assembling a household mixer.
- c) Assembling an air-conditioner.

SHEET METAL WORK:

a) Making of a square tray

FOUNDRY WORK:

a) Demonstrating basic foundry operations.

PART - IV ELECTRONIC ENGINEERING PRACTICES

15

SOLDERINGWORK:

a) Soldering simple electronic circuits and checking continuity.

ELECTRONICASSEMBLY AND TESTINGWORK:

a) Assembling and testing electronic components on a small PCB.

ELECTRONICEQUIPMENTSTUDY:

- a) Study the elements of smart phone.
- b) Assembly and dismantle of LED TV.
- c) Assembly and dismantle of computer/ laptop

Total Contact Hours: 60

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work.
CO2:	Wire various electrical joints in common household electrical wire work.
CO3:	Weld various joints in steel plates using arc welding work; Machine various simple processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work.
CO4:	Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB.

HoD/BOS Chairman

-11-2-2	CO-PO Mapping									CO-PSO Mapping				
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	2	-	_	-	1	-	_	-	-	2	2	1	1
CO2:	3	2	-	-	-	1	-	-	-	-	2	2	1	1
CO3:	3	2	-	-	-	1	-	-	-	-	2	2	1	1
CO4:	3	2	-	-	-	1	-	-	-	-	2	2	1	1
Average:	3	2	-	_	_	1	-	-	-	-	2	2	1	1

Subject Code	Subject Name	Category	L	T 0	P	C
AD4211	DATA STRUCTURES DESIGN LABORATORY	PCC	0		4	2
Course Objectiv	es:			•		
To impler	nent ADTs in Python					
To design	and implement linear data structures-lists, stacks and queue	es				
To imple:	nent sorting, searching and hashing algorithms					
To solve i	problems using tree and graph structures					

LIST OF EXPERIMENTS:

Note: The lab instructor is expected to design problems based on the topics listed. The Examination shall not be restricted to the sample experiments designed.

- 1. Implement simple ADTs as Pythonclasses
- 2. Implement recursive algorithms in Python
- 3. Implement List ADT using Pythonarrays
- 4. Linked list implementations of List
- 5. Implementation of Stack and Queue ADTs
- 6. Applications of List, Stack and Queue ADTs
- 7. Implementation of sorting and searching algorithms
- 8. Implementation of Hash tables
- 9. Tree representation and traversal algorithms
- 10. Implementation of Binary Search Trees
- 11. Implementation of Heaps
- 12. Graph representation and Traversal algorithms
- 13. Implementation of single source shortest path algorithm
- 14. Implementation of minimum spanning tree algorithms

Total Contact Hours:60

HoD/BOS Chairman

Course	Upon completion of the course students should be able to:
Outcomes:	
CO1:	Implement ADTs as Python classes
CO2:	Design,implement,andanalyselineardatastructures,suchaslists,queues,andstacks, according to the needs of different applications
	Design,implement,andanalyseefficienttreestructurestomeetrequirementssuch as searching, indexing, and sorting
CO4:	Model problems as graph problems and implement efficient graph algorithms to solve them

Text	books:					
1. Michael T. Goodrich, Roberto Tamassia, and Michael H. Goldwasser, "Data Structures						
	Algorithms in Python" (An Indian Adaptation), Wiley, 2021					
2.	Lee, Kent D., Hubbard, Steve, "Data Structures and Algorithms with Python" Springer Edition 2015					
3.	Narasimha Karumanchi, "Data Structures and Algorithmic Thinking with Python" Career monk,					
	2015.					

Kele	rence Books/Other Materials/Web Resources:
1.	RanceD.Necaise, "DataStructuresandAlgorithmsUsingPython", JohnWiley&Sons, 2011.
2.	ThomasH.Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, "Introduction to
	Algorithms", Third Edition, PHI Learning, 2010.
3.	Mark Allen Weiss, "Data Structures and Algorithm Analysis in C++", Fourth Edition,
	Pearson
	Education, 2014
4.	Aho, Hopcroft, and Ullman, "Data Structures and Algorithms", Pearson Education India, 2002.

Subject Code	Subject Name	Category	0	T	P 4	C			
GE24212	COMMUNICATION LABORATORY	EEC		0		2			
Course Objectives:									
To identify an	nd apply group discussion skills to participate effect	ctively in profe	ession	al dis	scussi	ons.			
To analyse co	oncepts and problems and deliver clear, concise, ar	d effective pre	esenta	tions	•				
To communic	cate proficiently through both formal and informal	writing.							
To use appropriate the second control of the second control o	To use appropriate language structures to write emails, reports, and essays.								
To give instru	actions and recommendations that are clear, contex	tually appropi	iate,	and p	urpos	eful			

Holl BOS Chairman

	UNIT – I			12
- 1				

Speaking-Role Play Exercises Based on Workplace Contexts, - talking about competition- discussing progress toward goals-talking about experiences- talking about events in life- discussing past events-Writing: writing emails (formal& semi-formal).

UNIT – II

Speaking: discussing news stories-talking about frequency-talking about travel problems- discussing travel procedures- talking about travel problems- making arrangements-describing arrangements-discussing plans and decisions- discussing purposes and reasons- understanding common technology terms-Writing: - writing different types of emails.

UNIT – III

Speaking: discussing predictions-describing the climate-discussing forecasts and scenarios-talking about purchasing-discussing advantages and disadvantages- making comparisons- discussing likes and dislikes- discussing feelings about experiences-discussing imaginary scenarios Writing: short essays and reports-formal/semi-formal letters.

UNIT – IV

Speaking: discussing the natural environment-describing systems-describing position and movement-explaining rules-(example- discussing rental arrangements)- understanding technical instructions-Writing; writing instructions-writing a short article.

UNIT – V

Speaking: describing things relatively-describing clothing-discussing safety issues (making recommendations) talking about electrical devices-describing controlling actions- Writing: job

application(Cover letter + Curriculum vitae)-writing recommendations.

Total Contact Hours: 60

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Speak effectively in group discussions held in a formal/semi formal contexts.
CO2:	Discuss, analyse and present concepts and problems from various perspectives to
	arrive at suitable solutions
CO3:	Write emails, letters and effective job applications.
CO4:	Write critical reports to convey data and information with clarity and precision
CO5:	Give appropriate instructions and recommendations for safe execution of tasks

					CO-	PO Map	ping					CO-	PSO Maj	pping
PO & PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	2	3	3	3	1	3	3	3	3	3	3	-	-	-
CO2:	2	3	3	3	1	3	3	3	3	3	3	-	_	-
CO3:	2	2	3	3	1	3	3	3	3	3	3	-	-	_
CO4:	3	3	3	3	3	3	3	3	3	3	3	-	-	_

HoD/BOS hairman

(CO5:	3	3	3	3	3	3	3	3	3	3	3	-	-	_
	Average:	2.4	2.8	3	3	1.8	3	3	3	3	3	3	-	-	-

SEMESTER-III

	SEMESTER-III					
Subject Code	Subject Name	Category	L	T	P	C
MA24301	DISCRETE MATHEMATICS	BSC	3	1	0	4
Course Objectiv	es:					
To extend	student's logical and mathematical maturity an	d ability to deal v	with a	ıbstra	ction	1
	uce most of the basic terminologies used in com	puter science cou	ırses			
	cation of ideas to solve practical problems					
 To unders 	stand the basic concepts of combinatorics and gr	aph theory.				
 To familia 	arize the applications of algebraic structures.					
To unders	stand the concepts and significance of lattices an	d boolean algebr	a wh	ich		
are widely	y used in computer science and engineering.					

UNIT - I I	LOGIC AND PROOFS		9+3
Propositional log	gic - Propositional equivalences - Predicates - F	Rules of inference - Introduct	tion
to proofs - Proo	f methods and strategy.		
UNIT - II	COMBINATORICS		9+3
Mathematical in	nduction - Strong induction and well ordering -	The basics of counting	
- The pigeonho	le principle - Permutations and combinations -	Recurrence relations –	
Solving linear	recurrence relations - Inclusion and exclus	sion principle and its	
applications.			
UNIT - III	GRAPHS		9+3
Graphs and grap	oh models - Graph terminology and special types	of graphs – Matrix	
representation o	f graphs and graph isomorphism - Connectivity	 Euler and Hamilton graphs 	S.
UNIT-IV A	ALGEBRAIC STRUCTURES		9+3
Algebraic system	ms - Semi groups and monoids - Groups - Subgr	oups –	
Homomorphism	a's - Normal subgroup and cosets - Lagrange's t	neorem.	
UNIT - V I	ATTICES AND BOOLEAN ALGEBRA		9+3
Partial ordering	- Posets - Lattices as posets - Properties of latti	ces - Lattices as algebraic	
systems - Sub la	attices – Direct product and homomorphism – So	me special lattices - Boolea	n
algebra	*	_	
		Total Contact Hour	s : 60

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Have knowledge of the concepts needed to test the logic of a program
CO2:	Have an understanding in identifying structures on many levels.
CO3:	Be aware of a class of functions which transform a finite set into

HoD BOS Chairman

	another finite set which relates to input and output functions in computer science
CO4:	Be aware of the counting principles
CO5:	Be exposed to concepts and properties of algebraic structures
	such as groups, rings and fields.

Textbooks:

- 1. Rosen. K.H., "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Pub. Co. Ltd., New Delhi, Special Indian Edition, 2017.
- Tremblay. J.P. and Manohar. R, "Discrete Mathematical Structures with Applications to Computer Science", Tata McGraw Hill Pub. Co. Ltd, New Delhi, 30th Reprint, 2011. 66

Reference books/other materials/webresources:

- 1. Grimaldi. R.P. "Discrete and Combinatorial Mathematics: An Applied Introduction", 5 th Edition, Pearson Education Asia, Delhi, 2013.
- 2. Koshy. T. "Discrete Mathematics with Applications", Elsevier Publications, 2006
- 3. Lipschutz. S. and Mark Lipson., "Discrete Mathematics", Schaum's Outlines, Tata McGraw Hill Pub. Co. Ltd., New Delhi, 3rd Edition, 2010

	CO-PO Mapping												CO-PSO Mapping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1:	3	3	2	-	-	-	-	-	-	-	2	ļ -	-	-	
CO2:	3	3	-	-	-	-	-	-	-	-	-	-	-	-	
CO3:	-	3	2	-	-	2	-	-	-	3	-		-	-	
CO4:	-	2	2	2	-	-	-	-	-	-	-	-	-	-	
CO5:	-	2	2	2	-	-	-	-	-	2	-	-	-	-	
Average:	3	2.6	2	2	-	2	-	-	-	2.5	2		-	-	

Subject Code	Subject Name	Category	L	T	P 0	C
CS24305	DIGITAL PRINCIPLES AND COMPUTER ORGANIZATION	ESC	3	0		3
Course Objectiv						
To analyz	ze and design combinational circuits.					
To analyz	ze and design sequential circuit.					
To under	stand the basic structure and operation of a dig	ital computer.				
-	the design of data path unit, control unit for prece with the hazards.	ocessor and to				
To under	stand the concept of various memories and I/O	interfacing.				

HoD/Bos Chairman

	Ta
UNIT-I COMBINATIONAL LOGIC	9
Combinational Circuits - Karnaugh Map - Analysis and Design Procedures - Binary	
Adder - Subtractor - Decimal Adder - Magnitude Comparator - Decoder - Encoder -	
Multiplexers - Demultiplexers	
1710111P1011010 Delitaraparate	
UNIT - II SYNCHRONOUS SEQUENTIAL LOGIC	9
Introduction to Sequential Circuits - Flip-Flops - operation and excitation tables,	
Triggering of FF, Analysis and design of clocked sequential circuits - Design -	
Moore/Mealy models, state minimization, state assignment, circuit implementation -	
Registers – Counters	,
UNIT - III COMPUTER FUNDAMENTALS	9
Functional Units of a Digital Computer: Von Neumann Architecture – Operation and Operand Computer Hardware Instruction – Instruction Set Architecture (ISA): Memory Location, Addit and Operation – Instruction and Instruction Sequencing – Addressing Modes, Encoding of Machine Instruction – Interaction between Assembly and High Level Language	ress
UNIT – IV PROCESSOR	9
Instruction Execution – Building a Data Path – Designing a Control Unit – Hardwired	
Control, Microprogrammed Control – Pipelining – Data Hazard – Control Hazards	
UNIT – V MEMORY AND I/O	9
Memory Concepts and Hierarchy - Memory Management - Cache Memories:	
Mapping and Replacement Techniques – Virtual Memory – DMA – I/O – Accessing	
I/O: Parallel and Serial Interface - Interrupt I/O - Interconnection Standards: USB,	
SATA	
Total Contact Hours	: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Design various combinational digital circuits using logic gates
CO2:	Design sequential circuits and analyze the design procedures
	State the fundamentals of computer systems and analyze the execution of
	an instruction
CO4:	Analyze different types of control design and identify hazards
CO5:	Identify the characteristics of various memory systems and
	I/Ocommunication

Textbooks:

M. Morris Mano, Michael D.Ciletti, "Digital Design: Withan Introduction to the Verilog HDL, VHDL, and System Verilog", Sixth Edition, Pearson Education, 2018

HoD Bos Chairman

2. David A.Patterson, John L.Hennessy, "Computer Organization and Design, The Hardware/Software Interface", Sixth Edition, Morgan Kaufmann/Elsevier, 2020

Ref	erence books/other materials/webresources:
1.	Carl Hamacher, Zvonko Vranesic, Safwat Zaky, Naraig Manjikian, "Computer
	Organization and Embedded Systems", Sixth Edition, Tata McGraw-Hill, 2012.
2.	William Stallings, "ComputerOrganizationandArchitecture—
	DesigningforPerformance",TenthEdition,PearsonEducation,2016.
3.	M MorrisMano "DigitalLogicandComputerDesign" PearsonEducation 2016

			CO-PSO Mapping											
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	3	3	3	3	2	1	1	1	1	2	2	3	3
CO2:	3	3	3	3	2	1	1	1	1	1	2	1	2	2
CO3:	3	3	3	3	2	2	1	1	1	1	2	2	3	1
CO4:	3	3	3	3	1	1	1	1	1	1	1	1	3	1
CO5:	3	3	3	3	1	2	1	1	1	1	1	1	2	1
Average:	3	3	3	3	1	2	1	1	1	1	1	1	2	1

Subject Code	Subject Name Category L T P C										
CS24303	COMPUTER NETWORKS	PCC	3	0	0	3					
Course Objectiv	es:										
To unders	tand the concept of layering in networks.										
To know	he functions of protocols of each layer of TO	CP/IP protocol su	ite.								
To visual	ze the end-to-end flow of information.										
To learn t	he functions of network layer and the various	s routing protocol	ls.								
To familia	arize the functions and protocols of the Trans	port layer.									

UNIT – I	INTRODUCTION AND APPLICATION LAYER	10
Protocol suit	unication - Networks - Network Types - Protocol Layering - TCP/IP e -OSI Model - Introduction to Sockets - Application Layer protocols: - Email protocols (SMTP - POP3 - IMAP - MIME) - DNS - SNMP	
UNIT – II	TRANSPORT LAYER	9

HoD/BOS Chairman

Introduction	- Transport-Layer Protocols: UDP - TCP: Connec	ction Management —
	-Congestion Control - Congestion avoidance (DEC	oll, RED) = SCII =
Quality of Se	rvice	
UNIT – III	NETWORK LAYER	7
Switching: P	acket Switching - Internet protocol - IPV4 – IP Add RARP, ICMP, DHCP - Routing in MANET.	lressing – Subnetting
	ROUTING	7
Routing - OS	protocols: Unicast routing - Distance Vector Routing - PF-Path-vector routing - BGP - Multicast Routing	: DVMRP – PIM.
UNIT - V	DATA LINK AND PHYSICAL LAYERS	12
Protocols – I Virtual LAN	ayer – Framing – Flow control – Error control IDLC – PPP- Media Access Control – Ethernet Bar I – Wireless LAN (802.11) -Physical Layer: I – Transmission media- Switching – Circuit Switchi	asics — CSMA/CD — Data and Signals - ng.
		Total Contact Hours :45

	Upon completion of the course students should be able to:
CO1:	Explain the basic layers and its functions in computer networks
CO2:	Understand the basics of how data flows from one node to another.
	Analyze routing algorithms
CO4:	Describe protocols for various functions in the network
CO5:	Analyze the working of various application layer protocols

	tbooks:
1.	James F. Kurose, Keith W. Ross, Computer Networking, A Top-Down Approach
	Featuring the Internet, Eighth Edition, Pearson Education, 2021.
2.	Behrouz A. Forouzan, Data Communications and Networking with TCP/IP Protocol
	Suite, Sixth Edition TMH, 2022

	rence books/other materials/webresources:
1.	Larry L. Peterson, Bruce S. Davie, Computer Networks: A Systems Approach, Fifth
	Edition, Morgan Kaufmann Publishers Inc., 2012.
2.	William Stallings, Data and Computer Communications, Tenth Edition, Pearson
	Education, 2013.
3.	Nader F. Mir, Computer and Communication Networks, Second Edition, Prentice Hall,
	2014.
4.	Ying-Dar Lin, Ren-Hung Hwang, Fred Baker, "Computer Networks: An Open Source
	Approach", McGraw Hill, 2012.

			CO-PSO Mapping											
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	2	-	-	3	-	-	-	-	-	2	2	2	
CO2:	3	3	-	-	2	1	-	-	-	-	2	3	2	2
CO3:	3	3	2	3	2	1		-		-	2	3	3	2
CO4:	3	2	-	2	2	-	-			-	2	2	2	2
C05:	3	2	-	2	2	1	-	-	2	-	-	-	-	-
Average:	3	2.40	2	2.20	2.20	1	-		2.20	1	2	2.60	2,40	2

Subject Code	Subject Name	Category	L	Т	P	C
AD24301	ARTIFICIAL INTELLIGENCE	PCC	3	0	0	3
Course Objectiv	ves:					
To learn	the basic AI approaches.					
To develop	op problem solving agents.					
To explor	re strategic decision-making through game the	eory and CSP te	chni	ques.	,	
To Imple	ment logical reasoning and inferences	11				
To devel	op solutions using probabilistic approaches to	handle uncertair	ıty.			

UNIT – I INTRODUCTION TO INTELLIGENT SYSTEMS	9
Introduction to AI-Agents and Environments-nature of environments-structure of	
agents.Problem solving agents-search algorithms-uninformed search strategies	
UNIT – II HEURISTIC AND LOCAL SEARCH IN AI	9
Heuristic search strategies - heuristic functions. Local search and optimization	
problems - local search in continuous space -search with non-deterministic	
actions- search in partially observable environments - online search agents and	
unknown environments	
UNIT – III GAME PLAYING AND CSP	9
Game theory - optimal decisions in games - alpha-beta search - Monte-carlo tree search -	_
stochastic games - partially observable games. Constraint satisfaction problems - constraint	nt
propagation – backtracking search for CSP – local search for CSP – structure of CSP	
UNIT – IV LOGICAL REASONING	9
Knowledge-based agents-propositional logic-propositional theorem proving-	
propositional model checking - agents based on propositional logic. First-order	
logic - syntax and semantics - knowledge representation and engineering -	
inferences in first-order logic - forward chaining - backward chaining -	
resolution.	
UNIT – V PROBABILISTIC REASONING	9
Acting under uncertainty-Bayesian inference-naïve Bayes models-Probabilistic reasoning	<u>;</u> —
Bayesian networks-exact inference in BN-approximate inference in BN-causal networks.	
· · · · · · · · · · · · · · · · · · ·	

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Explain intelligent agent frameworks
CO2:	Apply problem solving techniques
CO3:	Apply game playing and CSP techniques
CO4:	Perform logical reasoning
CO5:	Perform probabilistic reasoning under uncertainty

Textbooks:

http://nptel.ac.in/

1. StuartRussellandPeterNorvig, "ArtificialIntelligence—AModernApproach", Fourth Edition, PearsonEducation, 2021

Reference books/other materials/webresources: DanW. Patterson, "Introduction to AI and ES", PearsonEducation, 2007 KevinNight, Elaine Rich, and NairB., "Artificial Intelligence", McGrawHill, 2008 PatrickH. Winston, "Artificial Intelligence", Third Edition, Pearson Education, 2006 DeepakKhemani, "ArtificialIntelligence", Tata McGrawHillEducation, 2013.

			CO-PSO Mapping											
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	2	1	1	2	1	1	1	1	1	2	3	2	2
CO2:	3	3	2	2	3	1	1	2	2	2	3	3	3	2
CO3:	3	3	2	2	3	1	1	2	2	2	3	3	3	3
CO4:	3	2	2	2	3	1	2	2	2	2	3	3	2	2
CO5:	3	2	2	2	3	2	2	2	2	2	3	3	3	3
Average:	2.33	2.67	3	2.33	3	1.2	1.4	1.8	1.8	1.8	2.8	3	2.6	2.4

Subject Code	Subject Name DATA VISUALIZATION	Category	L 2	T 0	P 2	C 3
AD24302		PCC				
Course Objective	es:					
To give ov	erview of descriptive and inferential statistics	S				
To provide	basics of R and Python.					
To manipu	late and visualize data using R, python and V	Vatson Studio.				
To focus o	n plots using Matplotlib and seaborn.					
To analyze	data using various visualization tools.					
To create 1	naps in python using folium.					

Hod Bos Chairman

UNIT - I INTRODUCTION TO STATISTICS	6
Data collection methods - Descriptive Statistics: Mean, Median, Mode - Inferential Statistics	cs:
Random Variables, Probability Distribution	
UNIT – II VISUALIZATION USING R	6
Descriptive data analysis using R – Data manipulation with R (dplyr, data. table, reshape2	
package, tidyr package, Lubridate package) - Data Visualization with R (working with ggpl	ot2)
UNIT - III WATSON STUDIO	6
Adding data to data refinery – Preprocessing & Visualization of data in Watson Studio.	
UNIT – IV DATA ANALYSIS USING PYTHON	6
Basics of Python, Numpy Library - Arrays creation, Indexing, Slicing, Aggregation,	
Reshaping, Pandas Library - Series, DataFrame, using csv & excel files, Data cleaning	
&manipulation ,Merging &Joining.	
UNIT – V VISUALIZATION USING PYTHON	6
Data Visualization tools in python – Basic plots using Matplotlib - Advanced Visualization	tools
using Matplotlib -Sea born functionalities - Spatial visualization and analysis in python in	folium
Total Contact Ho	urs: 30

LIST OF EXPERIMENTS

- 1. Do the data manipulation operations for iris and mtcars dataset using dplyr package and obtain the results for following functions:
 - i. filter
 - ii. select
 - iii. arrange
 - iv. summarise
 - v. mutate
- 2. Create a data frame and do the following operations using tidyr package
 - i. gather
 - ii. spread
 - iii. separate
 - iv. unite
- 3. Do the following operations for any external dataset using data. table package
 - i. Select a subset row
 - ii. Select a column with particular values
 - iii. Select columns with multiple values
 - iv. Select a column to return a vector
 - v. Select multiple columns
 - vi. Returns the sum and standard deviation
 - vii. Sum of selected columns
- 4. Do the following visualizations for any external csv file
 - i. Line graph

HoD/BQS Chairman

- ii. Bar graph
- iii. Histogram
- iv. Scatter plot
- v. Pie chart
- 5. Do the following Data analysis for your own Data set using pandas package.
 - i. Make the first column as index
 - ii. Select single column and print the data
 - iii. Select multiple columns and print the data
 - iv. Select single column and print the last five elements of the data.
 - v. Select multiple rows and print the first five elements of the data
 - vi. Select multiple rows and columns from the data set and print it.
 - vii. Select all the rows and some columns (more than two) from the data set and print
 - it.
 - viii. Print the same data set again and delete the first column from the data set and print it.
 - ix. Change the 1st, 2nd and 3rd columns name and print it
- 6. Consider any csv file and do the following visualization using matplot lib package
 - i. Line graph /with style
 - ii. Bar Graph
 - iii. Histogram
 - iv. Scatter plot
 - v. Pie chart
- 7. Merge the two data sets (any two csv files) and perform the following join
 - i. operations
 - ii. Natural join
 - iii. Full outer join
 - iv. Left outer join
 - v. Right outer join
- 8.Do the EDA process for loan prediction data set
- 9.Data analytics and visualization using IBM Watson studio
- 10.Do the following operations for your own data using pandas
 - i. Descriptive data analytics using pandas
 - ii. Print the data based on particular year, particular month and particular data
 - iii. Filter the data based on conditions (any conditions)
 - iv. Select any two columns and do the pandas sort operations (ascending and descending)

Total Contact Hours: 30

HoD/BOS Chairman

Principal .

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Differentiate descriptive and inferential statistics.
CO2:	Use R to do statistics and to visualize data.
CO3:	Visualize analyzed data using IBM Watson Studio.
CO4:	Familiar with python scripts used for visualization.
CO5:	Use advance visualization tool and sea born functionalities.

Textbooks:

1. IBM -CE Data Visualization Using R, Python and Watson studio

Reference books/other materials/webresources:

1. Fundamentals of Data Visualization by Claus O Wilke 2019.

			CO-PSO Mapping											
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	1	3	3	-	-	-	-	2	3	3	2	1	1
CO2:	2	2	1	1	1	-	-	-	2	2	3	3	2	2
CO3:	2	1	2	1	-	-	-	-	2	1	1	1	2	1
CO4:	2	1	2	2	-	-	-	-	2	1	2	1	3	3
CO5:	3	2	2	1	1	-	-	-	3	2	1	2	2	1
Average:	2	1	2	2	1	-	-	-	2	2	2	2	2	2

Subje	ct Code	Subject Name	Category	J.L.	T	P	C
AD2	24303	ALGORITHM DESIGN TECHNIQUES	PCC	3	0	0	3
Course	e Objecti	ves:					
•	To critica	ally analyze the efficiency of alternative algorith	mic solutions	for	the s	ame	

- problem
- To illustrate divide and conquer and greedy method design techniques
- To explain graph and dynamic programming for solving various problems
- To apply backtracking and branch and bound technique to solve optimization problems
- To understand the concepts behind NP completeness, approximation algorithms

UNIT - I INTRODUCTION

Algorithm, pseudo code for expressing algorithms, performance analysis-space complexity, time complexity, asymptotic notation- big (O) notation, omega notation(Ω), theta notation(θ) and little(o) notation, recurrences, disjoint set operations, union and find algorithms.

DIVIDE- AND- CONQUER AND GREEDY METHOD

10

DIVIDE AND CONOUER: General method, applications-analysis of binary search, quick sort, merge sort, OR Graphs. GREEDY METHOD: General method, Applications-job sequencing with deadlines, Fractionalknapsack problem, minimum cost spanning trees, Single source shortest path problem, HuffmanTrees.

UNIT – III GRAPHS AND DYNAMIC PROGRAMMING:

9

GRAPHS (Algorithm and Analysis): Breadth first search and traversal, Depth first search and traversal, Spanning trees, connected components and bi-connected components, Articulation points. DYNAMIC PROGRAMMING: Applications -

Chairman

optimal binary search trees, 0/1 knapsack problem, All pairs shortest path problem.

UNIT – IV BACKTRACKING AND BRANCH -AND -BOUND 8

BACKTRACKING: General method, Applications- N-queen problem, Sum of subsets problem, Graph coloring and Hamiltonian cycles. BRANCH AND BOUND: General method, applications - travelling sales person problem, 0/1 knapsack problem- LC branch and bound solution, FIFO branch and bound solution.

UNIT – V NP-HARD AND NP-COMPLETE PROBLEMS: 9

Basic concepts, non-deterministic algorithms, NP-hard and NP-complete classes, Cook's theorem. APPROXIMATION ALGORITHMS: Approximation algorithms for NP-Hard Problems—Travelling Salesman Problems-Knapsack Problems.

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand algorithm fundamentals, pseudocode, and performance analysis
	using asymptotic notations.
CO2:	Apply divide-and-conquer and greedy methods to solve algorithmic problems
	efficiently.
CO3:	Analyze graph algorithms and dynamic programming techniques for
	optimization problems.
CO4:	Develop solutions using backtracking and branch-and-bound techniques
CO5:	Evaluate computational complexity and design approximation algorithms for
	NP-hard problems.

Textbooks:

1. Anany Levitin, Introduction to the Design and Analysis of Algorithms, Third Edition, Pearson Education, 2012

Reference books/other materials/webresources:

- 1. Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, Computer Algorithms/C++, Second Edition, Universities Press, 2019
- 2. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein, Introduction to Algorithms, Third Edition, PHI Learning Private Limited, 2012.
- 3. S.Sridhar, Designand Analysis of Algorithms, Oxforduniversity press, 2014
- 4. Alfred V. Aho, John E. Hopcroft and Jeffrey D. Ullman, Data Structures and Algorithms, Pearson Education, Reprint 2006

	CO-PO Mapping												CO-PSO Mapping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3	
CO1:	3	3	2	2	3	1	0	0	1	0	2	3	2	2	
CO2:	3	3	3	2	3	1	0	1	1	1	2	3	3	3	
CO3:	3	3	3	2	3	i	0	1	1	1	2	3	3	2	
CO4:	3	3	3	3	3	1	0	1	1	2	3	2	3	3	
CO5:	3	3	3	3	3	1	1	1	1	2	3	3	3	3	
Average:	2	3	2.8	2.4	3.0	1.0	0.2	0.8	1.0	1.2	2.4	2.8	2.8	2.6	

HoD/BOS Chairman

Subject Code	Subject Name	Category	L	T	P	C
CS24313	NETWORKS LABORATORY	PCC	0	0	3	1.5
To understa	nd the concept of layering in networks			1	- 1	
To know the	e functions of protocols of each layer of the TCP/IP p	rotocol suite.				
To visualiz	e the end-to-end flow of information					
To learn the	functions of the network layer and the various routing	g protocols.				
To familiari	ze the functions and protocols of the transport layer.					
LIST OF EXPER				_		
	amands like topdump, netstat, ifconfig, nslookup, and		ire pin	ig ai	nd	
	using a network protocol analyzer and examine them					
2. Write an HTTP v	web client program to download a web page using TC	P sockets.				
3. Develop applicat	ions using TCP sockets, such as:					
a)Echo clier	nt and echo server					
b)Chat appl	ication					
4. Simulate a DNS	server using UDP sockets.					
5. Use a tool like W	Vireshark to capture packets and analyze them.					
6. Write a program	simulating ARP/RARP protocols.					
7. Study network si	mulators (NS) and simulate congestion control algori	thms using NS.				
8. Analyze TCP/UI	OP performance using a simulation tool.					
9. Simulate Distanc	e Vector/Link State routing algorithms.					
10. Simulate an erro	or correction code (like CRC)					
		Total Co	ntact	Hoı	ırs	: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Explain the basic layers and their functions in computer networks.
CO2:	Understand the basics of how data flows from one node to another.
CO3:	Analyze routing algorithms.
CO4:	Describe protocols for various functions in the network.
CO5:	Analyze the working of various application-layer protocols.

HoD BOS Chairman

					CO-	PO Maj	ping					CO-	PSO Maj	pping
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	2	2	1	2	1	1	1	1	1	2	3	2	3
CO2:	3	3	2	2	3	1	1	1	1	1	2	3	3	3
CO3:	3	3	2	2	3	2	1	1	2	1	2	3	3	3
CO4:	3	3	3	2	3	2	1	1	2	2	2	3	3	3
CO5:	3	3	2	2	3	2	1	1	2	2	2	3	3	3
Average:	3	2.8	2.2	1.8	2.8	1.6	1	1	1.6	1.4	2	3	2.8	3

Subject Code	Subject Name	Category	L	T	P	C
AD24311	ARTIFICIAL INTELLIGENCE LABORATORY	PCC	0	0	3	1.5
To design a	and implement search strategies	-44//				
To implement	ent game playing techniques					
To implement	ent CSP techniques					
To develop	systems with logical reasoning					
 To develop 	systems with probabilistic reasoning					
LIST OF EXPER						
	of a Model-Based Agent					
	of Greedy Best-First Search Algorithm					
3.Implementation	of Hill Climbing Algorithm for Local Search					
4.Implementation	of Memory Bounded A* Algorithm					
5. Implementation	of Alpha Beta Tree search.					
6.Solving 8-Queen	s Problem using Backtracking					
7.Implementation	of Tic-Tac-Toe AI using Mini-max Algorithm					
8.Implementation	of Forward and Backward Chaining in AI					
9.Implementation	of First-Order Logic (FOL) Inference System					
10.Implementation	n of Probabilistic Reasoning using Bayesian Networks					
		Total Co	ntac	t Ho	urs	: 45

Holl BOS Chairman

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand and build a agent to solve simple problems
CO2:	Design and implement search strategies
CO3:	Implement game-playing strategies and constraint satisfaction techniques for AI-based decision-making.
CO4:	Develop and apply logical reasoning methods for knowledge inference in AI systems.
CO5:	Implement probabilistic reasoning techniques to handle uncertainty in AI applications.

			CO-PSO Mapping											
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	2	2	2	3	2	1	1	1	1	2	3	2	3
CO2:	3	2	2	2	3	2	1	1	1	1	2	3	3	3
CO3:	3	3	2	2	3	2	1	1	1	1	2	3	3	3
CO4:	3	3	2	3	3	2	2	1	1	1	2	3	3	3
CO5:	3	3	2	3	3	2	2	1	1	1	2	3	3	3
Average:	3	2.6	2	2.4	3	2	1.4	1	1	1	2	3	2.8	3

SEMESTER-IV

	SISTALIS I EIK I V					
Subject Code:	Subject Name	Category	L	T	P	C
MA24401	PROBABILITY AND STATISTICS	BSC	3	1	0	4
Course objective	es:					
 To introd 	uce the basic concepts of probability and rando	om variables.				
 To introd 	uce the basic concepts of Special distribution.					
 To introd 	uce the basic concepts of two dimensional rand	lom variables.				
To acquai	int the knowledge of non parametric test.					
To introd	luce the basic concepts of classifications of	design of exp	erim	ents	. Wl	nich
plays ver	y important roles in the field of agriculture and	statistical qua	lity c	ontr	ol.	

UNIT – I	PROBABILITY AND RANDOM VARIABLES	9+3	
Axioms of porbability - Conditional Probability - Baye's Theorem - One dimensional			
Discreate and	d Continous Random variables - Moments - Moment generating functions		
UNIT – II	SPECIAL DISTRIBUTIONS	9+3	
Discrete dist	ributions: Binomial, Poisson, Geometric - Continuous distributions: Uni	form,	

HoD BOS Chairman

	nd Normal distribution.		
	TWO DIMENSIONAL RANDOM VARIABI		9+3
Two dimensi	onal random variables: Joint distribution - Margin	nal and Conditional distribu	ıtions
-Covariance -	- Correlation co-efficients - Regression lines.		
	NON PARAMETRIC TESTS		9+3
	- The sign test - The Signal - Rank test - Rank su		H-test
- Tests based	on Runs - Test of randomness - The Kolmogorov	Tests.	
UNIT - V	STATISTICAL QUALITY CONTROL		9+3
Control chart	s for measurements(X and R charts) - Control ch	arts for attributes (p,c,np c	harts)
	imits - Acceptance Sampling.		
		Total Contact Hour	s:60

Course Outcomes:	
CO1:	Understand the basic concepts of Probabilitys and Random variables
	and apply in Engineering applications.
CO2:	Understand the fundamental knowledge of the concepts of probability
	and have knowledge of standard distributions which can describe real
	life phenomenon.
CO3:	Apply the concept of Two dimensional random variable in Engineering
	Disciplines
CO4:	Use the concept of non parametric testing for Non-Normal population.
CO5:	Apply the basic concepts of classifications of design of
	experiments in the field of agriculture and statistical quality
	control

	tbooks:
	Johnson. R.A., Miller. I.RandFreund . J.E, "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia,9 th Edition, 2016.
2.	Milton. J. S. and Arnold.J.C., "Introduction to Probability and Statistics", Tata Mc
	GrawHill, 4th Edition, 2007.
3	John E.Freund, "Mathematical Statistics", Prentice Hall, 5th Edition, 1992.

Ref	erence books/other materials/web resources:
1.	Gupta. S.C. and Kapoor. V. K., "Fundamentals of Mathematical Statistics", Sultan Chand
	& Sons, New Delhi, 12 th Edition, 2020.
2.	Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage
	Learning, New Delhi, 8 th Edition, 2014.
3.	Ross. S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 5th
	Edition, Elsevier, 2014.
4.	Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outline of Theory and
	Problems of Probability and Statistics", Tata McGraw Hill Edition, 4 th Edition, 2012.

HoD Bos chairman

5. Walpole.R.E.,Myers.R.H.,Myers.S.L.and Ye.K.,"Probability and Statistics for Engineers and Scientists", Pearson Education, Asia, 9th Edition, 2010.

	CO-PO Mapping								CO-PSO Mapping					
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	3	-	-	-		-	-	2	-	2	-	-	-
CO2:	3	3	-	-	-	-	-	-	2	-	2	-	-	-
CO3:	3	3	-	-	-	-	-	-	2	-	2	-	-	-
CO4:	3	3	3	2	-	-	-	-	2	-	2	-	-	-
CO5:	3	3	2	2	-		-	-	2	-	2	-	-	-
Average:	3	3	2.5	2	-	-	-	-	2	-	2	-	-	-

Subject Code	Subject Name	Category	L	T	P	C
AD24401	FUNDAMENTALS OF DATA SCIENCE AND ANALYTICS	PCC	3	0	0	3
Course Objecti	ves:	-				
To under	stand the techniques and processes of data science	ce				
•	To apply descriptive data analytics					
•	To visualize data for various applications					
•	To understand inferential data analytics					
•	To analysis and build predictive models from d	ata				

UNIT – I	INTRODUCTION TO DATA SCIENCE	8
Need for data	a science – benefits and uses – facets of data – data science process – setting t	he
research goal	- retrieving data - cleansing, integrating, and transforming data - explorator	y
	 build the models – presenting and building applications. 	
UNIT – II	DESCRIPTIVE ANALYTICS	10
describing va data - Norma regression li interpretation	stributions — Outliers —interpreting distributions — graphs — averages — ariability — interquartile range — variability for qualitative and ranked al distributions — z scores —correlation — scatter plots — regression — ne — least squares regression line — standard error of estimate — of r2 — multiple regression equations — regression toward the mean.	
UNIT – III	INFERENTIAL STATISTICS	9
of the mean calculations	- samples – random sampling – Sampling distribution- standard error - Hypothesis testing – z-test – z-test procedure –decision rule – - decisions – interpretations - one-tailed and two-tailed tests – point estimate – confidence interval – level of confidence – effect of	

HoD Bos Chairman

sample size	
UNIT - IV ANALYSIS OF VARIANCE	9
t-test for one sample – sampling distribution of t – t-test procedulindependent samples – p-value – statistical significance – t-test samples. F-test – ANOVA – Two factor experiments – three fanoval – Introduction to chi-square tests.	st for two related
UNIT - V PREDICTIVE ANALYTICS	9
Linear least squares – implementation – goodness of fit – testin weighted resampling. Regression using Stats Models – mul nonlinear relationships – logistic regression – estimating parame analysis – moving averages – missing values – serial correlation Introduction to survival analysis.	iple regression – ters – Time series
Introduction to but vival state just	Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Explain the data analytics pipeline
CO2:	Describe and visualize data
CO3:	Perform statistical inferences from data
CO4:	Analyze the variance in the data evaluation measures, and
CO5:	Build models for predictive analytics

	xtbooks:
1.	David Cielen, ArnoD. B.Meysman, and Mohamed Ali, "Introducing Data Science",
	Manning Publications, 2016. (first two chapters for UnitI).
2.	RobertS. Witte and JohnS. Witte, "Statistics", Eleventh Edition, Wiley Publications, 2017.
3.	JakeVander Plas, "Python Data Science Handbook", O'Reilly, 2016

Ref	erence books/other materials/webresources:
1.	Allen B.Downey, "ThinkStats: Exploratory Data Analysis in Python", Green Tea Press,
	2014
2.	SanjeevJ.Wagh, ManishaS.Bhende, AnuradhaD. Thakare, "Fundamentals of Data Science",
	CRC Press, 2022
3.	ChiragShah, "A Hands-On Introduction to DataScience", Cambridge
٠.	University Press 2020
4.	Vincet Paina Science Practice: A
٦.	Framework to Bootstrap and Manage a Successful Data Science Practice", Apress, 2021

HoD Bos Chaleman

			CO-PSO Mapping											
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	1	1	2	1	-	-	-	-	3	1	3	3	3	1
CO2:	1	1	2	2	2	-	-	-	2	2	3	3	1	1
CO3:	1	1	3	1	1	-	-	-	2	3	1	2	3	1
CO4:	2	3	1	3	1	-	-	-	3	3	3	3	2	2
CO5:	2	1	1	1	2	-	-	-	3	3	1	2	2	1
Average:	1	1	2	2	2	-	-	-	3	2	2	3	2	1

Subject Code	Subject Name	Category	L	T	P	C	
AD24402	FUNDAMENTALS OF OPERATING SYSTEMS	PCC	3	0	0	3	
Course Objectiv	es:						
 To unders 	tand the basics and functions of operating syst	ems					
To unders	tand the processes and analyze the CPU sched	uling algorith	ns				
To unders	tand the concepts of deadlock and process syn	chronization					
To be fam	iliar with I/O management and File systems.						
	iliar with the basics of virtual machines and a	nalyze various	me	nory			

UNIT – I Operating System	9
Operating System-Introduction, Operating system services Structures-S	imple Batch, Multi-
programmed, Time-shared, Personal Computer, Parallel, Distributed Sy	stems, Real-Time
Systems, System components, and Operating System services-System C	Call.
UNIT - II Process and CPU Scheduling	9
Processes – Process Concept – Process Scheduling – Operations on Process	cesses – Inter-process
Communication- Threads-Scheduling Criteria-Scheduling Algorithms-M	
Scheduling.	•
UNIT – III Deadlocks and process synchronization	9
Dodlode Conton Madal Dadlada Charatainta Matalada Car	landling Deadlocks.
Deadlocks - System Model- Deadlocks Characterization, Methods for H	
Deadlocks - System Model- Deadlocks Characterization, Methods for H Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Re	-
	-
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Re	ecovery from
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Red Deadlock.	ecovery from
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Red Deadlock. The Critical Section Problem, Synchronization Hardware, Semaphores,	ecovery from
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Red Deadlock. The Critical Section Problem, Synchronization Hardware, Semaphores, Problems of Synchronization, Critical Regions, Monitors.	and Classical
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Red Deadlock. The Critical Section Problem, Synchronization Hardware, Semaphores, Problems of Synchronization, Critical Regions, Monitors. UNIT – IV Disk Management and file system operations. Disk Scheduling Algorithms-FCFS,SSTF, SCAN,C-SCAN	and Classical
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Red Deadlock. The Critical Section Problem, Synchronization Hardware, Semaphores, Problems of Synchronization, Critical Regions, Monitors. UNIT – IV Disk Management and file system operations.	and Classical
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Red Deadlock. The Critical Section Problem, Synchronization Hardware, Semaphores, Problems of Synchronization, Critical Regions, Monitors. UNIT – IV Disk Management and file system operations. Disk Scheduling Algorithms-FCFS,SSTF, SCAN,C-SCAN File System Interface and Operations - Access methods, Directory Struct	and Classical
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Red Deadlock. The Critical Section Problem, Synchronization Hardware, Semaphores, Problems of Synchronization, Critical Regions, Monitors. UNIT – IV Disk Management and file system operations. Disk Scheduling Algorithms-FCFS,SSTF, SCAN,C-SCAN File System Interface and Operations -Access methods, Directory Struct System Structure, Allocation methods, kernel support for files. UNIT – V Memory Management and Virtual Machines	and Classical 9 ture, Protection, File
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Red Deadlock. The Critical Section Problem, Synchronization Hardware, Semaphores, Problems of Synchronization, Critical Regions, Monitors. UNIT – IV Disk Management and file system operations. Disk Scheduling Algorithms-FCFS,SSTF, SCAN,C-SCAN File System Interface and Operations -Access methods, Directory Struct System Structure, Allocation methods, kernel support for files. UNIT – V Memory Management and Virtual Machines Logical versus Physical Address Space, Swapping, Contiguous Allocation	and Classical gure, Protection, File gon, Paging,
Deadlock Prevention, Deadlock Avoidance, Deadlock Detection and Red Deadlock. The Critical Section Problem, Synchronization Hardware, Semaphores, Problems of Synchronization, Critical Regions, Monitors. UNIT – IV Disk Management and file system operations. Disk Scheduling Algorithms-FCFS,SSTF, SCAN,C-SCAN File System Interface and Operations -Access methods, Directory Struct System Structure, Allocation methods, kernel support for files. UNIT – V Memory Management and Virtual Machines	and Classical gure, Protection, File gon, Paging,

HoD BO Chairman

Course Outcomes:	Upon completion of the course students should be able to:						
CO1:	Explain the fundamental concepts of operating systems						
CO2:	Analyze the various CPU scheduling algorithms						
	Explain deadlock prevention, avoidance algorithms and process						
	synchronization						
CO4:	Explain the functionality of file systems I/O systems						
CO5:	Compare and contrast various memory management schemes						

Tex	tbooks:
1.	Abraham Silberschatz ,Peter Baer Galvin and Greg Gagne, "OperatingSystemConcepts",9th Edition,John Wiley and Sons Inc.,2018
2.	AndrewSTanenbaum, "ModernOperatingSystems", Pearson, 4 th Edition, NewDelhi, 2016

Ref	erence books/other materials/webresources:
1.	Ramaz Elmasri ,A. GilCarrick, David Levine, "Operating Systems-A Spiral
	Approach", Tata McGrawHill Edition, 2010
2.	William Stallings, "Operating Systems: Internals and Design Principles", 7th
	Edition, Prentice Hall, 2018
3.	AchyutS. Godbole, Atul Kahate, "Operating Systems", McGrawHillEducation, 2016

			CO-PSO Mapping											
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	1	1	1		-	-	-	1	1	1	2	1	2
CO2:	2	3	1	3	1	i .	-	-	3	2	2	3	3	1
CO3:	2	2	3	3	2	-	-	-	3	1	1	1	1	1
C04:	2	2	1	2	1		1.	-	1	3	2	1	1	2
	2	2	2	2	1		-	_	3	1	2	3	1	2
CO5:	2	3	3	2	I I	-	<u> </u>		2	2	2	2	1	2
Average:	2	2	2	1 2	1				4		1-		1	1-

Subject Code	Subject Name	Category	L	T	P	C	
AD24403	DATABASE DESIGN AND	PCC	3	0	0	3	
	MANAGEMENT						
Course Objectives	3*						
To introduce	database development lifecycle and conce	eptual modeling					
• To learn SQ	L for data definition, manipulation and que	erying a database	>				
To learn rela	tional database design using conceptual m	apping and norn	naliz	ation			
To learn tran	saction concepts and serializability of sch	edules					
To learn data	a model and querying in object-relational a	and No-SQL data	abase	S			

UNIT – I	CONCEPTUAL DATA MODELING	8
Database env	ironment-Database system development life cycle-Requirements collection-	
Database desi	gnEntity-Relationship model-Enhanced-ER model-UML class diagrams	
UNIT – II	RELATIONAL MODEL AND SQL	10

HoD Bos chairman

Relational model concepts—Integrity constraints: Domain, Key, Referential, Check, Implementation of Constraints in SQL—SQL Data manipulation: Inserting, Modifying, Deleting, Ouerving, Joins-SQL Data definition: Creating and Managing Databases, Defining Tables and Data Types, Implementing Constraints, Indexing for Performance Optimization— Views—SQL programming. 10

UNIT - III RELATIONAL DATABASE DESIGN AND NORMALIZATION

ER and EER-to-Relational mapping – Update anomalies – Functional dependencies – Inference rules – Minimal cover – Properties of relational decomposition – Normalization (upto BCNF).

UNIT - IV TRANSACTION MANAGEMENT

Transaction concepts-properties-Schedules-Serializability-ConcurrencyControl-Two-phase locking techniques. Programmatic SQL: Embedded SQL, Dynamic SQL, Advanced SQL-Programming in MYSQL.

UNIT - V OBJECT RELATIONAL AND NO-SOL DATABASES

9

Mapping EER toODBschema –Object identifier – referencetypes –rowtypes – UDTs – Subtypes and supertypes—user-defined routines—Collection types—Object Query Language; No-SQL:CAP theorem – Document-based: MongoDB data model and CRUD operations; Column-based: Hbase data model and CRUD operations

Total Contact Hours: 45

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Understand the database development life cycle and apply conceptual modeling
CO2:	Apply SQL and programming in SQL to create, manipulate and query the database
CO3:	Apply the conceptual-to relational mapping and normalization to design relational database
CO4:	Determine the serializability of any non-serial schedule using concurrency techniques
CO5:	Apply the data model and querying in Object-relational and No-SQL databases.

Textbooks:

- Thomas M. Connolly, Carolyn E. Begg, Database Systems A Practical Approach to Design, Implementation, and Management, Sixth Edition, Global Edition, Pearson Education, 2015.
- 2. Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, 7th Edition, Pearson, 2017.

Re	ference books/other materials/webresources:
1.	Toby Teorey, Sam Light stone, Tom Nadeau, H.V.Jagadish, "DATABASEMODELING AND DESIGN-Logical Design",Fifth Edition,Morgan Kaufmann Publishers,2011
2.	Carlos Coronel, Steven Morris and Peter Rob, Database Systems: Design,
	Implementation, and Management, Ninth Edition, Cengage learning, 2012
3.	Abraham Silberschatz, Henry F Korth, SSudharshan, "Database System Concepts", 6th
	Edition, Tata Mc GrawHill, 2011.
4.	Hector Garcia- Molina, Jeffrey D Ullman, Jennifer Widom, "Database Systems :The Complete Book", 2 nd edition, Pearson.
5.	Raghu Ramakrishnan, "Database Management Systems", 4th Edition, TataMcGraw Hill, 2010.

			CO-PSO Mapping											
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	2	2	1	2	-	-	-		-	2	3	2	3
CO2:	3	3	2	2	3	-	-	-	-	-	2	3	3	3
CO3:	3	3	3	2	3	-	1-	-	-	-	2	3	2	3
CO4:	3	3	2	3	3	-	-	-	-	-	2	3	3	3
CO5:	3	2	2.	2	3	-	-	-	-	-	3	3	3	3
Average:	3	2.60	2.20	2.20	2.80						2.20	3	2.60	3

Subject Code	Subject Name	Category	L	T	P	C
GE24901	ENVIRONMENTAL SCIENCES AND SUSTAINABILITY	BSC	2	0	0	2
Course Objectiv	ves:	4 4				

- To study the interrelationship between living organism and environment.
- To finding and implementing scientific, technological, economic and political solutions to environmental problems.
- To appreciate the importance of environment by assessing its impact on the human world; envision the surrounding environment, its functions and its value.
- To study the dynamic processes and understand the features of the earth's interior and surface.
- To study the integrated themes and biodiversity, natural resources, pollution control and waste management.

UNIT – I ENVIRONMENT AND BIODIVERSITY 6

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ.

HoD Bos Chairman

UNIT - II ENVIRONMENTAL POLLUTION	6					
Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. So	olid,					
Hazardous and E-Waste management. Case studies on Occupational Health and Sa	fety					
Management system (OHASMS). Environmental protection, Environmental protection acts						
UNIT – III NATURAL RESOURCES	6					
Forest resources: Use and over-exploitation, deforestation, case studies. Food resources	ces:					
World food problems, changes caused by agriculture and overgrazing, effects of mod	lern					
agriculture, fertilizer-pesticide problems, water logging, salinity, case studies. New Renewa	able					
Energy Sources: Hydrogen energy, Solar energy, wind energy, Tidal energy, Ocean ther	mal					
energy and Geothermal energy. Role of an individual in conservation of natural resources.						
UNIT – IV SUSTAINABILITY PRACTICES	6					
Zero waste and R concept, Circular economy, Material Life cycle assessment, Environme	ntal					
Impact Assessment, ISO 14000 Series, Green buildings. Water conservation, rain w	ater					
harvesting. Issues and possible solutions - climate change, global warming. Concept						
Carbon Credit and Carbon Footprint. Development and GDP.Environmental managemen	t in					
industry-A, case study.						
UNIT - V SOCIAL ISSUES AND POPULATION	6					
Population growth, variation among nations - population explosion - family well						
programme -environment and human health-human rights-value education-HIV/AIDS-						
women and child welfare – role of information technology in environment and human health –						
Case studies. Urban problems related to energy.						
Total Contact Hours	: 30					

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	To recognize and understand the functions of environment, ecosystems
	and biodiversity and their conservation.
CO2:	To identify causes effects of environmental pollution and natural
	disasters and contribute to the preventive measures in the society.
CO3:	To apply knowledge on the conservation of natural resources by keeping the
	sustainable development as a main goal.
CO4:	To identify the importance of Development as a standard of living
	otherwise that leads to serious environmental disasters.
CO5:	To demonstrate the knowledge about human population and its drastic
	change which will eventually lead to unsustainable development.

Textbooks:

- 1. AnubhaKaushikandC.P.Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers, 2018.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, NewDelhi, 2016.

HoD BOS Chairman

3.	GilbertM.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition,
	Pearson Education, 2004.
4.	Allen, D.T.and Shonnard, D.R., Sustainability Engineering: Concepts, Designand Case
	Studies, Prentice Hall.
5.	Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
6.	Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication,
	London, 1998.

Ref	erence books/other materials/webresources:
1.	R.K.Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and
	Standards', Vol. I and II, Enviro Media. 38 . edition 2010.
2.	Cunningham, W.P.Cooper, T.H.Gorhani, 'Environmental Encyclopedia', Jaico Publ.,
	House, Mumbai, 2001.
3.	DharmendraS.Sengar, 'Environmental law', Prentice hall of India PVT.LTD, New Delhi,
	2007.
4.	Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press,
	Third Edition, 2015.
5.	Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient
	Blackswan Pvt. Ltd. 2013.

	CO-PO Mapping											CO-PSO Mapping		
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	-	-	-	-	-	2	3	-	-	2	-	-	-	-
CO2:	2	-	-	-	-	2	3	-	I -	2	-	-	-	-
CO3:	2	-		-	-	2	3	-	-	2	-	-	•	-
CO4:	-	-	-	-	-	2	3	-	-	2	-	-	-	-
CO5:	-	-	-	-	-	-	3	-	-	2	-			-
Average:	2	1	-	-	-	2	3	-	-	2	-		-	_

Subject Code	Subject Name	Category	L	T	P	C
AM24404	MACHINE LEARNING	PCC	2	0	2	3
Course Objec	ives:					
	and the necessity of machine learning for additional scenarios.	ressing diverse				
	arious machine learning algorithms, including sed, and unsupervised learning techniques	supervised, sem	i-			
 Explore 	emerging approaches and advancements in m	achine learning.				
	ge Watson Studio for a collaborative environm ess business challenges effectively	ent equipped wit	h too	ols		
	tools in Watson Studio to analyze and visualiz data, ingest streaming data, and develop and t			5		

HoD Bo Chairman

UNIT – I INTRODUCTION TO MACHINE LEARNING	6
Machine learning Introduction-Types of Machine learning -Supervised,	
Unsupervised, and reinforcement-Over fitting and Regression-Classification-	
Clustering-Examples	
UNIT – II INTRODUCTION TO IBM CLOUD	6
Introduction to IBM Cloud- Resources-IBM Cloud Infrastructure- Security-IBM	
Cloud Foundry-Cloud Park for data- IBM Cloud vs Amazon Cloud - Cloud Native	
Storage and Data Service	
UNIT - III INTRODUCTION TO WASTON STUDIO	6
Introduction to Watson Studio- Project creation- Storage- Access control-Prebuilt Wats	on
application- Watson Solutions- Catalog and govern data	
UNIT – IV MACHINE LEARNING IN WATSON	6
Watson Knowledge Studio and Watson Knowledge catalog-Watson Discovery Services	-
Watson Auto AI-Watson Open Scale- Watson API	
UNIT - V NATURAL LANGUAGE PROCESSING	6
NLP Introduction-Natural Language Understanding (NLU)-Conversational AI-	
Building blocks of chat bot-Watson Assistant-Speech to Text -Text to speech.	
Total Contact Ho	ırs:30

LIST OF EXPERIMENTS
1. Implement a Linear Regression model to predict house prices using a dataset.
2. Train a K-Nearest Neighbors (KNN) classifier on the Iris dataset and evaluate its accuracy
3.Perform sentiment analysis on a given text using IBM Watson Natural Language
Understanding (NLU).
4. Deploy a Flask web application on IBM Cloud Foundry.
5. Apply K-Means clustering to segment customers based on their purchasing behavior.
6. Convert an audio file to text using IBM Watson Speech-to-Text API.
7.Build a basic Chabot using IBM Watson Assistant and integrate it into a Python application
8. Train a Convolutional Neural Network (CNN) to classify images from the MNIST dataset.
9. Implement Logistic Regression for spam email detection using a text dataset.
10. Use IBM Watson Natural Language Understanding (NLU) to extract named entities from a gi
text.
Total Contact Hours: 30

Course Outcomes:	Upon completion of the course students should be able to:
CO1:	Analyze various methods and theories in the filed of ML
CO2:	Gain an understanding of the fundamental principles and techniques of
	ML
CO3:	Utilize Watson Studio to streamline the process from
	experimentation to deployment, enhance data exploration
	and accelerate model development and training
CO4:	Demonstrate the creation and application of AI models.

HoD/BOS Chairman

CO5: Analyse and evaluate the performance of the AI models

Textbooks:

1. IBM Courseware

Reference books/other materials/webresources:

- 1. Ethem Alpaydin, "Introduction to MachineLearning", MITPress, Fourth Edition, 2020
- 2. StephenMarsland, "MachineLearning: AnAlgorithmicPerspective, "SecondEdition", CRCPress, 2014.

	CO-PO Mapping												CO-PSO Mapping			
PO& PSO / CO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3		
CO1:	2	1	2	1	-	-	-		3	3	2	2	2	1		
CO2:	1	3	3	1	2	-			2	2	2	3	1	1		
CO3:	2	1	3	3	2	-		† -	1	1	1	1	2	1		
C04:	2	3	3	2	1	-	-	-	3	2	3	1	2	1		
CO5:	1	1	3	3	1	-	-	-	3	1	1	3	3	2		
Average:	2	2	3	2	2	-	-	-	2	2	2	2	2	1		

HoD Bos Chairman

Subj	ubject Code Subject Name		Category	L T		P	C		
ΑΓ	024413	DATABASE DESIGN AND MANAGEMENT LABORATORY	PCC	0	0	3	1.5		
•	To understa	and the database development life cycle							
•	To learn dat	abase design using conceptual modeling, Normalization							
•	To impleme SQL progra	nt database using Data definition, Querying using SQL maming	anipulation an	d					
•	To impleme	nt database applications using IDE/RAD tools							
		erying Object-relational databases							
LIST (OF EXPER	IMENTS							
1.	Database De Constraints	velopment Life cycle: Problem definition and Requirement	t analysis Sco	pe ar	ıd				
2.	Database de	sign using Conceptual modeling (ER-EER) - top-down ar	proach Mapp	ing					
	conceptual t	o relational database and validate using Normalization							
3.	Implement t	he database using SQL Data definition with constraints, V	iews						
4.	Query the d	atabase using SQL Manipulation							
5.		lanaging the database using SQL Programming - Stored Prand security using Triggers	rocedures/Fun	ction	s —				
6.	Database de	sign using Normalization – bottom-up approach							
7.	Develop dat	abase applications using IDE/RAD tools (Eg., NetBeans, V	/isualStudio)						
8.	Database de	sign using EER-to-ODB mapping / UML class diagrams							
9.	Object features of SQL-UDTs and sub-types, Tables using UDTs, Inheritance, Method definition								
10.	Querying th	e Object-relational database using Objet Query language							
,			Total Co	ntac	t Ho	urs	:45		

Course Outcomes:	Upon completion of the course students should be able to:								
CO1:	Understand the database development life cycle								
CO2:	Design relational database using conceptual-to-relational mapping, Normalization								
CO3:	Apply SQL for creation, manipulation and retrieval of data								
CO4:	Develop a database applications for real-time problems								
CO5:	Design and query object-relational databases								

HoD/BOS chairman

PO& PSO / CO			CO-PSO Mapping											
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	2	1	1	2	1	_	1	1	1	2	3	2	2
CO2:	3	3	3	2	3	1	_	1	1	1	2	3	3	3
CO3:	3	3	2	2	3	1		1	1	1	2	3	3	3
CO4:	3	3	3	2	3	1	_	1	2	2	2	3	3	3
CO5:	3	3	3	2	3	1	_	1	2	2	2	3	3	3
Average:	3	2.8	2.4	1.8	2.8	1	_	1	1	1.4	2	3	2.8	2.8

Subject Code	Subject Name	Category	L 0	T	-	C 1.5
CS24413	DATA SCIENCE LABORATORY	PCC				
To unders	stand the python libraries for data science					
To unders	stand the basic Statistical and Probability measures for	or data science.				
	lescriptive analytics on the benchmark data sets.					
To apply	correlation and regression analytics on standard data	sets.				
To present	t and interpret data using visualization packages in I	ython.				

LIST OF EXPERIMENTS

- 1. Download, install and explore the features of NumPy, SciPy, Jupyter, Statsmodels and Pandas packages.
- 2. Working with Numpy arrays
- 3. Working with Pandas data frames
- 4. Reading data from text files, Excel and the web and exploring various commands for doing descriptive analytics on the Iris data set.
- 5. Use the diabetes data set from UCI and Pima Indians Diabetes data set for performing the following:
 - a. Univariate analysis: Frequency, Mean, Median, Mode, Variance, Standard Deviation, Skewness and Kurtosis.
 - b. Bivariate analysis: Linear and logistic regression modeling
 - c. Multiple Regression analysis
 - d. Also compare the results of the above analysis for the two data sets.
- 6. Apply and explore various plotting functions on UCI data sets.
 - a. Normal curves
 - b. Density and contour plots
 - c. Correlation and scatter plots
 - d. Histograms
 - e. Three dimensional plotting
- 7. Visualizing Geographic Data with Basemap

Total Contact Hours: 45

HoD/BOS Chairman

Course Outcomes:	At the end of this course, the students will be able to:								
CO1:	Make use of the python libraries for data science								
CO2:	Make use of the basic Statistical and Probability measures for data science.								
	Perform descriptive analytics on the benchmark data sets								
CO4:	Perform correlation and regression analytics on standard data sets								
CO5:	Present and interpret data using visualization packages in Python.								

PO & PSO / CO		11	CO-PSO Mapping											
	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2	PSO3
CO1:	3	2	1	1	-	-	-	-	1	3	3	1	3	2
CO2:	3	2	2	3	1	-	-	-	3	1	3	1	3	3
CO3:	3	2	1	3	1	-	-	-	2	1	1	3	2	3
CO4:	2	3	1	3	-	-	-	-	2	3	2	3	3	1
CO5:	1	2	3	1	1	-	-	-	2	1	3	1	3	3
Average:	2	2	2	2	1	-	-	-	2	2	2	2	3	2

HoD/BOS Chairman